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Summary.Bayesian semiparametric logit models are fitted to grouped data related to in-hospital
survival outcome of patients hospitalized with an ST -segment elevation myocardial infarction
diagnosis. Dependent Dirichlet process priors are considered for modelling the random-effects
distribution of the grouping factor (hospital of admission), to provide a cluster analysis of the
hospitals. The clustering structure is highlighted through the optimal random partition that min-
imizes the posterior expected value of a suitable loss function. There are two main goals of the
work: to provide model-based clustering and ranking of the providers according to the similarity
of their effect on patients’ outcomes, and to make reliable predictions on the survival outcome at
the patient’s level, even when the survival rate itself is strongly unbalanced. The study is within
a project, named the ‘Strategic program of Regione Lombardia’, and is aimed at supporting
decisions in healthcare policies.
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1. Introduction

Bayesian non-parametrics provide extremely flexible models for fitting a variety of data sets.
One of their most popular uses is in modelling distributions for random effects in hierarchi-
cal models for grouped data, as in the seminal paper of Kleinman and Ibrahim (1998). With
such grouped data, the aim is usually to find clusters among groups which can capture the
latent structure in the data that are assigned to each group. In this context, a natural way to
achieve model-based clustering via Bayesian non-parametrics is to assume that the random-
effects distribution is almost surely discrete, so that there will be ties in the posterior values of
the random-effect parameters. In this way, two groups are in the same cluster if their corres-
ponding sampled random-effects parameter values coincide. Dirichlet processes (DPs), which
were introduced by Ferguson (1973), are the most popular discrete random probability mea-
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sures, used to represent population distributions. In particular, the discrete feature of DP-based
models has been frequently exploited as a mechanism to generate clusters of subjects or groups
(see De la Cruz-Mesı́a et al. (2007) and Green and Richardson (2001) among others).

In many applications, data include covariates besides the recorded responses. Recent efforts
have produced interesting classes of random probability measures, dependent on such covariates,
yielding dependent Dirichlet processes (DDPs) as described in MacEachern (1999, 2000) and
Barrientos et al. (2012). Applications or extensions of such priors include covariate DDPs
resembling traditional analysis-of-variance models as in De Iorio et al. (2004), DDPs with an
additional probability model for group classification for longitudinal data as in De la Cruz-
Mesı́a et al. (2007) and probit stick breaking random probability measures as in Rodriguez and
Dunson (2011). See also the references therein.

In this paper we present two Bayesian semiparametric mixed models for the analysis of
binary survival data coming from a clinical registry on ST -segment elevation myocardial infarc-
tion (STEMI), where statistical units (i.e. patients) are grouped by hospital of admission. In par-
ticular, in such hierarchical frameworks we adopt non-parametric DDP priors for modelling
random effects superimposed on the grouping factor, to provide a proper methodological ap-
proach to the problem of profiling hospitals according to their effects on patients’ outcomes.
This topic is crucial within the context of healthcare planning, and proper methods for address-
ing such a problem are of great interest to people in charge of healthcare government (see Ash
et al. (2012) and Spiegelhalter et al. (2012) for details on recent discussions and developments).
Since the outcome of interest (in-hospital survival, i.e. whether a patient is discharged alive from
hospital) is strongly unbalanced within the context of the disease that we focus on, any model will
perform poorly in predicting the related adverse event. Therefore we propose a new method for
classifying patients by using the whole predictive distributions of their outcome, labelling them
as ‘alive’ or ‘death’ according to a criterion based on the posterior predictive credibility intervals.

We adopt a Bayesian semiparametric approach since it has a twofold advantage. First,
Bayesian semiparametric models allow great flexibility in modelling data, avoiding critical
dependence on parametric assumptions; see Müller and Quintana (2004). Secondly, Bayesian
non-parametric priors on the random-effects parameters selecting discrete probability measures
yield a random partition of the group indices set; consequently, cluster estimates will be based
on the posterior distribution of the random partition itself. A common way of estimating the
unknown true partition is to observe the maximum a posteriori estimate. However, since the
number of partitions is large even for moderate sizes of the indices set and the posterior is usually
spread out, the maximum a posteriori estimate may not be a good choice, and therefore different
summary statistics of the posterior distribution of the random partition are needed. Formal
decision-theoretic-based procedures for choosing one single estimate based on posterior expec-
tations of appropriate loss functions were discussed in Lau and Green (2007) and Quintana and
Iglesias (2003). Since one of the main focuses of the paper is to exploit model-based clustering
of groups, we shall pursue this issue by providing a Bayesian estimate, as proposed in Lau and
Green (2007), looking for a posteriori clustering structure, optimal with respect to a specified loss
function. However, our interest here is also focused on classification and prediction of binary
responses in situations where the chance of success is strongly unbalanced. We then propose a
new rule for the classification of patients, which is based on the posterior credibility intervals of
patients’ survival probability, instead of point estimates, discussing how the classification that
is obtained depends on the choice of a reference threshold, according to what was suggested
in Cramer (1999). A discussion on performances of threshold criteria for binary classification
based on pointwise outcome estimates is presented in Freeman and Moisen (2008).

We apply these methods to a data set arising from a clinical registry (the STEMI archive;
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see Direzione Generale Sanità—Decreto Regione Lombardia (2009) and Ieva (2013)) on pa-
tients affected by STEMI and admitted to any hospital in Lombardia, which is an Italian region
whose capital is Milan. Specifically, the binary outcome of interest is measured at patients’ level,
and patients are grouped according to the hospital of admission. Hence, there is a hierarchical
structure in the data set: hospitals at a higher level and patients at a lower. It is known from the
literature (see Cannon et al. (2000) among others) that STEMI is characterized by a strongly
unbalanced share of success in terms of in-hospital survival; in our data set, in fact, 97% of
patients were discharged alive from the hospital. It is also known (see Bradley et al. (2006) and
Ieva and Paganoni (2011) for instance) that, for such disease, reducing treatment times and
optimizing pre- and intra-hospital patterns of care strongly improve patients’ prognosis. In par-
ticular, we are interested in profiling healthcare providers, investigating whether any clustering
of the hospitals has a meaning. Since clustering is obtained through estimates of the posterior
distribution of the random partition of the hospital index set, we shall be able to assess the effect
of groups of healthcare providers with ‘similar’ behaviour on patients’ outcomes, as well as to
evaluate the quality of their performances in treating STEMI patients, adjusting for casemix and
all other known sources of variability that induce overdispersion in the outcomes distribution.

We shall consider two logit models for the in-hospital survival probability. We adopted this
link function because it enables a straightforward clinical interpretation of parameters and
results, and, since our study is motivated by a clinical problem, it is also important to ease the
communication of results. In both models that we consider, the random-effect parameters are
given a non-parametric prior, similarly to Kleinman and Ibrahim (1998), whereas lower level
covariates are treated parametrically. Specifically, the random-effect parameters are assumed
as a sample from a Dirichlet process. In our case, since a random effect is superimposed on
the grouping factor that is represented by the hospital of admission of patients, we model the
dependence across random distributions through the hospitals’ covariates, so that the priors can
be interpreted as DDP distributions. The two Bayesian models differ in the choice of covariates
that are included in the likelihood and in the non-parametric components of the random-effect
parameters (see Section 2).

The novelty of this work lies in exploiting a model-based clustering, provided by the optim-
al partition of the random effects estimated through a Bayesian semiparametric hierarchical
model, for profiling providers in a real clinical problem. In fact, the method that we propose in
this paper yields a model-based ranking of hospitals, based on the evolution of the optimal parti-
tion of the random effects. Moreover, using posterior credibility intervals for classifying patients
as dead or alive instead of pointwise estimates, we identify a classification rule that proves to be
less sensitive to the choice of the threshold discriminating groups of alive and dead patients.

The paper is organized as follows. In Section 2 we present the models and the methodology
that is developed for hospital clustering and patients’ classification. Goodness-of-fit indices
for comparing the models are also considered, and details on random-effects clustering that is
carried out through the optimal random partition are provided. Section 3 presents the results of
the inference for the STEMI archive data. Finally, some conclusions are drawn and discussed in
Section 4. All the analyses have been carried out with R (see R Development Core Team (2009))
and JAGS (see Plummer (2003)).

2. Bayesian semiparametric models for random-effects clustering

In this section, we present the two models that we shall use to analyse the data in Section 3. In
what follows, the model formulation is already intended for the application of interest, where the
outcome is the in-hospital survival after an STEMI event, and patients are grouped by hospital
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of admission. Among all the variables that are available at patients’ level, we considered age,
total ischaemic time (OB, symptom onset to balloon time), presence of chronic kidney disease
(CKD = 1 if the patient had a loss of renal function; CKD = 0 otherwise) and Killip class
(which is an ordinal variable indicating the severity of infarction, from 1, lowest, to 4, highest).
Moreover, we included in the models hospital exposure, i.e. the number of patients who were
treated with primary angioplasty per year, and a binary variable (Milano) indicating whether
the hospital is in (Milano=1) or outside (Milano=0) Milan. Then the mathematical framework
of loss functions for the evaluation of the optimal partition is briefly described, to cluster the
hospitals. Finally, a classification rule based on posterior credibility intervals will be introduced.

As we mentioned in Section 1, we assume DP priors for the random-effects distributions
in the logit likelihood. An equivalent representation yields that, in the models that we are
considering, the random-effect parameters bj, corresponding to the jth hospital effect, are
distributed according to a DDP prior Pvj , which depends on a covariate vj in its definition.
Hence, marginally bj has still a DP prior, with the property that ‘Pvj varies smoothly with vj’
(see MacEachern (2000)). This implies that Pvj and Pv′

j
are correlated for vj �= v′

j and, at least
where continuous covariates are present, that Pv′

j
reaches Pvj as long as v′

j approaches vj. Of
course, DDPs can adopt many different and quite elaborate forms, but here we analyse only
two such specifications, which retain interpretability of model parameters.

2.1. Dependent Dirichlet process priors on random effects
For statistical unit i=1, . . . , nj in group j =1, . . . , J , let Yij be a Bernoulli random variable with
mean pij. In our application, pij represents the probability that patient i treated in hospital j

is discharged alive after an STEMI event. The pijs are modelled through a multivariate logistic
regression with fixed effects α and β, and a random effect b superimposed on the covariates
referred to the grouping factor, i.e.

Yij|pij
ind∼ Be.pij/,

log
(

pij

1−pij

)
=

4∑
l=1

αluijl +
5∑

k=1
βkxijk +b0j +b1jzj:

.1/

Within the context of the application motivating this study, uij = .uij1, : : : , uij4/= .Killip1, . . . ,
Killip4/ij is a vector of dummy variables, xij = .xij1, . . . , xij5/= .age, log.OB/, CKD, exposure,
Milano/ij and zj is the exposure of the jth hospital. All continuous covariates have been cen-
tred and standardized (so that their range is between −1 and 1) to obtain a better mixing of
the Markov chains arising from simulations. A null covariate vector represents a patient with
‘average’ age and total ischaemic time, not at risk in terms of CKD and treated in a structure
dealing with an ‘average’ number of STEMI patients per year, also. In what follows, we shall
refer to such a patient as a ‘standard reference’ and compare hospital effects once adjustments
for all fixed effects have been carried out in the standard reference setting. The prior distribution
that is assumed for the parameters of the model is

α= .α1, . . . , α4/∼N .μα, σ2
αI4/,

β = .β1, : : : , β5/∼N .μβ , σ2
βI5/,

.2/

.b0j, b1j/|P IID∼ P j =1, . . . , J , P |a, P0 ∼DP.a, P0/: .3/

Independence between α, β and P is assumed. By P ∼ DP.a, P0/ we mean that P , the (con-
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ditional) distribution of the bivariate random-effects parameter bj, has a DP prior with
total mass parameter a > 0 and base probability measure parameter P0; see Ferguson (1973)
for details on the definition and standard notation of DPs. The base probability measure on
R2 for this model, P0, will be chosen as the product measure N .0, σ2

0/ × N .0, σ2
1/, being σ0

and σ1 independent and uniformly distributed. Moreover, a is assumed to be random with
prior π.a/; in Section 3 a truncated exponential distribution is chosen as prior distribution for
a.

Observe that in model (1) the random-effect parameter of hospital j appears linearly as
b0j +b1jzj. Moreover, each bj = .b0j, b1j/, given P , has distribution

P =
∞∑

h=1
whδθh

.4/

where θh are independent and identically distributed (IID) according to P0 and {wh} are the
weights in the stick breaking representation (see Sethuraman (1994)). It is straightforward to
see that b0j +b1jzj, given P̃ , is distributed as P̃ , where

P̃ =
∞∑

h=1
whδθ̃h.zj/

: .5/

Here θ̃hs are IID according to P̃0 which is the distribution of b0j + b1jzj if bj is distributed
according to P0. Therefore, by equation (5), the random-effect contribution to the likelihood in
model (1) is distributed according to a DDP. This is a rather simple case of a DDP, called a ‘single-
p linear DDP’ (see MacEachern (2000)), since the weights in the stick breaking construction do
not depend on covariates, whereas the location points do, in a linear way.

The other semiparametric model that we consider is

Yij|pij
ind∼ Be.pij/,

log
(

pij

1−pij

)
=

4∑
l=1

αluijl +
3∑

k=1
βkxijk +bvjj,

.6/

where α, β and b are the parameter vectors corresponding to the fixed and random effects, as
in the previous case. Referring to the motivating application, uij is the Killip dummy vector
as in the previous model, whereas xij = .xij1, xij2, xij3/= .age, log.OB/, CKD/ij. Finally, bvjj

is the random intercept depending on values that are assumed by the location dummy Milano
(vj = 0 or vj = 1). Note that here we distinguish the random-intercept parameter according to
the geographical origin of the hospital: in fact, bvjj is the parameter referring to the jth hospital,
which will be b1j if the jth hospital is in Milan, and b0j otherwise. We assume the following
prior:

α= .α1, . . . , α4/∼N .μα, σ2
αI4/,

β = .β1, : : : , β3/∼N .μβ , σ2
βI3/,

.7/

.b0j, b1j/′|P IID∼ P j =1, : : : , J , P |a, P0 ∼DP.a, P0/: .8/

Independence between α, β and P is assumed. For our application, we shall assume that the
base probability measure on R2, P0, is chosen as the product measure P00 × P01 ≡N .0, σ2

0/ ×
N .μ1, σ2

1/. Moreover, σ0 and σ1 will be assumed to be uniformly distributed. Finally, a Gaussian
distribution will be considered for μ1 and a truncated exponential distribution for a. Observe
that the number of random-effect parameters in model (6) is J (and not 2J), since, if j is the
index of a statistical unit with vj =1, then the corresponding random-effect parameter is b1j; in
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contrast, if j is the index corresponding to a group with vj =0, the corresponding random-effect
parameter is b0j.

In this case the non-parametric prior component that is assumed for the random-effects
parameters can be interpreted as an analysis-of-variance DDP prior with one factor and two
levels (see De Iorio et al. (2004)), where the vj-covariate ruling the prior assumes only values in
{0, 1}, here representing the Milano effect. In fact, we could equivalently assume

bvjj|P , vj
ind∼ Pvj ,

Pvj |P0vj
∼DP.a, P0vj

/,

where, for v equal to 0 or 1,

Pv =
∞∑

h=1
whδθvh

,

.θ0h, θ1h/′ IID∼ P00 ×P01:

.9/

Observe that Pv is marginally DP(a, P0v/, and the dependence between P0 and P1 is induced by
the presence of common weights in their stick breaking representation.

The main difference between the priors of the two models that were described in the previous
section lies in the Milano covariate effect, which is included directly in the locations of the stick
breaking representation in expression (9) in the second model.

In what follows, we shall refer to the model that is defined by equations (1)–(3) as ‘model A’,
and to the model that is defined by equations (6)–(8) as ‘model B’.

2.2. Model comparison
Since the data set that we deal with in the motivating application is complex and rich in covariates,
there are many Bayesian models that could be fitted to the data. In particular, the covariates’
dependence could be included in the DDP in many different ways. We focused on likelihoods
containing the most significant covariates indicated in previous work (see Guglielmi et al. (2012)
and Ieva and Paganoni (2011)) by some variable selection methods, and we tried various ways
of combining hospital covariates within the non-parametric priors. Some covariates (at both
patient and hospital level) are included to allow us to investigate specific topics related to clinical
enquires and health analytics.

However, we fitted two more models: one is a simplified version of model A, where we removed
the hospital exposure (fixed and random) from model (1) and assumed a univariate DP prior for
the random intercept. The inference that we obtained from the two models was similar, but we
preferred to consider the likelihood as in model (1), since it allowed us to draw conclusions on
the relationship between goodness of performance and hospital exposure, as reported in Section
3. In contrast, as a second alternative, we fitted a model with a DDP prior for the bivariate vector
of the random-effects parameter bvjj representing the effect of the intercept and the exposure
for each hospital in and outside Milan. The analysis showed that there is no need to introduce
this more complex model, since the posterior inference that we obtained was very similar to that
given by model B, which is reported with details in Section 3.

To compare models A and B with respect to their estimates of the random effects, we must
match them up to some extent, e.g. matching the marginal distribution of the random inter-
cepts under the two models. Table 1 reports the random-intercept parameters, up to the Killip
parameter α, of the two models for a hospital in or outside Milan. As we mentioned before,
since we deal with standardized covariates, the random intercepts that are reported in Table 1
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Table 1. Random-intercept parameters
in model A and model B

Model Parameters for the following
hospital locations:

In Milan Outside Milan

A β5 +b0j b0j
B b1j b0j

represent the in-hospital survival probability on the logit scale for a ‘standard reference’ patient
(without the Killip effect). As we shall see in Section 3, we fixed hyperparameters so that the
prior marginal distributions of random intercepts of hospitals in Milan are equal, as well as
those of random intercepts of hospitals outside Milan. Anyway, even if denoted with the same
symbols, the intercepts have a different interpretation, according to the different likelihoods
that they refer to. Moreover, the covariances between the random intercepts differ under the
two models. It is easy to show that, for model A, for a hospital h outside Milan and a hospital
l in Milan,

cov.b0h, b0l +β5/= cov.b0h, b0l/= σ2
0

a+1
,

whereas for the model B

cov.b0h, b1l/= cov.P00, P01/

a+1
=0:

To evaluate model goodness of fit, we compute an index that was introduced by Gelman and
Pardoe (2006), who proposed a Bayesian generalization of the R2-index for linear models. In a
frequentist framework, the coefficient of determination R2 estimates the proportion of variance
that is explained by the linear model. Here we apply it to the first level of the logistic regression,
which can be rewritten in terms of a latent variables formulation (see Albert and Chib (1993))
as follows:

Yij =1{Zij�0} Zij =μij + "ij: .10/

Here the μijs are the linear predictors, as in model (1) or in model (6), and the "ij are IID
standard logistic random variables. We assume that, conditioning on the latent variables Zij,
the Yij are independent.

Starting from the latent variable representation of the model provided in expression (10), a
Bayesian generalization of the R2-index for linear models can be defined as

R2 =1−
E
[∨

ij

"ij

]

E
[∨

ij

μij

] =1− var."/

E
[∨

ij

μij

] , .11/

where ‘
∨

’ represents the sample variance operator

∨
ij

xij =
J∑

j=1

nj∑
i=1

.xij − x̄/2
/(

J∑
j=1

nj −1
)

:
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The Bayesian R2 provides an index of the explained variability at the latent variable level. It
is close to 1 when μijs approximate well the conditional mean of Yijs and close to 0 when
the sample variance of the "s is approximately equal to the variance of the μijs. Whereas the
frequentist R2 ranges from 0 to 1, the Bayesian R2-index could also be negative.

2.3. Random partitions for model-based cluster analysis
As we mentioned in Section 1, one of the main aims of the work is to exploit the clustering
that is induced by the random-effects prior to investigate the effects of groups of ‘similar items’
on the outcomes of interest. In particular, the idea is to carry out a model-based clustering, in
which labels are exchangeable, and items are also exchangeable, possibly up to covariate effects.

In a Bayesian formulation of a clustering procedure, the partition ρ of item labels into sub-
sets depends on the probability model for the data, and therefore cluster inference is obtained
from the posterior distribution of the partition itself. Specifically, here, ρ is a random parti-
tion of hospitals labels {1, 2, . . . , J} that is induced by the sampling from a DP or from any
random probability measure which is discrete with positive probability. For model B, where
the non-parametric prior component is an analysis-of-variance DDP, clusters of random-effect
parameters occur both within the two groups (hospitals in Milan and outside Milan) as well as
across the geographical location.

Our aim is to compute a suitable posterior estimator ρ̂, representing the best estimate of the
‘true’ clustering of the random effects. Clinically speaking, we would like to estimate a latent
clustering among hospitals of our data set, identifying groups of providers affecting outcomes
at patients’ level in a similar way. This could be of great interest for decision makers, to point out
outliers with respect to a reference standard of quality, as well as to rank groups of structures
according to suitable criteria, after adjusting for all confounding factors, due to both patients’
covariates and hospital features. Choosing a partition ρ can be considered as a model choice
problem, and different approaches to tackle it are available, as proposed in Dahl (2006), Gordon
(1999), Heard et al. (2006) and Ray and Mallick (2006). A loss function approach avoids some
criticisms that are related to the spread of the posterior distribution of random partitions. As in
Lau and Green (2007), we concentrate on loss functions that rely on pairwise coincidences (see
Binder (1978, 1981)) and count how many times a wrong labelling happens, assigning a different
weight to the two types of misclassification. Specifically, we choose the loss function which
assigns a positive cost u any time that two random effects are incorrectly assigned to different
clusters, and a positive cost w any time that two random effects are incorrectly clustered together.
The total loss is then obtained by summing over all pairs. Denoting by ci the true allocation
variable, then

L.ρ, ρ̂/= ∑
.i,j/∈M

{uI.ci = cj, ĉi �= ĉj/+w I.ci �= cj, ĉi = ĉj/},

where ρ̂ is the estimate and ρ is the current value of the partition, and M= {.i, j/ : i < j; i, j ∈
{1, : : : , J}}. The proposed estimate of the random partition in this case is the estimate mini-
mizing the posterior expected loss

E[L.ρ, ρ̂/|Y]= ∑
.i, j/∈M

{uI.ĉi �= ĉj/P.ci = cj|Y/+w I.ĉi = ĉj/P.ci �= cj|Y/},

where ĉi is the estimated allocating variable for the ith unit. Lau and Green (2007) showed that
this is equivalent to maximizing
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l.ρ̂, K/= ∑
.i,j/∈M

I.ĉi = ĉj/.γij −K/,

where γij = P.ci = cj|Y/, and K = w=.u + w/ ∈ [0, 1]. As a function of K, l.ρ̂, K/ characterizes
the quality of each possible ρ̂, and the whole family of such functions determines for which
K, if any, each partition is optimal, as well as defining the optimal ρ̂ for each K. As will be
clear in Section 3, we shall observe how the clustering that is induced by the random partition
changes as different values of K are considered. This will lead to a sort of ‘implicit ranking’ of
the hospitals in our data set.

The maximization of l.ρ̂, K/ can be carried out through binary integer programming tech-
niques, as explained in Lau and Green (2007). Since the total number of hospitals is not large,
the computational effort that is required for solving the optimization problem can be carried
out by using the R package lpSolve (Berkelaar et al., 2004).

2.4. Outcomes classification and prediction
The second major goal of the present work is to make predictions for outcomes of interest
starting from the posterior predictive distributions of our models. It is well known that the
rarest event is difficult to predict, irrespective of the model considered, when the data set contains
binary variables that are characterized by unbalanced shares of success. We propose a method
for addressing this issue, enhancing the strength of the Bayesian approach.

The usual predictive method for binary data is based on point estimates of the posterior
predictive distribution, i.e., since pij is the probability of observing a successful outcome for
item i in group j, the outcome Yij will be predicted as a success whenever E[pij|Y ] is bigger
than a given threshold. In the application, we consider the in-hospital survival probability pij

of patient i admitted to hospital j, and we are interested in correctly classifying the patients
belonging to the current data set as well as in making prediction on the status of a new patient.
Since the survival outcome is strongly unbalanced in this case (97% of in-hospital survival is
observed), the models will provide poor results in predicting deaths, if the usual criteria based
on pointwise estimates are adopted.

Many solutions to this problem have been proposed, since the classification is typically very
sensitive to the choice of the threshold (see, for example, Freeman and Moisen (2008) for
a review and comparison of such most popular criteria in the frequentist literature). In our
opinion, classification rules based on pointwise estimates are not completely satisfactory. First,
they are not robust with respect to the choice of the thresholds. Moreover, since a Bayesian
approach is adopted for modelling data and Bayesian inference provides the whole posterior
predictive distribution of outcomes, we would like to exploit the richer information that it
provides. The posterior predictive distribution for a new patient i in hospital j can be easily
simulated through a Markov chain Monte Carlo algorithm via the compositional parameter
method, first generating a draw from the posterior distribution of the parameters characterizing
the model, and then generating from the conditional distribution of Ynew

ij given the parameters
and the corresponding covariates. We propose a new method for outcome predictions at a lower
unit level. It is based on an interval estimate of the posterior success rate and can be considered
as a generalization of the ‘standard’ estimate, based on pointwise estimates to be compared with
given thresholds. We classify a patient as alive if the, say 90%, credibility interval (CI) of his or
her survival rate is entirely above a given threshold (say 0.5), or as dead if the CI is entirely below
the threshold; we do not decide on the status of the patient if the CI contains the threshold. In
such cases we say that the patient belongs to the uncertainty class (UC). Of course, the higher
the credibility level is, the larger is the number of patients belonging to the UC.
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3. Data analysis

In this section we present the analysis of data arising from the motivating problem, according
to the two models and techniques that were presented in the previous section. As we said before,
the data that we consider come from a clinical registry, named the STEMI archive, gathering
patients admitted with STEMI diagnosis in any hospital of Regione Lombardia district. A
complete description of the registry is provided in Ieva (2012, 2013), where data are presented
together with the clinical setting that motivated their collection. As mentioned in Section 1,
information about both patients and hospitals is available. Among the most important patient
information that is provided by the clinical registry there are mode of admission (a patient
reaches the hospital on his or her own or is delivered by three different types of rescue units
of 118, which is the national toll-free number for emergencies), demographic features (age and
sex), clinical appearance (Killip), risk factors (diabetes, smoking, chronic kidney disease, . . . ),
times to treatment and times to intervention, as well as all the process indicators concerned
with pre- and in-hospital phase, and clinical outcomes. Some of these covariates have already
been described. In this application we focus on in-hospital survival of patients whose data are
contained in the STEMI archive. However, information about the hospital of admission—
considered as the grouping factor—is also present (in particular, a dummy variable indicating
whether the hospital is in or outside Milan and the hospital exposure).

The variability of the distribution of patients’ outcomes is high between structures. The data
set contains n = 697 patients, who were admitted in J = 29 hospitals of Regione Lombardia.
Initial selection of patient covariates was done on a similar data set in Ieva and Paganoni
(2011) by using clinical know-how and stepwise selection procedures, based on the Akaike
information criterion index AIC, confirmed later by a Bayesian variable selection method,
using Gibbs variable selection (as reported in Guglielmi et al. (2012)). As we said in Section 1,
the most significant factors which explain survival probabilities are age, Killip, CKD and total
ischaemic time on the log-scale from symptom onset to the primary angioplasty (balloon), i.e.
log(OB). Providers’ covariates Milano and exposure are also included. In fact, we are interested
in evaluating whether differences between the hospitals may be assessed and, in this case, whether
such differences lead to a clustering of providers.

As far as posterior inference from the models that have been introduced so far is concerned,
first we provide posterior estimates of the parameters for each model, focusing in particular
on posterior interval estimates and cluster estimates of the hospital random effects; then we
evaluate models’ goodness of fit and classify patients according to the predictive rule that was
proposed in Section 2. All estimates have been carried out by a Gibbs sampler algorithm,
translated into a JAGS code which calculates the full conditional distributions automatically.
For completeness some details on the full conditionals are shown in Appendix A. In the two
models we implemented the truncated DP approximation that was suggested by Ishwaran and
Zarepour (2000) to obtain a trajectory from P ; we truncated (and normalized) the sums in
expressions (4), (5) and (9) at H =30. The code is available from the authors on request. We ran
the two models for 200000 iterations, discarding the first 100000, and using a thinning of 20 to
reduce auto-correlations, so that the final sample size was 5000. Trace plots, auto-correlations
and Geweke diagnostics indicate that the Gibbs sampler algorithms could have converged.

A robustness analysis showed that inferences are quite sensitive to the choice of the fixed
effects’ hyperparameters and the variance of the non-parametric components σ2

0 and σ2
1. Con-

cerning the former, we fixed them ‘informatively’ as the means of the posterior distributions
obtained by fitting a parametric model with the same covariates and Gaussian-distributed er-
rors on data arising from a previous data collection of the same registry (see Guglielmi et al.
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(2012)). This enabled us to set informative values for the means of fixed effects α and β, as well as
for their variances σ2

α and σ2
β . In contrast, concerning the random-effect variance components

we tested two classes of prior: the conjugate inverse gamma distribution on the variances and
the uniform distribution on the standard deviations. We refer to Gelman (2006) for a discus-
sion on priors of the variance components in hierarchical models. The estimates of the random
effects are particularly sensitive to the choice of the inverse gamma hyperparameters, whereas
they are more robust by using uniform priors chosen according to prior information derived
from Guglielmi et al. (2012). The total mass parameter was assumed bounded away from zero
owing to numerical instability of the posterior simulation algorithms, as implemented in JAGS.
Finally, we tested an exchangeable prior for the Killip vector .α1, . . . , α4/, instead of assuming
them to be IID. The estimation is robust to these choices, but the mixing is better under the
independence assumption.

Fig. 1 shows the survival posterior predictive distributions for a patient who was discharged
alive (Fig. 1(a)) and for a patient who died (Fig. 1(b)) for model A (full curve) and model B
(broken curve). Note that the two posterior predictive distributions in each panel do not differ
too much, but they do differ from the corresponding prior predictive distributions (which are
not displayed here, to make the graphs clearer). Concerning the patient who was discharged
alive (Fig. 1(a)), he is a male, aged 66 years, with a less severe infarction (Killip class equal to 1),
no chronic kidney disease (CKD =0) and an acceptable total ischaemic time (OB =120 min),
according to guidelines indicating the limit of 120 min. In contrast, the patient who died (Fig.
1(a)) was a male, aged 59 years, with a severe infarction (Killip class equal to 4), no chronic
kidney disease (CKD = 0) and a total ischaemic time (OB = 72 min) that is much lower than
that indicated by guidelines. Both patients had been admitted to hospitals in Milan, although
not the same.
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Fig. 1. Posterior predictive distributions for model A ( ) and model B ( ) of the survival probability
for two patients: (a) one who was discharged alive and (b) one who died
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3.1. Fixed and random-effects estimates
In Table 2 we provide posterior 95% CIs of the fixed effects under models A and B. Hyper-
parameters in equation (2) were set informatively as we mentioned before, specifically μα =
.4:2, 4:2, 4:2, 4:2/′, μβ = .−1:7, −0:45, −1:7, 0:07, −0:45/′, σ2

α =4 and σ2
β =4. For model B, the

same values are adopted, selecting only the fixed effects of interest for expression (7).
Note that the estimates are similar. In particular, the Killip index seems a good stratification

parameter for both models, since the posteriors of the Killip 1 parameter concentrate on ‘high’
values (i.e. it leads to high survival probability), those of Killip 2 and 3 concentrate on ‘average’
values, and those of Killip 4 concentrate on ‘small’ values. As we might expect, as age, log(OB)
and CKD increase, the survival probabilities decrease. Finally, the binary covariate Milano
has a negative effect in model A, whereas the exposure is not significant. This was the reason
why we decided not to include the exposure in model B, but we used the Milano-covariate to
enrich the hospital random-intercepts prior distribution. Results about exposure and location
influence have been investigated in detail by decision makers and physicians. Exposure not
significant means that there is no evidence from data for concluding that hospitals that treat
more patients are necessarily the best in terms of performance, contrary to what people who
are in charge of healthcare government believed. However, as can be appreciated from Fig. 2,
it seems that being treated in Milan results in a worse outcome, which is unexpected. We asked
epidemiologists whether their data would confirm this finding, and they verified that, according
to the evidence of our results, the epidemiology seems to be different between Milan and its
neighbourhoods, expecially for people over 80 years old.

As we discussed in the previous section, we tuned the hyperparameters of the priors of the two
models to match them in terms of marginal random-intercepts priors (see Table 1). In particular,
the matching in Section 2.2 is achieved by fixing (informatively) both marginal distributions of
the random intercepts in Milan as∫

N .−0:45, 4+σ2/I[0,5].σ/dσ =
∫

N .μ1, σ2/I[0,5].σ/π.μ1/dσ dμ1,

with π.μ1/ being the normal distribution N .−0:45, 4/, and outside Milan as∫
N .0, σ2/I[0,5].σ/dσ:

Table 2. Posterior 95% CIs of the fixed effects

Parameter Results for model A Results for model B

2.5% Median 97.5% 2.5% Median 97.5%

Killip1 4.81 6.59 8.49 4.17 6.04 8.10
Killip2 2.79 4.69 6.70 2.45 4.39 6.58
Killip3 2.10 4.22 6.42 1.61 3.70 6.07
Killip4 −0.24 1.57 3.43 −1.12 0.81 2.94
age −3.41 −1.88 −0.50 −3.38 −1.77 −0.35
log(OB) −3.33 −1.82 −0.22 −3.46 −1.91 −0.17
CKD −3.00 −1.71 −0.41 −3.41 −2.09 −0.79
exposure −2.34 0.19 2.79
Milano −3.68 −2.00 −0.26
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Fig. 2. Posterior 95% CIs of the random intercepts for hospitals with at least 10 patients for (a) model A
and (b) model B, highlighting the Milano-effect (the estimates are in increasing order of number of patients
per hospital and the last two intervals represent new random intercepts for a hospital in and outside Milan):
, hospitals in Milan; , hospitals outside Milan

In Fig. 2 we provide posterior 95% CIs of the hospital random intercepts with at least 10
patients, highlighting the Milano-effect, for the two models.

The plots of the hospitals’ slope (exposure) for both models show no appreciable variability,
and for this reason we do not include them here. Note that under model A (Fig. 2(a)) all
the hospitals outside Milan have a higher median than Milan hospitals and the intervals are
shorter. Model B, in contrast, gives higher variability within each subpopulation. This variability
is reasonable because of the greater flexibility of the prior of the second model.

3.2. Hospital clustering
As mentioned in Section 2.3, the non-parametric prior component induces a random partition
of the hospital labels. Therefore we analyse the posterior of the process P to investigate hospital
clustering. In Grieco et al. (2012) we pointed out that few groups could be detected among
hospitals. The same conclusion holds under a parametric Bayesian mixed effects model (see
Guglielmi et al. (2012) for details). We tuned hyperparameters of the prior for the total mass a

in our models according to this prior information, i.e. a ∼ trunc-exp.1/ on the interval [1, ∞/

(equivalently, a=1+X, where X∼exp.1/), which a priori leads to E[a]=2. The a priori number
of groups in this case is 5:8. The mass parameter a is a posteriori concentrated around small
values under both models: mean 1:61 (standard deviation 0:62) in model A and 1:65 (standard
deviation 0:65) in model B. We observe a slight reduction in the expected number of groups,
going from a prior mean of 5:8 to a posterior mean of 4:24 in model A and 4:58 in model B.
Furthermore, we ran the algorithm, varying the prior specification for a (degenerate on different
values or fixing different hyperparameters for its prior) but still yielding a small prior number
of clusters. The posterior estimates of the number of clusters are robust and consistent across
the two models (Table 3).

As far as the fixed effects estimates are concerned, we obtained very robust estimates as well,
with absolute differences, with respect to those in Table 2, of the order of 0.1. The estimates like
those reported in Tables 4–8 later are robust as well.

Even if Bayesian semiparametric models allow a model-based clustering without making
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Table 3. Prior and posterior expected number of
clusters under models A and B

Mass parameter E(K) E(K|data)

Model A Model B

a=1 3.96 3.32 3.74
a=2 6.00 4.80 5.03
a=5 10.03 8.00 7.99
1+gamma.0:5, 2/ 4.50 3.67 4.04
1+gamma.1, 2/ 4.99 3.94 4.28
1+gamma.1, 1/ 5.80 4.24 4.58

any extra assumption, the results that are provided in this sense by such models may not be
straightforward to interpret. The precise estimation of the true number of clusters is, in general,
a very difficult task. As explained in Section 2, the estimated grouping is the optimal partition
defined by the maximization of l.ρ̂, K/. Two hospitals belong to the same cluster j if their labels
are in the same subset of the hospital indices’ partition. In model A, this is equivalent to saying
that two hospitals belong to the same cluster if the observed effects are equal. In model B two
different observed effects can share the same cluster because they could be generated from the
two different subpopulations (i.e. in and outside Milan). Since for any choice of u and w the
optimal partition can be determined, we consider different values for the pair .u, w/, enabling
K to range from the maximum value allowing all hospitals to be clustered together and the
minimum value allowing all hospitals to be singletons. Note that low values of K penalize
separation of items more than aggregation, whereas high values of K do the opposite.

Fig. 3 shows how the clustering that is induced by the optimal partition evolves as K increases,
for model A (Fig. 3(a)) and model B (Fig. 3(b)). Hospitals on the abscissa are sorted to allow
a more effective visualization. On the vertical axis we retain only K-values corresponding to
relevant changes in hospital grouping.

As can be seen from Fig. 3, model B starts to distinguish groups for lower values of K and
it reaches the setting where all items are singletons for higher values of K. In fact, when model
B is fitted to data, for K = 0:21 the best partition minimizing the expected loss is that where
all the hospitals are clustered together. As K increases, some hospitals progressively exit the
cluster and disaggregate, until all hospitals are singletons, which occurs for K=0:81. Analogous
considerations hold for model A, with a smaller range from K = 0:39 to K = 0:66. Note that
disaggregation provided by the model B case is more gradual than that provided by model A.
Observing how the partition evolves as long as K increases, we obtain a sort of implicit ranking
of the providers. In general, starting from low values of K (hospitals clustered together) up to
the high values (hospitals all singletons), the two models give similar results: in fact, hospitals
6 and 11, and, then, 7 and 10 are in both cases among the first that are distinguished from
others. In particular, in model B they are also aggregated in a different cluster for almost all
K. Moreover, during the progressive splitting of the initial group, we observe similar groups
appearing and disappearing in partitions that are generated by both models. Finally, hospitals
9, 15, 21, 23 and 29 are the last to become singletons, and they are grouped together in both
models.

Tables 4 and 5 show 95% CIs of the posterior distribution of the random effects for model
A and model B respectively. It can be observed that estimates concerning hospitals 11, 7, 6
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Fig. 3. Optimal partition of hospitals as K increases for (a) model A and (b) model B

and 10, which were highlighted as similar and detected early as different from all the others
by both models, are concentrated on higher values than the others. Moreover estimates con-
cerning hospitals 9, 15, 21, 23 and 29, which were grouped together by both models for almost
all K-values, are concentrated on lower values than the others. In conclusion, the first items
that are discarded by the initial group are those with the most favourable contribution to the
patient’s survival and the last are those with the less favourable contribution to the patient’s
survival; for this reason we could say that the ‘evolving partition’ is yielding a ranking between
hospitals.

Thus, as long as values of K are far from 0.5 (i.e. .u, w/ far from (1,1)), partitions tend to
point out outliers with respect to a ‘reference’ group, in the sense of Shotwell and Slate (2011).
The discriminating power is determined by K, which is problem driven. We conclude that model
B is better at distinguishing different cases; this is probably due to its greater flexibility.
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Table 4. Posterior 95% CIs of the random effects of model A

Hospital 2.5% Median 97.5% Hospital 2.5% Median 97.5%

11 −1.53 0.49 6.71 29 −2.86 −0.19 1.90
6 −2.18 0.31 5.84 28 −2.96 −0.29 1.65

10 −2.29 0.02 4.65 27 −2.88 −0.06 3.62
7 −2.05 0.14 5.29 26 −2.79 −0.05 3.88

22 −3.94 −0.48 1.38 3 −2.68 −0.04 3.70
13 −2.85 −0.06 3.52 4 −2.81 −0.06 3.31

2 −2.68 −0.04 3.62 25 −2.68 −0.04 3.78
14 −2.79 −0.06 2.41 8 −2.70 −0.04 3.60
20 −2.86 −0.09 2.11 18 −2.82 −0.06 3.52
19 −3.03 −0.38 1.52 17 −2.71 −0.04 3.70
16 −2.90 −0.27 1.70 12 −2.72 −0.07 3.77

9 −2.89 −0.20 1.88 1 −2.79 −0.04 3.41
21 −2.90 −0.21 1.95 5 −2.88 −0.07 3.61
23 −2.86 −0.17 1.96 24 −2.70 −0.03 3.89
15 −2.96 −0.26 1.75

Table 5. Posterior 95% CIs of the random effects of model B

Hospital 2.5% Median 97.5% Hospital 2.5% Median 97.5%

6 −2.80 1.80 9.02 15 −4.34 −1.54 0.83
10 −2.48 2.28 9.37 19 −4.56 −1.89 0.21
11 −1.29 3.74 10.13 16 −2.82 −0.33 1.55

7 −2.10 2.99 9.68 25 −3.33 −0.07 8.19
13 −4.18 −0.83 2.99 24 −3.41 −0.47 8.23

2 −3.98 −0.73 3.12 8 −3.57 −0.64 7.89
14 −3.97 −0.95 1.65 18 −3.48 −0.60 7.86
28 −3.63 −1.34 2.01 17 −3.67 −0.61 3.24
22 −4.11 −1.60 0.69 26 −3.52 −0.66 7.81
20 −3.70 −1.42 0.97 3 −3.86 −0.68 3.26

9 −3.76 −1.54 0.54 5 −3.60 −0.71 7.79
21 −3.76 −1.53 0.59 12 −3.51 −0.65 7.86
23 −3.71 −1.53 0.50 4 −3.71 −0.70 7.78
29 −3.72 −1.50 0.63 1 −4.09 −0.74 3.27
27 −3.56 −0.72 8.01

3.3. Model fit and patients’ classification
In this section we estimate the variability that is explained by our models by using the Bayesian
R2 that is defined in equation (11) and evaluate their performance by predicting the in-hospital
survival probability for each patient. In particular, we compare two different predictive methods:
the usual method based on point estimates summarizing the posterior predictive distributions,
and the new method that we proposed, based on interval estimates.

The Bayesian R2 of the two models is provided in Table 6. Observe that model B seems to
fit the data better (higher value of the Bayesian R2), as we expected according to its greater
flexibility.

In our application, since the share of outcome success in the data set is particularly unbal-
anced, if we consider the standard threshold equal to 0:5, we would obtain a very low overall
misclassification rate (around 2% for all models), but a bad result in the prediction of the rare
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Table 6. Bayesian R2

defined in expression (11)
for model A and model B

Model R2

A 0.35
B 0.57

Table 7. Predictive tables of
survival outcome when the
classification rule is based on
the comparison between survival
posterior means and NpD0:97

Ŷ Y =1 Y =0

(a) Model A
1 599 3
0 75 20

(b) Model B
1 596 3
0 78 20

Table 8. Predictive tables of
survival outcome when the clas-
sification rule is based on sur-
vival posterior 90% CIs and
threshold equal to 0.5

Y =1 Y =0

(a) Model A
Ŷ =1 661 8
Ŷ =0 0 3
UC 13 12

(b) Model B
Ŷ =1 661 8
Ŷ =0 0 2
UC 13 13

outcome (death). In this case, more than 50% of deaths were misclassified. For this reason,
it is important to keep the death misclassification rate as low as possible. A first attempt at
improving the ability of the model in predicting deaths is based on adopting a threshold equal
to the empirical rate of success, as suggested in Cramer (1999). Table 7 displays the results of the
patient classification under model A (part (a)) and model B (part(b)), using a threshold equal to
the sample survival rate (p̄=0:97). The posterior predicted rates of survival and death are more
balanced than using a threshold of 0.5. However, we obtain a worse overall misclassification rate
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(around 10% for all models). This is because the overall misclassification rate is less dependent
on the imbalance, as explained in Cramer (1999).

As far as our new classification rule is concerned, in Table 8 we report 90% posterior predictive
CIs and assume equal misclassification costs, i.e. the threshold is set equal to 0.5. With our data
set, only around 4% of the patients belong to the UC and the total misclassification rate, based
only on classified patients, is less than 3% for both models. Considering the number of patients
in the UC as an index of the predictive performance of the model, the two models provide similar
results. Of course there is a trade off between the length of the UC and the misclassification
rate, whose setting is problem specific.

Furthermore, the number of patients who were classified in the UC depends on the lengths
of the CIs of the posterior predictive distributions, which in turn are sensitive to the prior
variances of the fixed effects. Therefore we suggest fixing prior components for the fixed effects
informatively, using previous data and/or expert opinions. Moreover, the Bayesian R2 can be
also used ‘a priori’ to verify whether the prior specification reflects what we expect in terms of
explained variability.

In Fig. 4 we provide the 90% posterior predictive CIs for all patients under model B (the
corresponding plot of model A is quite similar and we do not report it here). Note that most
of the interval lengths of the patients who survived are quite small, whereas there is more
uncertainty on the negative outcomes, as expected, since the unsuccessful outcome is rare. As
an example, in Fig. 5 we focus on a smaller set of patients (those 29 who were treated in hospital
19, under model B). Note that predictive distributions with very large and very low mean have
small width, whereas those with mean around 0.5 have wider interval estimates. There are five
unclassified patients and only one is misclassified.

Finally, even if we fit a different model including the exposure random effect through a
DDP (as mentioned in Section 2.2), the posterior inference does not differ from those reported
here. Nevertheless, a comparison of the exposure parameter CIs shows that including the expo-
sure non-parametrically through a DDP leads to more variability between hospitals than we
observed by fitting model A.

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

Fig. 4. 90% posterior predictive CIs of all the patients (ordered by increasing median) under model A: ,
positive outcomes; , negative outcomes
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Fig. 5. 90% posterior predictive CIs of all the patients from one of the hospitals belonging to the STEMI
archive, obtained by fitting model B to the data (there are five unclassified patients and only one was mis-
classified): , alive patients; , dead patients

4. Conclusions

In this work, two different Bayesian semiparametric logit models are fitted to grouped data
related to the in-hospital survival outcome of patients hospitalized with STEMI diagnosis. DDP
priors are considered for modelling the random-effect distribution of the grouping factor (the
hospital of admission), with the aim of studying their clustering through the optimal partition
minimizing a posterior pairwise coincidence loss function.

We fitted two models to the data, matching the marginal distributions of corresponding ran-
dom effects, and compared them in terms of the Bayesian R2-index that was proposed in Gelman
and Pardoe (2006). Then we studied the evolution of the estimated partition as the proportion
K of incorrect clustering cost increases. A sort of implicit ranking between hospitals or groups
of hospitals can be sustained, since low values of K identify better performing hospitals in terms
of influence on patient’s survival, whereas high values of K retain worse performing hospitals.
Random partitions provide a powerful tool to investigate latent grouping structure among ran-
dom effects in grouped data, without making any further assumption. Finally, we developed
a classification rule for patients’ survival (a strongly unbalanced outcome in our application)
based on the posterior CIs instead of pointwise estimates. This rule introduces the UC, which
collects patients whose CIs include the reference threshold that is adopted for classification.
However, it proved to be less sensitive to the choice of the threshold than classification criteria
based on pointwise estimates.

Further developments of this work will be focused on taking advantage of physicians’ expertise
in prior elicitation. Moreover, it would be of interest to develop a dynamic update of DDP
priors, generalizing frameworks such those proposed by Dunson et al. (2012) and Lin et al.
(2010). Finally, methods aimed at monitoring the evolution of the clusters over time, trying
to identify the causes of the changes, are of great interest for a proper monitoring of hospital
performance, since only a structured and systematic monitoring of the care delivery process may
lead to an improved healthcare process. We think that the methods that were adopted in this
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paper properly and effectively tackle the problem of supporting decision makers in assessing
hospitals’ performance, enhancing interactions between physicians and statisticians.
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Appendix A

Section 2.1 shows that both models can be interpreted as generalized linear mixed models where the
random-effect distribution is a DP (depending on covariates). In particular, in both models, the conditional
distribution of the data is the natural exponential family

p.yij|θij/= exp[yijθij − log{1+ exp.θij/}], θij = log
(

pij

1−pij

)
= x̃T

ijβ + z̃T
ijbj: .12/

In this appendix, to simplify the notation, β represents the vector of all fixed effects, whereas bj is the
random-effect parameters for the jth hospital as in the rest of the paper.

In particular, when describing model A through expression (12), β has p = 9 components, and bj is
scalar and represents b0j + b1jzj in model (1), for fixed zj . The value z̃ij in expression (12) is 1, whereas
x̃ij = .uij , xij/, where uij and xij are as in Section 2.1. The prior for β is N .μ0, Σ0/, where μ0 = .μα, μβ/ and
Σ0 is a diagonal matrix with the first four values equal to σ2

α and the last five equal to σ2
β (see expression

(2)). Finally, the prior for b1, . . . , bJ is

bj
IID∼ DP.a, P0/, P0 =N .0, σ2

0 +σ2
1z2

j /:

Therefore, the corresponding full conditionals in the Gibbs sampler are those described in Kleinman
and Ibrahim (1998), section 4. In particular, in this setting we have

p.β|b1, . . . , bJ , y/∝ exp
[

J∑
j=1

nj∑
i=1

yij.x̃
T
ijβ + z̃T

ijbj/− log{1+ exp.x̃T
ijβ + z̃T

ijbj/}− 1
2

.β −μ0/
TΣ−1

0 .β −μ0/

]

p.bj|β, b−j , y/∝
J∑

k=1,k �=j

exp
[

nj∑
i=1

yij.x̃
T
ijβ + z̃T

ijbk/− log{1+ exp.x̃T
ijβ + z̃T

ijbk/}
]
δbk

+a

(∫
exp

[
nj∑

i=1
yij.x̃

T
ijβ + z̃T

ijbj/− log{1+ exp.x̃T
ijβ + z̃T

ijbj/}
]

f0.bj/dbj

)

×f0.bj/
nj∏

i=1
exp[yij.x̃

T
ijβ + z̃T

ijbj/− log{1+ exp.x̃T
ijβ + z̃T

ijbj/}],

where f0 is the density of P0.
As far as model B’s description is concerned, β has p=7 components, and the vector x̃ij can be easily

recovered from expression (6). However, here bj = .b0j , b1j/ and z̃ij = .0, 1/ if hospital j is in Milan, and is
(1,0) otherwise. From an analytical point of view, the prior for .β, b1, . . . , bJ / remains unchanged, since β
is still Gaussian distributed (it is straightforward to derive the mean and covariance matrix), and here P0
is N .0, σ2

0/×N .μ1, σ2
1/. Hence, the full conditionals have the same analytic expressions displayed above.

The inferences were computed by using JAGS; the code for both models is available from the authors on
request.
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Regione Lombardia, Milan.

Dunson, D. B., Ren, L. and Carin, L. (2012) The dynamic hierarchical Dirichlet process. In Proc. 25th Int. Conf.
Machine Learning, pp. 824–831.

Ferguson, T. S. (1973) A Bayesian analysis of some nonparametric problems. Ann. Statist., 1, 209–230.
Freeman, E. A. and Moisen, G. G. (2008) A comparison of the performance of threshold criteria for binary

classification in terms of predicted prevalence and kappa. Ecol. Modllng, 217, 48–58.
Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Baysn Anal., 1, 515–533.
Gelman, A. and Pardoe, I. (2006) Bayesian measures of explained variance and pooling in multilevel (hierarchical)

models. Technometrics, 48, 241–251.
Gordon, A. D. (1999) Classification, 2nd edn. New York: Chapman and Hall.
Green, P. J. and Richardson, S. (2001) Modelling heterogeneity with and without the Dirichlet process. Scand. J.

Statist., 28, 355–375.
Grieco, N., Ieva, F. and Paganoni, A. M. (2012) Performance assessment using mixed effects models: a case study

on coronary patient care. IMA J. Mangmnt Math., 23, 117–131.
Guglielmi, A., Ieva, F., Paganoni, A. M. and Ruggeri, F. (2012) A Bayesian random effects model for survival

probabilities after Acute Myocardial Infarction. Chil. J. Statist., 3, 1–15.
Heard, N. A., Holmes, C. C. and Stephens, D. A. (2006) A quantitative study of gene regulation involved in the

immune response of anopheline mosquitoes: an application of Bayesian hierarchical clustering of curves. J. Am.
Statist. Ass., 101, 18–29.

Ieva, F. (2012) Statistical methods for classification in cardiovascular healthcare. PhD Thesis. Politecnico di
Milano, Milano. (Available from http://hdl.handle.net/10589/56803.)

Ieva, F. (2013) Designing and mining a multicenter observational clinical registry concerning patients with Acute
Coronary Syndromes. In Identification and Development of New Diagnostic, Therapeutic and Organizational
Strategies for Patients with Acute Coronary Syndromes (eds N. Grieco, A. M. Paganoni and M. Marzegalli).
New York: Springer.

Ieva, F. and Paganoni, A. M. (2011) Process indicators for assessing quality of hospital care: a case study on
STEMI patients. JP J. Biostatist., 6, 53–75.

Ishwaran, H. and Zarepour, M. (2000) Exact and approximate sum representations for the Dirichlet process. Can.
J. Statist., 30, 269–283.

Kleinman, K. P. and Ibrahim, J. G. (1998) A semi-parametric Bayesian approach to generalized linear mixed
models. Statist. Med., 17, 2579–2596.



46 A. Guglielmi, F. Ieva, A. M. Paganoni, F. Ruggeri and J. Soriano

Lau, J. W. and Green, P. J. (2007) Bayesian model-based clustering procedures. J. Computnl Graph. Statist., 16,
526–558.

Lin, D., Grimson, E. and Fisher, J. (2010) Construction of dependent Dirichlet processes based on Poisson
processes. In Advances in Neural Information Proceeding Systems 23 (eds J. Lafferty, C. K. I. Williams, J.
Shawe-Taylor, R. S. Zerel and A. Culotta).

MacEachern, S. N. (1999) Dependent nonparametric processes. Proc. Baysn Statist. Sci. Sect. Am. Statist. Ass.
MacEachern, S. N. (2000) Dependent Dirichlet Processes. Technical Report. Department of Statistics, Ohio State

University, Cleveland.
Müller, P. and Quintana, F. A. (2004) Nonparametric Bayesian data analysis. Statist. Sci., 19, 95–110.
Plummer, M. (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In Proc.

3rd Int. Wrkshp Distributed Statistical Computing (eds K. Hornik, F. Leisch and A. Zeiles), pp. 20–22. Vienna.
Quintana, F. A. and Iglesias, P. L. (2003) Bayesian clustering and product partition models. J. R. Statist. Soc. B,

65, 557–574.
Ray, S. and Mallick, B. (2006) Functional clustering by Bayesian wavelet methods. J. R. Statist. Soc. B, 68,

305–332.
R Development Core Team (2009) R: a Language and Environment for Statistical Computing. Vienna: R Founda-

tion for Statistical Computing.
Rodriguez, A. and Dunson, D. B. (2011) Nonparametric Bayesian models through probit stick-breaking processes.

Baysn Anal., 6, 145–178.
Sethuraman, J. (1994) A constructive definition of Dirichlet priors. Statist. Sin., 4, 639–650.
Shotwell, M. and Slate, E. H. (2011) Bayesian outlier detection with Dirichlet process mixtures. Baysn Anal., 6,

1–22.
Spiegelhalter, D., Sherlaw-Johnson, C., Bardsley, M., Blunt, I., Wood, C. and Grigg, O. (2012) Statistical methods

for healthcare regulation: rating, screening and surveillance (with discussion). J. R. Statist. Soc. A, 175, 1–47.


