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Synopsis

Studies of variations in healthcare utilization and outcome involve the analysis of multilevel,
clustered data, considering in particular the estimation of a cluster-specific adjusted response,
covariate effects and components of variance. Besides reporting on the extent of observed
variations, these studies quantify the role of contributing factors including patients’ and
providers’ characteristics. In addition, they may assess the relationship between healthcare
process and outcomes. We consider Bayesian generalized linear mixed models to analyze
MOMI? (Month MOnitoring Myocardial Infarction in MIlan) data on patients admitted with
ST-elevation myocardial infarction (STEMI) diagnosis in the hospitals belonging to the
Milano Cardiological Network. Both clinical registries and administrative databanks were
used to predict survival probabilities. We fit a logit model for the survival probability with
one random effect (the hospital), under a semiparametric prior. We take advantage of the
in-built clustering property of the Dirichlet process prior assumed for the random-effects
parameters to obtain a classification of providers.
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10.1 Introduction

Performance indicators for assessing quality in healthcare research have drawn more and
more attention over recent years, since they can evalnate some aspects of the healthcare
process, clinical outcomes and disease incidence. At the same time, questions about the ght
use of such indicators as a measure of quality of care have emerged.

Several examples, available in clinical literature (see, for instance, Hasday, Behar and
Wallentin, 2002, and Saia, Marzocchi and Manari, 2009), make use of clinical registries to
evaluate performance of medical institutions, because they enable people concerned with
the healthcare governance to plan activities on real epidemiological evidence and needs;
moreover clinical registries help in evaluating performance of structures they manage, pro-
viding knowledge about the number of cases, incidence, prevalence and survival concerning
a specific disease.

In this work, clinical registries are used to model in-hospital survival of acute myocardial
infarction patients, in order to classify providers’ performances and to enable healthcare
governance to better manage resources.

The disease we are interested in is the ST-segment Elevation acute Myocardial Infarction
(STEMI): it consists of a stenotic plaque detachment, which causes a coronary thrombosis and
a sudden critical reduction of blood flow in coronary vessels, leading to an inadequate feeding
of myocardial muscle itself. STEMI is characterized by a very high incidence (650700 events
per month have been estimated in just the Lombardia Region, the inhabitants of which
number approximately 10 million) and serious mortality (in Italy, about 8% in adults aged
between 35 and 74 years). A case of STEMI is usually treated by percutaneous transluminal
coronary angioplasty (PTCA): an empty and collapsed balloon on a guide wire, known as
a balloon catheter, is passed into the narrowed or obstructed vessels and then inflated to a
fixed size.

The balloon crushes the fatty deposit, so opening up the blood vessel to improved flow,
and is then collapsed and withdrawn. Good results for the treatment can be evaluated for
instance by observing, first, the in-hospital survival of inpatients,

For heart attacks, survival strongly depends on time saved during the process and, there-
fore, in this work we focus on the survival outcome. In any case, time indeed has a fundamental
role in the overall STEMI healthcare process. By Symptom Onset to Door time we mean the
time since symptom onset up to the arrival at the Emergency Room (ER); and Door to Balloon
time (DB time) is the time from the arrival at the ER up to the surgical practice of PTCA.,
Clinical literature strongly stresses the connection between in-hospital survival and procedure
time (Cannon, Gibson and Lambrew, 2000; Ineid, Fonarow and Cannon, 2008; MacNamara
et al., 2006): 90 minutes for DB time in the case of primary PTCA (i.e. PTCA without
any previous pharmacological treatment) is the actual gold standard limit suggested by the
American Heart Association (AHA)/American College of Cardiology (ACC) guidelines; see
Antman, Hand and Amstrong, 2008.

The presence of differences in the outcomes of healthcare has been documented exten-
sively in recent years. In order to design regulatory interventions by institutions, for instance,
it is interesting to study the effects of variations in healthcare utilization on patients’ out-
comes, in particular examining the relationship between process indicators, which define
regional or hospital practice patterns, and outcome measures, such as patients’ survival or a
treatment’s efficacy.
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Analyses of variations concerning the comparison of the performance of healthcare
providers are commonly referred to as provider profiling (Normand, Glickman and Gatsonis,
1997; Racz and Sedransk, 2010).

The results of profiling analyses often have far-reaching implications. They are used to
generate feedback for healthcare providers, to design educational and regulatory interventions
by institutions and government agencies, to design marketing campaigns by hospitals and
managed-care organizations, and, ultimately, used by individuals and managed-care groups
to select healthcare providers. :

The aim of this work is twofold: on one hand we want to quantify the magnitude of the
variations in healthcare providers and to assess the role of contributing factors, including
patients’ and providers’ characteristics, on survival outcome. Data on healthcare utilization
have a ‘natural’ multileve] structure, usually with patients at the lower level and hospitals
forming the upper-level clusters. Within this formulation, the main goal is to derive estimates
of providers’ effects; that is, differences between hospitals. On the other hand, we want to
cluster hospitals according to their performance in patients’ care,

Hierarchical regression modelling from a Bayesian non-parametric perspective provides
a framework that can accomplish both these goals.

Here, this articlé considers a Bayesian generalized linear mixed model (Zeger and Karim,
1991) to predict the binary survival outcome by means of relevant covariates, taking into
account overdispersion induced by the grouping factor, and modelling the random effects
non-parametrically.

In particular, as in Kleinman and Ibrahim (1998), the random-effects parameters are a
sample from a Dirichlet process prior (Ferguson, 1973), which provides a natural settin g forthe
classification of hospitals thanks to the discreteness property of its trajectories. We illustrate
the analysis on data coming from a survey on patients admitted with STEMI diagnosis in
one of the structures belonging to the Milano Cardiological Network, using a logit model for
the survival probability and a Dirichlet process for the distribution of the random effect.

For this analysis, patients are grouped by the hospital they have been admitted to for
their infarction. A Markov chain Monte Carlo (MCMC) algorithm is necessary to compute
the posterior distributions of parameters and predictive distributions of outcomes, The choice
of covariates and link functions was suggested first in Teva and Paganoni (2011), according
to frequentist selection procedures and clinical know-how, and was confirmed in Guglielmi
et al. (2012) using Bayesian tools.

Concerning modelling of provider’s variability, we take advantage of in-built clustering
provided by the Dirichlet process, jointly with the partitioning around medojds (PAM) algo-
rithm (see Kaufman and Rousseeuw, 1987) to obtain classification of providers and estimation
of their effects on survival outcome adjusted for case mix.

The advantages of a Bayesian non-parametric approach to this problem are more than
one: the providers’ profiling or patients’ classification can be guided not only by statistical but
also by clinical knowledge, hospitals with low exposure can be automatically included in the
analysis, providers’ profiling can be simply achieved through the posterior distribution of the
hospital-effects parameters and in-built clustering is naturally provided by the non-parametric
setting. In the following sections, dataset, performed analyses and results are discussed and
future work is presented.

All the analyses have been performed with the R (version 2.10.1, R Development Core
Team, 2009) program.
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10.2 A semiparametric Bayesian generalized
linear mixed model

We fit a generalized mixed-effects model for binary data from a Bayesian viewpoint. For
patienti =1, ..., n;in each hospital j =1, ..., J, let Y,; be a Bernoulli random variable with
mean pj;, which represents the probability that the patient survived after STEMIL.

The py;s are modelled through a logit regression with covariates x; = xij, x;; € RP; that is,

ind ; E
Yilpg ~ Be(py), j=1,....0, i=1,...,n (10.1)
and
Dy 14 J
logit(py) = log - _”p__ =Po+ Y Brxn+ Y biza, (10.2)
Y h=1 =1

where b; represents the jth hospital effect, and z; = 1, z; = 0 for | # Je

We will denote by B the vector of regression parameters (8y, B, . . ., Bp), which are called
fixed effects, while b = (by, . . ., by) are the random-effects parameters.

Note that (10.1)-(10.2) is a generalized linear mixed model with (p + 1) regression
coefficients and one random effect (the random intercept taking into account the grouping
structure of hospitals).

Traditionally, 8 and b are assumed a priori independent, 8 is Gaussian distributed, and the
random variables b;, conditionally on o2, are independent identically Gaussian distributed,
with random variance o2. Here, according to Kleinman and Ibrahim (1998), we assume a
nonparametric prior for b, namely the b;s will be i.i.d. as a Dirichlet process, to include
robustness to misspecification of the prior at this stage, since it is known that the regression
parameters can be sensitive to the assumption of normality about the random effects,

Generally, nonparametric Bayesian models are assumed to avoid critical dependence on
parametric assumptions, to robustify parametric models, or to perform sensitivity analysis for
parametric models by embedding them in a larger encompassing nonparametric model. Priors
under a nonparametric Bayesian perspective consist in probabilities on probability spaces:
instead of considering models that can be indexed by a finite-dimensional parameter, we
consider a prior probability ¢ for the unknown population distribution G, which, in the case
considered here, represents the probability distribution of the random-effect parameter b;. In
particular, we will assume that g is a Dirichlet prior, or, equivalently, that G is a Dirichlet
process. For a more formal definition of the Dirichlet process and a review of Bayesian
nonparametric inference, see Miiller and Quintana (2004). Here we would like to mention
two properties only.

First, the Dirichlet process is indexed by two ‘parameters’, a positive parameter « and
a distribution Go on R. This latter represents the mean trajectory of G; that is, E(GA)) =
Go(A) for each measurable subset A of R; in this way, the parametric model Go(?) could be
embedded in a larger encompassing nonparametric model G. The parameter « is a precision
parameter that defines variance: when o increases, the prior ¢ will concentrate more and more
mass on the mean distribution Gy.

The second property we refer to is the discreteness of the trajectories of G: realizations
of the Dirichlet process are infinite mixtures of point masses.
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This feature of G will provide a natural setting for the classification of the hospitals. In
fact, if, conditionally on G, b, . . . ,byareii.d. according to G, there is a positive probability,

~1
o 1 4

bi~ =G+ — Y5,

Tt -1 a1 %

The joint posterior distribution of the random effects will preserve a similar clustering
structure as well, so that this will prompt a natural classification among random effects, and
consequently among hospitals (a posteriori). See the next section.

With more details, the prior we assume is

ﬂJ_b, ﬁNNp+l(0a EO)
bl,...,bJ!'[G"‘ifdG,

1 o (10.3)
: Yy
G~ D‘ir(aN(tu‘! 0’2))1 MK N()(‘Lbe Sb)., ) ~~ gamma (—qs 0_) “

o 22

Integrating out G, this prior yields a prior marginal for b; which, conditionally on (i, 02),
is N(u, o2), but hyperparameters are not fixed, and, to decrease sensitivity of the inferences,
we assume them random, as in (1 0.3).

Moreover, as in the parametric case (Guglielmi et al., 2012), the random-effects param-
eters are assumed dependent (this is a sensible assumption), and we will be able to use the
whole dataset to make inferences on hospitals which have few or no patients in the study,
borrowing strength across hospitals,

Of course, mode] (10.1)~(10.2) under prior (10.3) cannot be fit without resorting to an
MCMC scheme to compute the joint posterior distribution of all parameters, which will be
used to compute the Bayesian estimates of interest. -

The joint posterior of the random-effect parameters can be expressed via the full condition-
als of a Gibbs sampler algorithm: a ‘new’ value for by, given the data, the other random-effects
parameters b_; = (by, . . ., bi—1,bj41, ..., b)), and all the ‘rest’, is sampled either from a Gaus-
sian distribution with some probability, or it is equal to one of the component b;s of the vector
b_; (with appropriate weight),

See Kleinman and Ibrahim (1998) for the expressions of the full conditionals of a Gibbs
sampler algorithm in this case.

10.3 Hospitals’ clustering

As we mentioned before, there will be coincident values among the MCMC-sampled random-
effects parameters 5.

Here we propose how to use the sample’s bias of the posterior distribution of b, in order
to detect a clustering structure between hospitals in affecting in-hospital survival,

Let us denote by D(b,, . .. > by) aJ x J symmetric matrix such that the (i, j)th element
[D(by,..., bj)],‘j =1if b; # bj and O otherwise.
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Then we compute the matrix D of the posterior means of [D(by, .. ., b;)];j; in short,
D =E[D(by,...,b5;5) | y]. (10.4)

It is easy to prove that D is a pseudo-metric which represents a mean dissimilarity
measure between hospitals and can be computed via the MCMC samples of (by, ..., by); a
PAM algorithm is then applied to hospitals. A PAM algorithm is based on the search for &
representative objects, called medoids, among objects of the dataset (in our case hospitals).

These medoids are computed such that the total dissimilarity of all objects to their nearest
medoid is minimal. In this case our goal is to find a subset {m,..., m;} C {1, ..., J } which
minimizes the objective function

where D;; is the (i, j)th element of the matrix D.

A critical point is the choice of %, the number of groups: a helpful method is the compu-
tation of the average silhouette width, and the inspection of the silhouette plot of PAM. For
each hospital j, we denote by A the cluster to which it belongs and compute a( J), the average
dissimilarity of j to all other objects of A:

1
a(j) = ——— Dy.
]Al -1 iE;i#j '

Now let us consider any cluster C different from A and denote by

1
Ky, W R ) S
. |CI—1§ J

the average dissimilarity of j to all objects of C; we define ¢(}) as the smallest value of all
d(j, C) for all clusters C different from A. The silhouette value s( j) of an object j is defined as:

. c(j) —a(j)
s(J)=—-————J) T
max{a(j), ¢(j)}
The silhouette value s(j) of each object j, the entire silhouette plot, that is, the plot of all

s(J), and the average of all silhouette values are qualitative indexes to judge and compare the re-
sults of different PAM procedures (see Struyf, Hubert and Roussecuw, 1997 for more details).

10.4 Applications to AMI patients

The dataset we are interested in is about patients admitted with STEMI diagnosis in one of
the hospitals belonging to the Milano Cardiological Network.

For these units, information concerning mode of admission (on his/her own or by three
different types of 118 rescue units), demographic features (sex, age), clinical appearance

e
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(presenting symptoms and Killip class at admittance), Symptom Onset to Door time, in-
hospital times (first ECG time, DB time), hospital organization (for example, admission
during on/off hours) and clinical outcome (in-hospital survival) have been collected.

The Killip classification is a system used in individuals with an acute myocardial infarc-
tion, in order to risk stratify them into four severity classes. Individuals with a low Killip class
are less likely to die within the first 30 days after their myocardial infarction than individuals
with a high Killip class.

Previous frequentist and Bayesian analyses (for further details see Ieva and Paganoni,
2011; Guglielmi ez al., 2012) pointed out that age, total ischemic time (Symptom Onset to
Balloon time, denoted by OB) in the logarithmic scale and Killip of the patient, categorized
as a binary variable, corresponding to 0 for less severe (Killip class equal to 1 or 2) and 1 for
more severe (Killip class equal to 3 or 4) infarction, are the most significant factors in order
to explain survival probability from a statistical and clinical point of view,

Therearen=n;+... 4 n 7 = 240 patients, inJ = 17 hospitals in the dataset; the number
of patients per hospital ranges from 1 to 32, with a mean of 14.12. Each observation y; = 1 if
the ith patient survived; v; = 0 otherwise,

In this study we fitted model (10.1)=(10.2) with p = 3, under (10.3), with the help of an
R package called DPpackage (Jara, 2007).

In particular, we ran the function DPglmm, which adopts a slightly different parameteri-
zation from (10.3); however it is only the prior of By which changes (Jara et al., 201 1)

After some preliminary robustness analysis, the prior was fixed so that Bi, B2, B3 are
1.L.d. according to N(0,100), up = 0, S, = 100, vo=35,15" =30, a9 = by = 1. We assumed
such values since, in this case, the prior expected number of distinct values among the b;s is
3 (which seems a sensible choice), however letting e be not too informative, while the prior
expectation and variance of the conditional variance parameter ¥ are 10 and 200, respectively,
so that the marginal prior variance of each bjis 110. Moreover, the robustness analysis showed
that the inferences are not sensitive to different choices of 1, and Zo.

Summary inferences about regression parameters can be found in Tab]e 10.1.

A look at the posterior distributions of Bi, fori = 1, 2, 3 (not included here for brevity)
shows that Killip and age have a negative effect on the survival probability, while log(OB)
has a lighter influence on it,

Summary inferences about random-effects parameters can be found in Table 10.2, Their
posterior means range from 3.058 to 4.783.

The marginal posterior densities of all the random-effects parameters, clustered ink=
3 groups, are depicted in Figure 10.1; while in Figure 10.2 the corresponding dissimilarity
matrix D is showed.

Table 10.1 Posterior means and standard deviations of the fixed-effects
regression parameters.

Mean sd
Age B —0.0804 0.0339
log(OB) B2 —0.1758 0.3733
Killip B3 —1.6979 0.8747
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Table 10.2 Posterior means and standard deviations of the random-effect regression
parameters.

Bo+b j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

Mean 4.5472 4.1969 4.4122 4.6339 37119 3.9503 3.8226 4.0220 4.7827
sd 1.7269 1.5591 1.6909 1.7698 0.8452 0.9141 0.8585 1.5808 1.8754

Bo+by j=10 j=11 j=12 j=13 j=14 j=15 j=16 j=17

Mean  3.1948 3.0584 4.4685 3.3995 3.9017 3.1969 3.3625 4.5776
sd 0.8174 0.8824 1.6423 0.8809 0.8816 0.8735 0.8854 1.7906

The PAM algorithm assigns hospitals 1, 4, 9, 12, 17 to the first group, hospitals 2, 3, 5, 6,
7, 8, 14 to the second and hospitals 10, 11, 13, 15, 16 to the third group.

According to the values of the posterior means of the b;s, the related medoids (hospi-
tals 4, 14 and 10) represent ‘good’, ‘medium’ and ‘poor’ performances, respectively. This
classification is also in agreement with results in Guglielmi et al. (2012).

The clustering structure in three groups has been selected inspecting the boxplots of the
dissimilarity between hospitals and the medoid of the cluster they belong to, obtained for
different values of the number k of clusters, and evaluating average silhouette widths. From
this inspection, the presence of either & = 2 or k = 3 clusters can be supported; however we
decided to propose a three-group clustering structure which distinguishes strongly good, or
strongly poor hospitals from the medium ones.

In Table 10.3 the estimated in-hospital survival probabilities for different case-mixes, in
‘poor’, ‘medium’ and ‘good’ medoids are shown.

1
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Figure 10.1 Posterior distributions of random-effects parameters fo + bj, clustered in three
groups: ‘poor’ (dotted), ‘medium’ (solid) and ‘good’ (dashed) hospitals.
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Figure 10.2 Dissimilarity matrix between hospitals, computed from (10.4).

In particular, when moving from a ‘poor’ hospital to a ‘good’ one, the in-hospital survival
probability gain ranges from 1.5%, for a young patient with less severe infarction, to 32% in
the case of an old patient with more severe infarction.

10.5 Summary

One of the major aims of this work is to measure the magnitude of the variations of healthcare
providers and to assess the role of contributing factors, including patients’ and providers’
characteristics, on survival outcome.

Concerning patient features, we found out that Killip and age have a sharp negative
effect on the survival probability, while the Symptom Onset to Balloon time has a lighter
influence on it.

Moreover, the PAM algorithm applied to the posterior distributions of the hospitals’
random effect enabled us to identify three clusters of providers: a group (hospitals 1, 4, 9, 12,
17) performing better than a medium group (hospitals 2, 3, 5, 6, 7, 8, 14) and a third group

Table 10.3 Estimated in-hospital survival probabilities for different case-mix,
with average OB time 553 minutes in ‘poor’, ‘medium’ and ‘good’ medoids.

Patient Estimated survival probability
Age Killip Poor Medium Good
55 0 0.9805 0.9903 0.9953
85 0 0.8185 0.9014 0.9501
55 1 0.9021 0.9492 0.9749
85 1 0.4522 0.6260 0.7768
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(hospitals 10, 11, 13, 15, 16) performing worse than the central one. Finally we estimated
the effect of medoids for each group on in-hospital survival probability, to quantify loss/gain
on survival due to provider’s behaviour. This could be considered by healthcare governance
as an instrument supporting healthcare decisions on optimizing network resources. Since the
joint use of clinical registries and administrative databases proposed in this and previous
analyses (see Ieva and Paganoni, 2010 and Barbieri, Grieco and Jeva, 2010) produced such
useful results, a wider and more complete clinical register on STEMI, extended to the whole
territory of Lombardia Region, has been planned and activated in 2010, called STEMI Archive.

As a future work we will apply the methodology and the models illustrated here to
this larger dataset, to enable healthcare governance to establish benchmarks and to evaluate
hospital network performances, then to offer better services to healthcare users.
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