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Abstract 

This work presents a statistical model for operational risk management. 
We distinguish different types of operational event, we model the 
probability of event occurrence (the frequency distribution) and the 
economic impact of the single event (the severity distribution), and 
then the aggregated distribution is obtained through convolution of 
frequency and severity, for each event type. The main problem is the 
parameters estimation of the severity distribution above a suitable 
threshold, that we consider as an unknown parameter to be estimated 
as well. An application to a case study is also presented. 
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1. Introduction 

This work presents a statistical model for operational risk management. 
Such risk includes losses deriving from natural disasters, system failures, 
human errors or frauds. All financial institutions have to set a provision up, 
in order to face such losses. This statistical model is based on the analysis of 
operational losses time series. First of all, seven operational ETs (event 
types) can be distinguished, according to the different causes. The idea of the 
model is to fit each risk class separately and then aggregate them to obtain a 
single distribution. Hence, the provision can be computed through the VaR 
(value at risk) indicator, defined as the 99.9% quantile of the aggregated 
distribution. The approach proposed is an actuarial one: the probability of 
event occurrence (the frequency distribution) and the economic impact of the 
single event (the severity distribution) are treated separately, and then an 
aggregated distribution is obtained through convolution of frequency and 
severity, for each ET. A first problem arises, since losses with a small 
economical impact are often neglected, hence they can rarely be trusted. 
Thus, the severity distribution is fitted with truncated distribution, above a 
threshold, which is fixed by the bank. Moreover, due to the sensibility of the 
capital at risk with respect to high level quantiles, the right tail of the severity 
distribution, which includes losses above a certain threshold, which has to be 
estimated, is fitted with the GPD (generalized Pareto distribution), which is 
the most appropriate in extreme values theory. On the other hand, the 
frequency distribution is modeled with Poisson distribution, considering only 
losses above the lower threshold for the estimation. Thus, according to the 
actuarial approach, each ET aggregated annual loss distribution is obtained 
through convolution, via Monte Carlo simulation, under the appropriate 
independence hypothesis. Finally, the ETs multivariate distribution, on 
which we compute the VaR, is obtained exploiting copulas, which allows       
to aggregate marginal distributions maintaining the desired dependence 
structure. In Section 2, operational risk management is introduced and the 
considered ETs are detailed. In Section 3, the model for severity is presented 
while Section 4 is devoted to the threshold selection and the estimation of 
GPD parameters. Section 5 contains an application to a case study. 
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2. Operational Risk Management 

Operational risk is defined as “the risk of loss resulting from inadequate 
or failed internal processes, people and systems or from external events” [1]. 
The main characteristic of such risks is that, apart from the introduction         
of mitigation and prevention procedures, they are derived from the regular 
operations of the bank, and therefore cannot be avoided. 

The operational events are divided into seven event types (ETs), 
according to the specific cause: 

1. Internal fraud: misappropriation of assets, tax evasion, intentional miss 
marking of positions, bribery. 

2. External fraud: theft of information, hacking damage, third-party theft 
and forgery. 

3. Employment practices and workplace safety: discrimination, workers 
compensation, employee health and safety. 

4. Clients, products, and business practice: market manipulation, 
antitrust, improper trade, product defects, fiduciary breaches, account 
churning. 

5. Damage to physical assets: natural disasters, terrorism, vandalism. 

6. Business disruption and systems failures: utility disruptions, software 
failures, hardware failures. 

7. Execution, delivery, and process management: data entry errors, 
accounting errors, failed mandatory reporting, negligent loss of client assets. 

There are different methods that can be used to define the amount of capital 
to be set aside in order to face the losses deriving from operational risk         
the following year [1]. These methods are characterized by an increasing 
complexity and a decreasing amount of capital at risk. The most interesting 
from a statistical point of view are the so-called AMA (advanced 
measurement approach) models, where the capital requirement is computed 
using internal models based on operational loss data. 
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Different data sources have to be used in the internal model 
development, in order to reach a more accurate determination of the capital at 
risk: 

- Internal losses, deriving from operational events occurred in the bank. 

- External losses, taken from public databases, usually available only 
above a certain threshold. 

- Perspective losses, derived from scenario analysis, only for extreme 
losses. 

The model used for the capital allocation firstly considers each risk class 
separately and then aggregates through copulas, which are particular 
multivariate distributions allowing to combine marginals maintaining the 
desired correlation structure (see [6] and [12]). Hence, the prevision can be 
computed through the VaR (value at risk) indicator, defined as the 99.9% 
quantile of the aggregated distribution [1]. 

The approach proposed for the single ET modeling is an actuarial one: 
the probability of event occurrence (i.e., the frequency distribution) and the 
economic impact of the single event (i.e., the severity distribution) are 
considered separately, and then an aggregated distribution is obtained 
through convolution of frequency and severity [11]. 

In the following, the attention will be set on the severity distribution, 
focusing on the main statistical techniques used to estimate it (see [14]). 

3. The Severity Distribution 

As mentioned before, the severity of a single operational event represents 
the probability distribution of the economical losses deriving from it. 

The usual approach in operational risk management consists in the 
division of the severity distribution in two parts: the body is modeled with 
internal losses, while the right tail, composed by extreme losses, is modeled 
exploiting also external and scenario data, with a conservative approach. This 
technique is typical in risk management, since the distributions used to fit the 
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body often underestimate the tail, thus obtaining an underestimation of the 
capital at risk ([13] and [10]). 

The threshold u, above which events are considered extremes, is usually 
set by the bank management, equal to the lowest loss of external and scenario 
data. However, in the following, we present a new statistical method to 
choose this parameter in order to have the best fit of the right tail. 

The resulting severity distribution is therefore composed as a mixture          
of two different distributions. Let bodyX  represent the random variable 

describing the severity distribution limited to the body, with relative density 
function ,bodyf  and tailX  the random variable describing the severity 

distribution of the tail, with density .tailf  Thus, being X the random variable 

representing the economic impact of a single operational event, its density is 
obtained through combination of the two conditioned distributions: 

• ( ) ( ) ( )uFxfxf bodybodybody =∗  is the body severity distribution 

conditioned to ;uX ≤  

• ( ) ( ) [ ( )]uFxfxf tailtailtail −=∗ 1  is the tail severity distribution 

conditioned to .uX >  

Thus, we obtain the severity distribution, as follows: 
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where ( )uFbody=ω  represents the weight of the body. 

3.1. Estimation of body distribution 

As far as the body is concerned, internal loss data are usually unreliable 
for small amounts. Therefore, losses above a fixed threshold H cannot be 
used in the fit of the severity distribution, implying the need for truncated 
distributions. 
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In details, if ,~ FX  then its truncated distribution is the law of 

HXX ≥|  with the following cumulative distribution function ( ):xG  

( ) ( ) ( )
( )





≥
−
−

<
= .if1

,if0

HxHF
HFxF

Hx
xG  (2) 

In operational risk management, the most common theoretical distribution 
used for the modeling of the body is the lognormal and the Weibull 
distributions, whose densities expressions are given below: 
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The relative parameters are computed via maximum likelihood estimators, 
using numerical optimization, since no explicit expression of the estimators 
can be obtained (see [2] and [3]). 

3.2. Estimation of tail distribution 

Considering the tail of the severity distribution (i.e., extreme losses), 
extreme value theory can be used. The idea is to use the peaks over threshold 
method, which allows to model the right tail of the distribution using only 
data above a certain threshold (see [4] and [5]). 

In particular, exploiting the properties of the block maxima approach,       
it is possible to assume that the loss severity above the threshold u is 
distributed as the generalized Pareto distribution. The cumulative distribution 
function of uXX ≥|  is given by the following expression [8]: 
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with relative density function: 
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The parameters of the GPD are the location parameter u (i.e., the threshold), 
the scale parameter β, and the shape parameter ξ. To estimate scale and  
shape parameters, the most common methods used are maximum likelihood 
estimation (MLE) or probability weighted moments (PWM). As far as the 
MLE method is concerned, the GPD likelihood expression is the following: 
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It is straightforward to notice that no analytical solutions can be found 
deriving this expression (or the relative log-likelihood) with respect to β or to 
ξ. Thus, numerical optimization methods are required, in order to find the 
maximum of the log-likelihood. For this reason, PWM method is usually 
preferred. This is a generalization of the method of moments, introduced         
in [7]. Given a random variable X with cumulative distribution F, the 
probability weighted moments are defined as: 

[ ( ){ } ( ){ } ]srp
srp XFXFXEM −= 1,,  (8) 

with p, r, .R∈s  The method consists in equalizing these expressions with 
the empirical weighted moments srp ,,ω  for particular values of p, r and s. In 

[8], the authors showed how the estimators can be found using 1=p  and 

,0=r  obtaining the following expressions: 
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We refer to [9] for the determination of the expression of the empirical 
weighted moments. If jy  are i.i.d. from a GPD(u, β, ξ), and ( )jy  are the 

ordered values, for ,...,,1 kj =  then the expressions are the following: 
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A final consideration on the usage of the extreme value theory arises, since 
the additional data used (external and scenario losses) might cause a 
distortion of the estimation, thus extreme losses have to be scaled 
considering the bank. In particular, the scale parameter would be affected by 
scaling, while the shape parameter is invariant to it, as will be shown in the 
following. Thus, the parameter ξ is estimated with external and scenario data, 
while β is obtained through a continuity condition between body and tail at 
u: 

( ) ( ) ( )ufuf tailbody
∗∗ ⋅ω−=⋅ω 1  (12) 

which leads to: 
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4. Threshold Selection 

As mentioned above, the main problem in the use of the GPD for 
extreme value modeling is the determination of the appropriate threshold, 
above which losses can be considered extreme. This is a critical choice, since 
using an excessively low threshold would lead to a distortion in the 
estimation of the other parameters, while overestimating u causes the 
exclusion of a high number of data, thus a greater variability in estimation. 
The proposed approach exploits the behavior of the theoretical mean and the 
parameters with the variation of the threshold. In particular, we will show a 
possible way to choose the most appropriate threshold v. Let us define the 
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mean of the excesses of a random variable X over a certain threshold v as 
[ ].vXvXE >|−  Then, if X is a random variable that can be approximated 

with a GPD(u, β, ξ), then it can be proved that the mean of the excesses over 
uv ≥  is: 

[ ] ( ) .1 ξ−
−ξ+β=>|− uvvXvXE  (14) 

In order to prove the expression (14), we can consider the expression of the 
conditional mean: 
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Since we are considering only values of X above u, we have GPDX FF =  

and GPDX ff =  as in (5) and (6), respectively, thus: 
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The most important property in this case is that the mean of excesses is linear 
with respect to the considered threshold. The idea is therefore to identify the 
correct threshold u′  such that, for every v above it, the mean of excesses has 
a linear trend. 

In particular, let us suppose to have a sample nxx ...,,1  from nXX ...,,1  

i.i.d. We will denote with ∗∗
vnxx ...,,1  the elements of { },: vxx ≥  being v a 

generical .uv ′≥  The qualitative method here proposed consists of the 
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identification of the value v such that the plot of 
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has a linear trend. If such a behavior is observed, then we can infer that we 
are above the threshold such that X can be approximated with a GPD. 

Of course, such considerations do not hold for high values of the 
threshold: the less is the amount of extreme data available, the poorer is the 
estimate of the mean, since the variability grows up. 

In practical terms, the proposed approach considers the variation of the 
threshold above ,0u  which is the minimum loss for external and scenario 

data collection by the bank. For each selected ,0uu ≥′  a linear regression 

between the mean of excesses and the variable threshold uv ′≥  is carried on, 

considering, in particular, the relative values of the .2R  The candidate for 
the identification of the “real” EVT threshold is chosen as the u′  with the 

highest value of .2R  Once this threshold has been chosen, a deeper analysis 
of goodness of fit of the linear model has to be carried out. Moving to the 
parameters variation with respect to the selected threshold, similar properties 
for β and ξ can be exploited in the determination of the correct threshold for 
EVT. In particular, if X can be approximated with a GPD(u, β, ξ), then for 
every ,uv ≥  vXX ≥|  can be approximated with a GPD with the following 

parameters: 

( ),uv −ξ+β=β′  (15) 

.ξ=ξ′  (16) 

Considering the cdf of ,vXX ≥|  we obtain: 
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which is the expression of the cdf of ( ).,,GPD~ ξ′β′vX  Thus, expressions 

(15) and (16) show that the scale parameter β is linear with respect to the 
variation of ,uv ≥  while ξ is constant. 

The approach we are proposing exploits these two properties as a further 
consolidation of the threshold identified through the analysis of the mean      
of excesses. In particular, different parameters estimation with different 
thresholds are carried on. Thus, the relative trends above the selected 
threshold are studied, in order to confirm the choice (if linear trend for β and 
constant for ξ are observed) or suggesting a review of the choice if such 
behaviors are not detected. 

In the following section, we show how the previous techniques can be 
applied to a real database, considering, in particular, the selection of the EVT 
threshold. 

5. Application 

The data we considered are provided by one of the major Italian banks, 
and they have been scaled in order to maintain the privacy constraints. As far 
as the tail is concerned, we take into account internal, external and scenario 
data, which are available only above the threshold ,0u  fixed by the bank. 

The main task is, therefore, for each event type, to identify a threshold 

0uu ≥′  which corresponds to the best fit of the GPD, as previously 
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discussed. We show this behavior for one selected ET. The same discussions 
can be carried out for the others. 

We firstly considered the properties introduced through the expression 
(14), trying to detect which threshold would correspond to the best linear 
regression between the different thresholds and relative empirical means of 

excesses. Figure 1 shows the different values of 2R  obtained through the 
regressions. It results that the highest value is at .27981 =u  

 

Figure 1. Identification of the most appropriate threshold ,∗u  obtained as 
the u value corresponding to the regression model between the means of the 

excesses and the different thresholds with the highest .2R  

We provide in Figure 2 the graph of the empirical means with respect to 
the different thresholds, showing the accurateness of the linear regression. We 
can observe how the linear trend is not obtained for all the values greater 
than ,0u  whereas such behavior is present above the identified threshold .1u  
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Figure 2. Graph of the empirical means of the excesses with respect to the 
variation of the threshold above ,0u  considering the linear trends starting the 

regression, respectively, from 0u  and from .1u  

As before-mentioned, the same considerations can be done considering 
parameters estimation. In particular, we considered the two described 
methods (MLE and PWM) in order to further assess the threshold choice.  
We estimated ξ and β for different thresholds, obtaining as a result the 
confirmation of the necessity to choose a different value for u. 

In Figure 3, we report the trend of the scale parameter β estimations with 
respect to different thresholds, using the two methods. The graph clearly 
shows how a linear trend is obtained only above the chosen threshold ,1u  as 

expected from the expression (15). This is confirmed by the fact that the 2R  
values of the two linear regressions are close to 1. 
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Figure 3. Graphs with the estimated values of β with methods MLE and 
PWM resulting from the variation of the threshold. 

As far as the shape parameter ξ is concerned, the expression (15) proves 
that this parameter is constant with respect to the threshold variation. For 
instance, Figure 4 reports the estimations for different threshold, and it can 
be observed how MLE method shows that the most appropriate threshold       
is ,1u  while the same conclusions cannot be obtained considering PWM 

method. 
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Figure 4. Graphs with the estimated values of ξ with methods MLE and 
PWM resulting from the variation of the threshold. 

6. Conclusions 

In this paper, we proposed a statistical approach to the operational risk 
management. In particular, we focused our attention in modeling severity 
distribution and choosing the right threshold for the excesses, in order to 
have the best fit of the right tail. According to the actuarial approach, each 
aggregated annual loss distribution is then obtained via Monte Carlo 
simulation. In general, the right threshold, above which events are considered 
extremes, is usually set by the bank management equal to the lowest loss of 
external and scenario data. The main novelty of this work is the data-driven 
statistical approach to the threshold estimation. 
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