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 PProgressive osseous heteroplasia (POH) is a rare autosomal dominant disorder of mesenchymal differentia-

tion characterized by progressive heterotopic ossification (HO) of dermis, deep connective tissues and skel-
etal muscle. Usually, initial bone formation occurs during infancy as primary osteoma cutis (OC) then
progressively extending into deep connective tissues and skeletal muscle over childhood.
Most cases of POH are caused by paternally inherited inactivating mutations of GNAS gene. Maternally
inherited mutations as well as epigenetic defects of the same gene lead to pseudohypoparathyroidism
(PHP) and Albright's hereditary osteodystrophy (AHO).
During the last decade, some reports documented the existence of patients with POH showing additional fea-
tures characteristic of AHO such as short stature and brachydactyly, previously thought to occur only in other
GNAS-associated disorders. Thus, POH can now be considered as part of a wide spectrum of ectopic bone for-
mation disorders caused by inactivating GNAS mutations.
Here, we report genetic and epigenetic analyses of GNAS locus in 10 patients affected with POH or primary
OC, further expanding the spectrum of mutations associated with this rare disease and indicating that, unlike
PHP, methylation alterations at the same locus are absent or uncommon in this disorder.

© 2013 Published by Elsevier Inc.
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Introduction

Progressive osseous heteroplasia (POH; OMIM 166350) is a re-
cently described rare autosomal dominant disorder of mesenchymal
differentiation characterized by progressive heterotopic ossification
(HO) of dermis, deep connective tissues and skeletal muscle. Initially
bone formation occurs at birth or during infancy as primary osteoma
cutis (OC) and then HO extends progressively into deep connective
tissues and skeletal muscle during childhood [1]. Clinical presentation
of POH can be extremely variable, thus the severity and morbidity
depend on the location and the extent of the HO. Some cases of
POH appear sporadic, whereas some are familial.

In 2002, Shore et al. demonstrated that most cases of POH are
caused by paternally inherited inactivating mutations of GNAS, the
complex imprinted locus encoding also for the alpha-subunit of
heterotrimeric stimulatory G protein (Gsα) [2]. Recent studies on
mouse knockout model and pluripotent mouse ES cells suggest that
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GNAS is a key regulator of adipose-derived mesenchymal progenitor
cell commitment and heterozygous inactivation of Gsα enhances
osteoblast differentiation [3–5]. Maternally inherited mutations of
the same gene lead to pseudohypoparathyroidism (PHP) type Ia
(PHP-Ia) and Albright's hereditary osteodystrophy (AHO). In patients
with PHP type Ib (PHP-Ib), GNAS imprinting defects are predicted to
decrease Gsα expression in tissues where Gsα is physiologically
imprinted, therefore leading to renal parathyroid hormone (PTH) re-
sistance with no or few other clinical manifestations. Moreover, sim-
ilar imprinting defects have been demonstrated over the last years in
some patients with a PHP-Ia phenotype, i.e. hormone resistances plus
signs of AHO, further highlighting the phenotypic heterogeneity and
overlap among GNAS-related disorders [6].

During the last decade, some reports documented the existence of
patients with POH showing additional features typical of AHO, such as
short stature and brachydactyly, previously thought to occur only in
other GNAS-associated disorders. Thus, POH is now considered as
part of the clinical spectrum of HO disorders caused by inactivating
GNAS mutations [7–9].

In 2008, Adegbite et al. proposed to classify patients with HO
according to the presence or absence of specific characteristics typical
of GNAS-based disorders (i.e. age of onset of HO, presence and
pigenetic alterations in progressive osseous heteroplasia: First Italian
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location of HO, depth of HO, progression of HO, features of AHO, PTH
resistance and GNASmutation analysis) introducing the innovation of
a sub-classification of progressive HO. In particular, patients without
features of AHOwere defined as having POH, while those withmultiple
AHO features, in the absence or presence of hormone resistance, were
defined as having POH/AHO or POH/PHP1a, respectively. As for subjects
with non-progressive forms of HO, including AHO, PHP1a and OC, no
changes in the definition were made [10].

Here, we report genetic and epigenetic analyses of GNAS locus in 10
patients affected with either POH or primary OC, further expanding the
spectrum of mutations associated with this rare disease and indicating
that, unlike PHP, GNAS methylation alterations are absent or uncom-
mon in this disorder.
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Materials and methods

Patients

This study includes 10 patients characterized by HO as first-
presenting and main clinical feature. They were all born from unrelated
parents. Familiar history was negative for HO or hormone resistance in
all patients.

In all children the hallmark was the presence of either isolated or
multiple erythematous papules, evolving into ossified subcutaneous
nodules. A skin biopsy was performed in all patients with the excep-
tion of patient 7 who refused the procedure, and confirmed in all
cases the presence of ectopic bone (Fig. 1A). The diagnosis of POH
or OC was made according to the deepening or not of the ectopic
U
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Fig. 1. A. A skin biopsy of a lesion taken from the back of a patient, showing foci of ossifi-
cation surrounding dermis sweat glands (hematoxylin & eosin 100×). B. Photograph of an
ossified nodule on the scalp of a patient. C. Photograph of multiple small skin-colored
papules on the back of a patient.

Please cite this article as: Elli FM, et al, Screening for GNAS genetic and e
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ossification, respectively. Nevertheless, some patients are still too
young to exclude further deepening of the lesions.

Endocrinological evaluation of hormone resistances (primarily
PTH and TSH) included thyroid function test together with serum cal-
cium, phosphate, PTH, 25-OH vitamin D and 24-h urinary calcium
measurement.

Clinical criteria for AHO diagnosis included the presence of at least
2 additional features among brachydactyly (shortening of fourth and/
or fifth metacarpals defined as the metacarpal sign and/or shortening
below −2SDS at the metacarpophalangeal profile pattern in at least
one metacarpal bone or distal phalanx), short stature (height below
the 3th percentile for chronological age), obesity (BMI N30 kg/m2 in
adults and N97th centile in children), round faces andmental retarda-
tion (motor and/or speech delay or need of extra help in pre-school/
mainstream school).

Informed consent was obtained from all patients included in the
study.
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GNAS DNA sequencing analysis and mutation nomenclature

Genomic DNA was extracted by Nucleon BACC2 genomic DNA pu-
rification kit from peripheral blood leukocytes of both patients and
parents (GE Healthcare, Piscataway, NJ, USA) according to the
manufacturer's instructions. GNAS 1–13 exons and flanking intronic
sequences (ENSEMBL ID: ENSG00000087460) were amplified by
PCR using previously described specific primers [6,11]. Direct se-
quencing of amplicons was performed using the AmpliTaq BigDye
Terminator kit and 3100 Genetic Analyzer (Applied Biosystems, Fos-
ter City, CA), as previously described [6,11].

The mutation nomenclature follows the guidelines indicated by
the Human Genome Variation Society (HGVS). Nucleotide and pro-
tein numbering are based on GNAS LRG sequence format created by
Leiden Open Variation Database (LOVD at www.lovd.nl/GNAS).
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GNAS RNA sequencing analysis

Total RNA was extracted from peripheral blood leukocytes of pa-
tients 2, 3 and 6 using Trizol® Reagent (Life Technologies, Paisley,
Scotland). cDNAs, synthesized using SuperScript Reverse Transcriptase
II (Invitrogen Corp.), were submitted to PCR using forward transcript-
specific primers for A/B RNA (ENSEMBL ID: ENST00000477931),
5′-CTGCGTCAGGTGGCTGGC-3′, NESP RNA (ENST00000313949), 5′-GA
AGGAGCCCAAGGAGGAGAAGCAGCGGC-3′, and for Gsα RNA (ENSEMBL
ID: ENST00000371085), 5′-CCATGGGCTGCCTCGGGAACA-3′, with com-
mon reverse primers for GNAS exons 6 and 10, 5′-CCTTGGCATGC
TCATAGAATTC-3′ and 5′-CACGAAGATGATGCCAGTCAC-3′. PCR prod-
ucts were directly sequenced, as reported in GNAS DNA sequencing
analysis and mutation nomenclature section.
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Methylation Specific Multiplex Ligation-specific Probe Amplification
(MS-MLPA)

MS-MLPA was used to investigate both the presence of deletions/
duplications affecting STX16 and GNAS loci and GNAS DMRmethylation
status (A/B, AS, XL, and NESP). Briefly, about 500 ng of DNA was ana-
lyzed by the commercially available kit ME031MLPA probemix accord-
ing to the manufacturer's instructions (MRC-Holland, Amsterdam,
The Netherlands). PCR products were separated by capillary electro-
phoresis using a 3100 Genetic Analyzer (Perkin-Elmer Corp.) with
the internal size standard GeneScan 500LIZ (Applied Biosystems,
Foster City, CA). Data analysis was performed using PeakScanner v1.0
(Applied Biosystems, Foster City, CA) and Coffalyser v9.4 (MRC-Holland,
Amsterdam, The Netherlands), as previously described [6].
pigenetic alterations in progressive osseous heteroplasia: First Italian
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Results

Clinical phenotypes

Clinical and biological characteristics of 10 patients (5 females and
5 males) included in our study are resumed in Table 1. An early age of
onset was observed in all cases, except for patient 10 [12]. The spec-
trum of HO varied from an isolated nodule on the left ankle in patient
7 to papules and nodules scattered all over the body (trunk, limbs and
scalp excluding face) in patient 2 (Figs. 1B–C).

Thyroid function tests, serum calcium, phosphate, PTH, 25-OH vi-
tamin D and 24-h urinary calcium were normal in all patients with
the exception of patient 4, who was previously described in the mu-
tation update recently published by our group (pt ID 26): POH was
first diagnosed at the age of 6 months but she manifested resistance
to PTH and TSH over the next 3 years, together with severe weight
gain [13]. In particular, mild resistance to PTH was detected in the
presence of normal calcium and vitamin D levels and resistance to
TSH was accompanied by normal free thyroid hormone levels (PTH:
71.6 mU/L; TSH: 4.8 pg/mL), thus identifying this patient as having
POH/PHP-Ia.

Finally, some of our patients also manifested additional clinical
features, such as oligohydramnios (pts 1 & 6), multiple angiomas
(pt 1), mental retardation (pt 6) and two were born small for gesta-
tional age (SGA) (pts 1 & 2).

GNAS molecular analysis

Sequencing analysis of GNAS Gsα-coding exons allowed the iden-
tification of 4 different heterozygous loss of function mutations in 6
out of 10 of patients described in the present study (60%). Of these
genetic defects, 2 were small deletions causing frameshift, 1 was a
nonsense mutation and 1 was a mutation of canonical splice site
(Fig. 2). A brief report of these variants is shown in Table 1. Genetic
variants c.85C N T (pt 1) and c.568_571del (pts 3, 4 and 5) have
been previously described and, in particular, the 4-bp deletion local-
ized in exon 7 is the only mutational hot-spot so far recognized
[13]. As for the other two detected mutations, c.554del (pt 2) and
c.662 + 2 T N G (pt 6), they are novel to the literature. In silico anal-
ysis predicted that the single base deletion c.554del in exon 7 deter-
mines the amino acidic substitution Val185Gly with transduction of
a truncated protein. The splice site mutation c.662 + 2 T N G in in-
tron 8 likely results in the inclusion of intron 8 in the transcript,
with consequent introduction of additional amino acids before a pre-
mature stop codon.

Parent's DNA analysis was performed for mutated patients and
showed that patients 1, 2, 3 and 6 were sporadic cases, while patients
4 and 5 inherited their genetic defect from the mother and father,
U
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Table 1
Clinical and molecular characteristics of patients with HO included in the present study.

Pt ID Gender Age Diag. age Clinical phenotype GNAS status

Epigenetic Genetic

1 F 3.5 0.5 HO/oligohydramnios/SGA/
multiple angiomas

wt c.85C N

2 M 6 2 HO/SGA wt c.554del
3 M 5 1 HO wt c.568_57
4 F 3 0.5 HO/Ob/rPTH/rTSH wt c.568_57
5 M 12 12 HO wt c.568_57
6 M 9 7 HO/MR/oligohydramnios wt c.662 +
7 F 6 5 HO wt wt
8 M 17 15 HO wt wt
9 F 4 1 HO wt wt
10 F 46 42 HO wt wt

Legend: M (male), F (female), age (years), diag. age (years at diagnosis), HO (heterotopic os
(parathyroid hormone resistance), rTSH (thyroid-stimulating hormone resistance), wt (wi
(nonsense), FS (frameshift), SP (splice site).
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respectively. Loss of function mutations in Gsα exons 1–13 inherited
from the mother lead to PHP-Ia, while the same mutations inherited
from the father may lead to both pseudo-PHP, in which AHO occurs
in the absence of endocrine abnormalities, and POH. Thus, the deter-
mination of the mutated allele allows planning further investigations
aimed to early detect metabolic and endocrinological deficiencies such
as hypocalcemia or hypothyroidism in the case of maternal-inherited
mutations.

From 3 sporadic patients we collected fresh blood samples for RNA
extraction and we performed segregation analysis by RNA Sanger se-
quencing in order to define that the mutated allele was, as expected
by the clinical manifestations, the paternal one. This investigation
was possible taking advantage of the fact that GNAS locus is imprinted
giving rise to different parent-specific transcripts, the maternally
expressed NESP55 (neuroendocrine protein 55) and paternally
expressed XLαs (extra-large variant of Gs alpha), AS (also referred
to as “Nespas” in mouse) and A/B (also referred to as “1A” in
mouse). Gsα, NESP55, XLαs and A/B transcripts are produced using al-
ternative first exons splicing onto a common set of downstream
exons (GNAS exons 2–13), therefore, by investigating differentially
imprinted GNAS-derived genes for the presence of a specific genetic
variant, we were able to define the inheritance of the mutated allele.
In particular, in patient 2 we confirmed the presence of the single nu-
cleotide deletion c.554del in the A/B RNA, which is transcribed only
from the paternal allele. To further confirm that the mutation rose
on the paternal allele of patient 2 we analyzed also NESP RNA,
which resulted to have a wild-type sequence. In patients 3 and 6
the paternal A/B RNA was degraded. Interestingly, sequencing of
Gsα transcript, that is expected to have biallelic expression in periph-
eral blood mononuclear cells, showed the presence of the wild-type
allele only, supporting the hypothesis of nonsense-mediated decay
of the mutated one, as already reported [14,15]. On the contrary,
NESP RNA, which is of maternal origin, showed a wild-type sequence,
indicating that the paternal allele is necessarily the affected one
(Fig. 2).

MS-MLPA analysis was performed in all patients and ruled out, at
the same time, the presence of structural rearrangements affecting
STX16 and GNAS loci, such as deletions or duplications, and of methyl-
ation defects at GNAS DMRs. In particular, no genetic/epigenetic
mutations were detected in patients negative for GNAS classical mu-
tations (pts 7, 8, 9 and 10) (Supplementary Fig. 1).

Discussion

In the present study we performed molecular analysis of GNAS
locus in 10 patients affected with either POH or primary OC, in
order to investigate the presence of causative genetic or epigenetic
defects.
Mutation Amino acid change Inheritance pattern Diagnosis

Site Type

T ex1 NS p.(Gln29X) De novo OC

ex7 FS p.(Val185Glyfs*19) De novo (♂allele) OC
1del ex7 FS p.(Asp189Metfs*14) De novo (♂allele) POH
1del ex7 FS p.(Asp189Metfs*14) Inherited (♀allele) POH/PHP-Ia
1del ex7 FS p.(Asp189Metfs*14) Inherited (♂allele) POH
2 T N G IVS8 SP p.(?) De novo (♂allele) POH

– – – – POH
– – – – POH
– – – – OC
– – – – POH

sification), SGA (small for gestational age), MR (mental retardation), Ob (obesity), rPTH
ld-type), ♂ (paternal), de novo (no parental inheritance), ex (exon), IVS (intron), NS

pigenetic alterations in progressive osseous heteroplasia: First Italian
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Fig. 2. Schematic illustration of the GNAS gene and of mutations detected in patients with HO included in the present study (gDNA, genomic DNA). Above gene illustration encoded
functional domains are shown (GTP, guanosine triphosphate; GPCR, G protein coupled receptor).
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Progressive osseous heteroplasia is a rare genetic disorder of HO
that progresses from skin to deep connective tissues and skeletal
muscle. First symptoms are usually noted during infancy and consist
of small papules that predate into ossified nodules. The distribution
of ectopic bone is variable as it can be widespread or focused in par-
ticular areas, especially the arts. Lesions may coalesce to form bony
plates. Trauma does not seem to precipitate or exacerbate lesions of
POH. Possible complications include ankylosis of involved joints
with poor growth of the limb, skin ulceration with possible leakage
of bone material and extremely painful infection. Routine laboratory
tests are usually normal, unless following the ectopic deposition of
bone when levels of alkaline phosphatase and of LDH and CPK may
be transiently elevated.

Follow-up of few POHpatients beyond adolescence showed a course
of slower progression during adulthood [2,16]. However, given the pro-
gressive nature of the disease and the insufficiency of data in the litera-
ture, it is important to carry out an accurate follow-up as very young
individuals with POH/AHO and POH/PHP1a/1c could develop a more
complex phenotype over the years. The explanation of this extremely
variable phenotypic expression still needs to be investigated and
among the possible causes genetic background, epigenetic regulation
as well as non-genetic factors can be considered.

Mutational analysis of our patients detected heterozygous loss of
function mutations in Gsα coding sequence in 6 of 10 patients, with
a mutation rate of about 60%, in accordance with the literature [10].
As expected from the revision of published Gsα mutations associated
to POH, our series confirms that mutations are spread all along the
gene and that frameshift and nonsense mutations predominate
[2,7,9,10,17–23]. We found 2 different small deletions localized in
exon 7 (pts 2, 3, 4 and 5), a single base substitution in intron 8 (pt
6) and a nonsense mutation in exon 1 (pt 1), all predicting truncated
proteins. According to recent data from the literature, we confirm
that exon 1 mutations may be associated with POH, indicating that
this disease, like PHP-Ia and PPHP, is mainly Gs alpha-mediated and
not XL-mediated as first suggested [7,23]. The specific involvement
Please cite this article as: Elli FM, et al, Screening for GNAS genetic and e
series, Bone (2013), http://dx.doi.org/10.1016/j.bone.2013.06.015
Eof Gs alpha in ectopic bone formation is further supported by the ob-
servation that, in our PHP-Ia series, patients with mutations in exon 1
showed a higher prevalence of HOwith respect to patients affected by
mutations in other GNAS exons (64.3% vs. 40%) [13].

Our sequencing data strengthen the observation that the same
GNAS mutation may present with variable expressivity. In fact, al-
though patients 3, 4 and 5 share the same mutation c.568_571del,
they exhibit variable degrees of severity based on the extent of pro-
gressive HO lesions and PHP/AHO signs.

The investigation of parent's DNA in patients showed that patients
1, 2, 3 and 6 carry de novo mutations, while patients 4 and 5 have
inherited mutations. Molecular analysis determined that patient 4
inherited the GNAS mutation from her mother. Accordingly, despite
POH was diagnosed in this girl at the age of 6 months, she manifested
resistance to PTH and TSH over the next 3 years, and she was thus
identified as having an intermediate and overlapping form called
POH/PHP-Ia.

In order to establish the origin of the mutated allele in patients
carrying de novo mutations, we studied the RNA obtained from pe-
ripheral blood leukocytes from patients 2, 3 and 6. This analysis de-
fined that in all the investigated cases the mutation occurred on the
paternal allele, as expected from the literature for patients with
POH [2,10,23].

Finally, we performed MS-MLPA analysis to evaluate, at the same
time, the presence of structural rearrangements affecting STX16 and
GNAS loci, such as deletions or duplications, and of methylation de-
fects at GNAS DMRs. All tested POH/OH patients displayed a normal
GNAS imprinting status and absence of copy number abnormalities.

As for PHP patients, in the present series POH patients without de-
tectable genetic mutations (pts 7, 8, 9 and 10) were clinically indistin-
guishable from those with mutations. However, this result does not
exclude the presence of genetic alterations in GNAS regions not inves-
tigated by our assays or in other loci. Moreover, no evident difference
was observed among patients harboring different mutations. Thus,
neither the presence/absence nor the type or the localization of
pigenetic alterations in progressive osseous heteroplasia: First Italian
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mutations allows us to predict a specific phenotype or the severity of
progression within the spectrum of GNAS-related disorders.

Previous investigations reported that several individuals with pater-
nally inherited GNAS mutations were born small for gestational age
(measurements at or below the fifth percentile compared to sex-
matched normative data) and had a lean phenotype at the time of initial
presentation [10]. Data from Gnas knockout mouse models support the
hypothesis of a critical role played byGsα in regulating lineage determi-
nation towards adipogenic versus osteogenic fate in soft tissue progen-
itor cells [24]. Our study further confirms these observations, as two
patients (pts 1 and 2) had low birth weights. Interestingly, while 9 out
of 10 patients displayed a lean phenotype, patient 4, who inherited
themutated allele fromhermother, became severely obese fewmonths
after birth. Accordingly, this little girl also developed PTH and TSH resis-
tance over the years, supporting the view that only maternally-derived
alteration may lead to endocrine manifestations as well as obesity.

Despite this phenotypic heterogeneity, genetic counseling is still
an important and delicate matter as: 1) patients have 50% risk of
transmitting the mutated allele to their offspring; 2) in the case of pa-
ternal inheritance, GNAS mutations can either lead to the milder AHO
phenotype or to the more severe POH phenotype; 3) genetic diagno-
sis with prompt identification of the mutated allele in patients show-
ing an overlapping POH/PHP phenotype may avoid unnecessary
endocrinological investigations in the case of paternal inheritance,
or help to early detect hypocalcemia and/or hypothyroidism in the
case of maternally inherited mutations.

Conclusions

In conclusion, our results support the view that POH belongs to a con-
tinuum spectrum of HO disorders associated with inactivating GNASmu-
tations and further expand the spectrum of genetic defects associated
with this disease. Moreover, we updated the GNAS Locus-Specific data-
base (the database is available on the internet at www.lovd.nl/GNAS)
withhere and elsewheredescribedmutations associatedwith POH. Final-
ly, we investigated the imprinting status of GNASDMRs andwe observed
that, in contrast withwhatwas observed in PHP patients, methylation al-
terations at this locus are either absent or uncommon in POH/OH.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bone.2013.06.015.
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