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Abstract 

The total charge density of PYRAC, a polar (Pca21) organic racemate with Z’ = 2 was derived from 

high-resolution single-crystal X-ray diffraction data at T = 100(2) K and periodic DFT calculations. 

The PYRAC asymmetric unit consists of a hydrogen-bonded pair of conformationally different 

enantiomers, A and Bi, where the subscript ‘i’ indicates a reversed absolute configuration. The 

lattice stability was compared with that of centrosymmetric possibly competing structures, with the 

aim of understanding why a non-centrosymmetric lattice framework is obtained from a racemic 

mixture. The likelihood of specific intermolecular recognition processes among different 

conformers of PYRAC in the very first stages of nucleation was investigated by DFT simulations in 

vacuo. Two competing, equivalent interconversion pseudorotatory paths between the most stable A 

and the least stable B conformers were found. It results that molecules spend most of their time (≈ 

53 %) in the A conformation, while the B one is far less populated (≈ 7 %). Therefore, 

centrosymmetric AAi adducts are formed very frequently in the reaction liquor, while the BBi ones 

are rare. Nevertheless, AAi pairs produce crystal forms with cohesive energies and densities 

significantly less favourable than those estimated for the non-centrosymmetric heterochiral ABi 

ones. Therefore, preference for Z' = 2 in conjunction with non-centrosymmetric point and space 

groups results from the thermodynamic control of the crystallization process. The capability of 

forming extended hydrogen bond chains throughout the lattice appears to be a prerequisite to bind 

together the fundamental ABi repeating units.  

 

Keywords: Single-crystal X-ray diffraction, kinetics of conformational changes, racemate, 

polar space groups, cohesive energy 
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1. Introduction  

It is well known that several bulk properties of crystalline compounds rely on symmetry at 

atomic, molecular and supramolecular levels. Symmetry is perhaps the most fundamental property 

of matter,1 as it sets up exact requirements that any observable quantity must fulfil.2 Several 

physical effects that raise interest in cutting-edge research fields, such as the design of smart 

materials and advanced sensors, depend on the (strong) anisotropic coupling among crystal lattice, 

electron polarizability and an external field producing mechanical, thermal or electromagnetic 

stress. ‘Anisotropic’ is the key term in this context: for example piezoelectricity,3 pyroelectricity4 

and second-harmonic generation5 cannot manifest in substances with centrosymmetric 

crystallographic point groups, as in these latter any externally triggered mechnical or electric 

distortion would be counteracted by an equal and opposite structural or electronic response. 

Therefore, it is not surprising that lacking of inversion symmetry is the first and most striking 

requirement sought for in designing several types of advanced materials, although symmetry axes 

and planes may also play a decisive role.2 For example, a unique axis compatible with a non-

vanishing first momentum of the charge density distribution in the whole unit cell is mandatory for 

pyroelectricity. An acentric space group where such an axis exists is called ‘polar’. For a crystal 

structure to be truly polar, however, a non-vanishing electric dipole moment directed along that axis 

is also required.6 

Predicting and hopefully controlling crystal symmetry in dependence of specific synthetic 

conditions is one of the main tasks of modern direct7 and reverse8 crystal engineering. A great deal 

of effort has been spent in the last decade on this topic,9 with major focus on molecular crystals.10 

Nevertheless, it is still virtually impossible to know in advance which space group, or even which 

crystal system a new molecular compound will exploit in the solid state.10c The problem is 

discouragingly intricate, as crystal nucleation and growth kinetics are as important as 

thermodynamics in governing the crystallization process,11 and there is no way to know from the 

molecular structure alone whether a kinetic polymorph will be also thermodynamically favoured or 

not.12 A further level of complexity arises when conformational differences occur in the solid with 

respect to isolated molecules. Crystal structures of flexible molecules are still not predictable from 

scratch, even though in the most recent 'blind test'13 two groups out of a total of 14 found the correct 

structure of a medium-size benzylcarbamate derivative with high torsional freedom. The successful 

predictions yet made still use of database-stored information. In this respect, single-crystal X-ray 

diffraction analysis of complex systems represents a valuable and complementary approach to 

computer simulations14 if specimens of sufficient quality are available.15  
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Scheme 1 

In this work, we report on the experimental and theoretical study of a racemic aminoacid 

pyrazolidine derivative (hereinafter PYRAC, C16H21N3O5), 3-pyrazolidineacetic acid, 2-ethyl-5-

oxo-α-[[(phenylmethoxy)carbonyl]amino]- methyl ester, (αR,3S)-rel, a synthesis intermediate of 

promising cytidine triphosphate (CTP) synthetase inhibitors against the African Trypanosomiasis.16 

PYRAC (Scheme 1) crystallizes in the acentric polar space group Pca21 (n°29) with 8 formulae in 

cell. In fact, its asymmetric unit contains a couple of hydrogen-bonded enantiomers in distinct 

conformations.16 This is not surprising per se, as non-centrosymmetric racemates are not rare. Out 

of a sample of 5560 unique centrosymmetric organic structures stored in the Cambridge Structural 

Database (CSD),17,18 Dalhus & Görbitz estimate19 that 23 % are racemates. Their occurrence falls to 

16.5% in a sample of 3819 mirror-symmetric acentric space groups. Conversely, chiral space groups 

are hardly preferred in racemates, and – apart very few exceptions19,20 – one anticipates inversion 

and/or reflection elements to be present for pairs of opposite enantiomers. However, the question on 

what factors influence the probability of inversion symmetry to occur remains open. When 

spontaneous resolution21 does not take place, there are no obvious explanations of why a non-

centrosymmetric or even a chiral lattice framework comes out from a racemic mixture. The reason 

may be thermodynamic, or kinetic, or both, and ultimately depends on how individual conformers 

recognize each other in the very first stages of the nucleation process. In this context, joint 

theoretical first-principle and experimental studies are becoming increasingly popular22 for accurate 

intermolecular (self)-recognition studies in the solid state.  

Our present work is aimed at providing a rationale for the relative stability of the observed 

crystal phase with respect to stable and close-packed centric competing structures, so to get  a model 

able to justify the lack of inversion symmetry in PYRAC. To this end, from accurate single-crystal 

X-ray diffraction experiments at T = 100 K, we derived the total charge density of PYRAC and its 

crystal cohesive energy. Experimental outcomes were complemented by DFT simulations in vacuo 

and in the bulk, as well as by Hirshfeld surface analysis and force-field based calculations. PYRAC 
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is also a good test case to look at how high conformational flexibility can result in different 

accessible classes of intermolecular interaction patterns. We thus explored the kinetics of the 

pseudorotatory path among the experimentally detected conformations by DFT simulations on the in 

vacuo Born-Oppenheimer surface. The focus here is on the thermodynamics and kinetics of the 

isolated system, upon which the self-recognition mechanism of PYRAC must rely. Inclusion of 

solvent effects is delayed to forthcoming studies.  

 

Figure 1. Colour online. Asymmetric unit (ASU) of PYRAC at T = 100(2) K, with the atom 
numbering scheme. Thermal ellipsoids are drawn at the 50 % probability level and intermolecular 
cyclic NH···O hydrogen bonds are highlighted as purple dotted lines. In this picture, A and B 
correspond to C3A(R), C6A(S) and C3B(S), C6B(R) absolute configurations. Inset: crystal 
employed in the present diffraction analysis. The sample is ≈ 550 µm long. All the molecular 
pictures in this work were realized with Diamond v.3.2i, K. Brandenburg, © 1997-2012 Crystal 
Impact GbR, Bonn, Germany.  

 

2. Materials and Methods. 

2.1 X-ray diffraction and experimental charge density. PYRAC (Figure 1) was synthesized as 

described elsewhere.16 Large and well-formed crystals appeared directly after resting the reaction 

liquor overnight at RT from a 1:1 mixture of ethyl acetate/hexane.23 The pure compound was kept in 

the dark in a refrigerator at T = 4 ºC for ≈ 2.5 months. Nine specimens, sampled from different 

zones of the glass tube (including its walls), were tested at the diffractometer until a charge-density 

grade15 crystal was found. Neither other crystal forms were found in the original batch of material 

by powder diffraction methods (Section S1 of the Supporting Information, SI), nor solid-solid phase 
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transitions were detected in the whole T range explored up to the melting point (≈ 92 ºC). Slow 

cooling (1°C/min) of the melt resulted in a glassy state (see Section S4, SI). 

 
Table 1. Crystallographic details and refinement statistics of PYRAC (C16H21N3O5, orthorhombic, 
Pca21, F000 = 1424 e, Mw = 335.36 amu).  
Z, Z’ a 8, 2   
a [Å] 14.4188(11)  
b [Å] 9.2474(7)  
c [Å] 25.0399(18)  
V [Å3] 3338.7(4)  
Dx [g cm-3] 1.334  
T [K] 100(2)  
λ [Å], µ [mm-1] 0.71073, 0.10  
crystal size [mm3] 0.55 x 0.33 x 0.30  
Reflns. collected, unique reflns. 292815, 14098  
Completeness 0.989  
(sinθ/λ)max [Å-1] 1.0  
Rint 0.0599  
Refinements Experimental data (Fexp) Synthetic data (Ftheo) 
Reflns. included in the refinement 11918 14098 
Parameters refined (last cycles) 1281 1327 
Data-to-parameter ratio 9.3 11.0 
Radial parameters k for O / N / C 0.9840(1) / 0.9847(2) / 0.9771(2) 0.9941(1) / 0.9973(1) / 0.9981(1) 
Radial parameters k’ for O / N / C 1.194(3) / 0.996(2) / 0.8932(7) 1.064(1) / 1.001(1) / 0.9195(4) 
Radial parameters k,k’ for H 1.1601(7), 1.272(2) 1.1892(3), 1.254(2) 
RF

2, wRF
2, goodness-of-fit (all data) 0.0235, 0.0432, 1.1418 0.0054, 0.0042, 0.0949 

∆ρMAX/MIN [e⋅Å-3] +0.15, –0.10 +0.08, –0.09 

                                                 
a Z is the number of formulae per cell, whereas Z' is the number of formulae in the ASU 
 

The ASU consists of a pair of conformationally different enantiomers, hereinafter labelled as 

‘A’ and ‘Bi’ (see below), with the ‘i’ subscript denoting their opposite chirality. X-ray diffraction 

data were collected at T = 100(2) K using graphite–monochromated Mo Kα radiation (λ = 0.71073 

Å) at a nominal source power of 50 kV x 30 mA on a three–circle Bruker SMART APEX II 

goniometer equipped with a CCD area detector and an Oxford Cryosystems N2 gas blower. The 

SAINT24 program package was employed to perform integration and preliminary data reduction, 

whereas beam anisotropy corrections and final scaling were applied by SADABS25 and XPREP.26 

The final dataset was ≈ 99% complete up to the maximum resolution of 1.0 Å-1 in sinϑ/λ (Table 1). 

The static experimental charge density (ρEXP) was extracted from the observed structure factor 

squared amplitudes (Fexp
2) at T = 100 K through the Hansen–Coppens multipole formalism27 as 

implemented in the XD2006 software package.28 Relevant refinement details and agreement 

statistics can be found in Table 1, while a detailed discussion on the least-squares strategy and on 

the treatment of the thermal motion can be found in Sections S2 and S4 SI. The Quantum Theory of 

Atoms in Molecules29a was employed throughout to derive topological descriptors29b,c from the ρEXP 

distribution. 
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2.2 Bulk DFT simulations. The LCGTF (Linear Combination of Gaussian-Type Functions) 

approach as implemented in the CRYSTAL09 code30a was employed to perform all-electron 

quantum-mechanical simulations in bulk PYRAC. A double-zeta 6-31G(p,d) basis set with 

exponents suitably modified for solid-state calculations31 was selected in conjunction with the 

hybrid B3LYP functional.32 3030Unique theoretical structure factor amplitudes with the same indices 

as the measured data were also computed. They were employed to derive a multipole-projected 

electron density distribution, ρTHEO, fully consistent with the ρEXP one in terms of considered 

structure factors and multipole model expansion. Full technical details are reported in Section S3, 

SI. 

 

2.3 Search for possible competing polymorphic centrosymmetric structures. The Coulomb-

London-Pauli (CLP) model of intermolecular interactions as implemented in the CLP program 

package33 was employed to generate possible PYRAC polymorphs based on the fully 

centrosymmetric XXi molecular pairs, with X denoting one of the stable conformers found in the 

gas-phase (see Sections 3.2.3 below and S8, SI) and Xi its corresponding inversion-related analogue. 

First, the XXi geometries were optimized in vacuo at the DFT B3LYP32 6-311G(p,d)34 theory level 

by means of the Gaussian09 program.35 Then, the Clpoly module of the CLP package built a set of 

possible centrosymmetric crystal structures with one PYRAC molecule in the ASU. The current 

version of the program can handle a limited number of space groups, so we focused on P1, P21/c, 

C2/c and Pbca lattice symmetries that account for roughly the 90 % of the centrosymmetric 

structures in the up-to-date version of the CSD.18 To compare the competing possible polymorphs of 

PYRAC on the same grounds, the experimental structure and the most stable CLP-derived structures 

were employed as starting guesses to perform all-electron periodic DFT optimizations by means of 

the CRSYTAL09 program30b,c at the B3LYP 6-31G(p,d)31 level of theory (see Section S3, SI).  

 

2.4 In vacuo simulations. Quantum-mechanical simulations were performed on isolated molecules 

and suitable adducts at the 6-311G(p,d)34 level of theory in conjunction with the B3LYP32 DFT 

functional, through the Gaussian09 program package.35 Full structure optimizations were performed 

on both isolated conformers and interacting centrosymmetric XXi pairs (see above). All the 

molecule-molecule interaction energies were corrected for zero-point energy (ZPE) and basis set 

superposition error (BSSE).36 A possible interconversion mechanism between the A and B 

arrangements of the C3(S), C6(R) enantiomer was determined by a transition-state optimization 
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procedure in vacuo (Section 3.2.2). Full details are reported in the Supporting Information (Section 

S6, Figures S8-S12). 

  

3. Results and discussion. 

The paper is organized as follows. First, the experimental packing of PYRAC is described 

(Section 3.1). Then, a plausible mechanism for the molecular self-recognition in vacuo is elucidated 

(Section 3.2) and possibly competing centrosymmetric polymorphs of PYRAC are looked for 

through first-principle simulations (Section 3.3). Conclusions are drawn in Section 4. 

 

3.1 Crystal packing in PYRAC: analysis of the experimental structure 

3.1.1 Hydrogen bond patterns. PYRAC lacks hydroxyl functions; just two possible N–H 

hydrogen bond (HB) donors are available.  

 

Figure 2. Colour online. Wires-and-stick representation of the crystal packing of PYRAC at T = 
100(2) K, with alternating layers of A and B conformers along b highlighted (see text). Hydrogen 
atoms not involved in the specific HBs discussed in the text have been omitted for clarity. 
Symmetry-independent NH⋅⋅⋅O HBs listed in Table 2 are shown as green (HN3⋅⋅⋅O4) or purple 
(HN1⋅⋅⋅O1) dotted lines. (a) Projection along the a axis and (b) along the c axis.  
 

The latter belong to the carbammate (N3–H) and the pyrazolidinone (N1–H) systems (Figure 1, 

Scheme 1) and are all saturated in the crystal37 (Figure 2, Table 2). Different A and B conformers 

are piled up along the b axis, forming alternating layers of segregated A or B molecules almost 
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parallel to the (a, c) plane (Figure 2). Adjacent planes along b are held together through two 

independent N3–H⋅⋅⋅O4 hydrogen bonds, that form infinite zig-zag chains of alternating -A-B-A-B- 

conformers (green dotted lines in Figure 2). The latter are enantiomerically related to each other 

through the a glide plane (Table 2). The N1–H⋅⋅⋅O1 HBs, on the other hand, set up a cyclic pattern 

between facing pyrazolidinone rings of independent molecules in the ASU (purple dotted lines in 

Figures 1 and 2), and bridge parallel -A-B-A-B- chains along the a direction (Figure 2b). Much 

weaker CH⋅⋅⋅O interactions (Table S3, SI) are set up among molecules lying in planes orthogonal to 

b. The anisotropy in directional HB interactions governs the cell edge changes when the 

temperature is lowered, as the b axis undergoes a significantly smaller relative contraction (–0.99(1) 

%) with respect to the a (–1.89(1) %) and c (–1.54(1) %) axes upon cooling from RT to 100 K. Not 

unexpectedly, the unit cell preferentially shrinks along directions exploiting less tight binding.38  

 

Table 2. Geometrical and point topological descriptors obtained from the experimental multipole 
model, ρEXP, of the NH⋅⋅⋅O hydrogen-bonded contacts shown in Figures 1 and 2. When available, 
estimated standard deviations are reported in parentheses.  
N-H⋅⋅⋅O dN-H / Åa dN⋅⋅⋅O / Å dH⋅⋅⋅O / Å αNHO / deg ρbcp

b
 /e⋅Å-3 ∇2ρbcp 

b/ e⋅Å-5 symmetryc 
N1A-HN1A⋅⋅⋅O1B 1.027 2.9113(8) 1.90 168.6 0.17(5) 1.6(1) x, y, z 
N1B-HN1B⋅⋅⋅O1A 1.027 2.8969(8) 1.89 170.9 0.18(5) 1.97(9) x, y, z 
N3A-HN3A⋅⋅⋅O4B 1.027 2.8525(7) 1.84 167.6 0.13(6) 2.8(1) x–1/2, –y, z 
N3B-HN3B⋅⋅⋅O4A 1.027 2.8415(7) 1.82 177.1 0.27(4) 0.98(6) x+1/2, –y+1, z 

                                                 
a N-H distances were kept frozen at their standard neutron values17b. 
b Experimentally-derived charge density and its Laplacian as computed at the bond critical point (bcp) along the atomic 
interaction line29 linking H and O atoms. Estimated standard deviations provided by the XD200628 program are also 
shown. 
c Symmetry operation that generates the acceptor O atom. 

 

The two N1–H⋅⋅⋅O1 bonds forming the cyclic HB pattern (Figures 1, 2) are very similar in terms of 

geometrical and topological descriptors, though they are not symmetry-related. One could explain 

such similarity in terms of a pseudo-inversion operator, e.g. located at the geometric centre of the 

hydrogen-bonded 8-membered ring, [–N1A–HN1A⋅⋅⋅O1B–C1B–N1B–HN1B⋅⋅⋅O1A–C1A–]. 

However, deviations from Ci symmetry are significant within the ABi adduct (see Section S5, SI). 

The symmetry breaking in the zone of the pyrazolidinone rings is due to the mutual orientation of 

the two molecules, as facing amide groups are not coplanar. The planes passing through atoms H1-

N1-C1-O1 in A and B molecules are tilted by 36.31(3)° with respect to each other. This is not due to 

conformational differences, as their 5-membered rings are almost identical (see Sections 3.2.1, and 

S5, SI). Rather, the ASU adopts an asymmetric configuration as a whole: no obvious pseudo-

inversion operators can be recognized, not even correlating pyrazolidinone groups. This implies that 

the similarity showed by the N1-H1⋅⋅⋅O4 HBs has a purely chemical origin, i.e. it is due to the 
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similarity, in terms of bond geometries and hybridization states, of the interacting amide groups. 

Significant differences become instead evident when the N3–H⋅⋅⋅O4 bonds are compared (Table 2), 

as the N3A–HN3A⋅⋅⋅O4B HB is clearly weaker than its N3B–HN3B⋅⋅⋅O4A analogue. This is due to 

a less favourable geometry of the first HB, because of the conformationally-driven differences in the 

mutual orientation of the N3 donor and O4 acceptor atoms in the A and B enantiomers (see Section 

3.2.1 below).  

These packing motifs are consistent with a truly polar crystal structure.6 The resulting dipole 

moments from all the A and B molecules in the unit cell are oppositely directed and run along the 

polar c axis. From the Mulliken partitioning of the quantum mechanical charge density in the bulk 

(Section 2.2) at the 100 K experimental geometry, it emerges that the four B molecules in the unit 

cell provide a dipole contribution as large as 10.7 D along [0 0 1], which is counteracted by that 

from the corresponding four A molecules, amounting to 17.8 D and oppositely directed ([0 0 1]). 

Overall, the total in-cell dipole module amounts to 7.1 D.  

 

3.1.2 Hirshfeld surface fingerprint plots. Figure 3 shows the Hirshfeld surface fingerprint 

plots39 of the independent conformers in PYRAC at T = 100(2) K. By definition, a Hirshfeld surface 

surrounding a given molecule encloses the region of space inside which the promolecular density40 

exceeds that due to any other molecule. A fingerprint plot is a map of the fraction of points on the 

Hirshfeld surface that exhibit specific di and de values, the latter being the closest distances of nuclei 

inside (di) and outside (de) the volume enclosed by the surface itself. Fingerprint plots thus encode 

information about the intermolecular interactions throughout the nearest environment of each 

molecule in the ASU. They are suitable to study polymorphism41 and/or structures with Z' > 1, i.e. 

where more than one formula unit is present in the ASU.14,39b  

 

Figure 3. Colour online. Hirshfeld surface fingerprint plots of the nearest internal distance (di) 
versus the nearest external distance (de) for the two independent conformers A (left) and B (right) of 
PYRAC at T = 100 K. The colours represent the number of points which share the same di, de 
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coordinate (light blue: many; dark blue: few). The graphics were produced using Crystal Explorer 
v2.1.42  
 

From Figure 3, the following analogies and differences between the two conformers are noted. (i) 

Two long and sharp lateral spikes are evident in both the diagrams, with minimum di+de ≈ 1.8-1.9 

Å. This is the signature of the four independent short NH···O hydrogen bonds above discussed. The 

fact that the spikes are almost identical and symmetric with respect to the main diagonal of either 

diagram, despite the asymmetric nature of the ASU (see above), remarks that all the strong HBs are 

set up between the same pairs of donor and acceptor molecules. (ii) A narrow light blue spike along 

the main diagonal with minimum di+de ≈ 2.2 Å is appreciable in the plot of the conformer A, but not 

in that of the conformer B. This feature is due to head-to-head H⋅⋅⋅H contacts, such as nearly linear 

C–H···H–C arrangements,39 between neighbouring molecules. It reveals that the A molecule 

experiences a slightly more crowded environment than B. On the contrary, (iii) the latter shows a 

more localized narrow light blue spot at di = de ≈ 1.8 Å. This is attributable to a single C···C contact 

between C7B [x, y, z] and C1B [0.5+x, –y, z] carbonyl atoms, that belong to a couple of B 

conformers enantiomerically related through an a glide plane (Figure S13 in the Supplementary 

Materials). Being located at the characteristic di and de coordinates of the π· · ·π stacking interactions 

in aromatic hydrocarbons, this feature implies some kind of such interactions between the 

pyrazolidinone and ester groups of stacked B molecules. (iv) A couple of asymmetric lateral wings 

at minimum di+de ≈ 2.5-2.7 Å are evident in both the plots. These wings indicate C–H⋅⋅⋅π 

interactions that typically appear when an H-bearing terminal group is oriented so that it is roughly 

equidistant from a planar hydrocarbon ring.39 As for the present case, the A phenyl can accept a C–

H⋅⋅⋅π contact from the H3B tertiary hydrogen, that is roughly equidistant from the C11A-C16A 

carbon atoms (<dH3B···C> = 2.88(9) Å). The phenyl group of the B conformer, on the other hand, is a 

less efficient acceptor, as the analogue C3A–H3A⋅⋅⋅π interaction has a more unfavourable geometry, 

with uneven and, on average, longer H⋅⋅⋅C distances (<dH3A···C> = 3.2(2) Å; Figure S14, SI).  
362833

  

3.2 Molecular recognition. 

 3.2.1. Conformers present in the solid state. The PYRAC hydrocarbon backbone is 

dominated by σ-bonds. Therefore, this compound has a significant conformational flexibility that 

leads to important conformational differences between the A and B molecules, contributing to avert 

the ASU to be centrosymmetric (see Section 3.1.1 above). Figure 4 shows the main differences 

between two homochiral C3(S), C6(R) conformers once superimposing the two carbammate 

moieties, sited near the respective centres of mass.  
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Figure 4. Colour online. Superposition of two A (yellow) and B (green) homochiral conformers at 
their solid-state geometries, as determined by the diffraction experiment at T = 100 K. Hydrogen 
atoms have been omitted for the sake of clarity. 
 

Interestingly, different functional groups are rigidly displaced on going from one conformer to the 

other. In particular, the 5-membered pyrazolidinone rings adopt the same envelope-like 

configuration at the C3 atom, with puckering coordinates43 Q(2)A = 0.262, φ(2)A = 257.11 deg for 

the A backbone and Q(2)B = 0.208, φ(2)B = 77.51 deg for the B one. Note that φ(2)A and φ(2)B are 

identical within 0.5 deg, apart a ± π phase shift accounting for the change in the absolute 

configuration. In summary, the most relevant differences concern the mutual orientations of the 

phenyl rings44 and ester chains. In particular, the latter are rotated by almost 180º around the C6-C7 

bond, with torsion angles τO2-C7-C6-N3 being as large as -0.28(9) deg in A and 176.03(7) deg in B 

homochiral molecules. The two in-crystal conformations lie very close in energy, with the A being 

more stable than the B conformation by just 1.5 kcal⋅mol-1 at the B3LYP 6-311G(p,d) theory level.  

    

 3.2.2. DFT conformational dynamics. To gain insights into the formation of the ABi building 

block, it is instructive to explore the pseudorotatory path for the A ↔ B interconversion in vacuo 

(Section 2.4 above and S6, SI). We found that the A ↔ B interconversion takes place through a 

couple of competing reaction paths. Both of them occur in two steps and involve two new stable 

minima, not present in the crystal (hereinafter, 'G' and 'M'). Figure 5 shows the energy profile for the 

A ↔ B reaction through the various stationary points it crosses. The key substituents involved in the 

main conformational changes are just the benzyl and the methylester (see also Sections S5 and S6, 

SI). Both these groups can rotate around a specific σ-bond, i.e. O5-C10 (benzyl) and C6-C7 (ester). 

The rotation of the aromatic system is almost free, with the corresponding ≈90° wide sweeping 

being associated to very small activation barriers (TS1 and TS4). The rotation of the methylester 

group is instead more difficult, as it proceeds through the high energy transition states TS2 and TS3. 

If the benzyl group rearranges first, the A ↔ M ↔ B path is followed: the first elementary act 
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implies evolution into the transition state TS1, that is similar to the starting point A apart a ≈ 90° 

rotation of the benzyl itself (Figure S11a, SI). 

 

Figure 5. Colour online. In vacuo energy profile (kJ⋅mol-1) at the B3LYP 6-311G(d,p) level of 
theory vs. the reaction coordinate, taking the energy of the most stable A conformer as reference. 
All the geometries were fully optimized and corrections for zero-point energy were taken into 
account. Top: backbone structures (no hydrogen atoms shown) of stable conformers and transition 
state (TS) geometries. Shorter arrows correspond to slower elementary acts. 
 

Then, PYRAC falls into the high-energy M minimum: now the benzyl is oriented as in the final B 

state, while the methylester chain is kept essentially unchanged with respect to the starting 

stationary point (see also Figure S10d, SI). The second act starts with a more difficult 90° rotation 

of the methylester chain around the C6-C7 bond, until the late transition state TS2 is reached 

(Figure S11b, SI). Eventually, the rotation of the ester group is completed and TS2 evolves into the 

B conformer.  

As for the second available reaction path, it proceeds through the G intermediate following 

the A ↔ G ↔ B mechanism. The latter is equivalent to the A ↔ M ↔ B one, but the order of the 

conformational changes above described is now reversed. 

Table 3. Kinetic constants at T = 298 K for the elementary acts involved in the A↔B 
interconversion mechanism, as estimated from quantum mechanical simulations in vacuo at the 
B3LYP 6-311G(p,d) level of theory. For each step, the height of the potential barrier is also shown.  
 

Elementary act Label k (x 1010) / s–1 ∆E / kJ·mol–1 
A ↔ M ↔ B path    

A → M k1 55.13 6.00 
M → A k–1 149.80 3.52 
M → B k2 1.39 15.11 
B → M k–2 3.65 12.73 

A ↔ G ↔ B path    
A → G k3 1.21 15.46 
G → A k–3 3.18 13.07 
G → B k4 90.40 4.77 
B → G k–4 245.10 2.30 
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This implies that the slow step is associated to the early transition state, not to the late one. 

Accordingly, the intermediate stationary points G and M differ from each other from the mutual 

orientation of both the ester and the benzyl groups (Figure S12, SI). Table 3 shows the kinetic 

constants at T = 298 K for the various elementary acts described above and computed from the 

Eyring equation. As expected on the basis of the energy profile in Figure 5, the constants associated 

to the rotation of the methylester, k±1, k±4, are from one to two orders of magnitude greater than 

those of the motion of the benzyl, k±2, k±3. In any case, the overall process tends to be directed 

towards the most stable product, A, as the reverse reactions always have at least twice as large 

kinetic constants than the corresponding direct reactions. 

 
 3.2.3 Competing synthons. We focus here just on fully centrosymmetric possible synthons45 

to gain insights on the neat preference for the polar space group exhibited by PYRAC. Starting from 

the four stable A, M, G and B geometries found in vacuo, we built up centrosymmetric pairs, trying 

to set up as many as possible favourable NH···O and CH···O HB contacts while avoiding evident 

steric clashes. We employed the Clpdim routine in the CLP program package33 to compute the 

interaction energies of the corresponding pairs. CLP-derived energies were then minimized by 

manually applying mutual translations and rotations to the interacting molecules, within the 

constraint of preserving the inversion symmetry of the pair. Eventually, the most stable adducts 

were fully optimized in vacuo at the B3LYP 6-311G(p,d) level of theory. A vibrational analysis was 

also performed to ensure that the relaxed geometries of each pair truly corresponded to stationary 

points on the potential energy surface (PES).  

Figure 6 displays the structures found through this procedure. Cyclic HB patterns are always 

set up, but only when they involve facing amide groups as in the solid state (see Section 3.1 above), 

the resulting pair has interaction energy Eint << 0. Pairs lacking this specific interaction are always 

weakly bonded, with interaction energies being equal to zero within 1-2 kcal·mol–1. This 

recognition pattern is possible in most of the XXi adducts. GGi is the only exception, as a steric 

clash among phenyl rings and ethyl chains would result if the 5-membered rings of two G 

conformers are brought too close to each other. Low |Eint| estimates (Figure 6) imply that thermal 

excitations and collisions with solvent are expected to carry enough energy to put apart the 

corresponding pairs, at ordinary temperatures. Therefore, formation of symmetric or asymmetyric 

HBs between heterochiral pyrazolidinone rings in PYRAC appears to be a prerequisite for fully 

stable supramolecular synthons. Overall, 4 building blocks (AAi(2), BBi, ABi, MMi(2)) should be 

available for PYRAC crystallization. However, their formation is not equally probable, as the 

accessible molecular stationary points are not evenly populated. 
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Supposing that at thermal equilibrium the available conformers are Boltzmann-distributed, 

the population probabilities, pX, of the A, M, G and B minima as obtained from the partition 

function analysis are 0.5293 (A), 0.1948 (M), 0.2016 (G) and 0.0743 (B) at T = 298 K. 

 

 

Figure 6. Stationary points on the PES corresponding to centrosymmetric pairs of various PYRAC 
conformers, as found by in vacuo DFT simulations. For each structure, BSSE- and zero-point 
corrected quantum mechanical interaction energies are given. HB contacts are highlighted as purple 
(NH·· ·O) and green (CH···O) dotted lines. Related bond lengths (in Å) and labels of donor and 
acceptor atoms involved in the interaction are also specified. A yellow box encloses the relaxed 
structure of the ABi synthon.  
 

These values correspond to the fraction of time spent by each molecule in the liquor in the 

conformation X (X = A, M, G or B) at equilibrium. At the end of the chemical synthesis, an 

equimolar quantity of PYRAC enantiomers is obtained. Therefore, the probability that two specific 

heterochiral conformers X and Yi will interact is given by the product of the corresponding 

population probabilities (Y may be equal to X or not, Figure 7a). Degeneracy must also be taken 

into account, as a XYi adduct is energetically equivalent to its enantiomer XiY.  

The most populated A conformer dominates the meeting process, as A-containing pairs 

occur more frequently. However, the interaction probabilities shown in Figure 7a are computed 

from a purely stochastic perspective, i.e. they measure the likelihood two different heterochiral 

conformers meet each other in the liquor. Further scaling factors should be taken into account to 

model the ‘effectiveness’ of each collision to produce both a kinetically and thermodynamically 

stable adduct. Reorientation of the conformers taken as rigid bodies, together with internal 
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relaxation of individual molecules, might have a not-negligible influence on the probability that a 

specific self-recognition process be effectively observed. 

 

Figure 7. Colour online. (a) Meeting probabilities of different conformers (A, M, G, B: see text) 
with their enantiomers. Blue: Ci pairs. Grey: C1 pairs. The red arrow highlights the ABi pair. (b) 
Blue (Ci) and grey (C1) bars: Relative Eint of selected adducts as computed from in vacuo DFT 
simulations, with respect to the most stable BBi pair. Purple bars: Overall effectiveness score for 
selected pairs (see text), obtained by scaling the meeting probabilities for the relative Eint values. See 
Figure 6 for the meaning of the labels on the x axis.  
 

In this context, it is reasonable to rescale the crude meeting probabilities46 shown in Figure 

7a by means of the relative stabilities of the corresponding molecular pairs, for example by taking 

the most stable BBi one as a reference (Figures 6 and 7b).47 In this way, the various adducts can be 

ranked (purple bars in Figure 7b) as a function of their propensities to act as effective synthons. The 

higher the final score, the greater will be the likelihood that the corresponding synthon will form 

frequently enough and be stable enough to start growing a crystal embryo before being destroyed by 

thermal fluctuations and/or collisions with its surroundings. Within this simple model, the AAi (2) 

and ABi pairs have the highest scores (0.190 and 0.065, respectively), while other possible 

centrosymmentric adducts are significantly less favourite (AAi 1: 0.0038; MMi 2: 0.0034; BBi and 

MMi 1: 0.006,, GGi: 0.003).   

In summary, the likelihood of specific intermolecular recognition processes in the very first 

stages of the nucleation process is influenced by various factors, such as the relative stability of the 

accessible conformers and the populations of the corresponding stationary points on the PES, 

including those of the high-energy ones that are crossed during the A ↔ B interconversion path. As 

a consequence, looking just at the relative stabilities of possible competing synthons to determine 

which pair will eventually prevail in the solid state is not sufficient. On the other hand, knowledge 

of the conformational space allows for predicting, at least in principle, how the whole recognition 

process will be influenced upon changing some of the boundary conditions of the liquor. For 

example, in the present case, it is reasonable that a decrease of T should hamper the formation of the 

ABi synthon by further depopulating the high-energy B minimum, so favouring the formation of 

AAi pairs. 
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3.3 Centrosymmetric PYRAC polymorphs? 

3.3.1 Looking for competing centrosymmetric polymorphs. Errore. Il segnalibro non è definito.What 

structure will be eventually observed depends on the often quite subtle interplay among various 

classes of non-covalent interactions that are set up in the crystal, such as the HBs, the van der 

Waals-like or the electrostatics interactions and the onset of Pauli repulsions.48 To understand why a 

non-centrosymmetric synthon, and a fortiori a non-centrosymmetric structure, is ultimately 

preferred in PYRAC over alternative centrosymmetric synthons, one has to explore hypothetical 

centrosymmetric polymorphs that employ Ci XXi (X=A, M, G, B) rather than the C1 ABi building 

blocks. To this end, translational symmetry was applied to the in vacuo optimized adducts discussed 

in the previous Section (Figure 6) by means of the Clpoly program in the CLP package33 (see 

Section 2.3 above). Figure 8 shows the best results so obtained, in terms of lattice cohesive energies 

and crystal density. The corresponding numerical entries, together with the refined unit cells and 

individual energy contributions, can be found in Table S6, SI.  

 

Figure 8. Colour online. CLP lattice energies, Elatt, vs. the crystal density, as evaluated for various 
PYRAC polymorphs. A yellow circle highlights the polar non-centrosymmetric Pca21 structure at 
the 100 K X-ray geometry, while a red circle encompasses the same structure after optimization. 
The blue box encloses structures with packing coefficient 0.6 < Cpack < 0.7, comparable to that 
found experimentally (Cpack = 0.7). 
 

Several stable structures were found in space groups P21/c, P1 and Pbca, while the C2/c 

group provided inefficient packing hypotheses, with an average packing coefficient10b <Cpack> = 

0.41(4). In general, the more favourable is the lattice energy, the higher the density of the 

corresponding crystal. However, just three structures (enclosed in a blue rectangle in Figure 8) have 

Cpack > 0.6 that can be considered as the lower limit for the packing efficiency observed in most 

organic crystals.10b These forms derive exclusively from synthons of the AAi type (Figure 6), not 

from the most stable BBi adduct (full purple triangles in Figure 8). They are also comparable in 
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terms of lattice energies, densities and Cpack's with respect to the experimental Pca21 crystal (yellow 

circle in the Figure), even though the latter shows a higher lattice stability. This is even more 

evident if the Pca21 structure is made fully comparable with the simulated centrosymmetric ones 

upon relaxing its lattice parameters and the ASU orientation through the CLP force field (red circle 

in Figure 8).  

Full-electron periodic quantum mechanical optimizations at the B3LYP 6-31G(p,d) theory 

level were performed for both the experimental structure and those forms with Cpack > 0.6. Then, the 

total crystal cohesive energies, Ecoh, of the fully relaxed structures can be computed through14:  

( ) ( ) ( )∑∑∑ +−−=
iiicoh iEiEiEEE BSSErelisobulk     (1)  

where Ebulk is the total electron energy of the unit cell, Eiso(i) is the energy of each ith isolated 

molecule at its solid-state conformation, Erel(i) is the relaxation energy (it is a negative term 

accounting for the difference between the energies of a single molecule, relaxed in vacuo, and of the 

same molecule at the solid-state relaxed geometry) and EBSSE(i) is the correction for basis-set 

superposition error. Summations run over the content of the unit cell. 

 From Table 4, it is clear that the most stable structure at T = 0 K is invariably the polar Pca21 

one. The latter is predicted to be less dense than the phase experimentally found at finite 

temperature. This is due to a ≈ 5 % increase in length of the three cell axes and is the consequence 

of neglecting dispersive (attractive) interactions by ground-state DFT methods.49 Similar results 

were also found when organic crystals were simulated within the DFT GGA approximation.50 3314 In 

any case, the present calculations are just approximations of the true thermodynamic crystal 

stability51 and clearly do not claim to accurately reproduce the experimental structure. Such a task 

would require a finite-temperature modeling of the electronic and phononic structures of both the 

hypothetic and real crystal forms, in tandem with post-DFT quantum methods. Nonetheless, our 

calculations represent a convenient tool for ranking the energies of the polymorphs on a relative 

scale. In this respect, the P1 form turns out to be the least stable one once that all the corrective 

terms are applied. This is due to the unfavourable Erel and EBSSE terms, which are both significantly 

greater in this than in the P21/c structures. The BSSE correction depends on the final relaxed 

geometry of the whole structure and more closely packed arrangements usually imply higher BSSE 

correction terms. The relaxation energy, on the other hand, allows for estimating the importance of 

the crystal field in forcing the molecular backbone to assume a high-energy geometry. While A and 

B molecules within the Pca21 structure are already close to their gas-phase minima (Figure S16, SI), 

the A conformers of the other polymorphs are subject to larger rearrangements in the pyrazolidinone 

region when they are optimized in vacuo at B3LYP 6-31G(p,d) level of theory. 
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Table 4. Total crystal cohesive energies, Ecoh, as computed for optimized (T = 0 K) solid-state 
structures of PYRAC. All the calculations were performed at the B3LYP 6-31G(p,d) level of theory. 
The entries are given in Å, deg, g·cm–3 and kJ·mol–1. 
 

Lattice Synthona 
Cell 

edges 
Cell 

angles 
Density Cpack

b 
Ebulk–
ΣiEiso 

EBSSE
c Erel Ecoh 

Pca21 ABi 
15.1553 
9.6209 

26.5984 

90.00 
90.00 
90.00 

1.148 0.7 –210.61 124.00 –41.93 –44.68 

P1 AAi 1 
9.6204 

16.9671 
17.5530 

66.32 
109.54 
49.07 

1.114 0.6 –137.37 106.63 –77.19 46.45 

P21/c AAi 1 
15.1907 
13.2840 
11.7221 

90.00 
105.21 
90.00 

0.975 0.5 –71.62 44.94 –17.32 –9.36 

P21/c AAi 2 
14.003 

13.6682 
11.4972 

90.00 
90.35 
90.00 

1.012 0.6 –81.05 43.64 –16.32 –21.09 

                                                 
a See Figure 6 for the meanings of the various labels. 
b Packing coefficient (adimensional), defined as the ratio between the total volume occupied by molecules10b and the cell 
volume.  
c A 7 Å cutoff was employed to generate ghost atoms30a. For each structure, this limit was set by looking for the distance 
above which the BSSE correction was constant.  
 

As expected (see Sections S5 and S6, SI), the benzyl group is relatively free to rotate: for example, 

in the P1 simulated polymorph a ≈ 17º wide rotation occurs around the C10–O5 bond with respect 

to the in vacuo arrangement.  

It is also worth noting that the Pca21 optimized structure resembles the experimental one. 

Again, the major changes in the A and B conformers in the two crystalline phases involve small 

adjustments, not exceeding ≈ 10-15°, of the torsion angle τ(C11-C10-O5-C9) describing the 

orientation of the benzyl system with respect to the carbammate moiety. These differences do not 

qualitatively influence the main HB patterns found by the X-ray analysis (see Figure 2 and Tables 

S3 and S4, SI), even though the N3–H···O4 contacts connecting the ABi synthons along b are ≈ 0.1 

Å longer (dH·· ·O = 1.93 and 1.91 Å vs. 1.84 and 1.82 Å) in the optimized lattice. On the contrary, the 

cyclic HB pattern within the ASU is slightly reinforced, with dH···O distances in the N1–H···O1 

contacts lowering to 1.89 and 1.86 Å in the relaxed structure compared to 1.90 and 1.89 Å in the 

experimental one. These differences are, however, partly due to the increased cell edge lengths in 

the DFT-optimized lattice. Anyhow, the high stability of the non-centrosymmetric Pca21 polymorph 

implies that a strong thermodynamic driving force towards the crystal form actually observed by 

means of the X-ray analysis exists.  

Figure 9 shows the Hirshfeld surface fingerprint plots of the optimized solid-state 

centrosymmetric structures listed in Table 4 to be compared with those shown in Figure 3 for 

experimental PYRAC. The plots for the A and B conformers within the Pca21 form at the optimized 

DFT geometry are quite similar to their experimental counterparts (Figure S17, SI). 
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Figure 9. Colour online. Hirshfeld surface fingerprint plots (see Figure 4) for computer optimized 
centrosymmetric solid state structures of PYRAC at the B3LYP 6-311G(p,d) level of theory. (a) 
P1, synthon AAi 1; (b) P21/c, synthon AAi 1; (c) P21/c, synthon AAi 2.  
  

Less negative Elatt in conjunction with lower packing coefficients and densities of the 

centrosymmetric structures are due to less stabilizing non-covalent patterns. From Figure 9 some 

familiar features are recognizable, such as the symmetric, parallel spikes due to the N-H···O HBs. 

Note that these spikes are significantly longer for the AAi 2 P21/c structure, as it contains the strong 

cyclic HB arrangement between facing 5-membred rings lacking in the AAi 1-based structures. The 

less dense and efficient packing of conformers shown in Fig. 9 respect to experimental PYRAC is 

however detectable from the dramatic increment of di/de contacts in the upper right corner of their 

fingerprint plots. A continuum of points at high di +de implies that, on average, atoms very far from 

the surface are found with high frequency, i.e. the structure contains a significant amount of empty 

space. Actually, when the AAi 1 building block is considered, all the HB donors and acceptors are 

involved in cyclic patterns within the pair itself (Figure 6): no other functions are available to set up 

extended NH·· ·O HB chains, so the crystal is made up by 'isolated' clusters (see Figure S18, SI). 

Similarly, in the AAi 2 building block the only available N3–H amide hydrogen has no accessible 

acceptors in its neighbourhoods. Moreover, both the AAi 1 and 2 pairs have an overall dipole 

moment constrained to be zero by their Ci point symmetry. Therefore, electrostatics plays a less 

important role than in Pca21 and the dispersive-repulsive energy balance is expected to dominate 

crystal packing in simulated centrosymmetric polymorphs. Final structures likely result from the 

tendency of terminal hydrocarbon groups to alleviate steric hindrance. Such a scenario can be 

associated to an abundance of ancillary H·· ·H contacts, as it has been found in linear 

hydrocarbons:39a accordingly, all the plots in Figure 9 visibly exhibit the peak along the main 

diagonal that is associated to this feature. 

 Analogue conclusions and on a more quantitative basis, can be drawn by comparing the 

molecule···molecule pair interaction energies at their solid-state geometries. Details on the 
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quantum-mechanically optimized structures here investigated are reported and thoroughly discussed 

in Section S8, SI. 

 2728Errore. Il segnalibro non è definito. 

4. Conclusions. 

A thorough experimental and theoretical study of the crystal packing and interaction 

energetics was performed on PYRAC, a non-centrosymmetric polar racemate obtained as a 

synthesis intermediate during the production of novel antitrypanosomal drugs. The most relevant 

building block in the crystal is a heterochiral asymmetric (C1) molecular pair, whose individual 

components differ by their relative conformations (A and B) and are linked to each other by a strong 

cyclic HB pattern. In turn, each pair is connected to neighbouring building blocks by extended 

NH···O chains. Our main objective was to explore the reasons underlying the lack of inversion 

symmetry in this structure.  

Two equivalent interconversion pseudorotatory paths between A and B conformers were 

found. They occur in two steps, are very fast at ordinary temperatures and involve other two stable 

structures, M and G, not present in the crystalline compound. From the relative stability of the 

stationary points on the PES, it results that molecules spend most of their time (≈ 53 %) in the A 

conformation, while the B one is far less populated (≈ 7 %) and G, M occur with similar frequency 

(≈ 20 %). Even though A, B and M species all form stable adducts when interacting with their 

inversion-related analogues, B and M minima are too scarcely populated at ordinary temperatures to 

ensure a sufficiently frequent formation of the synthon to seed a crystal embryo. What ultimately 

determines the preference for the C1 ABi adduct in the crystal over the AAi ones is a strong 

thermodynamic driving force towards the Pca21 structure. Actually, other centrosymmetric synthons 

invariably generate crystal forms with cohesive energies, densities and packing efficiencies 

significantly less favourable than those found experimentally. This denotes the inability of 

centrosymmetric structures to set up extended NH···O HB networks across the crystal lattice, as 

either all available N–H donors are involved in intra-synthon HBs, or because no HB acceptors 

could come sufficiently close to amide free hydrogen atoms.  

The present study implies some shortcomings. Our picture of the PYRAC energy landscape 

is limited, as we focused just on the analysis of a representative series of centrosymmetric 

polymorphs as possible competitors of the experimental structure. Therefore, we cannot a priori 

exclude that other non-centrosymmetric structures might exist, possibly able to compete with the 

Pca21 one. Another limitation is due to the restricted sampling of the conformational space of 

isolated PYRAC, as different kinds of crystal nuclei might be produced by exploring further 

stationary structures. More complex scenarios are even possible: for example, interconversion paths 
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could exist among centrosymmetric and non-centrosymmetric synthons (XXi ↔ XYi ↔ YYi, with 

X,Y=A, B, G, M).52 Eventually, the solvent might have a role that remains to be explored. 

On the other hand, our methodology relies on the knowledge of a spontaneously formed 

crystal structure and we would almost by sure unable to predict the correct crystal structure of 

PYRAC from scratch as the approach inherently lacks predictability. Nevertheless, the knowledge 

of accurate single-crystal X-ray structures and of their experimentally-derived charge densities 

might become increasingly important as a precious clue for improving the accuracy and reliability 

of the computational recipes for computer-modelling of crystalline materials.  
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