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a b s t r a c t

For linear and semilinear equations of Tricomi type, existence, uniqueness and qualitative
properties of weak solutions to the degenerate hyperbolic Goursat problem on characteris-
tic triangles will be established. For the linear problem, a robust L2-based theorywill be de-
veloped, including well-posedness, elements of a spectral theory, partial regularity results
and maximum and comparison principles. For the nonlinear problem, existence of weak
solutions with nonlinearities of unlimited polynomial growth at infinity will be proven by
combining standard topologicalmethods of nonlinear analysiswith the linear theory devel-
oped here. For homogeneous supercritical nonlinearities, the uniqueness of the trivial solu-
tion in the class of weak solutions will be established by combining suitable Pohožaev-type
identities with well tailored mollifying procedures. For the linear problem, the weak exis-
tence theory presented here will also be connected to known explicit representation for-
mulas for sufficiently regular solutions with the aid of the partial regularity results. For the
nonlinear problem, the question what constitutes critical growth for the problem will be
clarified and differenceswith equations ofmixed elliptic–hyperbolic typewill be exhibited.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction1

In this work, we will study the existence and uniqueness of weak solutions u for the semilinear Goursat1 problem2 
Tu = f (x, y, u) inΩ
u = 0 on Γ = AC ∪ AB, (1.1)3

where T ≡ −y∂2x − ∂2y is the Tricomi operator on R2 with cartesian coordinates (x, y), f is a nonlinearity to be specified and4

Ω = ABC is a characteristic triangle; that is, a simply connected region in the plane whose boundary consists of the segment5
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E-mail addresses: daniela.lupo@polimi.it (D. Lupo), kevin.payne@unimi.it (K.R. Payne), nedyu@fmi.uni-sofia.bg (N.I. Popivanov).

1 Often called the (first) Darboux problem in the Russian literature.

http://dx.doi.org/10.1016/j.na.2014.05.009
0362-546X/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.na.2014.05.009
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:daniela.lupo@polimi.it
mailto:kevin.payne@unimi.it
mailto:nedyu@fmi.uni-sofia.bg
http://dx.doi.org/10.1016/j.na.2014.05.009
payne
Nota
OK.



2 D. Lupo et al. / Nonlinear Analysis xx (xxxx) xxx–xxx

AB of the x-axis and the two characteristics arcs AC and BC (of negative and positive slope respectively) that issue from A and 1

B and intersect at C . The solutionswill be found in the subspace of the standard Sobolev spaceH1(Ω) = W 1,2(Ω) of elements 2

having zero trace on Γ . For the linear problem, where f (x, y, s) = f (x, y)+λswith λ ∈ R, wewill develop a robust L2-based 3

theory whose compact solution operator provides some spectral information and is compatible with weak maximum and 4

comparison principles, which are obtained with the aid of some regularity theory. Then, using standard topological tools of 5

nonlinear analysis and carefully constructed mollifying procedures, we will establish results on existence and uniqueness 6

for the nonlinear problem under suitable hypotheses on the nonlinearity f . 7

Our primary interest in the nonlinear version (1.1) of the well studied linear Goursat problem is purely mathematical as 8

a companion to our study of analogous questions onmixed type domains (i.e.Ω intersects also the regionwhere y > 0). The 9

existence of weak solutionswith Tricomi boundary conditions has been treated in [1] and with Dirichlet conditions in [2–4] 10

while the uniqueness of classical solutions has been treated for various class of domains and boundary conditions [5–8]. More 11

precisely, we will seek to clarify the interaction between the form of the boundary conditions (i.e. Dirichlet conditions on 12

the entire boundary or on a suitable proper subset of the boundary), the geometry of the domain at the parabolic boundary 13

points (i.e. A and B, where the operator degenerates), the regularity of the solutions for f ∈ L2(Ω) (i.e. the presence or not 14

of a weight in the H1(Ω) norm of the weak solutions), the resulting barriers to p-summability coming from the Sobolev 15

imbedding theorem and its relation to critical exponent phenomena.Q2 16

We will see that the geometry of having corners in A and B combined with placing the Dirichlet conditions only on 17

the proper subset Γ = AB ∪ AC allows for weak solutions in H1(Ω) and hence no barrier to immersion in Lp(Ω) for each 18

p ∈ [1,+∞). For themixed type Tricomi problem in angular domains (with corners in A and B), theweak solutions also lie in 19

H1(Ω), as was shown in [9,1]. On the other hand, both for Tricomi problem in normal domains (where the elliptic boundary is 20

orthogonal to the x-axis in A and B) and for the Dirichlet problem on suitable domain, theweak solutions carry theweight |y| 21

on the first derivative in x, as was shown in [10,2]. As a result, one has a critical exponent in the Sobolev imbedding which is 22

2∗(1, 1) = 10, as noted in [5]. Moreover, the Goursat problemwill be shown to admit maximum and comparison principles 23

forweak solutions such as those in themixed type setting of the Tricomi problem in normal domains [10]; however, forweak 24

solutionswithweights as noted above in themixed type case. The better regularity of the solutions in theGoursat case allows 25

us to apply monotonemethods (upper and lower solutions) with no limit on the polynomial growth in s for the nonlinearity 26

f (x, y, s) in contrast to the strong restrictions on growth required in the mixed type setting, as one knows from [1]. 27

In addition, a
∧
nonhomogeneous dilation invariance in the Tricomi operator T is known to yield a Pohožaev-type result on 28

the
∧
nonexistence of nontrivial solutions uwith homogeneous boundary conditions u = 0 placed on a large enough portion of 29

the boundary of a suitably star-shaped domains; that is, if f (x, y, s) = s|s|p−2 with p > 10 and then the only C2(Ω) solutions 30

must vanish identically, as shown in [5,6]. By exploiting the special geometry of the Goursat domain through well-tailored 31

mollifying operators and by exploiting the absence of weights in the weak solutions, we will close the regularity gap be- 32

tween C2(Ω) (where one had uniqueness) and H1(Ω) (where one has existence results). Closing this regularity gap was the 33

original motivation for studying the nonlinear Goursat problem (1.1), but much more has come out of the investigation. In 34

particular, with respect to what may constitute critical growth for the problem (1.1), the following situation emerges. There 35

is no polynomial growth barrier for the purposes of existence and no polynomial critical growth exponent for the Sobolev 36

imbedding for the weak solutions with no weights. This dissimilarity with elliptic problems should be perhaps explained by 37

the fact that the Goursat problem is not variational. On the other hand, if one were to impose the boundary condition also 38

on the characteristic BC , the problem becomes variational but the extra boundary data forces the weak solutions to carry 39

weights (as in themixed typeDirichlet problem [2]),which in turn yields the critical exponent for the Sobolev immersion and 40

a probable barrier to existence for weak solutions at supercritical growth. Moreover, the Dirichlet problem loses the maxi- 41

mumprinciple and hence also the possibility for monotonemethods which are used here to solve the superlinear problems. 42

The plan of the paper is as follows. In Section 2, we recall the necessary machinery and develop the linear solvability 43

and spectral theory. In Section 3, we examine the question of regularity of the weak solutions and maximum/comparison 44

principles compatiblewith the solvability theory. An important byproductwill be the bridging of a possible gap between gen- 45

eralized solutions as given by explicit integral representations involving hypergeometric functions and our notion of weak 46

solutions whose existence follows from suitable a priori estimates (see Theorem 3.2 and the discussion in Step 1 of the 47

proof). In Section 4, we prove results on existence of weak solutions. We exploit the contraction mapping principle and 48

Leray–Schauder principles for sublinear and asymptotically linear nonlinearities and monotone methods for superlinear 49

nonlinearities. In Section 5, we prove the aforementioned extension of the uniqueness of the trivial solution for weak solu- 50

tions. In addition there are two appendices which give the proofs of two technical lemmas concerning the compactness on 51

C0(Ω) of the linear solution operator and the weak maximum principle for regular solutions. 52

We conclude this introduction with a few additional remarks on the problems considered herein. Some of the results 53

continue to hold for operators of Tricomi type where the coefficient y in the Tricomi operator T is replaced by K(y) which 54

has the sign of y; for example, results on solvability and maximum principles for regular solutions. On the other hand, the 55

maximum principle for weak solutions (and hence themonotonemethods of Section 5) makes use of the regularity result of 56

Nakhushev [11] which holds for K(y) = (−y)m form < 2. We have treated problems in only two dimensions. In part, this is 57

due to the importance of the Tricomi equation in the context of two dimensional transonic potential flow (see the modern 58

survey of Morawetz [12]), but it should be noted that the analogous boundary value problem in higher dimensions (the 59

so-called Protter problem) has a solvability theory which is much more delicate (see [13] for example). On the other hand, 60

questions of nonexistence for weak solutions to nonlinear degenerate hyperbolic Cauchy problems in general dimensions 61
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has been well studied by Mitidieri and Pohožaev (see [14] and the references therein). Using similar techniques, Laptev [15]1

has treated nonexistence for weak solutions to nonlinear hyperbolic Cauchy problems in cones.2

2. Linear theory: weak solvability and spectral theory3

In this section, we will analyze the question of existence of weak solutions the problem:4 
Tu = f (x, y) inΩ
u = 0 on Γ = AB ∪ AC, (2.1)5

where f ∈ L2(Ω). We will also consider the same problemwith T − λI in place of T and with a nonhomogeneous boundary6

condition u = γ onΓ with γ ∈ R in order to derive some elements of a spectral theory aswell asmaximumand comparison7

principles which will be used in order to establish existence results for the nonlinear problems in Section 4. We will first8

recall some basic notions.9

2.1. Notations and background10

Since the operator T is invariant with respect to translations in x, wemay assume that the domainΩ = ABC is symmetric11

with respect to the y-axis.2 In particular we will denote by A, B and C the points (−x0, 0), (x0, 0) and (0, yC ) where x0 > 012

and yC = −(3x0/2)2/3. The characteristics are then given by13

AC : x + x0 −
2
3
(−y)3/2 = 0 and BC : x − x0 +

2
3
(−y)3/2 = 0, (2.2)14

while the parabolic segment is AB = {(x, 0) : |x| < x0}. The conjugate boundary is the set Γ ∗
= AB ∪ BC and the adjoint15

problem is16 
Tu = f (x, y) inΩ
u = 0 on Γ ∗

= BC ∪ AB, (2.3)17

where one should note that T is formally self-adjoint, that is, T = T t where T t is the formal adjoint defined by18

T tu = −D2
x(yu)− D2

y(u) = Tu. (2.4)19

Weak solutions to (2.1) will belong to the space H1
Γ (Ω)which is the completion in the norm20

∥ψ∥H1(Ω) =


Ω

(ψ2
x + ψ2

y + ψ2) dxdy
1/2

21

of the space22

C∞

Γ (Ω) =

ψ ∈ C∞(Ω) : ψ ≡ 0 on Nϵ(Γ ) for some ϵ > 0


,23

where Nϵ(Γ ) is an ϵ neighborhood of Γ = AB∪AC . Since ∂Ω is Lipschitz, there is a well defined linear and continuous trace24

operator (see Section 4.3 of [16])25

trΓ : H1(Ω) → L2(Γ ) (2.5)26

and clearly ψ ∈ H1(Ω) lies in H1
Γ (Ω) if and only if trΓ (ψ) = 0 in L2(Γ ). Since ψ has zero trace on a sufficiently large part27

of the boundary, one has a Poincaré inequality28

∥ψ∥L2(Ω) ≤ CP


Ω

(ψ2
x + ψ2

y ) dxdy
1/2

29

for some constant CP > 0 and hence an equivalent norm30

∥ψ∥H1
Γ (Ω)

=


Ω

(ψ2
x + ψ2

y ) dxdy
1/2

31

on H1
Γ (Ω). Similar considerations hold for the conjugate boundary Γ ∗. We will denote by H−1

Γ (Ω) the dual space to H1
Γ32

equipped with its negative norm in the sense of Lax [17]. The spaces H1
Γ ∗(Ω) and H−1

Γ ∗ (Ω) are defined analogously. One33

easily verifies the following estimates: there exist constants C1, C2 > 0 such that34

∥Tu∥H−1
Γ ∗ (Ω)

≤ C1∥u∥H1
Γ (Ω)

, u ∈ C∞

Γ (Ω) (2.6)35

2 For the same reason, we may assume instead that A (or B) is the origin without loss of generality.
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and 1

∥Tv∥H−1
Γ (Ω)

≤ C2∥v∥H1
Γ ∗ (Ω)

, v ∈ C∞

Γ ∗(Ω). (2.7) 2

Hence one has continuous extensions of the Tricomi operator T (defined on dense subspaces of smooth functions) 3

TΓ : H1
Γ (Ω) → H−1

Γ ∗ (Ω) and TΓ ∗ : H1
Γ ∗(Ω) → H−1

Γ (Ω). (2.8) 4

We recall that the placement of the boundary conditions on only a portion of the boundary implies that the problem (2.1) 5

is not
∧
self-adjoint. In fact, one checks easily that the continuous extensions (2.8) satisfy TΓ ∗ = (TΓ )∗. We will find weak 6

solutions u to the linear problem (2.1) in the following sense. 7

Definition 2.1. Given f ∈ L2(Ω) one says that u ∈ H1
Γ (Ω) is a weak solution of (2.1) if one of the following equivalent 8

conditions hold: 9

∧
(i) There exists a sequence {uj} ⊂ C∞

Γ (Ω) such that 10

lim
j→∞

∥uj − u∥H1
Γ (Ω)

= 0 and lim
j→∞

∥Tuj − f ∥H−1
Γ ∗ (Ω)

= 0. (2.9) 11

∧
(ii) One has the relation 12

B(u, v) :=


Ω


yuxvx + uyvy


dxdy =


Ω

f v dxdy, ∀ v ∈ C∞

Γ ∗(Ω), (2.10) 13

where the bilinear form B in (2.10) is clearly continuous on H1
Γ (Ω)× H1

Γ ∗(Ω). 14

Weak solutions of (2.3) are defined in the analogous way. As shown by Didenko [18], the conditions (2.9) and (2.10) are 15

equivalent. Moreover, a necessary and sufficient condition to have the generalized solvability for the problems (2.1) and 16

(2.3) for each f , g ∈ L2(Ω) is to have the continuity estimates (2.6) and (2.7) as well as the following a priori estimates: 17

there exist positive constants C3 and C4 such that 18

∥ϕ∥L2(Ω) ≤ C3∥Tϕ∥H−1
Γ ∗ (Ω)

, ϕ ∈ C∞

Γ (Ω) (2.11) 19

∥ψ∥L2(Ω) ≤ C4∥Tψ∥H−1
Γ (Ω)

, ψ ∈ C∞

Γ ∗(Ω). (2.12) 20

Notice that for a general second order operator, one should use the formal adjoint T t in the estimate (2.11), but here T is 21

formally self-adjoint as noted in (2.4). 22

2.2. Solvability theory 23

The first result is the following theorem. 24

Theorem 2.2. For every f ∈ L2(Ω) there exists a unique weak solution u ∈ H1
Γ (Ω) in the sense of Definition 2.1 to the problem 25

(2.1). Moreover, the solution operator 26

SΓ : L2(Ω) → H1
Γ (Ω) (2.13) 27

which assigns to f ∈ L2(Ω) the unique weak solution u ∈ H1
Γ (Ω) of the problem (2.1) is linear and continuous. Analogous 28

statements hold for the adjoint problem (2.3). 29

Proof. For the solvability results, it is enough to establish the a priori estimates (2.11) and (2.12). By the symmetry of the 30

problem it is clear that it suffices to show (2.11). One can do this by estimating from above and below the expression 31

I =


Ω

ψTϕ dxdy (2.14) 32

with ϕ ∈ C∞
Γ (Ω) fixed but arbitrary and ψ the solution to the auxiliary Cauchy problem 33

Mψ = bψx + cψy = ϕ inΩ
ψ = 0 on Γ ∗

= BC ∪ AB, 34

where the coefficients (b, c) ofM can be taken as 35

b = −(1 + εx) and c = −h(1 + εx) (2.15) 36

with 37

0 < ε < 1/x0 and 0 < h < (3x0/2)−1/3. (2.16) 38
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This has been done in Proposition 2.2 of [9] forΩ a Tricomi domainwhere the parabolic segment AB is replaced by a suitable1

arc σ in the elliptic region (where y > 0) and endpoints at A and B. One easily checks that everything goes through as before.2

See the appendix of [9] for details. The linearity of SΓ is obvious and the continuity of the solution operator uses a standard3

argument by contradiction and the relation (2.10). �4

Remark 2.3. Since Ω is a bounded Lipschitz domain, one has the compactness of the imbedding into Lebesgue spaces5

(cf. Section 4.6 of [16]): for each p ∈ [1,∞) one has6

H1(Ω) ↩→↩→ Lp(Ω), (2.17)7

where there is no upper limit on p ∈ R since Ω ⊂ R2. In particular, the solution operator SΓ defined in (2.13) yields a8

compact operator on L2(Ω) which is an injective but non surjective map. This has obvious consequences for the spectral9

theory and a Fredholm alternative for the problem (2.1).10

In order to discuss the spectral theory and as preparation for the use ofmonotonemethods for the existence of solutions to11

(1.1) with superlinear nonlinearities, we will be interested in weak solutions to the following generalization of the problem12

(2.1):13 
Tu − λu = f inΩ
u = γ on Γ , (2.18)14

where λ, γ ∈ R and f ∈ L2(Ω). The notion of weak solution is the obvious one.15

Definition 2.4. An element u ∈ H1(Ω)will be called a weak solution of (2.18) if u − γ ∈ H1
Γ (Ω) and the following analog16

of (2.10) holds:17

Bλ(u, v) :=


Ω


yuxvx + uyvy − λuv


dxdy =


Ω

f v dxdy, ∀ v ∈ C∞

Γ ∗(Ω).18

Theorem 2.5. Let f ∈ L2(Ω), γ ∈ R and λ ≤ 0. The problem (2.18) admits a unique weak solution in the sense19

of Definition 2.4 and the solution operator20

Sλ,γΓ : L2(Ω) → H1(Ω)21

which assigns to f ∈ L2(Ω) the unique weak solution u ∈ H1(Ω) of the problem (2.18) is linear and continuous. Analogous22

statements hold for the adjoint problem with the boundary condition u = γ on Γ ∗.23

Proof. We first consider the case of homogeneous boundary conditions γ = 0. When λ = 0, this is just Theorem 2.2 and24

S0,0Γ is just the solution operator SΓ . For λ < 0, one repeats the argument used in the proof of Theorem 2.2 with T − λI in25

place of T . The new term corresponding to λ in the expression (2.14) satisfies26

−λ


Ω

ψϕ dxdy = −
λ

2


AC
ψ2(b, c) · ν ds + ε


Ω

ψ2 dxdy


≥ 0,27

as (b, c) · ν ≥ 0 on AC if (2.15)–(2.16) hold. A solution operator Sλ,0Γ : L2(Ω) → H1
Γ (Ω) is thus well defined, linear and28

continuous.29

If γ ≠ 0 and λ ≤ 0, we look for u = w + γ wherew ∈ H1
Γ (Ω) is a weak solution of30 

Tw − λw = f + λγ inΩ
w = 0 on Γ ,31

SinceΩ is bounded, f + λγ ∈ L2(Ω) and since λ ≤ 0, one has thatw exists and is unique by the previous step. Thus a weak32

solution u ∈ H1(Ω) to (2.18) exists and is clearly unique. The resulting solution operator Sλ,γΓ : L2(Ω) → H1(Ω) defined by33

Sλ,γΓ (f ) = γ + Sλ,0Γ (f + λγ )34

is linear, continuous and satisfies trΓ (S
λ,γ
Γ (f )) = γ where trΓ is the trace operator (2.5). �35

2.3. Spectral theory36

Given that the operators TΓ and TΓ ∗ defined in (2.8) do not have self-adjoint realizations on L2(Ω), their spectra will37

be in general complex. For the applications to existence for the nonlinear problem (1.1), we will be interested in the real38

spectrum of TΓ ; that is, the description of (λ, u) ∈ R ×H1
Γ such that u ≠ 0 is a weak solution of Tu = λu. We will denote by39
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Σ(TΓ ) the set of such real λ for which a nontrivial u exists. Composing the solution operator SΓ defined in (2.13) with the 1

compact imbedding (2.17) with p = 2 gives rise to a compact solution operator 2

SΓ : L2(Ω) → H1
Γ (Ω) ↩→↩→ L2(Ω) 3

whose spectrum σ(SΓ ) ⊂ C consists of {0} and eigenvalues of finite multiplicity. Hence λ ∈ Σ(TΓ ) if and only if 4

0 ≠ µ := 1/λ ∈ σ(SΓ ) and is real. Similar considerations hold for TΓ ∗ . 5

Remark 2.6. Since the operator normM0 := ∥SΓ ∥op of the compact operator SΓ equals the spectral radius of SΓ one has 6

λ ∈ Σ(TΓ ) ⇒ |λ| ≥ M−1
0 . 7

Moreover, the estimate (2.11) shows that the solution operator satisfies 8

∥SΓ f ∥L2(Ω) ≤ C3∥f ∥H−1
Γ (Ω)

≤ C3∥f ∥L2(Ω) 9

and henceM0 ≤ C3 can be estimated from above by C3 and one has a lower bound C−1
3 for the absolute value of λ ∈ Σ(TΓ ). 10

Optimizing the constant C3 in the a priori estimate refines the spectral bound (see Example 2.7 in [1] in the mixed type 11

setting). 12

Combining these considerations with the solvability established in Theorem 2.5 yields the following result. 13

Theorem 2.7. One hasΣ(TΓ ) ∩ (−∞,M−1
0 ) = ∅, with M0 = ∥SΓ ∥op as above. 14

Proof. By Remark 2.6, one hasΣ(TΓ )∩ (−M−1
0 ,M−1

0 ) = ∅ so it is enough to show that λ ∉ Σ(TΓ ) for each λ < 0. But this 15

is a direct consequence of Theorem 2.5 in the case λ < 0 and γ = 0. � 16

We conclude by noting that the comparison principle Theorem 3.4
∧
suggests that TΓ might admit a principal eigenvalue; 17

that is a real (and positive) eigenvalue of minimummodulus with an associated positive eigenfunction. This has been done 18

in [19] for the mixed type Tricomi problem and involves an application of Krein–Rutman theory and the strong maximum 19

principle which is valid in the elliptic region. Here in the degenerate hyperbolic case, we have no such strong maximum 20

principle. 21

3. Linear theory: regularity and maximum principles 22

In this section, we analyze some partial regularity results for solutions to the linear problem (2.18) on Ω = ABC if 23

f ∈ C0(Ω) or f ∈ C∞

0 (Ω) and then examine the validity of maximum and comparison principles for regular and weak solu- 24

tions. The main point is that a combination of the solvability result (Theorem 2.5), some regularity theory and a refinement 25

of the maximum principle of Agmon, Nirenberg and Protter [20] yields a comparison principle for the problem (2.18) which 26

is compatible with the solvability theory. This has been done in the case of the mixed type Tricomi problem (see Theorem 27

3.1 of [10]). The main difference is that in place of the C0 solvability result of Agmon [21] for the Tricomi problem, we will 28

use a regularity result of Nakhushev [11] for the Goursat problem with homogeneous boundary data and λ = 0 prove an 29

analogous C0 solvability result for the problem (2.18) (see the remark after the proof of Theorem 3.2
∧
). 30

3.1. Interior regularity and continuity up to the boundary 31

We begin with the following interior regularity result. 32

Theorem 3.1. Let γ ∈ R, λ ≤ 0 and f ∈ C∞

0 (Ω). Then the unique weak solution u ∈ H1(Ω) to problem (2.18) belongs to 33

C∞(Ω); that is, there exists u∗
∈ C∞(Ω) such that u = u∗ a.e. inΩ . 34

Proof. This result has been proven for the mixed elliptic–hyperbolic Tricomi problem when λ = γ = 0 (see Lemma 3.1 35

of [10]) by using the estimates of Kim [22] in the hyperbolic region, which corresponds toΩ here. A simple analysis of the 36

proof of this
∧
lemma shows that the argument carries over if γ ≠ 0 and λ < 0. � 37

Next we consider continuity up to the boundary. 38

Theorem 3.2. Let γ ∈ R, λ ≤ 0 and f ∈ C0(Ω). Then the unique weak solution u ∈ H1(Ω) to problem (2.18) is continuous 39

up to the boundary; that is, there exists a unique u∗ ∈ C0(Ω) such that u = u∗ a.e. inΩ . Moreover u∗ = γ + v where v is the 40

unique C0(Ω) ∩ H1
Γ (Ω) solution to the equation 41

v = S0(f + λγ + λv) (3.1) 42

where S0 : C0(Ω) → C0(Ω) is a bounded linear integral operator whose kernel is explicitly determined in terms of the 43

Riemann–Hadamard function for the Goursat problem (2.1) with homogeneous boundary data and λ = 0. Moreover, 44

S0 : C0(Ω) → C0(Ω) is a compact operator (3.2) 45
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and for each f ∈ C0(Ω)1

S0(f ) = S0,0Γ (f ) in L2(Ω), (3.3)2

where S0,0Γ = SΓ is the weak solution operator of Theorem 2.5. Hence S0 yields a continuous representative of the unique H1
Γ (Ω)3

solution to the problem (2.18) in the case λ = γ = 0.4

As a corollary, we obtain that for each f ∈ C0(Ω) there exists unique weak solution u ∈ H1(Ω) ∩ C0(Ω) and that there5

is a representation formula for its continuous representative:6

u∗ = S0(f + λu∗)+ γ . (3.4)7

Proof. We will define explicitly the solution operator and then study its properties.8

Step 1. (Definition of the integral operator S0). The form of the desired solution operator is most easily presented in charac-9

teristic coordinates. We consider the homeomorphismΦ : R × [0,+∞) → H = Φ(R × [0,+∞)) defined by10

Φ(x, y) = (ξ(x, y), η(x, y)) =


(x + x0)−

2
3
(−y)3/2, (x + x0)+

2
3
(−y)3/2


(3.5)11

which also translates A(−x0, 0) to the origin (ξ , η) = (0, 0) and B(x0, 0) to (ξ , η) = (l, l) with l = 2x0. Φ is a C∞ diffeo-12

morphism on the interior R × (0,+∞) of its domain. The image H is the
∧
half-space {(ξ , η) : η ≥ ξ} and the inverse map13

Ψ : H → R × [0,+∞) is given by14

Ψ (ξ , η) = (x(ξ , η), y(ξ , η)) =


1
2
(ξ + η)− x0,−


3
4
(η − ξ)

2/3

. (3.6)15

The image of characteristic triangleΩ = ABC underΦ is the triangle16

∆ = {(ξ , η) : 0 < ξ < l and ξ < η < l}. (3.7)17

With this change of variables, the partial differential equation Tu − λu = f then transforms into18

wξη +
1

6(η − ξ)
(wξ − wη)− λC0

1
(η − ξ)2/3

w = C0
1

(η − ξ)2/3
f̃ (3.8)19

where20

w(ξ, η) = (u ◦ Ψ )(ξ , η), f̃ (ξ , η) = (f ◦ Ψ )(ξ , η), C0 =
1
4


4
3

2/3

. (3.9)21

The Riemann–Hadamard function associated to (3.8) when λ = 0 has the following expression which is well defined for22

(ξ ′, η′
; ξ, η) ∈ (∆×∆) \ {η′

= ξ}23

R(ξ ′, η′
; ξ, η) =


R+(ξ ′, η′

; ξ, η) =


η′

− ξ ′

η − ξ

1/6

F

1
6
,
5
6
, 1; s


η′ > ξ

R−(ξ ′, η′
; ξ, η) = k

(η′
− ξ ′)(η − ξ)2/3

(η − η′)5/6(ξ − ξ ′)5/6
F

5
6
,
5
6
,
5
3
;
1
s


η′ < ξ

(3.10)24

where25

s =
(ξ − ξ ′)(η − η′)

(η′ − ξ ′)(η − ξ)
, k =

Γ (5/6)
Γ (1/6)Γ (5/3)

. (3.11)26

F(a, b, c; ζ ) is the standard hypergeometric function of Gauss and Γ is the gamma function of Euler. See section II.2 of27

Smirnov [23] for a discussion of R and its basic properties.28

It is known that sufficiently regular solutions v to the Goursat problem (2.18) with γ = 029 
Tv − λv = f inΩ
v = 0 on Γ , (3.12)30

have an explicit integral representation formula in terms of the Riemann–Hadamard function, as is shown in Theorem 1 of31

Moiseev [24]. However, it is not shown there (or anywhere else to our knowledge) that the converse is true. That is, given32

f sufficiently regular does the representation formula yield a solution to the problem in some reasonable sense? We will33
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show that the formula of Moiseev gives a weak solution which is continuous up to the boundary for any given f ∈ C0(Ω). 1

For λ = 0, sufficiently regular solutions v of (3.12) are given by v = w ◦ Φ wherew = w(z) is defined by 2

w(z) =


∆

C(z ′)R(z ′
; z)f̃ (z ′) dz ′, z = (ξ , η) ∈ ∆, (3.13) 3

∆ is defined in (3.7), f̃ is defined in (3.9) and 4

C(z ′) = C(ξ ′, η′) = −C0(η
′
− ξ ′)−2/3, (3.14) 5

with C0 the constant defined in (3.9). We remark that for each fixed z in the open triangle ∆, the integral kernel is defined 6

almost everywhere; that is, for z ′
∈ ∆+

z ∪∆−
z where 7

∆+

z = {z ′
= (ξ ′, η′) : η′ > ξ} and ∆−

z = {z ′
= (ξ ′, η′) : η′ < ξ}. (3.15) 8

Hence the representation formula (3.13) can be used to define w on ∆ for a given g . In order to extend the representation 9

formula to z ∈ ∂Ω , we define the integral kernel K : ∆×∆ → R by 10

K(z ′
; z) = χ∆+

z ∪∆
−
z
(z ′)C(z ′)R(z ′

; z) (3.16) 11

where χE is the characteristic function associated to E ⊂ R2 and R is a suitable extension of (3.10) to (∆+
z ∪ ∆−

z )× ∆. We 12

defineRon (∆+
z ∪∆−

z )×∂∆ in the followingway. For z = (0, η)withη ∈ (0, l] and for z = (ξ , l)with ξ ∈ (0, l), the functions 13

on the right hand side of (3.10) continue to bewell defined. Notice that since∆+

(0,η)∪∆
−

(0,η) = ∅, K(z ′
; 0, η) = 0 for each ξ ∈ 14

(0, l) as desired so thatw(0, η) ≡ 0. In order to ensure thatw also vanishes for z = (ξ , ξ)with ξ ∈ [0, l] we merely define 15

R(z ′
; ξ, ξ) = 0 for every z ′

∈ ∆+

z ∪∆−

z , ξ ∈ [0, l]. (3.17) 16

Finally, we define the operator S0 : C0(Ω) → C0(Ω) by 17

S0(f ) = w ◦ Φ 18

whereΦ is the homeomorphism (3.5) and 19

w(z) =S0(f̃ ) =


∆

χ∆+
z ∪∆

−
z
(z ′)C(z ′)R(z ′

; z)f̃ (z ′) dz ′, z = (ξ , η) ∈ ∆. (3.18) 20

Recall that f̃ = f ◦ Ψ is defined by (3.6) and (3.9), R is defined by (3.10) and (3.17) and C defined by (3.14). Since Φ and Ψ 21

are continuous, S0 will be well defined and compact provided that S̃0 is a compact operator on C0(∆). 22

Step 2. (Compactness of S0). The key technical step is the following lemma which completes the claim (3.2). The proof will 23

be given in Appendix A. 24

Lemma 3.3. The operatorS0 : C0(∆) → C0(∆) is well defined, linear, continuous and compact. 25

Step 3. (The case λ, γ = 0). We begin by noting that if f ∈ C2(Ω), then by the result of Nakhushev (see Theorem 2 of [11]) 26

there exists a classical solution v ∈ C2(Ω) ∩ C0(Ω) to the Goursat problem (3.12) and that v ∈ C1(Ω) with ∥v∥C1(Ω) ≤ 27

C∥f ∥C2(Ω) for some constant C independent of v (see also Theorem 4.2 of [25]). Hence v ∈ H1
Γ (Ω) and v = u a.e. in

∧
Ω where 28

u is the weak solution of (3.12). 29

As mentioned in Step 1 above, Theorem 1 of Moiseev [24] shows that classical solutions v of (3.12) satisfy the represen- 30

tation formula v = S0(f ) in Ω and our extension of Step 1 ensures that this is also true at the boundary. Hence we have 31

(3.3) for f ∈ C2(Ω). The validity of (3.3) for f ∈ C0(Ω) and the existence of a continuous representative u∗ when λ = 0 32

then follows. Indeed, approximate f ∈ C0(Ω) ⊂ L2(Ω)with a sequence {fk}k∈N ⊂ C∞(Ω) such that 33

∥fk − f ∥L2(Ω) ≤ |Ω|
1/2

∥fk − f ∥C0(Ω) → 0 as k → +∞. 34

By the continuity of S0 and S0,0Γ one has 35

∥S0(fk)− S0(f )∥L2(Ω) ≤ |Ω|
1/2

∥S0(fk − f )∥C0(Ω) → 0 36

and 37

∥S0,0Γ (fk)− S0,0Γ (f )∥L2(Ω) ≤ CP∥S
0,0
Γ (fk − f )∥H1

Γ (Ω)
→ 0. 38

But S0(fk) = S0,0Γ (fk) in L2(Ω) and hence S0(f ) = S0,0Γ (f ) in L2(Ω) by the uniqueness of the limit in L2(Ω). Hence
∧
S0(f ) = 39

S0,0Γ (f ) a.e. inΩ and the unique weak solution u ∈ H1
Γ (Ω) admits the continuous representative u∗ = S0(f ) if f ∈ C0(Ω), 40

where u∗
= v is the solution of (3.1). Notice that also (3.4) holds. 41
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Step 4. (The case λ < 0 and γ ∈ R). Recalling that the weak solution operator S0,0Γ : L2(Ω) → H1
Γ (Ω) ↩→↩→ L2(Ω) is1

compact as an operator on L2(Ω), by the Fredholm alternative one has2 
I − λS0,0Γ


: L2(Ω) → L2(Ω) is invertible for each λ ≤ 0. (3.19)3

Indeed, if (3.19) were false, then there would be a non zero solutionw ∈ H1
Γ (Ω) to the problem4 

Tw − λw = 0 inΩ
w = 0 on Γ ,5

but by Theorem 2.2,w = 0 is the only weak solution in H1
Γ (Ω).6

By (3.3), it follows that {0} = ker(I − λS0) ⊂ C0(Ω) for each λ < 0. Applying the Fredholm alternative to S0 on C0(Ω),7

one has that for each λ < 0, γ ∈ R and f ∈ C0(Ω) there exists a unique v ∈ C0(Ω) satisfying8

(I − λS0)v = S0(f + λγ ) in C0(Ω) ⊂ L2(Ω).9

Hence10

v = S0(f + λγ + λv) in C0(Ω) ⊂ L2(Ω); (3.20)11

that is, there exists a unique v ∈ C0(Ω) solution to (3.1) as claimed. Again using (3.3), one has that v ∈ H1
Γ (Ω) is a weak12

solution of13 
Tv − λv = f + λγ inΩ
v = 0 on Γ ,14

and hence u∗ = v + γ ∈ H1
Γ (Ω) ∩ C0(Ω) is a weak solution of15 

Tu∗ − λu∗ = f inΩ
u∗ = γ on Γ .16

By the uniqueness of the weak solution, u = u∗ in H1
Γ (Ω) and so u = u∗ a.e. inΩ . Notice also that since u∗ = v = γ , (3.4)17

follows from (3.20). �18

3.2. Maximum principles19

As noted above, combining the regularity results of the previous subsection with a variant of the classical maximum20

principle yields a comparison principle for weak solutions compatible with the solvability theory. The main result is the fol-21

lowing comparison principle for weak solutions. We recall that yC = −(3x0/2)2/3 is the y-coordinate of C whereΩ = ABC .22

Theorem 3.4. Let λ ∈ [−5/(16y2C ), 0], γ ∈ R and f ∈ L2(Ω) be given. Let u ∈ H1(Ω) be the unique weak solution to the23

problem (2.18); that is,24 
Tu − λu = f inΩ
u = γ on Γ .25

(a) If f ≥ 0 a.e. inΩ and γ ≥ 0 then u ≥ 0 a.e. inΩ;26

(b) If f ≤ 0 a.e. inΩ and γ ≤ 0 then u ≤ 0 a.e. inΩ .27

A similar statement holds for u ∈ H1(Ω) the unique weak solution to the adjoint problem with Γ ∗
= BC ∪ AB in place of28

Γ = AC ∪ AB.29

Proof. The proof follows closely that of Theorem 3.1 in [10]. For completeness, we will give the outline of the main ideas in30

the case of the problem (2.18) with γ ≥ 0 and f ∈ L2(Ω)+ := {f ∈ L2(Ω) : f ≥ 0}, where partial ordering f ≥ 0 is the31

standard one; that is f (x) ≥ 0 for almost every x ∈ Ω .32

Step 1: (Maximum principle for regular solutions). Define the first order differential operators33

D± = Dy ±
√

−yDx, (3.21)34

which are essentially the directional derivatives along characteristic directions.35

Lemma 3.5. Let λ ∈ [−5/(16y2C ), 0] and γ ∈ R be as in Theorem 3.4 and f ∈ C0
0 (Ω). Suppose that u ∈ C2(Ω) ∩ C0(Ω) is a36

classical solution of (2.18) which satisfies37

lim
R→P

D−u(R) = 0 for each P ∈ AC \ {A, C}. (3.22)38
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(a) Let f ≥ 0. Then the minimum m = minΩ u is realized on Γ if m ≤ 0 and one has the lower bound 1

u ≥ min{γ , 0} onΩ. (3.23) 2

In particular, if γ ≥ 0, then the comparison principle u ≥ 0 onΩ holds. 3

(b) Let f ≤ 0. Then the maximum M = maxΩ u is realized on Γ if M ≥ 0 and one has the upper bound 4

u ≤ min{γ , 0} onΩ. (3.24) 5

In particular, if γ ≤ 0, then the comparison principle u ≤ 0 onΩ holds. 6

(c) In the case λ = 0 the hypothesis that m/M is non positive/non negative is not needed and (3.23) and (3.24) become 7

u ≥ γ onΩ 8

and 9

u ≤ γ onΩ. 10

Parts (a) and (b) of Lemma 3.5 are variants of the classical result of Agmon, Nirenberg and Protter [20]. The weaker 11

regularity condition (3.22) combined with f having compact support replaces the additional regularity assumption u ∈ 12

C1(Ω \ {A, B}) used by them. The requirement that u is constant on Γ implies that u is monotone on the characteristic AC 13

which is required by them. The condition (3.22) was introduced in [10] to prove the analogous lemma for the mixed type 14

Tricomi problem in the case γ = 0. For completeness, a sketch of the proof will be given in Appendix B. 15

Step 2. (Approximation and solvability). Using non negative cutoff functions and standard mollifiers, one can approximate 16

f ∈ L2(Ω)+ by fn ∈ C∞

0 (Ω) such that fn ≥ 0 inΩ and 17

supp(fn) ⊂ Ωn := {(x, y) ∈ Ω : dist((x, y), ∂Ω) > 1/n}. 18

Since λ ≤ 0, by Theorem 2.5, there exists a unique generalized solution un = Sλ,γΓ (fn) ∈ H1(Ω) to the problem (2.18) with 19

f = fn. 20

Step 3: (Regularity of the approximate solution). We can apply the comparison principle of Lemma 3.5(a) to the approximate 21

solutions un provided that un ∈ C2(Ω) ∩ C0(Ω) and un satisfies the condition (3.22). Since fn ∈ C∞

0 (Ω), by Theorems 3.1 22

and 3.2 we have un ∈ H1(Ω) ∩ C∞(Ω) ∩ C0(Ω). Using un ∈ C2(Ω) ∩ C0(Ω) and fn ∈ C0
0 (Ω), it is not difficult to show that 23

(3.22) holds. For the case λ = 0 = γ this was proven in Lemma 3.2 of [10] and a simple examination of the proof shows 24

that the argument carries over to the other cases γ ≠ 0 or λ < 0. Hence we may apply part (a) of Lemma 3.5 to conclude 25

that un ≥ min{γ , 0} ≥ 0 inΩ since un = γ ≥ 0 on Γ . 26

Step 4. (Continuity of the solution operator Sλ,γΓ ). Since un ∈ H1(Ω) ∩ C0(Ω) ⊂ L2(Ω) satisfies un ≥ 0 inΩ , one has 27

u = lim
n→+∞

un = lim
n→+∞

Sλ,γΓ (fn) = Sλ,γΓ (f ) in H1(Ω) 28

from which it follows that u ≥ 0 a.e. inΩ . � 29

4. Nonlinear theory: existence of solutions 30

The nonlinear results we will obtain rely on Theorem 2.2 which says that the linear problem (2.1) admits a continuous 31

solution operator SΓ : L2(Ω) → H1
Γ (Ω) and hence 32

SΓ : L2(Ω) → H1
Γ (Ω) ↩→↩→ Lp(Ω), ∀ p ∈ [1,+∞), 33

as noted in Remark 2.3. Moreover, sinceΩ is bounded, we have Lp(Ω) ⊂ L2(Ω) for each p ≥ 2. Hence we may reformulate 34

the question of finding a weak solution u ∈ H1
Γ (Ω) to the semilinear Goursat problem (1.1) 35

Tu = f (x, y, u) inΩ
u = 0 on Γ = AC ∪ AB, (4.1) 36

as a fixed point problem. Namely look for u ∈ Lp(Ω) such that 37

u = G(u) := SΓ ◦ f#(u) (4.2) 38

where f# : u → f (·, u(·)) is the Nemytskii operator associated to f . One knows that 39

f# : Lp(Ω) → L2(Ω) 40

is continuous and maps bounded sets to bounded sets provided that f = f (x, y, s) : Ω × R → R satisfies the Carathéodory 41

conditions 42

f is measurable in (x, y) for each s ∈ R and continuous in s for a.e. (x, y) ∈ Ω (4.3) 43
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and the natural growth bound1

|f (x, y, s)| ≤ a(x, y)+ b|s|p/2, a ≥ 0 in L2(Ω), b ≥ 0 in R, (4.4)2

which needs to hold for almost every (x, y) ∈ Ω and each s ∈ R. These claims on f# are standard (see e.g. Vainberg [26]).3

Since the image of G lies in the subspace H1
Γ (Ω) such fixed points will be weak solutions to (4.1) in the sense that4

u ∈ H1
Γ (Ω) and the natural analog of (2.10) holds; that is5

B(u, v) :=


Ω


yuxvx + uyvy


dxdy =


Ω

f#(u)v dxdy, ∀ v ∈ C∞

Γ ∗(Ω).6

Remark 4.1. For each λ ≤ 0, one can obviously use T − λI in place of T in the problem (1.1) since the corresponding linear7

solution operator8

Sλ,0Γ : L2(Ω) → H1
Γ (Ω) ↩→↩→ Lp(Ω), ∀ p ∈ [1,+∞),9

gives a compact linearmap.Wewill exploit this fact later in the use of monotonemethods by adding a termωu to both sides10

of (1.1) with a suitable ω > 0 so that the Nemytskii operator associated to f (x, y, s)+ ωs will be a monotone operator.11

Wewill divide the results into two cases on the basis of whether q := p/2 ≤ 1 or q > 1 in (4.4); that is, into the cases of12

sublinear or superlinear growth at infinity.13

4.1. Sublinear growth14

Our first result concerns the case of strictly sublinear growth; that is q = p/2 < 1 in (4.4) and is a simple application of15

the Leray–
∧
Schauder principle.16

Theorem 4.2. If f satisfies the Carathéodory conditions (4.3) and the growth bound (4.4) with q = p/2 ∈ [0, 1), then there17

exists at least one weak solution u ∈ H1
Γ (Ω) to the problem (4.1).18

Proof. First notice that f also satisfies (4.4) with q = 1 since |f (x, y, s)| ≤ ã(x, y) + b|s| with ã = a + b ∈ L2(Ω). Hence19

G : L2(Ω) → L2(Ω) is compact. There will be a fixed point of G provided one has the a priori bound: there exists a constant20

C > 0 such that21

u = tG(u), t ∈ (0, 1) ⇒ ∥u∥L2(Ω) ≤ C . (4.5)22

The case p = 0 is obvious. Using t ∈ (0, 1) and the boundedness of SΓ on L2(Ω) one has23

∥u∥L2(Ω) ≤ ∥SΓ ∥op ∥f#(u)∥L2(Ω).24

A standard calculation using (4.4), a ∈ L2(Ω) and Hölder’s inequality yields constants C1, C2 and C3 such that25

∥u∥L2(Ω) ≤ ∥SΓ ∥op


C1 + C2∥u∥

q
L2(Ω) + C3∥u∥

2q
L2(Ω)

1/2
. (4.6)26

If (4.5) were to fail, then there would be a sequence {un}n∈N satisfying un = tnG(un)with tn ∈ (0, 1) and ∥un∥L2(Ω) → +∞.27

This contradicts (4.6) for q ∈ (0, 1). �28

On the other hand, for f with at most linear growth but satisfying a suitable Lipschitz condition, the contractionmapping29

principle gives the existence of a unique solution.30

Theorem 4.3. If f satisfies the Carathéodory conditions (4.3), the growth bound (4.4) with q = p/2 ∈ [0, 1] and the estimate31

|f (x, y, s)− f (x, y, t)| ≤ CL|s − t|, for a.e. (x, y) ∈ Ω and each s, t ∈ R (4.7)32

with the Lipschitz constant satisfying33

0 < CL < M−1
0 , (4.8)34

where M0 = ∥SΓ ∥op as discussed in Remark 2.6, then there exists a unique solution u ∈ H1
Γ (Ω) of the problem (4.1).35

Proof. As in the proof of Theorem 4.2, G is well defined and continuous on L2(Ω). Using (4.7), one has the estimate36

∥G(u)− G(v)∥L2(Ω) ≤ ∥SΓ ∥opCL∥u − v∥L2(Ω),37

and G will be a contraction on L2(Ω) if CL satisfies (4.8). Hence G admits a unique fixed point u, which lies in H1
Γ (Ω) ⊂38

L2(Ω). �39
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We conclude the discussion of this case with a pair of remarks. 1

Remark 4.4. If f (x, y, 0) = 0 for almost every (x, y) ∈ Ω , then clearly u = 0 is a trivial solution of (4.1). On the other hand, 2

if f (x, y, 0) ≠ 0 on a set of positive measure, then the solutions in Theorems 4.2 and 4.3 are nontrivial. This observation also 3

applies to Theorem 4.7 in the superlinear case below. 4

Remark 4.5. Analogs of Theorems 4.2 and 4.3 have been shown for mixed type operators including T : for the Tricomi 5

problem in [1] and the Dirichlet problem in [3]. In the case of the Dirichlet problem, the linear part is self-adjoint and many 6

additional existence results have been obtained for asymptotically linear nonlinearities f in [4]. 7

4.2. Superlinear cases 8

In this section, we will treat the case of superlinear growth q = p/2 > 1 in (4.4). Exploiting the comparison principle of 9

Theorem 3.4, we will make use of monotone iteration to show the existence of a fixed point for the equation (4.2). As noted 10

in Remark 4.1, it will be useful to rewrite the problem (4.1) as 11
Tu + ωu = fω(x, y, u) inΩ
u = 0 on Γ , (4.9) 12

where 13

fω(x, y, s) = f (x, y, s)+ ωs and ω ∈ [0, 5/(16y2C )]. 14

Note that the maximum principle holds for (T + ωI) = (T − λI) if λ = −ω ∈ [−5/(16y2C ), 0]. Using 15

Kω := S−ω,0
Γ : L2(Ω) → H1

Γ (Ω) ↩→↩→ Lp(Ω), ∀ p ∈ [1,+∞) 16

the fixed point problem associated to (4.9) becomes: look for a solution u ∈ Lp(Ω) of 17

u = Gω(u) := Kω ◦ (fω)#(u), 18

where 19

(fω)# : Lp(Ω) → L2(Ω) 20

is well defined, continuous and maps bounded sets to bounded sets if f satisfies (4.3) and (4.4) since fω will as well. In 21

particular, with p > 2 one has 22

|fω(x, y, s)| ≤ a(x, y)+ b|s|p/2 + ω|s| ≤ (a(x, y)+ ω)+ (b + ω)|s|p/2. (4.10) 23

The basic tool is the following (see Corollary 6.2 of [27]). 24

Lemma 4.6. Let E be an ordered Banach space with positive cone P. If [u, u] is a non empty order interval such that G : [u, u] → 25

E is increasing and compact and 26

u ≤ G(u) and G(u) ≤ u, (4.11) 27

then G has both a minimal and maximal fixed point u∗, u∗ given by monotone iteration 28

Gk(u) ↗ u∗ and Gk(u) ↘ u∗. 29

Using Lemma 4.6, it suffices to place suitable hypotheses on f and ω so that Gω admits an ordered pair u, u satisfying 30

(4.11) and that Gω is compact and increasing on [u, u]. To this end we will assume that 31

f satisfies (4.3) and (4.4) with q = p/2 > 1, (4.12) 32

that there exist constants c1, c2 ∈ R with 33

c1 < 0 < c2 and f (x, y, c2) ≤ 0 ≤ f (x, y, c1) for a.e. (x, y) ∈ Ω (4.13) 34

and that there exists ω ∈ (0, 5/(16y2C )] such that 35

f (x, y, s)− f (x, y, t) ≥ −ω(s − t), (4.14) 36

for each s, t ∈ [c1, c2] with s ≥ t and for a.e. (x, y) ∈ Ω . 37

Theorem 4.7. If f satisfies (4.12)–(4.14), then there exists at least one weak solution u ∈ H1
Γ (Ω) to the problem (4.1). 38

Proof. Wewill work in the ordered Banach space Lp(Ω)with p > 2 so that Lp(Ω) ⊂ L2(Ω) and the positive come
∧
Lp(Ω)+ = 39

Lp(Ω) ∩ L2(Ω)+ is normal. Hence each order interval [u, u] is bounded (see Theorem 1.5 of [27]). As already noted, the

payne
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hypothesis (4.12) ensures that fω satisfies (4.10) and that (fω)# : Lp(Ω) → L2(Ω) is continuous. The hypotheses (4.13) and1

(4.14) show that2

(fω)# : [c1, c2] → Lp(Ω) is increasing3

since for each s, t ∈ [c1, c2] with s ≥ t and for a.e. (x, y) ∈ Ω one has4

f (x, y, s)+ ωs − [f (x, y, t)+ ωt] ≥ −ω(s − t)+ ω(s − t) = 0.5

For each p ≥ 2, one has Gω : Lp(Ω) → Lp(Ω) is compact. Indeed, for ω ≥ 0 one has6

Gω : Lp(Ω) ⊂ L2(Ω) → H1
γ (Ω) ↩→↩→ Lp(Ω),7

where8

Gω = (T + ωI)−1
= (T − λI)−1 with λ = −ω ≤ 0.9

It follows that Gω is increasing on [c1, c2]. Indeed, for each pair ϕ,ψ ∈ Lp(Ω) such that10

c1 ≤ ϕ ≤ ψ ≤ c2 in Lp(Ω)11

one has12

v := Gω(ϕ) ≤ Gω(ψ) := w13

since z = w − v is the unique weak solution in H1
Γ (Ω) of14 

(T + ωI)z = ψ − ϕ ≥ 0 inΩ
z = 0 on Γ ,15

with ω ∈ (0, 5/(16y2C )]. The comparison principle (Theorem 3.4) yields that z = w − v ≥ 0 a.e. in Ω and hence z ≥ 0 in16

Lp(Ω).17

It remains only to show that u = c1 and u = c2 satisfy (4.11) with G = Gω; that is,18

c1 ≤ Gω(c1) and Gω(c2) ≤ c2 in Lp(Ω). (4.15)19

With u = c1 < 0 one has f (x, y, c1) ≥ 0 for a.e. (x, y) ∈ Ω by (4.13) and u := Gω(c1) is the uniqueweak solution inH1
Γ (Ω) of20 

(T + ωI)u = f (x, y, c1)+ ωc1 inΩ
u = 0 on Γ = AC ∪ AB,21

The function v := u − c1 ∈ H1(Ω) and is the unique weak solution of22 
(T + ωI)v = f (x, y, c1)+ ωc1 − ωc1 ≥ 0 inΩ
v = −c1 > 0 on Γ = AC ∪ AB,23

Again by Theorem 3.4 one has v ≥ −c1 a.e. inΩ so that u ≥ 0 a.e. inΩ . Hence24

c1 < 0 ≤ u = Gω(c1) a.e. inΩ,25

which is the first inequality in (4.15). An analogous argument with u := c2 > 0 and using f (·, ·, c2) ≤ 0 a.e. yields the26

second inequality in (4.15). �27

5. Nonlinear theory: uniqueness of the trivial solution28

In this section, we examine the question of uniqueness of the trivial solution u = 0 to the semilinear Goursat problem29

(1.1) when the nonlinearity is homogeneous;3that is, f = f (u) and vanishes to high enough order in u = 0. In particular,30

we will consider weak solutions u ∈ H1
Γ (Ω) to the problem31 

Lu + F ′(u) = 0 inΩ
u = 0 on Γ = AC ∪ AB, (5.1)32

where L = −T = yD2
x + D2

y and A = (−2x0, 0), B = (0, 0) and f = F ′
∈ C0(R)with primitive F(s) :=

 s
0 f (t) dt satisfying33

F(0) = 0. (5.2)34

3 In this section, we will denote by f (u) the values of the Nemytskii operator f# acting on u.
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Notice that we have merely rewritten the PDE and exploited translation invariance in x in order to represent the problem 1

as in [5–7], where the same question for regular solutions was considered. For example, if f takes pure power form 2

f (s) = s|s|p−2 (5.3) 3

with supercritical growth 4

p ≥ 2∗(1, 1) = 10, (5.4) 5

then the only solution u ∈ C2(Ω) to (5.1) is the trivial solution u = 0. The case p > 10 was treated in [5] and the extension 6

to p ≥ 10 for Dirichlet boundary conditions was treated in [6] and for various ‘‘open’’ boundary conditions in [8]. Here we 7

wish to relax the regularity assumption to u ∈ H1
Γ (Ω), the space in which we can find solutions as in Section 4. The main 8

result is the following theorem in the pure power case (5.3)–(5.4). Various generalizations will be discussed at the end of 9

this section (see Remark 5.4). 10

Theorem 5.1. If f = F ′ satisfies (5.3)–(5.4), then the only solution u ∈ H1
Γ (Ω) of (5.1) is the trivial solution u = 0. 11

The proof, which will be given in the following two subsections, splits into two cases; namely the supercritical casewith 12

p > 10 and the critical casewith p = 10.Webeginwith twopreliminary facts. Both cases rely on the following Pohožaev type 13

identitywhichwill be applied along a suitably regularized approximating sequencewhich satisfies the boundary conditions. 14

Lemma 5.2. Let f ∈ C0(R) with primitive F satisfying (5.2). For any u ∈ C∞(Ω) such that u|Γ = 0 one has 15
Ω


Mu +

1
2
u
 

Lu + F ′(u)

dxdy =


Ω


1
2
uF ′(u)− 5F(u)


dxdy 16

+


BC


Mu +

1
2
u

(yux, uy) · ν ds (5.5) 17

where ν is the exterior unit normal, ds the arc length element and 18

M = −3xDx − 2yDy. (5.6) 19

This is Theorem 3.3 of [5], whereMu + u/2 is the infinitesimal generator of an anisotropic dilation invariance for L. One 20

merely multiplies Lu + F ′(u) by Mu + u/2, applies the divergence theorem and uses u = F(u) = 0 on AB ∪ AC and the 21

geometry ofΩ . 22

In the pure power case (5.3), the integral overΩ on the right hand side of (5.5) has the sign of p−10, while the boundary 23

integral is non-negative due to a sharp Hardy–Sobolev inequality (see Lemma 4.3 of [5]). In order to also treat the critical 24

case p = 10, we will make use of a related inequality with remainder term. First we fix a few notations which will be used 25

in the rest of this section. The characteristics AC and BC are given by (compare with (2.2)) 26
AC : x + 2x0 − g(y) = 0 and BC : x + g(y) = 0, y ∈ [yC , 0]

where g(y) =
2
3
(−y)3/2 and yC = −


3x0
2

2/3

.
(5.7) 27

Parameterizing BC by β(t) = (−g(t), t) with t ∈ [yC , 0] and setting w(t) = u(β(t)), one finds that the boundary integral 28

in (5.5) is 29
BC


Mu +

1
2
u

(yux, uy) · ν ds =

 0

yC


4(−t)3/2w′(t)2 −

1
4
(−t)−1/2w(t)2


dt. (5.8) 30

The Hardy–Sobolev inequality with remainder that we will be recorded in the following lemma. 31

Lemma 5.3. Let w ∈ C1([a, 0]) satisfyw(a) = 0. Then 32 0

a
(−t)3/2w′(t)2 dt ≥

1
16

 0

a
(−t)−1/2w(t)2 dt +

4
a2

 0

a
(−t)3/2w(t)2 dt. (5.9) 33

Proof. We follow the approach of Chen and Shen [28]. Starting from the easily established identity 34 0

a
(−t)3/2(w′)2 dt −

1
16

 0

a
(−t)−1/2w2 dt =

 0

a
(−t)


((−t)1/4w)′

2
dt, 35

and setting v(t) = (−t)1/4w(t), it is enough to establish the Hardy–Sobolev inequality 36 0

a
(−t)(v′)2 dt ≥

4
a2

 0

a
(−t)v2 dt. (5.10) 37
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To establish (5.10), one makes use of v(a) = 0, the fundamental theorem of calculus and Hölder’s inequality to find1  0

a
(−t)v2 dt =

 0

a
−t
 t

a
v′(s) ds

2

dt2

≤

 0

a
−t
 t

a
−s(v′)2 ds

  t

a
(−s)−1 ds


dt3

≤

 0

a
−s(v′)2 ds

  0

a
(t log(−t)− t log(−a)) dt


4

=
a2

4

 0

a
−s(v′)2 ds


. �5

We conclude these preliminary observations by noting that if u ∈ C2(Ω) is a solution of (5.1) in the supercritical case6

(p > 10), and assuming that u is nontrivial, then combining (5.5) with (5.8) and (5.9) yields7

0 >
10 − p
2p


Ω

|u|p dxdy =


BC


Mu +

1
2
u

(yux, uy) · ν ds ≥ 0,8

which contradicts u being nontrivial.9

Remark 5.4. At least for C2(Ω) solutions, the same argument gives the uniqueness of the trivial solution for nonlinearities10

f ∈ C0(R)whose primitive F with F(0) = 0 satisfies11

10F(s)− sf (s) < 0 for s ≠ 0, (5.11)12

since this ensures that the integral over Ω on the right hand side of (5.5) is negative. For example, the condition (5.11) is13

satisfied by14

f (s) = Cs|s|p−2
+ λs with C > 0 (5.12)15

provided p > 10 and λ ≤ 0 or p = 10 and λ < 0. In addition, the result applies to16

f (s) = C |s|p−1
+ λs with C > 0 (5.13)17

provided that 0 ≥ λ ≥ −5/(16y2C ). Indeed, the maximum principle of Theorem 3.4 then yields u ≥ 0 a.e. and one may18

replace f given by (5.13) with that of (5.12).19

5.1. Proof of Theorem 5.1 in the supercritical case20

For u ∈ H1
Γ (Ω)wewill exploit the Sobolev imbedding H1(Ω) ↩→ Lq(Ω) for every q ∈ [1,∞) andmollifying procedures21

which are well calibrated to the geometry ofΩ and the boundary conditions. To this end, fix a canonical mollifier j ∈ C∞

0 (R)22

such that23

supp(j) ⊂ (−1, 1), j even, j ≥ 0,


R
j(t) dt = 1. (5.14)24

For each ε = (ε1, ε2) satisfying25

0 < ε1 ≤ ε2,26

define the mollified function uε = Jεu onΩ by27

Jεu(x, y) =


Ω

Φε(x, y; x̄, ȳ)u(x̄, ȳ) dx̄dȳ, (5.15)28

where the mollifier kernel is defined by29

Φε(x, y; x̄, ȳ) =
1
ε1ε2

j

x̄ − x
ε2

+ ξ


j

y − ȳ
ε1


− j


y + ȳ
ε1


(5.16)30

with31

ξ ≥ 1 + ξ0, ξ0 = ∥g∥Lip([yC ,0]) =


3x0
2

1/3

(5.17)32

and g which defines the characteristics AC and BC by (5.7). Notice that for each (x, y) ∈ R2 fixed,Φε(x, y; ·, ·) ∈ C∞

0 (R
2). In33

addition, sinceΩ is a Lipschitz domain, for any u ∈ H1
Γ (Ω) ⊂ H1(Ω), we can extend u to an element of H1(R2) ↩→ Lq(R2)34
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for each q ∈ [1,∞). Using this extension, we can also use (5.15)–(5.16) to define Jεu in a neighborhood ofΩ and make the 1

change variables s = x− x̄, t = y− ȳwhen desired, without having to work on a subdomainΩε ofΩ . In a similar way, one 2

defines the adjoint integral operator J∗ε with kernel 3

Φ∗

ε (x, y; x̄, ȳ) = Φε(x̄, ȳ; x, y) =
1
ε1ε2

j

x − x̄
ε2

+ ξ


j

y − ȳ
ε1


− j


y + ȳ
ε1


, (5.18) 4

where we recall that j is even. We record the following elementary properties of these mollification operators. 5

Lemma 5.5. Let u ∈ H1(Ω) and 0 < ε1 ≤ ε2. Then 6

(a) ∥Jεu∥Lp(Ω) ≤ 4∥j∥2
L∞(R) ∥u∥Lp(Ω), for each p ∈ [1,∞); 7

(b) ∥Jεu − u∥H1(Ω) → 0 as ε → 0 along 0 < ε1 ≤ ε2, and hence there is also convergence in Lp(Ω) for each p ∈ [1,∞); 8

(c) Jεu, J∗ε u ∈ C∞(Ω) and 9

Jεu|Γ = 0, Γ = AC ∪ AB. (5.19) 10

Moreover, the same properties are satisfied by the adjoint integral operator J∗ε where in place of (5.19), one has 11

J∗ε u|Γ ∗ = 0, Γ ∗
= BC ∪ AB. 12

Proof. To prove the Lp bound in part (a), notice that for each choice of ξ and for each (x, y) ∈ Ω fixed, the effective domain 13

of integration in the formula (5.15) is 14

Ωx,y = {(x̄, ȳ) ∈ Ω : ȳ ∈ [y − ε1, y + ε1], x̄ ∈ [x + ε2ξ − ε2, x + ε2ξ + ε2]}, (5.20) 15

which has measure
Ωx,y

 ≤ 4ε1ε2, while 16

|Φε(x, y; x̄, ȳ)| ≤
1
ε1ε2

∥j∥2
L∞(R), (x, y), (x̄, ȳ) ∈ Ω. 17

Hence 18

sup
(x,y),(x̄,ȳ)∈Ω


Ω

|Φε(x, y; x̄, ȳ)| dx̄dȳ,

Ω

|Φε(x, y; x̄, ȳ)| dxdy


≤ 4∥j∥2
L∞(R) 19

and hence the Lp-bound of part (a). That Jεu, J∗ε u ∈ C∞(Ω) and the convergence in H1(Ω)-norm are shown in the standard 20

way by making use of Lebesgue’s dominated convergence theorem. It remains only to show the vanishing claim (5.19). 21

Since j is even, one has 22

Φε(x, 0; x̄, ȳ) = 0 = Φ∗

ε (x, 0; x̄, ȳ) for each (x̄, ȳ) ∈ Ω 23

and hence Jεu, J∗ε u vanish on ABwhere y = 0. To see that Jεu = 0 on AC , for (x, y) ∈ AC one has the relation (5.7) and 24

−2x0 < x̄ ± g(ȳ) < 0 for each (x̄, ȳ) ∈ Ω. 25

Hence 26

x̄ − x
ε2

>
−2x0 + g(ȳ)+ 2x0 − g(y)

ε2
≥ −

ξ0|y − ȳ|
ε2

, ∀ (x, y) ∈ AC, (x̄, ȳ) ∈ Ω. (5.21) 27

As noted in (5.20), one has |y − ȳ| ≤ ε1 on the effective domain of integration Ωx,y. Combining this fact with (5.17) and 28

(5.21) yields 29

x̄ − x
ε2

+ ξ ≥ −
ξ0ε1

ε2
+ ξ ≥ −ξ0 + ξ ≥ 1, ∀ (x, y) ∈ AC, (x̄, ȳ) ∈ Ωx,y, (5.22) 30

and henceΦε(x, y; ·, ·) ≡ 0 onΩ if (x, y) ∈ AC . A similar argument shows thatΦ∗
ε (x, y; ·, ·) ≡ 0 onΩ if (x, y) ∈ BC . � 31

Using thismollifying procedure,we can apply the dilation identity (5.5)with F(u) = |u|p/p to uε = Jεu since uε ∈ C∞(Ω) 32

and vanishes on Γ to find 33
Ω


Muε +

1
2
uε

 
Luε + F ′(uε)


dxdy ≥

p − 10
2p


Ω

F(uε) dxdy, (5.23) 34

where the boundary integral on BC is non-negative by Lemma 5.3. We will exploit the following representation formula. 35
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Lemma 5.6. Let u ∈ H1
Γ (Ω) be a weak solution of (5.1), M defined by (5.6) and F(u) = |u|p/p. Then1

Luε + F ′(uε) = Aε + Bε a.e. inΩ, (5.24)2

where3

Aε(x, y) =


Ω

(y − ȳ)D2
x̄Φε(x, y; x̄, ȳ)u(x̄, ȳ) dx̄dȳ, (5.25)4

Bε = (Jεu)|Jεu|p−2
− Jε(u|u|p−2), (5.26)5

Φε is given by (5.16) and uε = Jεu defined in (5.15).6

Proof. Since u ∈ H1
Γ (Ω) is a weak solution, one has7 

Ω


yuxϕx + uyϕy − F ′(u)ϕ


dxdy = 0, ∀ ϕ ∈ H1

Γ ∗(Ω).8

Insert ϕ = J∗ε v with v ∈ C∞

0 (Ω) an arbitrary test function, integrate by parts and apply Fubini’s theorem to find9

0 =


Ω


u

y(J∗ε v)xx + (J∗ε v)yy


+ F ′(u)J∗ε v


dxdy10

=


Ω

u(x, y)


Ω


L

Φ∗

ε (x, y, x̄, ȳ)

+ Φ∗

ε (x, y, x̄, ȳ)|u|
p−2(x, y)


v(x̄, ȳ) dx̄dȳ


dxdy11

=


Ω

v(x̄, ȳ)


Ω


L

Φ∗

ε (x, y, x̄, ȳ)

+ Φ∗

ε (x, y, x̄, ȳ)|u|
p−2(x, y)


u(x, y) dxdy


dx̄dȳ,12

where L = yD2
x + D2

y . Since v ∈ C∞

0 (Ω) is arbitrary, for a.e. (x̄, ȳ) ∈ Ω one has13 
Ω


Ψε(x, y; x̄, ȳ)+ Φ∗

ε (x, y, x̄, ȳ)|u|
p−2(x, y)


u(x, y) dxdy = 0. (5.27)14

where Ψε(x, y, x̄, ȳ) := L

Φ∗
ε (x, y, x̄, ȳ)


=

yD2

x + D2
y

 
Φ∗
ε (x, y, x̄, ȳ)


. Interchanging the roles of (x, y) and (x̄, ȳ) and re-15

calling (5.18), the relation (5.27) yields16 
Ω


Ψε(x̄, ȳ; x, y)+ Φε(x, y, x̄, ȳ)|u|p−2(x̄, ȳ)


u(x̄, ȳ) dx̄dȳ = 0, a.e. (x, y) ∈ Ω. (5.28)17

Simple calculations show that18

Ψε(x̄, ȳ; x, y) =

ȳD2

x̄ + D2
ȳ


[Φε(x, y, x̄, ȳ)] (5.29)19

and inserting (5.29) into (5.28) shows that for a.e. (x, y) ∈ Ω one has20

− Jε

u|u|p−2 (x, y)−


Ω

ȳD2
x̄Φε(x, y, x̄, ȳ)u(x̄, ȳ) dx̄dȳ21

=


Ω

D2
ȳΦε(x, y, x̄, ȳ)u(x̄, ȳ) dx̄dȳ =


Ω

D2
yΦε(x, y, x̄, ȳ)u(x̄, ȳ) dx̄dȳ. (5.30)22

Finally, since23

L(Jεu)+ (Jεu) |Jεu|p−2
=


Ω


yD2

x + D2
y


[Φε(x, y, x̄, ȳ)] u(x̄, ȳ) dx̄dȳ + (Jεu) |Jεu|p−2 , (5.31)24

combining (5.31) with (5.30) yields (5.24) with Aε and Bε defined by (5.25)–(5.26). �25

Using Lemma 5.6, we may rewrite (5.23) as26 
Muε +

1
2
uε, Aε + Bε


≥

p − 10
2p


Ω

|uε|p dxdy, (5.32)27

where (·, ·) is the L2-scalar product. By Lemma 5.5(b), for ε → 0 along 0 < ε1 ≤ ε2 we have28 
Ω

|uε|p dxdy →


Ω

|u|p dxdy, (5.33)29

Muε +
1
2
uε → Mu +

1
2
u in L2(Ω), (5.34)30
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and 1

Bε = (Jεu)|Jεu|p−2
− Jε(u|u|p−2) → 0 in L2(Ω), (5.35) 2

where we note that Bε = f#(Jεu)− Jε(f#(u))where f# : L2p−2(Ω) → L2(Ω) is a continuous Nemytskii operator, since
∧
f (s) = 3

s|s|p−1 satisfies (4.4) with 2p − 2 in place of p. Hence 4

Jε(f#(u)) → f#(u) and f#(Jεu) → f#(u) in L2(Ω) 5

by Lemma 5.5(b) and the continuity of f#. We claim that 6

Aε → 0 in L2(Ω). (5.36) 7

Given the claim, Theorem 5.1 in the supercritical case follows by taking the limit in (5.32) and using (5.33)–(5.36) to find 8

0 ≥
p − 10
2p


Ω

|u|p dxdy, 9

and hence u = 0 in H1(Ω) if p > 10. 10

Proof of claim (5.36). For u ∈ H1
Γ (Ω)we can integrate by parts once in the definition (5.25) of Aε to find 11

Aε(x, y) =


Ω

(y − ȳ)Dx̄Φε(x, y; x̄, ȳ)Dx̄u(x̄, ȳ) dx̄dȳ +


BC
(y − ȳ)Dx̄Φεuν1 ds(x̄, ȳ), 12

but for (x̄, ȳ) ∈ BC we have 13

Dx̄Φε(x, y; x̄, ȳ) =
1
ε1ε

2
2
j′

x̄ − x
ε2

+ ξ


j

y − ȳ
ε1


− j


y + ȳ
ε1


= 0, ∀ (x, y) ∈ Ω, 14

by using an argument similar to that which leads to (5.22) in the proof of Lemma 5.5. Since ux ∈ L2(Ω), we need only show 15

that 16

J̃εv → 0 in L2(Ω) for each v ∈ L2(Ω) (5.37) 17

where J̃ε is the mollifying operator with kernel 18

Φ̃ε(x, y, x̄, ȳ) = (ȳ − y)Dx̄Φε(x, y; x̄, ȳ). 19

The family J̃ε is uniformly bounded in ε on L2(Ω) since the kernel is pointwise bounded by |ȳ − y|ε−1
1 ε−2

2 ∥j∥L∞(R) ∥j′∥L∞(R) 20

and supported on a rectangle of measure 4ε1ε2 onwhich |ȳ−y| ≤ ε1 ≤ ε2. Using this uniform boundedness and the density 21

of C∞

0 (Ω), it is enough to verify the limit claim (5.37) for v ∈ C∞

0 (Ω). For v ∈ C∞

0 (Ω), one integrates by parts to find 22

J̃εv(x, y) =


Ω

(y − ȳ)Φε(x, y, ; x̄, ȳ)vx(x̄, ȳ) dx̄dȳ. 23

Estimating as before, one finds pointwise convergence 24J̃εv(x, y) ≤ 4ε1∥vx∥L∞(Ω) ∥j∥2
L∞(R) → 0 25

and a uniform Lp bound for ε1 ≤ 1 26J̃εv(x, y)p ≤ 4p
∥vx∥

p
L∞(Ω) ∥j∥

2p
L∞(R). 27

Hence the claim follows by Lebesgue’s dominated convergence theorem. 28

5.2. Proof of Theorem 5.1 in the critical case 29

In the critical case p = 10, we will show that weak solutions u ∈ H1
Γ (Ω)must have zero trace also on BC and hence

∧
u ∈ 30

H1
0 (Ω) and so u solves the characteristic Cauchy problem with u|AC∪BC = 0. An additional multiplier identity using the 31

y-translation multiplier Dyu in place of the dilation multiplier Mu along a suitably regularized sequence will yield the con- 32

clusion u = 0 in H1(Ω). This was what was done for C2(Ω) solutions in [6], but additional work is needed to extend the 33

result to weak solutions. 34

We begin by showing that u has zero trace on BC . We again apply the dilation identity (5.5) to uε = Jεu, but we keep 35

the non-negative boundary integral on BC and combine this with the representation formula (5.24) to find the following

payne
Nota
OK

payne
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variant of (5.32)1 
Muε +

1
2
uε, Aε + Bε


=


BC


Muε +

1
2
uε

 
yDxuε,Dyuε


· ν ds2

=

 0

yC


4(−t)3/2ψ ′

ε(t)
2
−

1
4
(−t)−1/2ψε(t)2


dt3

≥
16
y2C

 0

yC
(−t)3/2ψε(t)2 dt ≥ 0, (5.38)4

where we have also applied the Hardy–Sobolev inequality with remainder (5.9) to ψε(t) = uε |BC (t) = uε(β(t)) with5

β(t) = (−g(t), t) as in Lemma 5.2. Taking the limit in (5.38) as ε = (ε1, ε2) → 0 along 0 < ε1 ≤ ε2 yields6

16
y2C

 0

yC
(−t)3/2ψ(t)2 dt = 0,7

since uε → u in H1(Ω) implies that Muε → Mu and Aε, Bε → 0 in L2(Ω) as well as8

ψε = tr|BCuε → tr|BCu = ψ in L2(BC).9

In order to set up the mollifying scheme needed for the Dyumultiplier identity and in order to exploit fully the vanishing10

of u on BC , the following reformulation of weak solutions to (5.1) will be used.11

Lemma 5.7. Let u ∈ H1
Γ (Ω) be a weak solution to (5.1) with F ′(u) = u|u|p−2. Then12 

Ω


yuxvx + uyvy − u|u|p−2v


dxdy = 0 for each v ∈ C∞

AB (Ω), (5.39)13

where C∞

AB (Ω) = {v ∈ C∞(Ω) : v = 0 in a neighborhood of AB}.14

Proof. Given v ∈ C∞

AB (Ω), then v(x, y) = 0 for each (x, y) ∈ Ω with y ≥ −δ for some δ = δ(v) > 0. Select a cutoff profile15

φ ∈ C∞(R) such that16

φ(s) = 0 for s ≤ 1/3 and φ(s) = 1 for s ≥ 2/3.17

For each σ > 0, define the function18

vσ (x, y) = v(x, y)φ(hσ (x, y)), hσ (x, y) =


−x − g(y)

σ


, g(y) =

2
3
(−y)3/2.19

Since vσ ∈ H1
Γ (Ω), by the definition of weak solutions to (5.1), the identity (5.39) holds with vσ in place of v and hence20

0 =


Ω


yuxvx + uyvy + u|u|p−2v


φ(hσ ) dxdy +


Ω


−yuxv + (−y)1/2uyv

 1
σ
φ′(hσ ) dxdy21

:= Aσ + Bσ .22

Applying the dominated convergence theorem to Aσ , one will have the identity (5.39) provided that Bσ → 0 for σ → 0+.23

Integrating by parts and taking into account where u, v and φ vanish, one finds24

Bσ =


Ω


yu

1
σ
vφ′(hσ )


x
− u


1
σ
(−y)1/2vφ′(hσ )


y


dxdy25

=
1
2


Ω

uφ′(hσ )
σ


(−y)−1/2v + 2yvx − 2(−y)1/2vy


dxdy,26

where the support of the integrand is contained in27

Ωσ ,δ = {(x, y) ∈ Ω : 0 ≤ −x − g(y) ≤ σ , y ≤ −δ < 0}.28

Hence there exists a constant C1 = C1

δ, ∥φ′

∥C1(R), ∥v∥C1(Ω)


such that29

|Bσ | ≤ C1


Ωσ ,δ

|u|
σ

dxdy ≤ C1


−δ

yC


−g(y)

−σ−g(y)

|u(x, y)|
−x − g(y)

dx


dy. (5.40)30

Making the change of variables t = −x − g(y), the inner integral in (5.40) becomes31 
−g(y)

−σ−g(y)

|u(x, y)|
−x − g(y)

dx =

 σ

0

|w(t)|
t

dt32
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wherew(t) = u(−t − g(y), y). This can be estimated by the Hardy–Sobolev inequality 1 σ

0

|w|

t
dt ≤ 2σ 1/2

∥w′
∥L2([0,σ ]), w ∈ C1([0, σ ]), w(0) = 0 2

to yield 3

|Bσ | ≤ 2C1σ
1/2


Ωσ ,δ

|ux|
2 dxdy

1/2

≤ 2C1σ
1/2

∥ux∥L2(Ω) → 0 for σ → 0+. � 4

Next we introduce a family of mollifiers which is well calibrated to the characteristic Cauchy problem, at least on the 5

part of the domain where L is strictly hyperbolic. A natural family of mollifiers will require a Lipschitz bounds like (5.17) on 6

the inverse function to g , which fails to be Lipschitz along ABwhere L degenerates. Hence, for each τ < 0 fixed and small in 7

absolute value, we will work on the domain 8

Ωτ
= {(x, y) ∈ Ω : y < τ } 9

and we will show that u must vanish in H1(Ωτ ) for each τ . Notice thatΩτ
= AτBτC is also a characteristic triangle where 10

Aτ = (−2x0 + g(τ ), τ ) and Bτ = (−g(τ ), τ ) with g(τ ) =
2
3
(−τ)3/2 11

and C = (−x0, yC ) as before. Consider the inverse function h to −g; that is, 12

h(x) = −


3x
2

2/3

. 13

One has 14

AτC : y = h(x + 2x0), x ∈ [−2x0 + g(τ ),−x0] and BτC : y = h(x), x ∈ [−x0,−g(τ )] 15

and the following Lipschitz bounds on h 16

ητ = ∥h∥Lip([−2x0+g(τ ),−x0]) = ∥h∥Lip([−x0,−g(τ )]) = (−τ)−1/2. 17

Now, for each τ < 0 and each ε > 0, define the mollified function uτε = Jτε u onΩ by 18

Jτε u(x, y) =
1
ε2


Ωτ

j

x − x̄
ε


j

y − ȳ
ε

− η


u(x̄, ȳ) dx̄dȳ, (5.41) 19

where j ∈ C∞

0 (R) satisfies (5.14) and 20

η ≥ 1 + ητ , ητ = (−τ)−1/2. 21

We record the following properties of this family of mollifiers which will be used in the limiting argument. 22

Lemma 5.8. Let u ∈ H1(Ω), ε > 0 and τ < 0. Then 23

(a) ∥Jεu∥Lp(Ωτ ) ≤ 4∥j∥2
L∞(R) ∥u∥Lp(Ωτ ), for each p ∈ [1,∞); 24

(b) ∥Jεu − u∥H1(Ωτ ) → 0 as ε → 0+, and hence there is also convergence in Lp(Ωτ ) for each p ∈ [1,∞); 25

(c) Jε ∈ C∞(Ω) and 26

Jτε u|Aτ C∪Bτ C = 0. (5.42) 27

Proof. Parts (a) and (b) and the smoothness claim of part (c) proceed in the same manner as the corresponding statements 28

in Lemma 5.5. The claim (5.42) is also similar. For example, if (x, y) ∈ BτC and (x̄, ȳ) ∈ Ωτ then |x − x̄| < ε on the support 29

of the integrand in (5.41) and hence 30

y − ȳ
ε

− η =
h(x)− ȳ

ε
− η <

h(x)− h(x̄)
ε

− η ≤ ητ
|x − x̄|
ε

− η ≤ −1, 31

and hence the claim Jτε u = 0 on BτC . The proof that Jτε u = 0 on AτC is analogous. � 32

We are now ready to complete the proof. Given u ∈ H1
0 (Ω) aweak solution to (5.1) with F ′(u) = u|u|8, then uτε ∈ C∞(Ω) 33

satisfies the following y-translation identity (see formula (3.7) of [29]) 34
Ωτ

Dyuτε

Luτε + F ′(uτε )


dxdy =

1
2


Ωτ

|Dxuτε |
2 dxdy 35

+


∂Ωτ


yDxuτεDyuτε ,

1
2


(Dyuτε )

2
− y(Dxuτε )

2
+ F(uτε )


· ν ds. (5.43) 36
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Since uτε = F(uτε ) = 0 on AτC ∪ BτC one easily shows that the integral over ∂Ωτ reduces to that over AτBτ where
∧
y =1

τ < 0, ν = (0, 1) and2

1
2


(Dyuτε )

2
− τ(Dxuτε )

2
+

1
10

|uτε |
10

≥ 0. (5.44)3

The following representation formula analogous to that of Lemma 5.6 holds:4

Luτε + F ′(uτε ) = Aτε + Bτε a.e. inΩτ , (5.45)5

where6

Aτε (x, y) =


Ωτ
(y − ȳ)D2

x̄Φ
τ
ε (x, y; x̄, ȳ)u(x̄, ȳ) dx̄dȳ,7

Bτε = (Jτε u)|J
τ
ε u|

p−2
− Jτε (u|u|

p−2)8

andΦτ
ε = ε−2j((x − x̄)/ε)j((y − ȳ)/ε − η) is the kernel of Jτε appearing in (5.41). The proof is completely analogous to that9

of Lemma 5.6 after one notes that for any v ∈ C∞

0 (Ω
τ ) the function10

Jτ
∗

ε v(x, y) =
1
ε2


Ωτ

j

x̄ − x
ε


j

ȳ − y
ε

− η


v(x̄, ȳ) dx̄dȳ11

satisfies12

Jτ
∗

ε v ∈ C∞(Ω) and Jτ
∗

ε v = 0 on {(x, y) ∈ Ωτ
: y ≥ τ − ε} for each τ ∈ (−1, 0).13

That is, Jτ
∗

ε v ∈ C∞

AB (Ω) and hence one may apply Lemma 5.7 with Jτ
∗

ε v in place of v. Combining (5.43) with (5.45) and (5.44)14

one has15 
Dyuτε , A

τ
ε + Bτε


≥

1
2


Ωτ

Dxuτε
2 dxdy. (5.46)16

Using Lemma 5.8, one has that17 
Aτε → 0
Bτε → 0 and


Dxuτε → Dxu
Dyuτε → Dyu

in L2(Ωτ ) for ε → 0+
18

and then taking the limit in (5.46) yields19

0 ≥
1
2


Ωτ

|Dxu|2 dxdy.20

Hence Dxu = 0 a.e. in Ωτ . However, since Ωτ is convex in the x-direction and u has zero trace along AτC , one has the21

Poincarè inequality22

∥u∥L2(Ωτ ) ≤
√
2x0∥Dxu∥L2(Ωτ )23

by integrating along segments with y constant and using Hölder’s inequality. Hence u = 0 in H1(Ωτ ) for each τ < 0, which24

completes the proof.25
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Appendix A. Proof of Lemma 3.332

We consider the integral operatorS0 defined in (3.18) with kernel K(z ′
; z) : ∆×∆ → R defined in (3.16) as the product33

ofχ∆+
z ∪∆

−
z
(z ′) (with∆±

z defined in (3.15)), C(z ′) defined in (3.14) and R(z ′
; z) : ∆+

z ∪∆−
z ×Ω → R the Riemann–Hadamard34

function defined in (3.10) and (3.17). We want to show thatS0 : C0(∆) → C0(∆) is well-defined, linear, continuous and35

compact. To do this, it suffices to show that the map36

z → ∥K(·; z)∥L1(∆) is well-defined and continuous for z ∈ ∆, (A.1)37

as is well known (see Theorem 3′ of [30] for example).38
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Proof. We will use standard properties of the hypergeometric functions involved in the kernel, elementary but careful 1

estimates and standard convergence theorems for the Lebesgue integral. To aid the reader, we briefly recall those known 2

properties of F(a, b, c, ; ζ ) that we will use, all of which can be found in [31], for example. If c ≠ 0,−1,−2, . . . then 3

F(a, b, c; ζ ) =

+∞
n=0

(a, n)(b, n)
(c, n)

ζ n

n!
, 4

where (a, 0) = 1 and (a, n) = Γ (a + n)/Γ (a) = a(a + 1) · · · (a + n − 1) for n ∈ N and the series converges absolutely 5

for ζ ∈ C with |ζ | < 1 and also for |ζ | = 1 if Re(c − a − b) > 0. If −1 < Re(c − a − b) ≤ 0 then the series converges 6

conditionally for |ζ | = 1 with ζ ≠ 1 and the asymptotic behavior in ζ = 1 given by 7

F(a, b, c; ζ ) ∼


Γ (c)Γ (a + b − c)

Γ (a)Γ (b)
(1 − ζ )c−a−b if Re(c − a − b) < 0

Γ (a + b)
Γ (a)Γ (b)

log(1/(1 − s)) if c = a + b
for ζ → 1−. (A.2) 8

We will consider only real values of ζ of the form s or 1/swhere s(z ′
; z) is defined in (3.11) so that 9

0 < s(z ′
; z) =

(ξ − ξ ′)(η − η′)

(η′ − ξ ′)(η − ξ)
< 1 for z ′

= (ξ ′, η′) ∈ ∆+

z (A.3) 10

and 11

0 < 1/s(z ′
; z) =

(η′
− ξ ′)(η − ξ)

(ξ − ξ ′)(η − η′)
< 1 for z ′

= (ξ ′, η′) ∈ ∆−

z . (A.4) 12

Hence the hypergeometric functions used in (3.10) and (3.17) to define R± are given by convergent power series with 13

a+ b = c in both cases. Consequently, the second asymptotic formula of (A.2) is relevant. Notice that s(z ′
; z) = 1 along the 14

interface between∆+
z and∆−

z , where η′
= ξ . In addition, if Re(c) > Re(b) > 0 we have the Euler representation 15

F(a, b, c; ζ ) =
Γ (c)

Γ (b)Γ (c − b)

 1

0
tb−1(1 − t)c−b−1(1 − ζ t)−a dt, (A.5) 16

which shows that if c > b > 0 then 17

φ(r) := F(a, b, c; r) is an increasing function for r ∈ (0, 1). (A.6) 18

Then, using (A.5), one has 19

φ(0) := F(a, b, c; 0) =
Γ (c)

Γ (b)Γ (c − b)

 1

0
tb−1(1 − t)c−b−1 dt =

Γ (c)
Γ (b)Γ (c − b)

B[b, c − b] = 1, (A.7) 20

where 21

B[p, q] =

 1

0

dt
t1−p(1 − t)1−q

(A.8) 22

is the beta function. 23

As a final preliminary regarding the map (A.1), for each z = (ξ , η) ∈ ∆we denote by 24

I(z) = ∥K(·; z)∥L1(∆) = ∥C(·)R(·; z)∥L1(∆+
z ∪∆

−
z )

= I+(z)+ I−(z), (A.9) 25

where 26

I+(z) =

 ξ

0

 η

ξ

C0(η
′
− ξ ′)−

2
3 R+(z ′

; z) dη′


dξ ′ (A.10) 27

and 28

I−(z) =

 ξ

0

 ξ

ξ ′

C0(η
′
− ξ ′)−

2
3 R−(z ′

; z) dη′


dξ ′, (A.11) 29

with C0 = 4−1(4/3)2/3 as defined in (3.9) and R± as defined for z ∈ ∆ in (3.10) and for z ∈ ∂∆ in (3.17) and the discussion 30

leading up to that formula. 31
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Step 1. (Estimates for R) Using the properties mentioned above, one has the following basic estimate. For each σ > 0 there1

exists Cσ > 0 such that for each z = (ξ , η) ∈ ∆ one has2

|R(z ′
; z)| ≤ Cσ


(η′

− ξ ′)
1
6

(η − ξ)
1
6


1 +

(ξ − ξ ′)σ

(η′ − ξ)σ


z ′

∈ ∆+

z

(η′
− ξ ′)(η − ξ)

2
3

(η − η′)
5
6 (ξ − ξ ′)

5
6


1 +

(η′
− ξ ′)σ

(ξ − η′)σ


z ′

∈ ∆−

z .

(A.12)3

In fact, for the first estimate, with z ′
∈ ∆+

z we have s ∈ (0, 1) by (A.3) and R+(z ′
; z) = ((η′

− ξ ′)/(η − ξ))
1
6 φ(s) with4

φ(s) = F(1/6, 5/6, 1; s). Combining (A.2) with (A.6) and (A.7) shows that there exist C1 and C2 such that5

|R+(z ′
; z)| ≤


η′

− ξ ′

η − ξ

1/6 
C1 + C2 log


1

1 − s


with

1
1 − s

=
(η′

− ξ ′)(η − ξ)

(η − ξ ′)(η′ − ξ)
(A.13)6

but for z ′
∈ ∆+

z one has 0 < (η − ξ)/(η − ξ ′) ≤ 1 and hence7

log


1
1 − s


≤ log


η′

− ξ ′

η′ − ξ


= log


1 +

ξ − ξ ′

η′ − ξ


= log (1 + t) (A.14)8

with t ∈ (0,+∞). Given σ > 0, there exists Cσ > 0 such that9

log(1 + t) ≤ Cσ (1 + tσ ). (A.15)10

Combining (A.13)–(A.15) yields the first estimate in (A.12). Notice that in (A.14), ξ − ξ ′
= 0 at the boundary point

∧
(ξ ′, η′) =11

(ξ , ξ) ∈ ∆+
z while η′

− ξ = 0 along the boundary segment (ξ ′, η′) = (ξ ′, ξ) ∈ ∆+
z where s = 1. A similar argument12

starting from (A.4) yields the second estimate in (A.12).13

Step 2. (Boundedness of I) One has supz∈∆ I(z) < +∞. In particular, there existsC > 0 such that14

I(z) ≤C(η − ξ)
2
3 (ξ

1
2 + ξ

2
3 ). (A.16)15

Indeed, splitting I as in (A.9)–(A.11) and using the estimates (A.12), for each σ > 0 one has16

I+(z) ≤ C0Cσ

 ξ

0

1

(ξ − ξ ′)
1
6

 η

ξ

1

(η′ − ξ ′)
1
3 (η − η′)

1
6


1 +

(ξ − ξ ′)σ

(η′ − ξ)σ


dη′ dξ ′.17

Using that (1/(η′
− ξ ′)) ≤ 1/(ξ − ξ ′) since 0 < ξ ′ < ξ and ξ < η′ < η for z ′

∈ ∆+
z , one has Q318

I+(z) ≤ C0Cσ

 ξ

0

1

(ξ − ξ ′)
1
2


6
5
(η − ξ)

5
6 + (ξ − ξ ′)σ

 η

ξ

dη′

(η − η′)
1
6 (η′ − ξ)σ


dξ ′. (A.17)19

The change of variables t = (η′
− ξ)/(η − ξ) yields20  η

ξ

dη′

(η − η′)
1
6 (η′ − ξ)σ

= (η − ξ)
5
6 −σ

 1

0

dt

tσ (1 − t)
1
6

= (η − ξ)
5
6 −σB[1 − σ , 5/6], (A.18)21

with B defined by (A.8). Combining (A.17) and (A.18) yields the existence ofC+
σ such that22

I+(z) ≤C+

σ (η − ξ)
5
6 −σ


ξ

1
2 + ξσ+

1
2


. (A.19)23

A similar argument for I−(z) yields the existence ofC−
σ > 0 such that24

I−(z) ≤C−

σ (η − ξ)
2
3


ξ

2
3 + η

1
6 ξ

1
2


, (A.20)25

where η1/6 ≤ l1/6. Choosing σ = 1/6 in (A.19) and combining with (A.20) yields (A.16).26

Step 3. (Continuity of I for z = (ξ , η) ∈ ∂∆ with ξ = 0 or ξ = η) In fact, from (A.16) one has27  lim
(ξ ,η)→(0,η0)

I(ξ , η) = 0 ∀ η0 ∈ [0, l]

lim
(ξ ,η)→(ξ0,ξ0)

I(ξ , η) = 0 ∀ ξ0 ∈ [0, l], (A.21)28

payne
Nota
OK

payne
Nota
OK



24 D. Lupo et al. / Nonlinear Analysis xx (xxxx) xxx–xxx

while 1

K(·, z) = 0 if z = (0, η0) or z = (ξ0, ξ0) (A.22) 2

by the definition of K and R (see (3.16)–(3.17) and the discussion there). Combining (A.21) and (A.22) yields the claim. 3

Step 4. (Interior continuity of I) For z1, z2 ∈ ∆, one wants to show that |I(z2)− I(z1)| is small if |z2 − z1| is small. Recall that 4

I(z) =


∆

+
z ∪∆

−
z

C(z ′)R(z ′
; z) dz ′. 5

Since the form of R(z ′
; z) depends on whether z ′ belongs to∆+

z or∆−
z , the increment 6

J(z1, z2) := I(z2)− I(z1) 7

will take on various forms depending on how zk = (ξk, ηk) are situated relative to one another. We will decompose the 8

analysis into various pieces by splitting J into a sum of terms where the increment is taken in only one variable (ξ or η) and 9

the corresponding domains of integration are nested. Notice that if∆z1 ⊂ ∆z2 then 10

J(z1, z2) =


∆z2 \∆z1

C(z ′)R(z ′
; z2) dz ′

+


∆z1

C(z ′)[R(z ′
; z2)− R(z ′

; z1)] dz ′. 11

We now discuss the reduction. By exchanging the roles of z1 and z2 we may assume that ξ1 ≤ ξ2 and since zk ∈ ∆ we 12

have ξk < ηk for k = 1, 2. There are four non equivalent possibilities: 13

(1) ξ1 < ξ2 and η1 < η2; 14

(2) ξ1 < ξ2 and η2 < η1; 15

(3) ξ2 = ξ1 < η1 < η2; 16

(4) ξ1 < ξ2 < η2 = η1. 17

In cases (3) and (4), the increment appears in only one variable and ∆z1 ⊂ ∆z2 , while in the first cases, the insertion of a 18

z3 = (ξ1, η2) allows one to write 19

J(z1, z2) = I(z2)− I(z3)+ I(z3)− I(z1) = J(z2, z3)+ J(z3, z1) (A.23) 20

where these two increments arewith respect to a single variable and the domains are nestedwith∆z3 ⊂ ∆z2 and∆z1 ⊂ ∆z3 . 21

In the second case, picking z3 = (ξ1, η2) also yields (A.23) where∆z2 ⊂ ∆z3 and∆z3 ⊂ ∆z1 . 22

Hence it is enough to show that for each fixed z = (ξ , η) ∈ ∆ one has 23

F(δ) :=


∆zδ \∆z

C(z ′)R(z ′
; zδ) dz ′

→ 0 as δ → 0+, (A.24) 24

G(δ) :=


∆z

C(z ′)[R(z ′
; zδ)− R(z ′

; z)] dz ′
→ 0 as δ → 0+, (A.25) 25

where 26

zδ = (ξδ, η) := (ξ + δ, η) or zδ = (ξ , ηδ) := (ξ , η + δ), (A.26) 27

with δ > 0 and small enough so that zδ ∈ ∆. The limit claims (A.24)–(A.25) follow from standard analysis and the estimates 28

(A.12) on R where the details differ only slightly for the two cases of zδ given in (A.26). 29

The limit of F with zδ = (ξδ, η): We split F(δ) = F+(δ)+ F−(δ) by integrating over∆+
zδ and∆

−
zδ respectively; that is, 30

F+(δ) =

 ξδ

ξ

 η

ξδ

C(z ′)R+(z ′
; zδ) dη′


dξ ′ (A.27) 31

and 32

F−(δ) =

 ξδ

ξ

 ξδ

ξ ′

C(z ′)R−(z ′
; zδ) dη′


dξ ′. (A.28) 33

To estimate (A.27), we use both the first estimate of (A.12) and the relation (A.3) with z = zδ = (ξδ, η) to find 34

F+(δ) ≤ C0Cσ

 ξδ

ξ

1

(ξδ − ξ ′)
1
6

 η

ξδ

1

(η′ − ξ ′)
1
3 (η − η′)

1
6


1 +

(ξδ − ξ ′)σ

(η′ − ξδ)σ


dη′


dξ ′. (A.29) 35

Estimating as was done in (A.17)–(A.19), one finds 36

F+(δ) ≤ C (1)σ (η − ξ − δ)
5
6 −δ


δ

1
2 + δ

1
2 +σ


→ 0 as δ → 0+. 37



D. Lupo et al. / Nonlinear Analysis xx (xxxx) xxx–xxx 25

To estimate (A.28), we use the second estimate of (A.12) with z = zδ = (ξδ, η) and the fact that η′
≤ ξδ to find1

F−(δ) ≤ C0Cσ (η − ξδ)
2
3

 ξδ

ξ

1

(ξδ − ξ ′)
1
2

 ξδ

ξ ′


1

(η − η′)
5
6

+
(ξδ − ξ ′)σ

(η − η′)
5
6 (ξδ − η′)σ


dη′


dξ ′.2

Calculating the integral in η′ (which involves the beta function B[1/6, 1−σ ]), using the inequality (η−ξ ′)1/6−(η−ξδ)
1/6

≤3

η1/6 and then computing the integral in ξ ′ yields4

F−(δ) ≤ C (2)σ η
1
6 (η − ξ − δ)

2
3


δ

1
2 + δ

2
3


→ 0 as δ → 0+.5

The limit of F with zδ = (ξ , ηδ): In this case, there is no need to split F since η′ > ξ everywhere on∆zδ \∆z . Proceeding as6

was done to arrive at (A.29), one finds7

F(δ) ≤ C0Cσ

 ξ

0

1

(ξδ − ξ ′)
1
6

 ηδ

η

1

(η′ − ξ ′)
1
3 (η − η′)

1
6


1 +

(ξ − ξ ′)σ

(η′ − ξ)σ


dη′


dξ ′.8

Using η′
− ξ ′

≥ η − ξ ′
≥ ξ − ξ ′ and η′

− ξ ≥ η′
− η one easily finds9

F(δ) ≤ C (3)σ δ
5
6 −σ


ξ

1
2 δσ + ξ

1
2 +σ


→ 0 as δ → 0+,10

by choosing σ < 5/6.11

The limit of G with zδ = (ξδ, η): With z = (ξ , η) ∈ ∆ fixed but arbitrary, we will verify that G(1/k) → 0 for k → +∞ by12

showing that the sequence of functions13

fk(z ′) := C(z ′)R(z ′
; ξ + 1/k, η)14

satisfies15 
∆

±
z

fk(z ′) dz ′
→


∆

±
z

f (z ′) dz ′ where f (z ′) := C(z ′)R(z ′
; ξ, η). (A.30)16

Indeed, fk are defined a.e. on∆z (except for the segments η′
= ξ + 1/k) and satisfy17

fk(z ′) → f (z ′) for a.e. z ′
∈ ∆z .18

By the dominated convergence theorem, one has (A.30) if there exist gk and g ∈ L1(∆±
z ) such that19

|fk(z ′)| ≤ gk(z ′) a.e. on∆±

z ; (A.31)20 
∆

±
z

gk(z ′)− g(z ′)
 dz ′

→ 0 as k → +∞. (A.32)21

We define for each k > d := (η − ξ)/222

gk(z ′) =
C0Cσ

(η′ − ξ ′)
1
2


1

(η − ξ − d)
1
6


1 +

(η′
− ξ ′)σ

|η′ − ξ − 1/k|σ


, z ′

∈ ∆+

z ,

1

(η − ξ − 1/k)
1
6


1 +

(η′
− ξ ′)σ

(ξ + 1/k − η′)σ


, z ′

∈ ∆−

z

(A.33)23

g(z ′) =
C0Cσ

(η′ − ξ ′)
1
2


1

(η − ξ − d)
1
6


1 +

(η′
− ξ ′)σ

(η′ − ξ)σ


, z ′

∈ ∆+

z ,

1

(η − ξ)
1
6


1 +

(η′
− ξ ′)σ

(ξ − η′)σ


, z ′

∈ ∆−

z

(A.34)24

where in∆+
z , each gk is defined a.e. (for z ′

≠ ξ + 1/k), C0 and Cσ are as above and σ > 0 will be chosen suitably to ensure25

(A.32). Indeed, the estimates (A.12) imply that (A.31) holds and the claim that gk → g a.e. in∆±
z is obvious from the defini-26

tions (A.33) and (A.34). On∆−
z , the needed limit (A.32) follows by the dominated convergence theorem since in∆−

z one has27

|gk(z ′)| ≤
C0Cσ

(η − ξ − d)
1
6


1

(η′ − ξ ′)
1
2

+
1

(η′ − ξ ′)
1
2 −σ

1
(ξ − η′)σ


∈ L1(∆−

z ),28

provided that one chooses σ < 1/4. On∆+
z , one needs only verify that29 

∆
+
z

1

(η′ − ξ ′)
1
2 −σ

 1
|η′ − ξ − 1/k|σ

−
1

|η′ − ξ |σ

 dz ′
→ 0.30
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We are free to choose σ = 1/2 and we have 1

hk(z ′) :=
1

|η′ − ξ − 1/k|σ
→ h(z ′) :=

1
|η′ − ξ |σ

a.e. in∆+

z . (A.35) 2

Using the ‘‘missing term in the Fatou lemma’’ (see p. 21 of [32]) it is enough to show that 3
∆

+
z

hk(z ′) dz ′
→


∆

+
z

h(z ′) dz ′, (A.36) 4

where we note that hk, h ≥ 0 by (A.35). One merely calculates the integrals to verify that (A.36) holds. 5

The limit of G with zδ = (ξ , ηδ): The analogous argument in this case is somewhat simpler since 6

fk(z ′) := C(z ′)R(z ′
; ξ, η + 1/k) 7

has its only singularity along the interface η′
= ξ between∆+

z and∆−
z . The limit f is as in the previous case and one easily 8

checks that by defining 9

gk(z ′) =
C0Cσ

(η′ − ξ ′)
1
2 (η + 1/k − ξ)

1
6

×


1 +

(ξ − ξ ′)σ

(η′ − ξ)σ
, z ′

∈ ∆+

z

1 +
(η′

− ξ ′)σ

(ξ − η′)σ
, z ′

∈ ∆−

z

10

g(z ′) =
C0Cσ

(η′ − ξ ′)
1
2 (η − ξ)

1
6

×


1 +

(ξ − ξ ′)σ

(η′ − ξ)σ
, z ′

∈ ∆+

z

1 +
(η′

− ξ ′)σ

(ξ − η′)σ
, z ′

∈ ∆−

z

11

one has the bounds (A.31) and the limit (A.32) in this case by choosing σ > 0 suitably small. 12

Step 5. (Continuity of I for z = (ξ0, η) ∈ ∂∆ with ξ0 ∈ (0, l)) 13

This is now easy since we can embed ∆ in a larger triangle (by taking l̃ > l in place of l) and use the interior continuity 14

of I on the larger triangle. � 15

Appendix B. Proof of Lemma 3.5 16

We will first justify parts (a) and (b) of the
∧
lemma; that is, if u ∈ C2(Ω) ∩ C0(Ω) satisfies (3.22) and 17

Tu − λu = f inΩ
u = γ on Γ , 18

with 0 ≤ f ∈ C0
0 (Ω) and λ ∈ [−5/(16y2C ), 0], then the minimum m of u on Ω be realized on Γ = AC ∪ AB if m ≤ 0 and 19

hence (3.23) holds. An analogous argument shows that when f ≤ 0 then the maximum M of u must be realized on Γ if 20

M ≥ 0 and hence (3.24) holds. 21

In what follows, if P and Q are points in the half-space y ≤ 0 that are connected by a characteristic of positive/negative 22

slope and whose y-coordinates satisfy yP < yQ ≤ 0, we will denote by and [P,Q ]± the characteristic segment joining them 23

(including the endpoints) and (P,Q )± the segment with endpoints removed. We will also denote by F ±

k (P) the flow from 24

P ∈ Ω ∪ AC ∪ BC along the characteristic of positive/negative slope or arc length k > 0. The key point is to integrate the 25

following differential identity over characteristic segments: 26

D+(gD−u) = g(−Tu)+ D+gD+u where g(y) = (−y)−1/4, (B.1) 27

and the differential operators D± = Dy ±
√

−yDx have been introduced in (3.21). In this context, one has the following 28

version of the fundamental theorem of calculus 29 S

R
D+w dy = w |

S
R = w(S)− w(R), w ∈ C1([R, S]+), (B.2) 30

where by
 S
R α we intend the line integral of the differential 1-form α along the oriented characteristic interval [R, S]+. 31

Formula (B.2) gives rise to the integration by parts formula 32 S

R
vD+w dy = vw |

S
R −

 S

R
wD+v dy, v, w ∈ C1([R, S]+). (B.3) 33
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Proof of part (a). Assume the contrary; that is, there exists Q ∈ Ω ∪ (C, B)+ such that u(Q ) = minΩ u ≤ 0 and u(Q ) < γ .1

Case 1. (Q ∈ Ω)2

If u assumes its negative minimum at Q in the hyperbolic interior Ω , one joins Q to some P ∈ AC\{A, C} with a3

characteristic segment [P,Q ]+. We will show that D−u(Q ) < 0, and hence Q cannot be a location of a minimum. One4

multiplies the identity (B.1) by the 1-form dy and integrates along the oriented characteristic segment [P,Q ]+ by splitting5

the line integral into two pieces at an intermediate point S close enough to P so that S is outside the support of f . The proof6

of Lemma 3.4 of [10] shows that the integral along [P, S]+ is a convergent (perhaps improper) integral while the other is a7

proper integral. This yields8  Q

P
D+(gD−u) dy =

 Q

P
g(−Tu) dy +

 Q

P
D+gD+u dy9

≤

 Q

P
g(−λu) dy +

 Q

P
D+gD+u dy,10

since g > 0 inΩ and −Tu = −λu − f ≤ −λu inΩ . Integration by parts (B.3) on the last integral above yields11  Q

P
D+(gD−u) dy ≤

 Q

P
g(−λu) dy + uD+g |

Q
P −

 Q

P
uD2

+
g dy,12

which by the fundamental theorem of calculus (B.2) gives13

g(Q )D−u(Q ) ≤

 Q

P
u(−λg − D2

+
g) dy + u(Q )D+g(Q )− u(P)D+g(P). (B.4)14

Noticing that15

u(Q )D+g(Q ) = u(Q )
 Q

P
(λg + D2

+
g) dy − λu(Q )

 Q

P
g dy + u(Q )D+g(P) (B.5)16

and inserting (B.5) into (B.4) one obtains17

g(Q )D−u(Q ) ≤

 Q

P
(u(Q )− u)(λg + D2

+
g) dy − λu(Q )

 Q

P
g dy + (u(Q )− u(P))D+g(P). (B.6)18

If u has a minimum in Q , then D−u(Q ) = 0 and hence the
∧
right hand side of (B.6) must be non negative. However, the third19

term on the left is negative since u(Q )− u(P) = u(Q )− γ < 0. The second term is non positive since g > 0,−λ ≥ 0 and20

u(Q ) ≤ 0. The first term is also non negative since u(Q )− u ≤ 0 provided that21

0 ≤ λg + D2g = λ(−y)−1/4
+

5
16
(−y)−9/4,22

which happens precisely when λ ≥ −5/(16y2C ).23

Case 2. (Q ∈ (C, B)+)24

Assuming that u assumes a non positive minimum on at Q on the characteristic arc (C, B)+, one can integrate dy times25

the identity (B.1) along a characteristic segment [P,Q ′
]+ where Q ′

= F −

k (Q ) and P = F −

k (C)with k chosen small enough26

so that [P,Q ′
]+ ∩ supp(f ) = ∅. One obtains27

D−u(Q ′) =
1

g(Q ′)

 Q ′

P


u(Q ′)− u


(λg + D2

+
g) dy − λu(Q ′)

 Q ′

P
g dy + (u(Q ′)− u(P))D+g(P)


, (B.7)28

by repeating the argument leading to (B.6)
∧
. One can view (B.7) as a family of formulas in terms of the characteristic distance29

k from BC; that is30

D−u(F −

k (Q )) =
1

g(F −

k (Q ))

 F −

k (Q )

F −

k (C)


u(F −

k (Q ))− u

(λg + D2

+
g) dy31

− λu(F −

k (Q ))
 F −

k (Q )

F −

k (C)
g dy + (u(F −

k (Q ))− u(F −

k (C)))D+g(F −

k (C))


, (B.8)32

for k ∈ (0, k̄] and k̄ small enough as to ensure that [F −

k (C),F
−

k (Q )]+ lies outside of the support of f . Since all of the relevant33

objects on the right hand side of (B.8) are continuous, one finds that34

lim
k→0+

D−(F
−

k (Q )) =
1

g(Q )

 Q

C
(u(Q )− u) (λg + D2

+
g) dy − λu(Q )

 Q

C
g dy + (u(Q )− u(C))D+g(C)


, (B.9)35
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where again the right hand side of (B.9) must be strictly negative. Indeed, u(Q ) − u(C) = u(Q ) − γ < 0 and D+g(C) > 0 1

makes the third term negative, while the first two terms are non positive as in case 1. Hence u is strictly increasing as R 2

tends to Q along Γ−(Q ), which contradicts u having a minimum in Q . � 3

Finally, we justify part (c) of the
∧
lemma, where again it suffices to consider the case when f ≥ 0. 4

Proof of part (c). If λ = 0 we merely repeat the argument above. In Case 1, the formula (B.6) becomes 5

g(Q )D−u(Q ) ≤

 Q

P
(u(Q )− u)D2

+
g dy + (u(Q )− u(P))D+g(P). (B.10) 6

If u has a minimum in Q ∈ Ω , the left hand side of (B.10) vanishes while the right hand side is negative since u(Q )−u(P) = 7

u(Q )− γ < 0 and u(Q )− u ≤ 0 along [P,Q ]+. In case 2, formula (B.9) becomes 8

lim
k→0+

D−(F
−

k (Q )) =
1

g(Q )

 Q

C
(u(Q )− u)D2

+
g dy + (u(Q )− u(C))D+g(C)


, 9

which is negative. Hence Q cannot be a location of a minimum. � 10
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