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Abstract Glacier history can be reconstructed thanks to geomorphological documentation of previous 1 

advances, dating of glacial deposits, investigation of buried soils and included organic material which may be 2 

linked to vegetation dynamics. A buried log was retrieved at 2385 m a.s.l. on the North-East-facing slope of the 3 

upper Forni Valley (Italian Alps) where the homonymous valley glacier is located. The glacier forefield is 4 

currently facing an early successional forest expansion after the ongoing tongue retreat, mainly dominated by 5 

young Picea abies Karst. and Larix decidua Mill. specimens. From dendrochronological and radiocarbon 6 

analyses on the retrieved log, coupled with sedimentological and geopedological data, the past environmental 7 

and glacier conditions were reconstructed. The log belongs to the stone pine species (Pinus cembra L.), it has 8 

283 tree rings and became buried in the deposit in the Subboreal, after 4201–4032 cal. yr BP, age of the 9 

outermost tree ring. The retrieved log reveals that during the Subboreal in the Forni Valley likely much older 10 

specimens of stone pine were present on the slopes, in strong contrast to present-day conditions. The log’s tree-11 

ring growth rates were similar to those presented during the Little Ice Age peak by stone pine trees of 12 

comparable age growing nowadays at the treeline. 13 
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1 Introduction 16 

The generalized glacier shrinkage that is affecting most of the debris-free glaciers in the European Alps and at 17 

the global scale is progressively changing the high-mountain landscape. Proglacial areas are progressively 18 

widening since the end of the Little Ice Age, occasionally exposing ancient forest remnants testifying to previous 19 

glacier advances (e.g. Craig and Smith 2013; Chernykh et al. 2013). Glacier terminus advances in fact generally 20 

destroy the geomorphological evidences (e.g. moraines) of previous minor advances and may bury the trees 21 

located in the proglacial areas and those growing on the valley slopes below the tongue’s lateral margins. 22 

Moreover, climate-related gravity processes (e.g. debris flow), may also bury vegetation and trees on the valley 23 

slopes that then could be reworked by glaciers and enclosed in till. The glacier tongue recession and the 24 

erosional processes acting on slopes and valley floors frequently allow the retrieval of logs, stumps and roots 25 

formerly lying under till or colluvium, thus allowing the reconstruction of the past glacier history, especially for 26 

the more recent Little Ice Age fluctuations (e.g. Luckman 2000; Holzhauser and Zumbuhl 1999) thanks to the 27 

radiocarbon and dendrochronological dating (e.g.Pelfini 1999; Brauning 2006; Zhu et al. 2013). 28 

Glacier tongue retreat has accelerated in the last decade since cumulative mean glacier mass balances are 29 

becoming more negative through time (Frezzotti and Orombelli 2014). The glacialized surface areas in the Alps 30 

have undergone a reduction of about 60% from 1850 to 1970s, increased of another 70% in 2003 and still 31 

increasing in the recent decade, depicting a situation which is worst than in the Middle Age and than 5000 years 32 

ago (Orombelli 2011; Frezzotti and Orombelli 2014). 33 

Glacier fluctuations are usually followed also by responses in the biological systems. The improved temperature 34 

conditions at high altitudes are triggering an altitudinal rise of the treeline, especially in the inner portion of the 35 

Alpine mountain chain (Körner and Paulsen 2004; Holtmeier 2009; Leonelli et al. 2009a, 2011) However, due to 36 

the alpine farming decline, treeline altitudinal shifts may be traced back also to non-climatic inputs (Gehrig-37 

Fasel et al. 2007). The widespread glacier retreat has favoured the creation of new habitats: glacier-free 38 

proglacial areas are typically colonized by animals and plants including trees which colonization patterns 39 

(ecesis), in relation to the glacier retreat phases, can be reconstructed through tree age estimations (Shroder 40 

1980; Desloges and Ryder 1990; Mc Carthy and Luckman 1993; Garbarino et al. 2010). 41 

The assessment of past climate variability is a crucial issue for the understanding of the ongoing warming phase 42 

compared to past conditions. Precise information can be derived from geomorphologic features as well as from 43 

several typologies of natural proxies that can be found in glacial and temperature-limited environments, both at 44 

high altitudes and latitudes (Kelly et al. 2004). Buried logs and stumps surely represent a precious source of 45 

information that may allow the assessment of both forest and glacier past size and features (Monegato et al. 46 
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2011). Subfossil wood (logs, stumps, roots, shrubs and branches) has become indeed a key element for 47 

reconstructing past glacial history in many sites on several mountain ranges thanks to radiocarbon dating and 48 

dendrochronological analysis (Luckman 1988; Schweingruber 1996; Hormes et al. 2001; Allen and Smith 2007; 49 

Coulthard et al. 2012). Many subfossil stems have been found in the inner flank of lateral moraines 50 

(Roethlisberger and Schneebeli 1979; Pelfini et al. 2009), in glacial lake deposits (Ravazzi et al. 2012; Trachsel 51 

et al. 2012) or in the glacial forefields (e.g. Baroni and Carton 1996; Nicolussi and Patzelt 2000; Joerin et al. 52 

2008) allowing detailed palaeoenvironmental reconstructions. Moreover, supplementary data may be available 53 

considering the stratigraphic and sedimentological contexts of wood findings. Sedimentological analyses (e.g. 54 

Nicolussi and Patzelt 2000; Holzhauser 2002; Joerin et al. 2006; Ivy-Ochs et al. 2008, 2009) are useful to detect 55 

the surface processes responsible of the burying. In particular, pedosedimentary sequences, and especially the 56 

occurrence of buried soils, represent crucial tools for understanding the geomorphological and 57 

palaeoenvironmental processes occurred between two subsequent glacial advances, and therefore testifying to 58 

the existence of stable surfaces affected by pedogenesis during an ice-free phase (e.g. Mavris et al. 2011). In the 59 

European Alps, the study of glacial deposits and the retrieval of wood and peat remains allowed the 60 

identification and dating of past glaciations and glacier advances (e. g. Porter and Orombelli 1985; Kromer and 61 

Becker 1993; Deline and Orombelli 2005; Preusser et al. 2007; Starnberger et al. 2011; Nicolussi and Schlüchter 62 

2012) and also the reconstruction of glacier length variations during the historical advancing phases (Holzhauser 63 

2002). 64 

 Logs can be preserved in till or buried in slope colluvium, coming from gravity processes, when located in 65 

protected positions with respect to the glacier flow. Different information can be obtained considering wood 66 

remnants in relation to their location: the last ring of in situ stumps, along the valley floor, provides the date of 67 

the glacier arrival while logs not in situ, when included in lateral moraines, may suggest glacier size in a dated 68 

period or they are helpful in reconstructing worsening climate phases linked to glacier advances when found in 69 

proglacial till deposits (e.g. Schweingruber 1996).  70 

 71 

The aim of this paper is to show how even a single buried log finding can improve the knowledge on high-72 

mountain past environmental evolution and, more in detail, on the reconstruction of past glacier extent and 73 

climatic and environmental factors driving glacier and slope processes dynamics. Our results derive from a 74 

recent retrieval of a buried log (Fig. 1c) found in 2011 thanks to the reworking of a tourist trail in the Forni 75 

Glacier forefield (Italian Alps), the largest Italian Valley Glacier. 76 

 77 
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2 Study Area 78 

The Forni Glacier is located in the Central Italian Alps, in the Stelvio National Park. It lies on the northern 79 

slopes of the S. Matteo Mt., its elevation ranges between 3670 m and 2520 m a.s.l. (in 2011) and extends on a 80 

surface of 11.36 km
2
 (D’Agata et al. 2014). As common in recently-deglacialized areas, local soils are poorly 81 

developed, especially along the main slopes. In the upper forefield area soils mostly correspond to Leptosols 82 

(ERSAF 2012), with very shallow A horizons over a deeper and extremely stony deposit (FAO 2006a); they can 83 

be defined as poorly developed soils or humiferous desaturated soils (i.e. ranker; according to Duchaufour 1983). 84 

On the contrary, the lower part of the Forni Valley, where a forest is present, is characterized by coniferous 85 

forest soils (ERSAF 2012) i.e. Podzols (FAO 2006b; Duchaufour 1983). 86 

The Forni Glacier has been visited for scientific and tourist purposes since the middle of the 19th century (e.g., 87 

Omboni 1861; Stoppani 1865, 1875) and it has been deeply studied for several scientific purposes through time  88 

thus representing an important key site to understand the environmental and glacier responses to climate change 89 

in the central sector of the Southern European Alps (Fig. 1a).  90 

  91 

The Forni Glacier past fluctuations are well documented by its moraine apparatus, and its Holocene maximum 92 

advance is testified to by the remnants of a terminal moraine (Fig. 1a, moraine ridge b-A), that is close to the 93 

Little Ice Age (LIA) maximum one, damming a small peat bog; the radiocarbon date obtained on the basal level 94 

of the pond (2670  130 yr BP 
14

C) provides a minimum age for a glacier advance (Orombelli and Pelfini 1985). 95 

The outer moraine ridge (Fig. 1a, moraine ridge A) corresponds to the moraine built in the 19
th

 century. On the 96 

basis of literature data it has been attributed to 1859 (Pelfini 1988), even if another hypothesis developed on the 97 

basis of lichenometry, but not supported by local historic data, attributed the ridge to an older phase (1819) 98 

(Pelfini 1992). The second moraine (Fig. 1a, moraine ridge B), located at the confluence with the lateral Cedech 99 

Valley, was referred to the advances occurred at the beginning of the 20
th

 century: 1904 or 1913-1914. The third 100 

ridge (Fig. 1a, moraine ridge C), in the middle of the glacier forefield, is represented by a moraine abandoned by 101 

the glacier in 1926 (Desio 1967). Newly-formed and less elevated moraine ridges (Fig. 1a, moraine ridge D), 102 

nearer to the current position of the glacier terminus, testify to the last advance occurred in the 1974-1981 time 103 

interval (Citterio et al. 2007), before the ongoing accelerating phase of glacier shrinkage (D’Agata et al. 2014). 104 

The glacier tongue retreat has been and is still accompanied by tree recolonization of the sandur. The Forni 105 

Glacier forefield is sparsely colonized by young trees mainly of Norway spruce (Picea abies Karst.) and 106 

European larch (Larix decidua Mill.), whereas Stone pine (Pinus cembra L.) specimens are only seldom present. 107 

Trees’ mean age presents a negative gradient towards the glacier terminus, passing from about 50-70 years (at 108 
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2200 m a.s.l.) at about 2100 m from the glacier front to less than 10 years (at 2300 m a.s.l.) at about 900 m from 109 

the glacier front (Leonelli et al. unpublished data). Also tree height shows a negative trend, passing from 8-12 m 110 

to less than 1 m in the same positions as above. Outside the frontal Holocene moraines (Fig. 1a, moraine ridge 111 

A) stone pine trees form a pure forest, even if several barns and cattle grazing over centuries have altered its 112 

structure, especially at high-altitude, and has lowered the treeline at an altitude of 2300 m a.s.l.  113 

 114 

The log was found at an altitude of 2385 m a.s.l., close to the point of coordinates 5141023 N, 621269 E – 115 

UTM WGS84, on the North-East-facing slope of the Forni Valley. The site is about 750 m far from the present 116 

glacier terminus. Its burial position was parallel to the slope, which presents an inclination of about 20-30°. The 117 

log, about 70 cm long x 25 cm diameter (measured on field), lied under 25 cm of mixed sediments and some 118 

portions around pith and the outer sections presented rotten wood. 119 

 120 

3 Methods 121 

Sedimentological and geopedological surveys were performed to describe the pedosedimentary sequence 122 

including the log and to collect sediment and soil samples. Then, the log was sampled and cut into several 123 

transversal disks in order to (i) identify the tree species, (ii) construct a ring-width individual mean curve, and 124 

(iii) extract a sample for radiocarbon dating. 125 

More in detail for the construction of an individual mean curve of the log and for enhancing tree-ring visibility, 126 

the disk surfaces were prepared following standard methods (Stokes and Smiley 1968), then tree rings were 127 

measured to the nearest 1/100 mm with a measuring table (LINTAB; Frank Rinn, Heidelberg, Germany) 128 

together with the TSAP software package (Rinn 2005) along three different rays on both surfaces. The resulting 129 

six growth series were cross-dated visually and statistically (software COFECHA; Grissino-Mayer 2001), finally 130 

constructing a fluctuating mean curve for the retrieved log. This individual mean curve was then compared to the 131 

mean chronology constructed by selecting trees of the same species and of similar age (about 300 years), 132 

currently growing in the lower Forni Valley, outside the study site (Leonelli et al., 2009b). The 283 yr individual 133 

mean curve of the log was compared to the reference chronology mean growth in the 283 yr long period (1675-134 

1957) centered over the period of minimum growth 1811-1821 AD corresponding to the LIA peak. A 135 

standardized mean curve for the log, based on the six growth series was also constructed, by applying a flexible 136 

spline with a 50% frequency cut–off at 100 yr to the growth series and then applying a biweight robust mean to 137 

the detrended growth indices (Cook and Briffa 1990). 138 
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- 
14

C dating. A wood sample of a couple of tree rings (one wide and the following very narrow) has been 139 

submitted to accelerator mass spectrometry (AMS) 
14

C dating in order to obtain radiometric age ranges for the 140 

dendroclimatic curve. Sample for radiocarbon dating was mechanically separated in order to include two single 141 

rings (namely the tree rings 58 and 59 in the growth curve derived from the log); the date obtained was 142 

considered to represent the mid-point of the sampled interval. The analyses were performed at the Center for 143 

Applied Isotope Studies of the University of Georgia (USA). The obtained uncalibrated age is expressed in 144 

radiocarbon years before 1950 (years BP), using the 
14

C half-life of 5568 years; furthermore, radiocarbon result 145 

calibration (2) is reported according to IntCal13 (Reimer et al. 2013), with the CALIB Rev 7.0.2 software 146 

(Stuiver and Reimer 1993; Stuiver et al. 2014). 147 

- Geopedological analyses. Field description of the pedosedimentary sequence including the sub-fossil wood 148 

sample and horizon designations are presented according to the guidelines proposed by FAO (2006a). The 149 

Munsell® (1994) nomenclature was used for color attributions. Some physical and chemical analyses were 150 

performed on bulk samples collected from the stratigraphic section: (i) Humified organic carbon was identified 151 

by means of the Walkley and Black (1934) method and results expressed as g/Kg. (ii) Calcium carbonate 152 

equivalents were chemically performed using a Dietrich–Frühling calcimeter (Gale and Hoare 1991). (iii) Grain-153 

size analyses (Gale and Hoare 1991) were performed after removing organics by hydrogen peroxide (130 vol) 154 

treatment; sediments were wet sieved (grain size from 2000 to 63 m), then the silt plus clay fraction (<63 m) 155 

was determined by Casagrande’s aerometer on the basis of Stokes’s law. 156 

 157 

4 Results 158 

The anatomical analysis revealed that the retrieved log belongs to a specimen of Pinus cembra L., the most 159 

widespread species in the Forni Valley up to the Forni Hut (Fig. 1a).  160 

4.1 Tree-ring individual mean curve 161 

The dendrochronological analyses revealed that the minimum age of the log is 283 years (Fig. 2A). The 162 

respective tree-ring growth curves showed a typical age trend, with the largest tree rings in the oldest portion of 163 

the mean curve (Fig. 2A), i.e. towards the inner, juvenile, portion of the log. Higher growth rates were also found 164 

towards the most recent portion of the mean growth curve. 165 

Comparing the log’s growth with the growth of P. cembra trees currently growing at the treeline in the Forni 166 

Valley (Fig. 2B; Leonelli et al. 2009b), we found that the log’s mean tree-ring growth over its 283 yr was similar 167 

to the growth comprising the cool period around 1816 AD. The tree-ring growth in the log was meanly 0.44 mm 168 

lower than the one in the reference period 1675-1957. Tree-ring growth rates in the log were meanly lower than 169 
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the reference mean chronology and after the tree ring nr. 118 they were always lower than the growth rates 170 

recorded during the LIA peak, excluding the last few years (Fig. 2A). 171 

The standardized mean curve (Fig. 3) shows over the 172 year-long time period (years nr. 18-189, where at 172 

least four series are present), three minima (around the years nr. 80; 130; 190) separated by 50-60 years with the 173 

most pronounced one around the ring nr. 80. The passage to wider rings was faster than the passages to the 174 

periods of minimum tree-ring width. The higher variability recorded up to the year nr. 17 and since the year nr. 175 

190 is largely given by the too small sample depth. 176 

The radiocarbon dating of the tree ring number 58 (and 59) gave the result of 3920±25 uncal. yr BP (δ
13

C -177 

24.3‰; pMC 61.39±0.19), corresponding to 4426–4257 cal. yr BP (2 range). Since the tree lived at least for 178 

other 225 years from year nr. 58, the outermost and older tree ring visible in the log can be dated to 4201–4032 179 

cal. yr BP. 180 

 181 

4.2 Pedosedimentary sequence 182 

In the analyzed pedosedimentary sequence the parent material is constituted of local metamorphic rocks, 183 

mostly micaschist rich in quartz, muscovite, chlorite and albite (Fig. 4; Appendix 1). Rock outcrops are common, 184 

while coarse surface fragments are abundant, in form of weakly weathered coarse gravel and stones. Evidences 185 

of slight mass movements are present. 186 

The described sequence is composed of two pedosedimentary units consisting of poorly weathered soil 187 

horizons (Fig. 5, 6); at the top of the upper unit a sandy loam A horizon with sparse gravel is present, followed 188 

by two distinct AC horizons showing an increase in coarse gravel toward the bottom. The AC2 horizon includes 189 

the log. It lies on a buried 2AB horizon, which displays an incipient biochemical weathering; the 2AB horizon is 190 

underlain by two 2C horizons and they constitute the deeper pedosedimentary unit. In the 2C2 horizon an 191 

increase in the coarse gravel fraction is evident. Due to the limited thickness of the 2AB horizon it is possible to 192 

state that the deeper unit was truncated before the parent material of the upper unit was accumulated. 193 

Laboratory analyses highlight a general decreasing trend with depth in the organic carbon content, ranging 194 

from 10.5 g/kg (A horizon) to 2 g/kg (2C2 horizon) (Fig. 5, 6); an exception is represented by the 2AB horizon, 195 

which shows a relative peak in the organic carbon content (8 g/kg), which is comparable (to some extent) with 196 

the superficial A horizon. In the whole pedosedimentary sequence calcium carbonate equivalents content is low 197 

(4%), while the highest value was measured in the AC1 horizon (10%). Grain size analyses substantiate the 198 

presence of two distinct pedostratigraphic units as suggested by the field description: in fact, gravel increases 199 

with depth, from about 30% to about 60%, in each of the identified units. As regards of the fine earth cumulative 200 
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curves, all described horizons are poorly sorted and dominated by sand; the 2AB horizon is the exception, 201 

showing a clear decrease in the sand fraction and a corresponding increase in the coarse and medium silt 202 

fractions (Fig. 6). 203 

 204 

5 Discussion 205 

The presence of the log dating to 4201–4032 cal. yr BP buried in the Forni Glacier forefield adds new 206 

information about a crucial phase of the Holocene, encompassing part of the Subboreal and an early stage of the 207 

Neoglacial.  208 

Presently the valley slope is characterized only by very young trees, mainly sparse larches, while the retrieved 209 

log is evidence of a Pinus cembra specimen of about 300 years old. Nowadays old stone pine trees can be found 210 

only outside the glacier forefield, in the area external to the LIA moraine ridge and about 2 km from the glacier 211 

front. Within the limits of the LIA moraines only younger trees are growing and close to the log site only sparse 212 

trees <1 m height are present.  213 

Surely a single buried log does not allow to assess the possible presence of a forest growing on the valley slopes; 214 

nevertheless in several cases single retrievals or few radiocarbon dates allowed to add new information about 215 

local glacier histories (e.g Baroni and Carton 1990,1996 for the Adamello Presanella group; Porter and 216 

Orombelli 1985 for the Rutor glacier in the Western Italian Alps).  217 

Our findings support the hypothesis that, before the log was included in the deposit, the Forni Valley was likely 218 

characterized by the presence of much older Stone pine trees than nowadays, dating back to the early Subboreal. 219 

The retrieved log could belong to a sparse tree coverage or to an even older and developed forest in the middle 220 

Holocene under a warm Atlantic climate (Ravazzi and Aceti 2004; Tinner 2007) as well demonstrated, for 221 

example, in the Central Eastern Alps. Therein, in the Kauner valley (Austria), a Stone pine treeline was found 222 

higher than its modern limit at 2370 m a.s.l. (Nicolussi et al. 2005). In this valley, based on radiocarbon dating of 223 

subfossil logs, a downvalley shift of about -100 m up to about 2200 m a.s.l. has been presumed for the period 224 

4050–3750 cal. yr BP (Nicolussi et al. 2005), likely meaning a climate worsening condition also over the region 225 

of the Forni Valley. 226 

We have no information about the size of the Forni Glacier in the Subboreal, but the retrieval of the buried log 227 

and its comparison with the evidence dating to the last decades suggest that about 4000 years ago the glacier 228 

terminus was placed at an altitude at least higher than 2300 m. A retreating phase for that period has been 229 

recognized for other Alpine glaciers (e.g. Joerin et al. 2008, Nicolussi and Patzelt, 2000). Important information 230 

to support this hypothesis can be carried out from geopedological analyses, which suggest magnitude and rates 231 
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of processes driving soil development closely linked to climate conditions. The parent material of both identified 232 

pedosedimentary units is heterometric, including angular pebbles in a sandy loam matrix; these sedimentological 233 

characteristics are compatible both with slope sediments or till deposited laterally on the lower portion of the 234 

valley slope so it is difficult make a distinction among the two kind of processes. Nevertheless, it is worth to 235 

notice that the log was found lying upon the residual 2AB horizon of a truncated soil, which origin required an 236 

exposed and stable surface under climatic conditions promoting biochemical weathering. Such conditions lasted 237 

enough to permit the genesis of soil horizons possibly more mature than the one at the present day surface that 238 

formed in the last decades. This evidence further supports the occurrence of a stable geomorphic surface at the 239 

time of the growth of the log and the occurrence of a soil supporting the growth of well-developed sparse trees or 240 

even of a forest in the upper Forni Valley. On the contrary, after this phase, a cooling trend may have promoted 241 

surface instability causing the tree death and the subsequent burying of the log. Enhanced instability of the 242 

slopes and the increased runoff during the Subboreal cooling phase are testified in other sites of the Alps and the 243 

Apennine (e.g., Bertolini et al. 2004; Mayewski et al. 2004; Arnaud et al. 2005; Borgatti and Soldati 2010; 244 

Cremaschi and Nicosia 2012). We cannot identify if the burying was directly caused by a glacier advancing 245 

phase or by a slope process as the pedological analysis do not allow to distinguish between slope deposit and 246 

reworked till. However, the log was surely under the glacier body during the LIA, as evidenced by the higher 247 

altitude of the LIA lateral moraine (Fig. 1). In recent times the portion of slope where it was retrieved was 248 

abandoned by glacier ice since about the 1960s, when the glacier terminus in the valley bottom was at about 249 

2300 m a.s.l. By analyzing high-resolution aerial photos and orthophotos for the period 1954-2007, we found 250 

that the area where the log was retrieved was still ice covered in 1954. Nevertheless the log site is located close 251 

to the 1954 glacier boundary and then probably the surface was abandoned by ice some years later, thus 252 

suggesting that the surface was exposed since the beginning of the 1960s. Moreover the debris layer covering the 253 

retrieved log is thick enough to suggest that the log has been uninterruptedly buried in the deposit since the 254 

Subboreal, and more precisely since 4201–4032 cal. yr BP, age of the outermost tree ring.  255 

 256 

Comparing the log’s tree-ring growth with those of Stone pine trees of similar age growing nowadays at the 257 

treeline, trees that can be found only outside the study site, we found that the log’s mean tree-ring growth was 258 

similar to the growth comprising the coldest period of the Little Ice Age (LIA peak, around 1816 AD). Even if a 259 

single tree retrieval is surely not sufficient to assess past climate conditions (and low growth rate can be caused 260 

by several factors), it is interesting to note the very low tree-ring growth rates recorded over the analyzed 283 261 

years of growth. For this reason we cannot exclude that these growth patterns could have been controlled only by 262 
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climate conditions; however tree growth at these altitudes is mainly controlled by temperature. Moreover, a non-263 

climatic suppressed growth should be linked to the presence at that times of a close forest, which at the moment 264 

seems unlikely, given the retrieval of only this isolated buried log. The narrower tree rings, which may 265 

correspond to the coolest period, were recorded around the year nr. 80 (i.e. 4404-4235 cal. yr BP).  266 

Considering that the innermost tree ring dated to 4483-4314 cal. yr BP, it is probable that the tree germinated 267 

about 4500 cal. yr BP and it was buried at least 283 years later, about 4000 cal. yr BP, living in a cold climate.  268 

The late-Holocene climatic transition at about 4000 cal. yr BP is recognized as a period of complex climatic 269 

change from the Holocene Climatic Optimum (Mayewski et al. 2004; Magny et al. 2009), and it is characterized 270 

by drying and cooling climate: the so called ‘4000 BP event” started about 4400 yr BP and ended about 3800 yr 271 

BP (Perry and Hsu 2000; Drysdale et al. 2006; Magny et al. 2009; Liu and Feng 2012). For what concerns the 272 

southern side of the Alps a key site is represented by the Miage Glacier in the Mt. Blanc Massif, where glacier 273 

advances have been detected at 4800–4600 cal. yr BP (early Neoglacial) and around 2500 cal. yr BP (Deline and 274 

Orombelli 2005). Moreover, glacier advancing phases have been recognized in the Russian Altai (4900 to 4200 275 

cal. years BP; Akkem stage) according to Agatova et al. (2012), prior than 3000 
14

C yr BP in northern British 276 

Columbia Coast Mountains according to Jackson et al. (2008), in 3167–2737 cal. yr BP for the Scimitar in 277 

British Columbia Coast Mountains, Canada according to Craig and Smith (2013).  278 

According to Walker et al. (2012) a widespread aridification recognized at mid/low-latitude in different 279 

environments occurred 4200 cal. yr BP, thus determining the Middle–Late Holocene Boundary; however, this 280 

period was characterized by a generalized climatic instability including cooler and wetter conditions in Europe. 281 

Evidence of this climate transition is reported also by other authors, who identify it as a Holocene transition 282 

towards more unsteady climatic conditions (e.g. Sandweiss et al. 1999; Mayewski et al. 2004; Anderson et al. 283 

2007; Magny et al. 2009).  284 

 285 

6 Conclusions 286 

The buried log retrieved in the Forni Valley dated back to 4201–4032 cal. yr BP. Its retrieval and the following 287 

dendrochronological, pedological and geomorphological analyses carried out allow to add new information 288 

about the local climate, the environmental conditions during the Subboreal and to hypothesize a glacier front past 289 

position. A single buried log is not sufficient for assessing the presence of a mature forest, however its presence 290 

and the integrated results deriving from the different investigation methods allow to state that i) when the tree 291 

grew, a stable climatic phase allowing soil development was present; ii) a climate worsening, also likely 292 

responsible of a glacier advance, caused tree death probably in relation to gravity or glacial processes. The Forni 293 
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Glacier, presently the widest Italian valley glacier, during the Subboreal transition was likely advancing after 294 

reaching an area likely smaller than nowadays during the previous warmer climate phase. More data would be 295 

necessary to better characterize the climatic and environmental transition and to compare the local situation to 296 

the one emerging on the southern side of the European Alps.  297 

The reconstruction here proposed even if based on a single retrieved log, underlines the importance of spot 298 

findings for past glacier fluctuations reconstruction. This is confirmed by the dating of the basal peat layer of the 299 

small peat bog dammed by the frontal moraine of Forni Glacier, giving the minimum age 2670±130 yr BP; this 300 

14
C date allowed to date for the first time on the southern side of the Alps the maximum Holocene advance of the 301 

Forni Glacier (Orombelli and Pelfini 1985).  302 

The present results underline the importance of multidisciplinary approaches for the comprehension of the past 303 

environmental evolution to better understand the ongoing changes in glacial environments and to hypothesize the 304 

possible environmental responses to future climate change.  305 
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Appendix: description of the horizons of the pedosedimentary sequence 312 

 313 

A (0-5 cm); very wet; pale olive (5Y 6/4) dry, and olive (5Y 4/3) moist; sandy loam with subangular 314 

medium gravel, slightly weathered; medium granular structure, weak; common macropores; few fine roots; 315 

gradual to diffuse, smooth boundary to: 316 

AC1 (5-20 cm); moist; light yellowish brown (2.5Y 6/3) dry, and olive (5Y 4/4) moist; sandy loam, with 317 

common subangular medium gravel and few subangular coarse gravel, both slightly weathered; fine granular 318 

structure, weak; common macropores; few fine roots; gradual to diffuse, smooth boundary to: 319 

AC2 (20-35 cm); moist; olive (5Y 5/4) dry, and olive (5Y 4/3) moist; sandy loam with dominant subangular 320 

coarse gravel, weathered; fine granular structure, weak; few macropores; few fine roots; gradual to diffuse, 321 

irregular boundary to: 322 

2AB (35-37 cm); moist; light brownish gray (2.5Y 6/2) dry, and olive (5Y 4/4) moist; silt loam with many 323 

subrounded medium gravels weathered; fine granular loose structure; weak; common macropores; few fine 324 

roots; gradual to diffuse, smooth boundary to: 325 

2C1 (37-61 cm); moist; pale olive (5Y 6/3) dry, and olive (5Y 4/4) moist; sandy loam with common 326 

subrounded coarse gravels weathered; fine granular structure; weak; few macropores; few fine roots; gradual to 327 

diffuse, smooth boundary to: 328 

2C2 (61-91+ cm); moist; pale olive (5Y 6/4) dry, and olive (5Y 4/4) moist; sandy loam with many 329 

subrounded coarse gravels weathered; fine granular structure,; weak; few macropores; few fine roots; lower 330 

boundary not exposed. 331 

 332 
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Figure captions 514 
 515 
Fig. 1 (a) Map of the Forni Glacier forefield with the location where the buried log was found, indicated by the 516 

star (coordinates: 5141023 N, 621269 E -UTM WGS84). b-A i.e. before A = maximum Holocene expansion; A 517 
= Litlle Ice Age (LIA) moraine; B = beginning of the 20th century: 1904 or 1913-1914; C= 1926 glacier 518 
expansion; D= 1974-1981 glacier expansion; (b) illustrates the position of the study area in a regional context. 519 
(c) Transversal section of the retrieved log after its drying that caused a partial shrinkage of the rotten portions. 520 

 521 
Fig. 2 The 283 year long tree-ring width individual mean curve of the buried log (A) compared with the mean 522 

chronology of trees older than 283 years currently growing in the Forni Valley at the treeline, over the 283 yr 523 
period (1675-1957 AD) centered on the LIA peak (B) (see methods for details; data of ‘FSN’ site from Leonelli 524 
et al. 2009b). Bold lines indicate a 11-yr running mean. Dashed line in A indicates the mean growth of the 525 
chronology in B over the whole 283 yr period considered (and vice versa). The dotted line in A indicates the 526 
mean growth of the chronology depicted in B over the 11 yr period of minimum growth 1811-1821 AD; in B it 527 
indicates the mean growth of the individual mean curve depicted in A over the 11 yr period of minimum growth 528 
(tree rings no. 251-261). 529 

 530 
Fig. 3 The tree-ring standardized mean curve derived from the measurements along three rays on two 531 

transversal surfaces. The different consistency of the sample depth over time is due to the sub optimal log 532 
preservation conditions. 533 

 534 
Fig. 4 A sketch of the pedosedimentary sequence including the log; for the description of the horizons the 535 

reader is referred to the text and Appendix. 536 
 537 
Fig. 5 Results of the geopedological analyses (grain size and organic matter content) carried out on the 538 

pedosedimentary sequence; note the high amount of gravel along the whole sequence and the high content of 539 
organic matter in the 2AB horizon. 540 

 541 
Fig. 6 Grain size cumulative curves (fine earth) for each horizon. Note the increase in silt and clay in the 2AB 542 

horizon. 543 
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