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We focus on the second virial coefficient B, of fluids with molecules interacting through hard-sphere
potentials plus very short-ranged attractions, namely, with a range of attraction smaller than half
hard-sphere diameter. This kind of interactions is found in colloidal or protein suspensions, while the
interest in B, stems from the relation between this quantity and some other properties of these fluid
systems. Since the SCOZA (Self-Consistent Ornstein-Zernike Approximation) integral equation is
known to yield accurate thermodynamic and structural predictions even near phase transitions and
in the critical region, we investigate B5“°“* and compare it with B$**!, for some typical potential
models. The aim of the paper is however twofold. First, by expanding in powers of density the
condition of thermodynamic consistency included in the SCOZA integral equation, a general analytic
expression for B5C9%A is derived. For a given potential model, a comparison between B5°°%A and
B may help to estimate the regimes where the SCOZA closure is reliable. Second, following the
Vliegenthart-Lekkerkerker (VL) and Noro-Frenkel suggestions, the relationship between the critical
B, and the critical temperature 7. is discussed in detail for two prototype models: the square-well
(SW) potential and the hard-sphere attractive Yukawa (HSY) one. The known simulation data for
the SW model are revisited, while for the HSY model new SCOZA results have been generated.
Although BISY at the critical temperature is found to be a slowly varying function of the range of
Yukawa attraction Ay over a wide interval of Ay, it turns out to diverge as Ay vanishes. For fluids
with very short-ranged attractions, such a behavior contrasts with the VL assumption that B, at the
critical temperature should be nearly independent of the range of attraction. A very simple analytic
representation is found for the available Monte Carlo data for 75Y and BYSY as functions of the
range of attraction, for Ay smaller than half hard-sphere diameter. © 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4825174]

Il. INTRODUCTION

About fifty years ago computer simulations estab-
lished that liquids cannot exist in the absence of attractive
interactions.!=> More recently, it was ascertained that even the
range of attraction is essential, since it can affect the phase
behavior of a substance. In fact, when the attraction range
falls below a critical value, a liquid phase cannot be stable,
and the gas-liquid or liquid-liquid phase transitions become
metastable with respect to freezing.*

In colloidal or protein suspensions, it is most common
to encounter both attractive and repulsive interactions having
very short ranges, in comparison to the size of the macro-
molecules. In particular, in solutions of globular proteins, the
short-range character of the attractions seems to be the cause
of metastability for a liquid-liquid phase separation occurring
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below the fluid-solid transition.’ Furthermore, the presence
of such a metastable transition cannot be neglected, since it
has some noticeable effects on the crystallization behavior of
these proteins.°

Fluids with very short-ranged attractions represent a true
challenge for the liquid state theory. In fact, all these sys-
tems exhibit very low critical temperatures when measured
in units of the depth of the attractive well, so that any study of
their phase transitions requires an accurate description of their
properties down to very low temperatures, i.e., in regimes
where all the main statistical mechanical tools — computer
simulations, integral equations, and perturbation theories —
encounter some difficulties.

The present paper stems from two important studies on
fluids with very short-ranged interparticle attractions, pub-
lished thirteen years ago by Vliegenthart and Lekkerkerker
(VL)” and by Noro and Frenkel (NF),? respectively.

The main finding that VL obtained, from computer sim-
ulations for a variety of potentials, is the following: as the
range of attraction narrows, the critical temperature T, drops
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considerably, but the second virial coefficient

o0
By(T) = —2m f drr* f(r), 1)
0
when evaluated at the critical temperature, i.e., at T = T, re-
mains practically constant’ (here, f{r) = exp [—B¢(r)] — 1
denotes the Mayer function, ¢(r) is the potential, 8 = (kgT)™!
is the inverse temperature, and kg is the Boltzmann constant).
Working with the “reduced” second virial coefficient

B} = B,/B}S, )

where BIS = (277/3)0 refers to hard spheres (HS) with di-
ameter o, the VL result can be expressed, more precisely,
as

B =Bi(T.)~-15 )

(remember that a positive (negative) B, means that repul-
sions (attractions) are predominant). As a consequence, VL
proposed the following empirical criterion for predicting the
critical temperature: whenever the reduced second virial co-
efficient is about —1.5, the fluid must be close to its critical
temperature.’

To emphasize the importance of B,, VL recalled that even
the conditions for optimum crystallization of a number of
globular proteins are characterized by values of the osmotic
second virial coefficient, which fall into a narrow interval,
the so-called crystallization slot.” The Bj values for optimum
crystal growth are however different for different proteins and
vary between —1 and —10 .

The NF work shares the opinion that, when the inter-
molecular potentials ¢(r) have — in addition to a repulsive core
— a very short-ranged attractive tail ¢, (r), the details of this
latter part of the interaction are not important. The essential
features are only the strength and the effective range of the
attractive term. Consequently, one can expect different fluids
(within an appropriate class) to exhibit an essentially similar,
more or less “universal,” behavior.

Noro and Frenkel characterized any physical model
with short-ranged interactions by means of only three scal-
ing parameters, computed from the knowledge of the inter-
particle potential alone, without any need for experimental
measurements.® These parameters are: (1) an “effective” hard
core diameter o.g; (2) an energy scale ¢ = —|¢|, which ex-
presses the strength of attraction, being equal to the well depth
of the attractive tail in the potential; and, finally, (3) the re-
duced second virial coefficient B;, which allows to quan-
tify the range of attraction. In fact, NF defined the “effec-
tive” range of an arbitrary attractive potential to be equal to
the (temperature-dependent) well-width A, of an “equiva-
lent” square-well (SW) model, that yields the same B} at the
same “reduced” temperature T* = kg T/|¢|. Exploiting this NF
mapping onto an equivalent square-well (SWeq), it turns out
that, in general, the boundary between stable and metastable
vapor-liquid transitions lies within a narrow band around
Aeq >~ 0.14, in units of o (according to other authors, the
minimum range of attraction is about 1/6 of the range of
repulsion'?).

Using their scaling parameters, NF then proposed an ex-
tended law of corresponding states,® which can be formu-
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lated as follows: for a wide class of systems, all colloidal
or protein suspensions having the same values of “reduced”
temperature T*, “reduced” density p* = (N/ V)ajff (N parti-
cles of diameter ¢ in a volume V), and “reduced” second
virial coefficient By, must obey the same reduced equation of
state: Z = Z(T*, p*, BY).

More recently, the relationship between critical temper-
ature and second virial coefficient was also investigated by
Nezbeda et al.'"'? and by Zhou.'?

As the VL and NF works, the present paper tries to inves-
tigate what occurs to the properties of some typical models
for colloidal or protein systems, when the range of attraction
in the intermolecular potential narrows strongly. In particu-
lar, we focus on the second virial coefficient as a simple but
interesting quantity, as VL and NF pointed out.

In principle, computer simulations, integral equations,
and perturbative methods are the most important tools pro-
vided, for such a study, by the modern statistical mechan-
ics of fluids. Here, we will mainly follow an integral equa-
tion approach, adding to the well-known Ornstein-Zernike
equation'* the so-called Self-Consistent Ornstein-Zernike Ap-
proximation, commonly abbreviated as SCOZA closure.'> 1
The reason for this choice is that, for a variety of models,
the SCOZA turns out to yield structural and thermodynamic
properties in globally good agreement with computer simula-
tions even near phase transitions and in the critical region.!”2

In the light of the relevance of the second virial coeffi-
cient for systems with short-ranged attractions, it is natural to
ask what the SCOZA result for B, is. In the present paper, we
answer this question by solving the SCOZA self-consistency
equation analytically at the lowest order in a density expan-
sion scheme. This zero-order result leads to a fully general
and analytic expression for the SCOZA approximations to
both the Mayer function and the corresponding second virial
coefficient.

In Sec. II these SCOZA analytic expressions are ob-
tained, and in Sec. III they are applied to two prototype mod-
els for fluids with short-ranged attractions, namely, the SW
and the HS-attractive Yukawa models. For any given potential
model, comparison between the values of B5“9”* and B!,
by varying temperature and range of attraction, can be used
as a simple tool to determine, at least to a first approxima-
tion, the regimes where the performance of SCOZA can be
regarded as satisfactory.

In the second part of this work, i.e., Sec. IV, we discuss,
both in the exact case and in the SCOZA, the relationship
between the behavior of Bj at the critical temperature and
the vanishing of 7" itself, as the range of attraction tends to
zero. After revisiting some known results for the SW poten-
tial, we perform a thorough analysis of old and new data for
the Yukawa model. Finally, Sec. V is dedicated to some con-
clusions and perspectives.

Il. THE SCOZA INTEGRAL EQUATION

The Ornstein-Zernike (OZ) integral equation for a one-
component fluid with spherically symmetric interactions
is the following relationship between the total and direct
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correlation functions, i(r) and ¢(r), respectively,'*

h(r) =c(r)+p / dr’ h(r')e(Ir —r')), “

where p = N/V is the number density, h(r) = g(r) — 1, and
g(r) is the radial distribution function (RDF). For all potentials
with a hard-sphere part, i.e.,

pry={ T =° s)
r)= ,
buit(r) r>o

the RDF function must satisfy the exact core condition g(r)
=0forr<o.

To solve the OZ equation it is necessary to add a further,
approximate relationship between A(r) and c(r), the so-called
“closure.” The SCOZA reads'3-!7

c(r) = cus (r) + K(B, p)pua(r) for r > o. Q)

Here, cus(r) denotes the direct correlation function
(DCF) of the corresponding HS fluid, and it is assumed to
be known. In principle, several choices are possible for it: the
simplest one is the Percus-Yevick approximation, i.e., cys(7)
= 0 for r > o, but a better representation may be given by
either the Verlet-Weis'® or the Waisman'? parameterization,
both with cys(r) #Oforr > o.

The factor K(8, p) depends on the thermodynamic state.
The SCOZA closure stems from the mean spherical approx-
imation (MSA), which assumes simply K(8, p) = —pB. In-
stead, K(B, p) of SCOZA is not fixed a priori, but is deter-
mined through the thermodynamic self-consistency require-
ment between the compressibility (C) and energy (E) routes
to thermodynamics. This condition is provided by the thermo-
dynamic identity

3 [3BP 3%u
(=) =r:3 @
ag \ adp ap
if the pressure P is evaluated via the compressibility equation
agP o
BP _ 1 —4mp / dr r*e(r), ®)
ap 0

while the excess internal energy per unit volume, u, is given
by the energy equation
UeX UCX

YEV TN

(here, “excess” is referred to the ideal gas).

Whereas condition (7) is trivially satisfied by the exact
pressure and energy, P**" and u***', in the SCOZA — which
is an approximate theory — one must search for some K(g,
p) (if it exists) able to ensure the required self-consistency.
Equation (7) is usually reformulated as a diffusion-like par-
tial differential equation (PDE) for u#, which must be solved
numerically, after specifying the initial condition at 8 = 0
as well as two boundary conditions, at p = 0 (i.e., u(8, p
= 0) = 0, VB) and at the upper boundary p, of the density
interval,!”-20:2!

The finite-difference algorithm used for the numerical in-
tegration of this PDE is rather cumbersome, and a necessary
step consists in solving the OZ equation supplemented by the
SCOZA closure. Unfortunately, it is a common finding that,

= 2mp? /(-)00 dr r’g(r) ¢(r) )]
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if the tail ¢,;(7) of a hard-core potential is very short-ranged,
then the solution of the SCOZA-PDE becomes more and more
difficult. In fact, in order to obtain a solution independent of
the position of py, this boundary must be moved to very high
values, near the close-packing limit, where the numerical al-
gorithm may even fail to converge.?%2!

In the present paper we try to get some insight into the
SCOZA self-consistency condition from an analytical point
of view. Our results will then be applied to two of the most
typical examples of short-ranged tail potentials.

To this aim, after expanding P, u, ¢, and g in powers of
the density, we will substitute these series into Eqs. (7)—(9).
From Eq. (7), together with

o0
BP =p+Bp>+---=p+ ) Bup",
m=2

00
u = Lt2,02+"' = Zumlom»
=2

equating the terms corresponding to the same powers of p
yields a simple relationship between virial coefficients B,, and
energy coefficients uy:
B,
p

This condition may also be rewritten as

=m-—Du,, m>2. (10)

B
Bm—B,',jS=(m—1)/ up dp', m=>2, 11
0

with BI® being the mth virial coefficient of the HS fluid.

On the other hand, if ¢(r) = anozo cm(r)p™, then Eq. (8)
implies that the compressibility virial coefficients (B,,)c can
be calculated from the DCF coefficients as

1 o0
(Bw)c = —4m 7/ dr r’cp_a(r), m>2, (12)
m Jo

where co(r) = f(r) is the Mayer function.

Finally, the energy coefficients — hereafter denoted as
(um)E to show explicitly that the energy route is used — can
be obtained by the RDF coefficients. More conveniently, after
introducing the cavity function y(r) through the relation g(r)
= e(r)y(r), with e(r) = 1 + f(r), one can write

g =1[1+ (] DY yu(r)p"

n=0

with yo = 1, and get

(Um)g = 277/ dr r* [1+ ()] ¢(r) ym—(r), m >2.
0
(13)

Using these expressions for the coefficients (B,,)c
and (u,)g, we can impose the compressibility-energy self-
consistency at each order in density, p™, separately. The re-
sulting B,,s represent the SCOZA common values of the com-
pressibility and energy virial coefficients. We shall call them
compressibility-energy virial coefficients, writing

(BQ)E‘?OEZA = (Bz)%COZA — (BZ)SECOZA .
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In the following, we will however restrict our study to the
lowest order case, that is m = 2.

A. SCOZA self-consistency solved analytically
at the Bs-level

From Egs. (10), (12), and (13), applied to hard-core po-
tentials, one finds when m = 2

3 (B
(a ;)C = (g ,
(By)¢c = BS — 27 /Oodr r2f(r), (14)

(2)p =27 / drr?* [1+ f(r)] du(r)

(recall that fir < o) = —1 for hard-core potentials, and
flr > o) =exp[ — Bdua(N] — 1).

Let us focus on the consistency at the Bp-level. A first
remark is that any closure determines a corresponding ap-
proximation to the exact Mayer function f(r). Taking the
zero-density limit of the SCOZA closure, i.e., ¢(r) = cus(7)
+ K(B, p)dpua(r) for r = o, one finds fir) = fus() + K(B,
p = 0)pui(r) for r > o. Thus, adding the above-mentioned
condition f{(r) = —1 for r < o, we obtain

SO = fus () + Ko ¢ui(r) O — o), Vr = 0.

(15)
Here, ® = 1 + fys is the Heaviside step function (®(x < 0)
=0, O > 0) = 1), while Ky = K(8, p = 0) is the zero-order

coefficient in the density expansion of K(8, p), i.e.,

K(B. p) = Ko(B) + Ki(B)p + K2(B)p* + - -.
Replacing f(r) WithfSCOZA(r) in both (B;)¢ and (u;)g yields

(B = BY® — Ko I
, (16)
)3 O =1 + Ko I
where
(o)
I =21 / dr 2 [T (17)
(o2

Thus, the self-consistency at the B;-level, dB,/d8 = u,, leads
to the following differential equation for Ky(f8):

0Ko/0B +EKo=—1, wheree=DhL/I (18)
('€ has dimensions of energy ), whose solution is

Ko(B) =2 '[exp(—B &) — 1. (19)

It is worth stressing that such a simple expression is fully
general, i.e., it can be applied to any model within the class
of the hard-core potentials. Moreover, it shows that, if € is
very small, then K practically reduces to the MSA limit, i.e.,
Ky=-8.

In principle, our analysis might be extended to the Bs-
level, in order to obtain an expression for K;(8). Such a task
goes, however, beyond the scope of the present paper.

Our next step will then be the application of the general
expression for Ky(8) to two of the simplest models of short-
ranged tails in hard-core potentials.

J. Chem. Phys. 139, 164501 (2013)

lll. APPLICATION TO PROTOTYPE MODELS

We shall take into account the two simplest models able
to represent fluids with very short-ranged attractions: the SW
interaction and the hard-sphere attractive Yukawa (HSAY, or
simply HSY) potential. The SW model has no direct interpre-
tation in terms of specific physical effects, but includes empir-
ically both a repulsive and an attractive term, so that it is able
to predict vapor-liquid phase transitions. On the other hand,
the attractive and repulsive Yukawa potentials may be related
to the screened Coulomb interactions occurring in ionic so-
lutions, and by this reason they have often been employed in
models for protein suspensions.?>~2*

Within the framework of the studies on very short-ranged
attractions, the SW model was investigated through Monte
Carlo (MC) computer simulations by Bolhuis et al.,”> Lépez-
Rendén et al.,’® and recently by Largo et al.”’” The SCOZA
integral equation was applied to the SW potential by Scholl-
Paschinger et al.?° as well as by Pini et al.?!

As regards the HSY model, many studies — using
mainly MC simulations — focused on the relationship be-
tween the phase behavior and the range of the attractive
potential.'%2>28-30 The SCOZA approach was employed by
Foffi et al.,>' Orea et al.,>> and by Valadez-Peréz et al.>* The
paper by Orea et al.>> has been our main source of both MC
and SCOZA numerical data for the HSY model.

For all potentials with a HS-part, like those in Eq. (5),
from the “exact” B, we can get

B =3 / dx x* f(x), (20)
1

where x = r/o is the dimensionless distance and B}, = Bj
— 1 is the “excess” second virial coefficient, i.e., the excess

part — with respect to the HS value — produced by the tail.

A. Square-well tail

In the square-well model, the attractive tail ¢;(r) is
given by

sw e=—l¢] o<r<ioc=((+A)o
it () = 0 r> Ao
(21)
The “exact” reduced second virial coefficient then reads
(B =1 — [+ AY =1 -1, @22

where Sle| = 1/T*.
On the other hand, the SCOZA Egs. (17)~(19) yield
I = B\ — De, b, = BS(A3 — 1)e?, and thus & = &,

Ko(B) = —le| ™" (P —1). (23)

Equations (15), (16), (21), and (23) then lead to the following
important results:

fSW—SCOZA(r) — fSW—exact(r)’ (24)

(Bz)g\”\/-ESCOZA — BZSW—exaCI. (25)

In brief, for SW potentials, the SCOZA Mayer function
always coincides with the exact one, and thus generates —
for any generic temperature 7 — the fully correct analytic
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expression for the compressibility-energy second virial coef-
ficient. The same conclusion can be drawn in the case of a
square-shoulder, or square-mound, tail.

B. Attractive Yukawa tail

The Yukawa tail is defined by

Pai (1) =€ oexpl—z(r —o)/r. 1 =0, (26)
and is attractive when ¢ = —|¢|. The parameter z is related

to the range of the Yukawa tail, which can be defined — in
dimensionless form — as

Ay = (797", where 7* = zo. 27

For the HSAY model, the exact Mayer function and exact
B, are given, respectively, by

1 e~ &—D/Ay

fHSY—exact(x) = exp (

—1, forx>1,
T* X

(28)

o0
(B;)HSY—exact —-1— 3f dx X2 fHSY—exact(x). (29)
1

On the other hand, applying our SCOZA formulas leads
to I} = ?)BZHS Ay(l1+ Ay)e, I, = %BZHS Ave?, and thus
F=s/201+ Ay)]

1
Ko(B)=2(1+ Ay) z |:exp (_Z(IIiSAY)> — 1] . (30)

Consequently, in the attractive case the SCOZA approxima-
tion to the Mayer function is

HSY-SCOZA _ L 1 —
f x) =214+ Ay) [exp(T* 2(1+Ay)) 1:|
—(x—1)/Ay
xS G1)

X

for x > 1, while the SCOZA B> turns out to be

(BESTSCO% = 1 = 6Ay (1 + Ay)?

1 1
* [e"p (T* 201+ AY)> 1] O
This novel analytic expression represents one of the main re-
sults of the present paper.

First of all, we can observe that, if the tail range vanishes
(Ay — 0) at constant reduced temperature T* — this condi-
tion of moving along a reduced isotherm must be emphasized
— then both BYISY-exact gngq BIISY-SCOZA tend 1o BIS, ie.,

: #\HSY-exact __ : «\HSY-SCOZA __
Ahlll 0 (B3) B Ahlll 0 (BZ)C» E =1
(T* L const.) (T* L const.)
(33)

Furthermore, at fixed Ay, the same HS limit is obtained by
taking T* — oo, whereas both BIISY-exact gnd pHSY-SCOZA gj_
verge to —oo as T* — 0 (but the former grows faster in abso-
lute value).

J. Chem. Phys. 139, 164501 (2013)
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FIG. 1. Reduced second virial coefficient B, of the HSY model as a func-
tion of the Yukawa range of attraction Ay, at several decreasing values of
the reduced temperature 7*: (a) High and intermediate temperatures, (b) low
temperatures.

From a comparison between (B} and

HsY-scoza
(B3)HSY-exact jt arises spontaneously a question: how accurate
is the SCOZA estimate with respect to the exact result?
To test the reliability of SCOZA, we have thus calculated
the above-mentioned Bj’s as functions of the tail range
Ay, at several fixed T*-values. Figure 1 displays our main
results.

The agreement of (B} )g?}'SCOZA with (B;‘)HSY’exam is ex-
cellent at high T*, over the whole Avy-interval considered, and
remains good down to 7* ~ 0.5. The reason of such a good
agreement, at high and intermediate temperatures, can be bet-
ter understood after expanding these two virial coefficients in
powers of (T*)7!, ie.,

3001
47V

1 00 673(x7])/Ay 1
N dx —— + .-,
2,/1 X T*3

1
(BTt =1 =34y (14 Ay) — =
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1 3 1
B HSY-SCOZA:1_3A 1 Av) — — —A
(B3) v+ Ay) = = 7AYo
1 Ay 1
81+ Ay T*

The terms up to the second order coincide perfectly. Unfor-
tunately, the satisfactory performance of SCOZA rapidly de-
teriorates for 7* < 0.5. In any case, the SCOZA values for
B} are overestimated with respect to the exact ones: for Ay
=1, the error is about 19% at T* = 0.3 and 43% at T* = 0.2,
respectively.

These discrepancies between BYSY-SCOZA gpq pliSY-exact
can be motivated by comparing the corresponding Mayer
functions. In Figure 2 we have plotted these f~bonds for de-
creasing tail ranges (Ay = 3, 1, 0.5, 0.1), at decreasing tem-
peratures (T* = 10, 1, 0.5, 0.3). At low temperatures one
finds very large discrepancies, mainly near contact, i.e., at
x &~ 1-1.5. Here, SCOZA underestimates, in general, the ex-
act f-bonds; as a consequence, BYSY-SCO%A j5 always less neg-
ative than BJSY-**_The differences between the contact val-
ues fHSY-exact(qu) — el/T* — 1 and fHSY»SCOZA(1+) increase
with decreasing 7* and increasing Avy. This behavior is due

0.10 \ i
=10 4
0.08 —
SCOZA J
- Exact i
= 0.06 §
= i
0.04 _|
0.02 |

0.00 s
X 2.5 3.0

r/o

6 ]
FN ]
AR ]
3 RN (¢ T =05 7
0\ N ]
HoA N i
3 \ SCOZA 1
4+ \ N — — - Exact N
HERANRNE ]
L \ N ]
= v N 1
=3 ]

r/o
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to the fact that fHSY-exact(1+) depends only on T*, whereas
fHSY-SCOZA(1+) also changes with varying Ay.

IV. CRITICAL TEMPERATURE AND By(T)

As already mentioned, the second virial coefficient eval-
uated at the critical temperature, B3 = B3 (T}), plays an im-
portant role in the studies on the phase behavior of colloidal or
protein solutions. In particular, it is of special interest to know
its dependence on the range of the short-range attractive tail
of the potential.

First of all, one must be aware that the limit of B3 (T), as
such a tail range vanishes, does not give the HS result. In fact,
the HS value comes out when the limit is taken at constant
T*, whereas T — 0, and consequently 1/T — +o0, if the
tail range tends to zero.

A word of caution is, however, necessary. In fact, it is
worth stressing that the vanishing of the tail range should
not be absolutely confused with the so-called sticky limit of
an attractive interaction. This, really different, idea was orig-
inally introduced by Baxter,?® performing a special limit of a
peculiar SW model, whose well becomes infinitesimally nar-
row, but simultaneously infinitely deep, in such a way that

SCOZA T
— — - Exact 4

1.0 1.5 2.0 2.5 3.0
r/c
25 i
i .
i\\\\\\ @ T=03
207
IR — pLoza
I \ xact
AN
15V

f(r)

r/o

FIG. 2. Comparison between SCOZA and exact Mayer functions for the HSY model, at decreasing reduced temperatures.
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the contribution of the attractive tail to B} remains finite and
non-zero. More precisely, the starting point is a SW with
|eBaxier] = B 'In[1 4+ (127 A)~!], where 7 is a Baxter pa-
rameter related to stickiness and temperature. Putting |&paxier|
into Eq. (22) and taking the limit A — 0 yields the second
virial coefficient for a sticky hard-sphere (SHS) fluid, i.e.,
(B)SHS =1 — (47)~L.

On the analogy of the SW case, the sticky limit of the
HSY model should consist in putting |¢| = |&¢|/Ay and taking
the limit Ay — 0. Unfortunately, such a limit of (B3 )HSY-exact
turns out to be divergent,>*3 so that one must conclude that
it is really impossible to define in this way the sticky limit
of a HS-Yukawa potential. In the past literature some confu-
sion arose about this point, because of the non-divergence of
(B3)HSY-MSA 34.35 The simultaneous occurrence of a divergent
(B3)HSY-exact and a non-divergent (B;)"SYMSA is not surpris-
ing, but simply a further example of the thermodynamic in-
consistency between the MSA closure and the exact theory.

A. SW simulation data revisited

The vanishing limit of the SW model has been thoroughly
investigated, by means of MC computer simulations by Largo
et al.,”” down to A-values as small as 0.005.

We have employed these MC data for (7)Y from
Table I of Ref. 27 to calculate, through Eq. (22) with T*
= T}, the corresponding simulation results for B}¢. The A-
dependence of (B;)SVMC is shown in the upper panel of
Figure 3. The lower panel then displays the A-dependence
of (TC*)SW-MC.

The most remarkable finding is that, in the range 0.005
< A < 0.1, B¢ for the SW model turns out to be a nearly
linear function of A, so that Largo et al? represented this
subset of data by B} = —1.174 — 1.774A. Before that work,
L6pez-Rendén er al.*® had already shown that (B;%)SW-MC,
when examined in a wider interval, is neither a constant nor a
linear function of A.

Most importantly, the MC simulations by Largo et a
indicate that (B3°)W™MC tends to a finite non-zero limit as A
— 0, ie., lima_,o B} (T)) = —1.174, which — as these au-
thors observed — is slightly higher than the value —1.21, es-
timated by Miller and Frenkel®® for the SHS model proposed
by Baxter.??

Now, the critical temperature of the SW model can rigor-
ously be related to B;¢ solving Eq. (22) as

L 27

B*C SwW
*SW:1n|:1_ (2,ex) - 2:|
(T 3A(1+A+5A2)
PV 43a(1+a+1a?)
3(1+A+ 142 '

_(B*c

2,ex

=InA'+1n
(34)

Since the aforesaid, accurate, MC simulations clearly suggest
the convergence of B¢ to a finite non-zero limit, the diver-
gence of 1/(T*)SY as A — 0 is fully characterized by the
term In A~!.
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FIG. 3. Upper panel: Three different polynomial approximations to the ex-
act B; of the SW model, as functions of the well-width A (filled squares
depict the MC simulation data by Largo et al.>’). Lower panel: Three ap-
proximations to the SW critical temperature 7., corresponding to the three
expressions for B} shown in the upper panel. The SCOZA data are taken
from Refs. 20 and 21.

Depending on the approximation chosen for (B;%)SY
in Eq. (34), we can derive several analytic expressions for
(TC*)SW as a function of A. The three simplest ones are:

(1) Zero-order approximation (AQ), which replaces
(B5%)SW with a constant value, as suggested by VL’ and NF.?
Largo et al.?’ chose

B} = B3(A =0) = —1.174. (35)

(2) First-order approximation (Al), replacing (B;C)SW
with the linear form

(B3)W = —1.174 — 1.774A, (36)

which Largo et al.?’ used to fit — over the interval 0.005 < A
< 0.1 — their MC data.

(3) Second-order approximation (A2). We have fitted all
the (B;¢)SWMC values — over the whole interval 0.005 < A
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< 0.8 — by the polynomial
(B3)SW = —1.174 — 2.057A + 0.831A% (37)

At very small A-values, the AO, Al, and A2 predic-
tions for T are practically indistinguishable, but their differ-
ences increase with increasing A. The upper panel of Figure 3
shows how the A0 approximation to (B;¢)SV is really crude.
Nevertheless, the assumption of constant B;° is already suf-
ficient to describe the correct A-dependence of T for small
A-values, with an error less than 1% up to A ~ 0.05 (see the
lower panel of Figure 3).

The relative insensitivity of T." to the precise functional
form of BJ¢, at least at very small A-values, is essentially due
to the strong nonlinearity — near the origin — of the logarith-
mic relationship given by Eq. (34). On the other hand, from a
global point of view, it is apparent that A1 improves on A0,
while the A2 results are the best ones.

Our conclusions about these approximations are: (1) for
the SW model, the constant B} approximation is really ac-
ceptable only when working with very short-ranged tails; and
(2) a second-order approximation to B}°(A) is necessary if
one wishes a really good representation of (7*)SVMC je.,

1
(T*)SW-MC
c

0.7247 + 0.686A — 0.277A*
=In|l+ .

A1+ A+1A?)

(38)
This analytic expression for the SW model may be regarded as
a simple parameterization of the MC simulation data, which
is accurate at least up to A &~ 0.8.

Before concluding this part, it is worth noting that in Fig-
ure 3 we have also included SCOZA results for the SW model,
available in the literature. After taking all the (7.%)SW-S€0ZA
data published by Scholl-Paschinger et al.?® as well as by Pini
et al.,”' we have derived the corresponding second virial co-
efficients (B3¢)SW-SCO%A by calculating (B3)SW !, given by
Eq. (22), at T* = (Tc*)SW'SCOZA. The lower panel of Figure
3 shows that, while the (7})SW-5€9ZA values are practically
coincident with the (7;%)SVMC ones for A > 0.3, they start
to deviate (in the sense of an overestimation) with respect to
the “exact” MC data when A < 0.3. These small differences,
scarcely appreciable on the scale of this figure, become expo-
nentially amplified when passing to the second virial coeffi-
cients displayed in the upper panel. Unfortunately, no SCOZA
results for A < 0.1 are available at present. Thus, no clear
and definitive conclusion can be drawn on the behavior of
(B1)SW-SCOZA 55 A —5 (2!

However, Figure 3 helps to understand how, although
SCOZA Yyields the exact analytic expression for the second
virial coefficient, i.e., By>VSCOZA(T) = BSW-exaci(T)  pev-
ertheless its critical value is not exact in the regime of very
short attraction ranges. In fact, (B;¢)SWSCOZA stems from two
ingredients, since (B;C)SW»SCOZA = B;SW-exact(Tc*SW-SCOZA)
[whereas (B;C)SW—exact — B;SW—exaCt(TC*SW—MC)]’ and we have
observed that the accuracy of the SW-SCOZA critical tem-
perature deteriorates when A becomes very small. Briefly, the
exact and SCOZA critical B;'s of the SW model may differ
since they involve the same function, but evaluated at different
critical temperatures.

J. Chem. Phys. 139, 164501 (2013)

TABLE I. SCOZA critical temperatures and densities of the HSY potential
in reduced units for several values of the inverse-range parameter z*.

Z* TL‘* pj

30 0.21900 0.613
50 0.17713 0.634
60 0.16424 0.635
80 0.14584 0.629
100 0.13306 0.618
150 0.11286 0.581
200 0.10062 0.546
250 0.09219 0.514
350 0.08102 0.462
500 0.07093 0.407
800 0.05989 0.339
1000 0.05539 0.310

B. T; and B;° of the Yukawa model

In order to investigate the relationship between 7. and
B¢ for the attractive-HSY (HSAY) model, we have first col-
lected many simulation data for the HSY critical temperatures
available in the literature, and then calculated the correspond-
ing critical second virial coefficients.

From Table I by Orea et al.3> we have taken both “exact”
MC and SCOZA results for 7" as a function of Ay. Unfor-
tunately, computer simulation data for HSAY fluids with very
short-ranged tails —i.e., z* > 7 or Ay < 0.14 —are quite scarce
in the literature. To the set {7} reported by Orea et al.*?
we have thus added one further value found by Dijkstra'® for
the extreme case of z* = 100 (Ay = 0.01), using MC sim-
ulations supplemented by thermodynamic integration. In this
way, our set {7, }MC includes data ranging from z* = 1.8 up
to z* = 100, or, equivalently, 0.01 < Ay < 0.56.

The SCOZA predictions for T.* were obtained, of course,
through a fully numerical solution of the integral equation.
Furthermore, to make up for the lack of data in the region of
very small Ay-values, we have generated some new SCOZA
data. Using the same numerical machinery employed by one
of us (D.P.) in the past,”'32 we have been able to reach re-
ally high z*-values up to z* = 1000, i.e., Ay = 0.001. The
accuracy of the numerical calculations was checked by deter-
mining a posteriori the pressure P and the chemical potential
by both the compressibility and the internal energy route,
and the differences between the two routes were indeed found
to be negligible.

Table I of the present paper reports these new SCOZA
results for 7 and the corresponding critical densities. Tech-
nical details about the numerical solution of the SCOZA inte-
gral equation relevant to the high-z* regime may be found in
the above-mentioned papers by Scholl-Paschinger et al.?® and
by Pini et al.?!

The set {B3°}MC has been generated by inserting the
{T*MC data into Eqs. (28) and (29), and performing the re-
quired integration numerically. On the other hand, the set
{B3°}5€OZA has been obtained from {7}}5°©%A through the
analytic expression, Eq. (32). All these T;* and B3 values are
displayed in Figure 4.
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FIG. 4. Comparison between SCOZA and exact MC results for both the criti-
cal temperature (upper panel) and the critical second virial coefficient (lower
panel), as functions of the attraction range Ay, for the HSY model. In the
upper panel, the first two MC points are due to Dijkstra,'? while the dotted
line corresponds to the critical temperatures predicted by the Vliegenthart-
Lekkerkerker criterion, as described in the text.

The plot for 7* — similar to those shown by Orea et al.*

as well as by Valadez-Pérez et al.>* — looks qualitatively simi-
lar to the SW one shown in Figure 3. The SCOZA predictions
for T are in overall good agreement with the MC values in
the Ay-interval considered, in particular, for Ay &~ 0.04-0.3.

For Ay 2 0.1, one finds (B;*)HSYMC ~ —1.5, in agree-
ment with the VL hypothesis. On the other hand, the differ-
ence between (B3¢)HSY-SCOZA and (B;¢)HSYMC jncreases on
decreasing Ay. This means that at very small tail ranges —
which imply very low critical temperatures — the SCOZA clo-
sure is no more reliable, from the quantitative point of view.
Nevertheless, from the qualitative point of view, both the MC
and the SCOZA results seem to agree in showing that the
behavior of (B;)SY for Ay < 0.05 is apparently different
from that of (B;%)SY resulting from the simulations by Largo
et al.”’ Specifically, unlike the SW case, (B;)SY is divergent
as Ay vanishes.

J. Chem. Phys. 139, 164501 (2013)

However, it should be pointed out that in the MC case
such a conclusion is supported by only the two points at
smallest Ay obtained in Ref. 10 through simulations com-
plemented by thermodynamic integration. In the light of the
sensitiveness of B to the precise value of 7* at small Ay, the
production of further MC data in this region would be highly
desirable in order to ascertain this point. On the other hand,
in the SCOZA the divergence of B}° is unquestionable on the
basis of the new data generated by us for the present work.

We would also like to stress that such a divergence is not
a byproduct of the different functional form of (Bj)HSY-SCOZA
with respect to (Bj)HSYext In fact, as observed in Sec. III
B, (B;)HSY-SCOZA actually overestimates (Bj)HSY-xat There-
fore, for Ay — 0 a divergence to —oo is found also if

(B3)HSY-exact ig evaluated at the SCOZA critical temperatures
(T')HSY-SCOZA
N .

C. Test of the VL criterion for predicting (T)"SY

As mentioned in the Introduction, Vliegenthart and
Lekkerkerker’ asserted that, in general, T is much less sen-
sitive to the precise form of B}¢ than vice versa. Hence, for
the determination of T it is not necessary to know the sec-
ond virial coefficient with a great accuracy, but even the ap-
proximation of constant B} may be sufficient. Specifically,
these authors assumed that the second virial coefficient of col-
loidal or protein suspensions, at the critical temperature, has
the value (B3°)p 2 —1.5. Consequently, we can predict the
critical temperature of the HSY model with a given Ay by
solving, with respect to T, the equation

[B;(TC*, AY)]HSY—CXaCI — (B;C)O. (39)

Here, one must use the “exact” By, given by Egs. (28) and
(29). Since this B} is related to T.* through the integral of Eq.
(29), Eq. (39) can be solved only numerically. It is, however,
worth stressing that solving this VL equation is — at this point
— a procedure fully independent of the Noro-Frenkel mapping
onto an equivalent SW model, which will be discussed later.

Clearly, the divergence of (B;°)"SY at the origin strongly
contrasts with the VL hypothesis of constant B;°. Neverthe-
less, we have equally applied the VL criterion to the HSY
model, after neglecting the diverging portion of the B;°-curve.

Instead of the VL value —1.5, in Eq. (39) we have em-
ployed our own estimate for (B3“)o. Indeed, we have deter-
mined this constant by fitting the MC data for (B3°)"SY dis-
played in Figure 4 (lower panel), after neglecting the portion
of the curve diverging at the origin (in practice, only the first
two or three points). From the fit over the interval 0.07 < Ay
< 0.56 we have found the following zero-order approxima-
tion (BO):

(By9)HSYMC ~ (Br¢y) = —1.413, (40)

which lies however close to the VL estimate. Substituting this
value into the VL equation (39), and solving it numerically,
we have obtained the results displayed as a dotted line in the
upper panel of Figure 4.

The agreement between our VL results and the MC data
for (T;)H8Y is quite satisfactory for 0.04 < Ay < 0.25, while
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FIG. 5. (a) Symbols depict MC and SCOZA results for the inverse criti-
cal temperature of the HSY model, plotted as functions of logjpAy. Dotted
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power-law fit, as described in the text. Solid line: analytic representation cor-
responding to Eq. (43). (b) MC and SCOZA results for the logarithm of the
inverse critical temperature, as functions of logjgAy. Symbols and lines have
the same meaning as in (a).

for larger Ay-values our VL curve overestimates the MC re-
sults (again as in the SW case), and for very small Ay it is
difficult, on the scale of this figure, to assess possible quan-
titative discrepancies, which will be visualized more clearly
in Figure 5. On the other hand, we have verified that using
the original VL assumption B¢ = —1.5 would lead to a T;*-
curve falling only slightly below our VL line. As a conse-
quence, one would get a small improvement for Ay 2 0.3,
but at lower Ay-values the VL curve with B;® = —1.413 ex-
hibits a slightly better agreement with the MC data.

D. An explicit analytic representation for (T*)HSY

Unfortunately, our VL results are merely numerical,
while it would be desirable to get some analytic representa-
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tion of both the critical temperature and the critical second
virial coefficient of the HSY model.

Recalling that in the SW model B;° does not diverge,
while 1/ T diverges as In A~! when A — 0, one may also
wonder how the divergent behavior of (B;*)"SY depends on
that of (1/ 7)Y, or vice versa.

In the HSY-SCOZA case, we can take advantage of our
analytical expression for (B;)HSY-SCOZA e Eq. (32) to-
gether with Eq. (31), which can be rewritten as

(BYISY-SCOZA _ | _ 3Ay (1 4 Ay) fHSY-SCOZA( 1+ Ty
(41)

or solved with respect to the critical temperature as

HSY-SCOZA —2(14+Ay)
L [1 (B3 }

(T.)HSY-SCOZA — 6Ay (1 + Ay)?

(42)
Note that the latter expression resembles the SW one,
Eq. (34).

Both the exact and the SCOZA Bj¢ are related to the
Mayer function at the critical temperature. In general, we can
state that the behavior of B;° depends on the rate of diver-
gence of 1/ T} or, equivalently, of f(11; 7).

Hence, to get more insight into the behavior of the HSY
model, we have first plotted both the exact and the SCOZA
data for (1/T})!5Y as functions of In Ay (see Figure 5(a),
where we have used log oAy for a better readability). Then, in
Figure 5(b), we have also displayed In(1/ 7)Y as a function
of In Ay (again replacing In with logjg). A linear portion in
Figure 5(a) means a logarithmic dependence — like In A"
(weak divergence; «; > 0) — in the relevant subinterval, while
a linear part in Figure 5(b) highlights a power-law behavior —
like AL™ (strong divergence; oy > 0).

In the right half of Figure 5(a) — which corresponds to Ay
2 0.04 — both the MC and the SCOZA results for 7.* agree
well with the prediction from the VL hypothesis of a constant
Bj°. Moreover, in this region one also observes that 1/T;" is
really a nearly linear function of log;oAy. This means that in
this subinterval the MC, the SCOZA, and even the VL results,
can all be represented by a logarithmic-law. On the contrary,
in the left half of Figure 5(a), 1/(T)HSY-SCOZA deviates sig-
nificantly from the VL prediction. At the same time, these
SCOZA results at very small Ay fall neatly on a straight line
when plotted on a logo-logig scale (see Figure 5(b)). A linear
regression, taking into account only the first ten points, gives
the following “power-law fit”: 1/(T;)HSY-SCOZA ~ A4 A
with A ~ 1.267 and o =~ 0.387. Clearly, such a power-law
divergence of 1/T/ is too strong to give a finite B} for Ay
— 0, leading instead to the divergence shown in Figure 4.
All this means that, at least in the SCOZA case, there exists a
crossover between a logarithmic-law behavior for Ay > 0.04
and a power-law behavior for Ay < 0.04.

In the small-Ay regime, a deviation from the VL predic-
tion is observed also for the MC results, as expected on the
basis of the behavior of (B3*)HSY"MC discussed above. How-
ever, the extent of the deviation is smaller than that found in
SCOZA, and the paucity of MC data in this region does not
allow one to obtain any reliable indication on the dependence
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of 1/(T)HSYMC on Ay in the region closest to the origin.
Nevertheless, it may be useful to provide a simple analytical
parameterization of all the available MC results over the in-
terval 0 < Ay < 0.5. To this purpose, we have empirically
fitted 1/(T;)HSYMC by means of the sum of a logarithmic and
a power-law term, according to the following expression:

1 0.175
—  ~InAJ! + 43)
(Tc*)HSY-B-oo Y ;/2

As shown in Figure 5, this very simple form does give
an accurate representation of 1/(7)HSYMC at least within
the interval considered here. A word of caution may, how-
ever, be appropriate: we do not claim that the exponent 1/2
in the power term is the “exact” one. It should be regarded
only as a good guess, leading to an accurate description of the
MC results available at present, but having no special physi-
cal meaning. Consequently, it should not be taken too literally,
since a close value might be equally well acceptable.

E. (B3°)HSYMC and the NF mapping onto
an equivalent SW

A simple analytic representation for (B3¢)"SY"MC js more
difficult to obtain, since the exact relationship between B3°
and 1/T} involves an integral. In order to bypass such a
numerical problem and get an analytic approximation for
(B3)HSYMC " we can resort to the Noro-Frenkel suggestion
of mapping the attractive-HSY potential onto an equivalent
SWeq model.® The NF recipe allows to write, at any tempera-
ture T*,

(B;)HSY — (B;)Sweq =1 DHSY(T*)(e]/T* _ 1)’ (44)
with
D™Y(T*) = [1 + Ansy.eq(THP — 1, (45)

where Apgy, ¢q(7) is the width of the well equivalent to the
HSY tail.

At the critical temperature, we have computed directly
D(T}) = —B;¢, /(e!/™" — 1) from the simulation data for
(THHSYMC and (B3, )HSYMC and fitted this quantity with a
simple polynomial, i.e.,

D(T}) =~ Ay (0.857 + 5.393Ay — 1.346A%),  (46)

for0 < Ay <0.7.
In passing, note that we do not need the explicit calcula-
tion of Agsy,eq(77"), which may however be obtained — as a

byproduct — from Apgy eq(T}) = /1 + DHSY(T) — 1.
From Egs. (43), (44), and (46), we can now obtain an
analytic approximation to (B3¢)"SY"MC which reads

(B3)PSY: SWeaB20 — 1 _ (0.857 + 5.393Ay — 1.346A7)

0.175
X |:exp (Al/z) — Ay:| . 47)
%

The label B-co serves to recall that this expression for the
second virial coefficient does diverge at the origin (the same
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FIG. 6. Several approximations to the exact MC results for B3 of the HSY
model. The label B-oco refers to Eq. (47).

label has already been employed in Eq. (43), to stress that it is
conjugate to the present one). The corresponding results are
shown in Figure 6.

Now, we can also complete the discussion of Sec. IV C
on the VL criterion for predicting the critical temperature, by
exploiting the NF mapping, which allows to write

! (—Bs )HSY»MC
evsw, — |1+ 2 |
(1) e Ay (0.857 +5.393Ay — 1.346AY)
(48)

In this equation 1/7} is again related to B through a
logarithmic function, so that even a large variation of Bj¢
turns out to be practically inconsequential, as affirmed by the
VL criterion.

We will indeed study the effect of using different approxi-
mations to (B;¢)1SYMC _of increasing accuracy — in Eq. (48).

In addition to the zero-order approximation (B0) already
introduced in Sec. IV C, we take into account two other ap-
proximations without the diverging portion of the curve:

(1) First-order or linear approximation (B1):

(B3)ISYMC ~ 1241 - 0.812 Ay. (49)

(2) Second-order approximation (B2):
(B3)HSYMC ~ 1212 (1 + Ay) +1.038 A%, (50)

All the considered approximations are shown in
Figure 6.

As BO0-, the B2-expression has been obtained by fitting
over the interval 0.07 < Ay < 0.56, whereas the B1-one refers
to the more restricted, nearly linear, portion 0.07 < Ay < 0.4.

The values of T predicted by all these approximations
to B3¢ — through the SW¢q mapping — are finally plotted in
Figure 7 (for comparison, we have also plotted the expres-
sion given by Eq. (43), with the same label B-oco used for its
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FIG. 7. Comparison among several predictions for 7 of the HSY model,
corresponding to the approximations to B3° shown in Figure 6. The solid
line with label B-oo corresponds to Eq. (43). The inset magnifies the portion
closest to the origin.

conjugate second virial coefficient). Although the crude
constant-B3¢ approximation yields results which are good
enough, in the region (0.25, 0.5) the B1- and B2-expressions
do provide a progressively better agreement with the MC data.

However, a merely visual judgement cannot be fully reli-
able. Rigorously speaking, the predictions by all these formu-
las with a non-diverging second virial coefficient correspond
to a behavior near the origin different from that described by
Eq. (43). Indeed, BO, B1, and B2 all imply a weak diver-
gence of (1/T;)HSY, since in these cases Eq. (48) produces
only a divergent term In Ay, exactly as in the SW model.
These differences become, however, really significant only for
0 < Ay < 0.04, as can be appreciated from the inset of
Figure 7, where the portions nearest to the origin of all these
T -curves are magnified.

It is again worth emphasizing that our interest in the re-
gion of very short ranges of attraction, extending down to the
origin, is an important characteristic of the present study. All
our figures displaying directly the critical temperatures, both
for the SW and HSY models (namely, Figs. 3, 4, and 7), illus-
trate the behavior of 7" even when the range of attraction van-
ishes. Furthermore, we have discussed the problem of the rate
of vanishing of T, which has an influence on how the criti-
cal second virial coefficient depends on the range of attraction
near the origin. A comparison can be made, for instance, with
Figs. 14 and 15 by Valadez-Pérez et al.,** which show the
critical temperatures of the HCAY, Asakura-Oosawa, and SW
models as functions of the interaction range (or the “effective”
interaction range )). These figures are very similar to ours,
but are restricted to the nearly linear portion of the 7 -curves,
omitting completely the origin. In particular, Fig. 14 refers
to the interval 0.05 < Ay < 0.35, and Valadez-Pérez et al.’*
fitted the corresponding simulation data for the HCAY fluid
with a linear function (7 )HSYMC = (0.190(5) + 1.586(26)Ay
(similar linear functions were also proposed by these au-
thors for other potential models). Unfortunately, this range-
dependence law cannot be extrapolated down to the origin,
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since it is evident that such linear functions cannot satisfy the
physically based boundary condition that, in general, the crit-
ical temperature of any fluid must vanish when the attractions
tend to zero.'®

Although this paper is mostly concerned with the behav-
ior of T} and B;*, it is worthwhile concluding this section
by observing that the deviations of SCOZA from the VL-NF
predictions as Ay — 0 involve also the critical density p}. In
fact, on the basis of the NF generalized law of correspond-
ing states, one expects that, in this limit, p} of the HCY fluid
should tend to a limit close to the value p¥ = 0.552 obtained
by the accurate MC simulations of Largo et al.?’” for a SW
potential of vanishing width. However, inspection of Table I
shows that for Ay — 0 the SCOZA p; does not appear to
saturate to a finite value, but rather follows a non-monotonic
behavior: on decreasing Ay, it increases at first, but takes a
maximum p¢ >~ 0.635 for 1/Ay =~ 60, and then decreases as
Ay 1is further decreased. Unfortunately, the MC simulations
for small Ay of Ref. 10 do not report results for p¥, so we are
not in a position to make any comparison with other simula-
tions in this regime.

V. CONCLUSIONS

The present work has focused on the possibility of an ac-
curate statistical mechanical description of fluids even when
the attractive part of their intermolecular potentials, which
may include a hard-sphere term, turns out to be extremely
short-ranged. This situation, very common for colloidal sus-
pensions or protein solutions, represents a really hard problem
for all the most employed approaches of the statistical me-
chanical theory, i.e., integral equations — and specifically the
OZ equation with the SCOZA closure — as well as MC sim-
ulations, or perturbation theories. Thus, any progress about
the applicability of these methods to such demanding regimes
can also contribute, in principle, to a better understanding
of experimental data relevant to colloidal/protein physical
systems.

Let us summarize the main results of the paper.

(1) We have determined the general analytic expression
of Ky(B), the zero-order term in the density expansion of
K(B, p), the state-dependent parameter which ensures, in the
SCOZA closure, the self-consistency between compressibil-
ity and energy routes to thermodynamics. Our result can be
applied to any HS potential with a tail, and allows to derive
analytically the corresponding SCOZA approximation to the
Mayer function and thus to the second virial coefficient.

(2) It has been demonstrated that, for SW as well
as square-shoulder fluids, the SCOZA second virial coeffi-
cient always has the exact analytic form, while this is not
the case for a generic tail potential. However, the equality
B3SW-SCOZA — pxSW-exact a1 3 generic temperature 7* does
not imply that the critical SCOZA second virial coefficient
(B3¢)SW-SCOZA ig always exact. In fact, this quantity is ob-
tained by evaluating B3SW-x at the SCOZA critical tem-
perature (7*)SW-SCOZA " which deviates from the “exact” MC
one when A becomes very small.

(3) The analytic formula for may help to esti-
mate the reliability of SCOZA for a given model in a given

SCOZA
B 2
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regime: when the values of BS“°%A(T*) and B**(T*) - eval-
uated at the same temperature (as in all cases illustrated by
Figure 1, which refers to the HSY model for several values
of T*) — begin to differ significantly, then the SCOZA clo-
sure is breaking down. Clearly, such a criterion does not ap-
ply to the SW potential, since in this peculiar case the equal-
ity B5COZA(T*) = B$**(T*) is identically satisfied. This fact
might suggest that SCOZA should work perfectly for the
SW model, whereas it is known?*2! that SCOZA deterio-
rates for very short-ranged SW fluids, and seems to perform
better for the HSY case, although the analytic expressions
of BISYSCOZA ang pHISY-exact are different. Perhaps, to ex-
plain this counter-intuitive behavior, one might guess a com-
pensation of errors in the SCOZA virial expansion. Unfortu-
nately, a discussion on this point would require the extension
of our study to the SCOZA higher-order virial coefficients,
i.e., BSCOZA with m > 2, which is not trivial even for m = 3
and goes beyond the scope of the present paper.

(4) A special attention has been paid to the regime of
extremely short-ranged attractions (very close to the origin
of the A- or Ay-axis), for both the HSY and SW potentials.
We have investigated, as the range of attraction tends to zero,
the rate of vanishing of 7. To this aim, we have generated,
in particular, a new set of SCOZA results for the attractive-
HSY model in the region of extremely narrow Yukawa
tails.

(5) The HSY second virial coefficient satisfies the
Vliegenthart-Lekkerkerker criterion for Ay 2 0.1, but di-
verges as the tail range vanishes. The corresponding SCOZA
estimate exhibits qualitatively the correct trend, but differs
quantitatively from the exact value when Ay becomes very
small.

(6) From fitting the available MC data, we have empiri-
cally found an extremely simple approximation to the critical
temperature of the Yukawa model, i.e.,

NG

HSY-MC
() 0175 - AV
. — Ay n AY

¢

(5D

(previously denoted as (7;*)HSYB->) which is accurate within
the interval of narrow tails 0 < Ay < 0.5. A corresponding
analytic expression has also been determined for the second
virial coefficient.

(7) For the HSY model, the VL-NF hypothesis of using
a constant-B, approximation to predict the critical tempera-
ture works sufficiently well for 0.04 < Ay < 0.25. On the
contrary, a better, polynomial, approximation to (B;°)***" is
required for a really accurate determination of 7* when Ay
2 0.25. Furthermore, in the regime of very short-ranged
Yukawa tails — corresponding to Ay < 0.04 — the divergence
of B, at the origin cannot be neglected.

In future perspective, the present work remains open to
possible analytic extensions, which could obtain the expres-
sions for the next, higher-order, SCOZA coefficients, i.e.,
K,(B) withn > 1.

One may wonder whether the SCOZA would predict a
negatively diverging B}¢ in the limit of vanishing attraction
range also for different tail potentials. Unfortunately, for a
generic tail one has to turn to a fully numerical algorithm,
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whose solution for very narrow interactions poses severe
difficulties.??! Nevertheless, it is worthwhile recalling that in
Ref. 21 the application of SCOZA to the SHS model was con-
sidered. This model, as recalled in Sec. IV, is obtained from a
SW potential when the limit of vanishing attraction range and
infinite well depth are taken simultaneously, in such a way
that B, remains finite. Quite unexpectedly, it was found that
SCOZA fails to give a critical point and fluid-fluid phase sep-
aration for this model. As pointed out above, the SHS model
refers to a situation different from the limit of vanishing tail
range at constant well depth considered here. Still, this result
represents another instance, in which the requirement of the
existence of a critical point with a finite B, cannot be fulfilled
within SCOZA.

As far as the MC results are concerned, the evidence of a
diverging B, at the critical temperature for Ay — 0 is admit-
tedly weaker than in SCOZA. In fact, the number of simula-
tion data for very small Ay is scarce, with just two cases for
7* = 1/Ay > 25 that we are aware of.!° Moreover, notwith-
standing the accuracy of those simulations, one should keep
in mind that in this regime of small Ay and small 7, even a
small uncertainty in 7* entails significant deviations in B}°.
Hence, we hope that the present paper may stimulate the pro-
duction of new MC data for the HSY potential in the most
demanding regime of extremely short-ranged tails.

Finally, some theoretical work on the exact rate of di-
vergence of 1/T) in the HSY model would also be highly
desirable.
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