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Abstract

For a quantum spin chain or 1D fermionic system, we prove that the Drude weight
D verifies the universal Luttinger liquid relation v2s = D/κ, where κ is the suscepti-
bility and vs is the Fermi velocity. This result is proved by rigorous Renormalization
Group methods and is true for any weakly interacting system, regardless its inte-
grablity. This paper, combined with [1], completes the proof of the Luttinger liquid
conjecture for such systems.

1 Introduction and main result

Quantum spin chains and one dimensional Fermi systems have been the subject of an
intense theoretical investigation for decades, either for their remarkable properties or for
the fact that they can be experimentally realized in systems like quantum spin chain
models (KCuF3) [2] or carbon nanotubes [3]. We consider a quantum spin chain model
with Hamiltonian

H = −
L−1∑
x=1

[S1
xS

1
x+1 + S2

xS
2
x+1]− h

L∑
x=1

S3
x + λ

∑
1≤x,y≤L

v(x− y)S3
xS

3
y + U1

L , (1)

where Sαx = σαx /2 for i = 1, 2, . . . , L and α = 1, 2, 3, σαx being the Pauli matrices, and U1
L

is a boundary term; finally v(x) = v(−x) and |v(x)| ≤ Ce−κ|x|.
If v(x − y) = δ|x−y|,1 and h = 0, (1) is the hamiltonian of the XXZ spin chain in a

zero magnetic field, which can be diagonalized by the Bethe ansatz [4]. No exact solution
is known for more general interactions, but some particular models have been the subject
of an extensive numerical analysis.

It is well known that the quantum spin model can be equivalently written in terms of
fermionic anticommuting operators a±x ≡

∏x−1
y=1(−σ3

y)σ
±
x ; if J1 = J2 = 1, one gets

H =−
L−1∑
x=1

1

2
[a+x a

−
x+1 + a+x+1a

−
x ]− h

L∑
x=1

(a+x a
−
x − 1

2
)

+ λ
∑

1≤x,y≤L

v(x− y)(a+x a
−
x − 1

2
)(a+y a

−
y − 1

2
) + U2

L ,

(2)
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where U2
L is the boundary term in the new variables. We choose it so that the fermionic

Hamiltonian coincides with the Hamiltonian of a fermion system on the lattice with peri-
odic boundary conditions.

If Ox is a local monomial in the Sαx or a±x operators, we call Ox = eHx0Oxe
−Hx0 where

x = (x0, x) and x0 is the “imaginary time”; moreover, if A = Ox1 · · ·Oxn

< A >L,β=
Tr[e−βHT(A)]

Tr[e−βH]
, (3)

T being the time order product, denotes its expectation in the grand canonical ensemble,
while < A >T ;L,β denotes the corresponding truncated expectation. We will use also the
notation < A >T= limL,β→∞ < A >T ;L,β .

The response functions measure the response of the system to an external probe. In
particular, the spin conductivity properties of model (1) can be obtained in the model (2)
from the current-current response function, whose Fourier transform is defined as

Ĝ0,2
J,J(p) = lim

β→∞
lim
L→∞

∫ β/2

−β/2
dx0

∑
x∈Λ

eipx⟨JxJ0⟩T ;L,β , (4)

where p = (p0, p), p0 = 2π
β n, p = 2π

L m, (n,m) ∈ Z2
, −[L/2] ≤ m ≤ [(L − 1)/2], Jx =

eHtJxe
−Ht and Jx is the paramagnetic part of the current

Jx =
1

2i
[a+x+1a

−
x − a+x a

−
x+1] . (5)

A crucial quantity in the study of the conductivity properties is played by the Drude
weight, defined in the following way. Let us consider the function

D̂(p) = −∆− Ĝ0,2
J,J(p) , (6)

where ∆ =< ∆x > and

∆x = −1

2
[a+x a

−
x+1 + a+x+1a

−
x ] (7)

is the diamagnetic part of the current, whose mean value < ∆x > is indeed independent
of x, hence it is equal to < HT > /L, with HT =

∑
x∆x, the value of H for h = λ = 0.

Then the Drude weight is given by

D = lim
p0→0

D̂(p0, 0) . (8)

If one assumes analytic continuation in p0 around p0 = 0, one can compute the con-
ductivity in the linear response approximation by the Kubo formula, see e.g. [5], that
is

σ = lim
ω→0

lim
δ→0

D̂(−iω + δ, 0)

−iω + δ
. (9)

Therefore, a nonvanishing D indicates infinite conductivity.
Another important quantity is the susceptibility, which can be calculated, in the

fermionic representation, in terms of the density-density response function G0,2
ρ,ρ(x) =

⟨ρxρ0⟩T , ρx = a+x ax, by the equation

κ = lim
p→0

Ĝ0,2
ρ,ρ(0, p) , (10)

where Ĝ0,2
ρ,ρ(p) is defined analogously to (4). Note that, in the fermionic representation,

κ = κcρ
2, where κc is the fermionic compressibility and ρ is the fermionic density, see

e.g. (2.83) of [6].
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The large distance behavior of the response functions is given (for coupling not too
large) by power laws with non-universal exponents depending on all details of the Hamil-
tonian, like the form of the potential and the value of the magnetic field. Only for the
interaction v(x− y) = δ|x−y|,1 a solution is known by Bethe ansatz [4], if h = 0; by using
this explicit solution,κ and D can be computed. However, even in that case, only a single
exponent can be calculated [7].

In [8, 9, 10] rigorous RG methods have been applied to spin chains or fermionic 1D
systems, regardless their integrability; the outcome of such analysis is that several phys-
ical observables, and in particular the critical exponents, can be written as convergent
series. The exponents are interaction-dependent but nevertheless verify universal model
independent relations; if η is the exponent of the 2-point function (see e.g. (4) of [1]), ν̄
is the correlation length exponent (see e.g. (11) of [1]), X+ is the density exponent (see
e.g. (7-9) of [1]) and X− is the Copper pair exponent (see e.g. (10) of [1]), it has been
proved in [11, 1] that, for λ small enough,

X+ = K , X− = K−1 , ν̄ =
1

1−K−1
, 2η = K +K−1 − 2 , (11)

where K(λ) is an analytic function such that

K(λ) = 1− λ
v̂(0)− v̂(2pF )

π sin pF
+O(λ2) , (12)

with cos pF = −h−λ. Note that the exact relations (11) are universal, i.e. do not depend
on the Hamiltonian details, for instance on the form of the interaction v(x), contrary to
the function K(λ), see (12).

Universal relations connect also the critical exponents with the susceptibility κ; in [1]
it was proved that

κ =
K

πvs
. (13)

In this paper we prove the following Theorem for the Drude weight.

Theorem 1.1 If λ is small enough, the function D̂(p) defined in (6) can be written, for
p small but different from 0, in the form

D̂(p) =
vs
π
K

p20
p20 + v2sp

2
+H(p) , (14)

where H(p) is a continuous function, such that |H(p)| ≤ C|p|ϑ, with 0 < ϑ < 1; therefore
the Drude weight is given by

D =
vsK

π
(15)

and satisfies the identity
v2s = D/κ . (16)

The validity of the relations (11), (13),(15) and (16) is the content of the Luttinger liquid
conjecture formulated in [12] (see also [13, 14]); given the Drude weight and the suscep-
tibility, one can determine exactly all the exponents and the Fermi velocity. All these
relations are true in the Luttinger model, describing interacting fermions with a relativis-
tic linear dispersion relation and solved by bosonization [15]; the content of the Luttinger
liquid conjecture is that they are true also in the model (1), even if the exponents are
completely different. This is by no means obvious; the exponents, κ and D are non uni-
versal functions of the interaction, and surely depend on the dispersion relation and the
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details of the Hamiltonian. The validity of the conjecture was partially checked on the
solvable XXZ chain; vs, κ, D can be computed from the Bethe ansatz solution [12, 16]
and the validity of the relation (16) (following from (15),(13)) is verified. Moreover, by
using (11), the exponents can be exactly determined from the knowledge of κ and D; note
that the value of ν̄ found in this way agrees with the one obtained in [7]. A number of
arguments have been proposed along the years [17, 18, 19] in order to justify the validity
of (11), (13) and (15), but they rely on unproved assumptions or approximations in non
solvable cases.

The present paper completes the proof of the Luttinger liquid conjecture for quantum
spin chain or 1D fermionic system with generic weak short range interaction. The proof
relies on a number of technical results previously established in [8, 9, 10, 11, 1]; in particular
the present paper extends and completes the analysis of [1], which we assume the reader
familiar with.

The Drude weight in quantum spin chains has been the subject in recent years of
an intense numerical investigation [20, 21, 22, 23, 24, 25], with the main objective of
detecting a possible different behavior of conductivity at finite temperatures between the
integrable and the non integrable cases; it has been conjectured that the Drude weight
is non vanishing also at finite temperature in the integrable cases, while it is vanishing
in non integrable systems, but the results are still controversial. Our methods for the
calculation of the Drude weight at zero temperature can be applied either to solvable or
non solvable systems, and we believe that an extension of these methods would allow us
to understand also the properties of the Drude weight at non zero temperature.

2 Ward Identities

We shall proceed as in App. B of [1]. Let us consider the (imaginary time) conservation
equation:

∂ρx
∂x0

= eHx0 [H, ρx]e
−Hx0 = −i∂(1)x Jx ≡ −i[Jx,x0 − Jx−1,x0 ] , (17)

where we have used that [H, ρx] = [HT , ρx], HT being the value of H for h = λ = 0. This
equation implies some exact identities involving various correlation functions, that play
the role in the lattice models of the usual Ward Identities (WI) of continuous relativistic
models. They are valid at any finite β and L, but we shall use them only in the limit
L = β = ∞.

We shall call G2(x,y) =< a−x a
+
y > the (imaginary time) Green’s function, while

G2,1
ρ (x,y, z) =< ρxa

−
y a

+
z >T and G2,1

J (x,y, z) =< Jxa
−
y a

+
z >T

will be the vertex functions. By using (17) one gets the WI

∂

∂x0
G2,1
ρ (x,y, z) = −i∂(1)x G2,1

J (x,y, z)+

+δ(x0 − z0)δx,zG
2(y,x)− δ(x0 − y0)δx,yG

2(x, z) ,

(18)

where ∂
(1)
x is the lattice derivative. In the same way a WI for the density-density correla-

tions is derived. If we define

G0,2
ρ,ρ(x,y) =< ρxρy >T , G

0,2
ρ,J (x,y) =< ρxJy >T , G

0,2
J,J(x,y) =< JxJy >T ,
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we get

∂

∂x0
G0,2
ρ,ρ(x,y) = −∂(1)x G0,2

J,ρ(x,y) + δ(x0 − y0) < [ρ(x,x0) , ρ(y,x0)] >,

∂

∂x0
G0,2
ρ,J (x,y) = −i∂(1)x G0,2

J,J(x,y) + δ(x0 − y0) < [ρ(x,x0), J(y,x0)] > .

(19)

Noting that [ρ(x,x0), ρ(y,x0)] = 0, while

[ρ(x,x0), J(y,x0)] = −iδx,y∆(x,x0) + iδx−1,y∆(y,x0), (20)

we get, using that < ∆x >=< ∆x >= ∆,

−ip0Ĝ0,2
ρ,ρ(p)− i(1− e−ip)Ĝ0,2

J,ρ(p) = 0 ,

−ip0Ĝ0,2
ρ,J (p)− i(1− e−ip)Ĝ0,2

J,J(p) = i(1− e−ip)∆ .
(21)

Hence, by using the definition (6), the WI (21) and the fact that Ĝ0,2
ρ,J(p) = Ĝ0,2

J,ρ(−p), we
get

p20 Ĝ
0,2
ρ,ρ(p)− 4 sin2(p/2 )D̂(p) = 0 . (22)

The above equation holds quite generally for fermionic lattice systems. If Ĝ0,2
ρ,ρ(p) and

D̂(p) were continuous in p = 0, it would imply that both κ and D are vanishing. In

the case we are considering, we will see in the next section that Ĝ0,2
ρ,ρ(p) and D̂(p) are

bounded but not continuous in p = 0, which is sufficient to prove only that:

Ĝ0,2
ρ,ρ(p0, 0) = 0 , D̂(0, p) = 0 . (23)

3 Renormalization Group anaysis

It is well known that the correlations of the quantum spin chain can be derived by the
following Grassmann integral, see §2.1 of [8]:

eWL,β,M (A,J,ϕ) =

∫
P (dψ)e−V(ψ)+B(A,J,ψ)+

∫
dx[ϕ+

x ψ
−
x +ψ−

x ψ
+
x ] , (24)

where cos pF = −λ−h−ν, vs = vF (1+ δ), ψ
±
x and ϕ±x are Grassmann variables,

∫
dx is a

shortcut for
∑
x

∫ β/2
−β/2 dx0, P (dψ) is a Grassmann Gaussian measure in the field variables

ψ±
x with covariance (the free propagator) given by

gM (x− y) =
1

βL

∑
k∈DL,β

χ(γ−Mk0)e
iδMk0eik(x−y)

−ik0 + (vs/vF )(cos pF − cos k)
, (25)

where χ(t) is a smooth compact support function equal to 0 if |t| ≥ γ > 1 and equal to
1 for |t| < 1, k = (k, k0), k · x = k0x0 + kx, DL,β ≡ DL × Dβ , DL ≡ {k = 2πn/L, n ∈
Z,−[L/2] ≤ n ≤ [(L− 1)/2]}, Dβ ≡ {k0 = 2(n+ 1/2)π/β, n ∈ Z} and

V(ψ) = λ

∫
dxdyṽ(x− y)ψ+

x ψ
+
y ψ

−
y ψ

−
x + ν

∫
dxψ+

x ψ
−
x −

− δ

∫
dx[cos pFψ

+
x ψ

−
x − (ψ+

x+e1
ψ−
x + ψ+

x ψ
−
x+e1

)/2] ,
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with e1 = (0, 1), ṽ(x− y) = δ(x0 − y0)v(x− y). Moreover

B(A, J, ψ) =

∫
dx

{
ψ+
x ψ

−
x A0(x) +

1

2i
[ψ+

x+e1
ψ−
x − ψ+

x ψ
−
x+e1

]A1(x)−

− J

2
[ψ+

x ψ
−
x+e1

+ ψ+
x+ε1ψ

−
x ]
)}
.

(26)

Note that, due to the presence of the ultraviolet cut-off γM , the Grassmann integral has a
finite number of degree of freedom, hence it is well defined. The constant δM = β/

√
M is

introduced in order to take correctly into account the discontinuity of the free propagator
g(x) at x = 0, where it has to be defined as limx0→0− g(0, x0); in fact our definition
guarantees that limM→∞ gM (x) = g(x) for x ̸= 0, while limM→∞ gM (0, 0) = g(0, 0−).
The density and current correlations can be written in terms of functional derivatives of
(24)

G0,2
ρ,ρ(x,y) = lim

β→∞
lim
L→∞

lim
M→∞

δ2

δA0(x)δA0(y)
WL,β,M (A, 0, 0)

∣∣
A=0

,

G0,2
ρ,J(x,y) = lim

β→∞
lim
L→∞

lim
M→∞

δ2

δA0(x)δA1(y)
WL,β,M (A, 0, 0)

∣∣
A=0

,

(27)
G0,2
J,J(x,y) = lim

β→∞
lim
L→∞

lim
M→∞

δ2

δA1(x)δA1(y)
WL,β,M (A, 0, 0)

∣∣
A=0

,

∆ = lim
β→∞

lim
L→∞

lim
M→∞

1

βL

δ

δJ
WL,β,M (0, J, 0)

∣∣
J=0

.

In [8, 9, 10] a multiscale integration procedure combined with Ward Identities allows us to
write the above correlations in terms of a convergent expansion; the counterterms ν, δ are
chosen so that pF is the Fermi momentum and vs is the Fermi velocity. By using Theorem
3.12 of [8], one can easily prove that ∆ is a finite constant. However, the bounds obtained
from the multiscale analysis for G0,2

ρ,ρ(x,y) and G
0,2
J,J(x,y) are not sufficient to prove that

their Fourier transforms are bounded around p = (0, 0). In fact, by using theorem (1.5)
of [8], we see that their non-oscillating part behaves for large |x− y| as |x− y|−2, so that
logarithmic divergences in the Fourier transform cannot be excluded.

In order to compute the Fourier transform of the current-current correlation we will
follow the same strategy used in [1] for the density-density correlation. We introduce a
continuous model with linear dispersion relation regularized by a non local fixed interac-
tion, together with ultraviolet γN and an infrared γl momentum cut-offs. The model is
expressed in terms of the following Grassmann integral:

eWN (J,J̃,ϕ) =

∫
PZ(dψ)e

−V(N)(
√
Zψ+

∑
ω=±

∫
dx[Z(3)Jx+ω Z̃

(3)J̃x]ρx,ω ·

· eZ
∑

ω=±
∫
dx[ψ+

x,ωϕ
−
x,ω+ϕ+

x,ωψ] ,

(28)

where ρx,ω = ψ+
x,ωψ

−
x,ω, x ∈ Λ̃ and Λ̃ is a square lattice of side L, whose size is of order

γ−l, say γ−l/2 ≤ L ≤ γ−l; PZ(dψ
[l,N ]) is the fermionic measure with propagator

1

Z
gth,ω(x− y) =

1

Z

1

L2

∑
k

eikx
χN (k)

−ik0 + ωck
, (29)

where Z and c are two parameters, to be fixed later, and χl,N (k) is a cut-off function
depending on a small positive parameter ε, nonvanishing for all k and reducing, as ε→ 0,
to a compact support function equal to 1 for γl ≤ |k| ≤ γN+1 and vanishing for |k| ≤ γl−1
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or |k| ≥ γN+1 (its precise definition can be found in (21) of [9]); moreover, the interaction
is

V(N)(ψ) =
λ∞
2

∑
ω

∫
dx

∫
dyv0(x− y)ψ+

x,ωψ
−
x,ωψ

+
y,−ωψ

−
y,−ω , (30)

where v0(x− y) is a rotational invariant potential, of the form

v0(x− y) =
1

L2

∑
p

v̂0(p)e
ip(x−y) , (31)

with |v̂0(p)| ≤ Ce−µ|p|, for some constants C, µ, and v̂0(0) = 1. We define

G2,1
th,ρ;ω(x,y, z) = lim

−l,N→∞
lim

a−1,L→∞

∂

∂Jx

∂2

∂ϕ+y,ω∂ϕ
−
z,ω

Wl,N (J, J̃ , ϕ)|J=J̃=ϕ=0 ,

G2,1
th,J;ω(x,y, z) = lim

−l,N→∞
lim

a−1,L→∞

∂

∂J̃x

∂2

∂ϕ+y,ω∂ϕ
−
z,ω

Wl,N (J, J̃ , ϕ)|J=J̃=ϕ=0 ,

G2
th;ω(y, z) = lim

−l,N→∞
lim

a−1,L→∞

∂2

∂ϕ+y,ω∂ϕ
−
z,ω

Wl,N (J, J̃ , ϕ)|J=J̃=ϕ=0 , (32)

G0,2
th,ρ,ρ(x,y) = lim

−l,N→∞
lim

a−1,L→∞

∂2

∂Jx∂Jy
Wl,N (J, J̃ , ϕ)|J=J̃=ϕ=0 ,

G0,2
th,J,J(x,y) = lim

−l,N→∞
lim

a−1,L→∞

∂2

∂J̃x∂J̃y
Wl,N (J, J̃ , ϕ)|J=J̃=ϕ=0 .

The existence of the N → ∞ limit has been proved in [26] and in §3 of [11], extending the
method used in [27] for the analysis of the Yukawa model in two dimensions; the existence
of the limit l → −∞ has been proved in [8, 9, 10].

The model (28) is a sort of effective model for the lattice fermionic model (2); it is
indeed well known that a non relativistic gas of fermions in one dimension admits an
effective description in terms of massless Dirac fermions in d = 1 + 1 dimension. We can
make precise this idea via the following lemma, whose proof is an immediate extension of
the proof given in §3 of [1] for the density-density correlation.

Lemma 3.1 Given λ small enough, there exist constants Z, Z(3), Z̃(3), λ∞, depending
analytically on λ, such that Z = 1 + O(λ2), Z(3) = 1 + O(λ), Z̃(3) = vF + O(λ), λ∞ =
λ+O(λ2) and, if c = vs and |p| ≤ κ ≤ 1,

Ĝ0,2
ρ,ρ(p) = Ĝ0,2

th,ρ,ρ(p) +Aρ,ρ(p) ,

Ĝ0,2
J,J(p) = Ĝ0,2

th,J,J(p) +AJ,J(p) + ∆ ,
(33)

with Aρ,ρ(p), AJ,J(p) Lipschitz continuous in p. Moreover, if we put pωF = (0, ωpF ) and
we suppose that 0 < κ ≤ |p|, |k′|, |k′ − p| ≤ 2κ, 0 < ϑ < 1, then

Ĝ2,1
ρ (k′ + pωF ,k

′ + p+ pωF ) = Ĝ2,1
th,ρ;ω(k

′,k′ + p)[1 +O(κϑ)] ,

Ĝ2,1
J (k′ + pωF ,k

′ + p+ pωF ) = Ĝ2,1
th,J;ω(k

′,k′ + p)[1 +O(κϑ)] ,

Ĝ2(k′ + pωF ) = Ĝ2
th,ω(k

′)[1 +O(κϑ)] .

(34)

This lemma says that the vertex functions of the two models are essentially coinciding
close to the Fermi momenta, if the bare parameters are chosen properly, while the response
functions differ by a continuous function. Note also the the bare parameters of the model
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(28) are expressed by convergent expansions depending on all model details, but the WI
imply that they are not independent parameters, as we will see shortly.

The main reason behind the introduction of the model (28) is that, while the model
(1) is invariant only under the phase transformation ψ±

x → e±iαψ±
x , the model (28) is

invariant under two phase transformations, the total ψ±
x,ω → e±iαψ±

x,ω and the chiral

ψ±
x,ω → e±ωiαψ±

x,ω. This implies that the Fourier transforms of the response functions can
be completely determined from the WI, see app. A of [1]; if Dω(p) = −ip0 +ωcp, we get:

Ĝ0,2
th,J,J =

−1

4πcZ2

(Z̃(3))2

1− τ2

[
D−(p)

D+(p)
+
D+(p)

D−(p)
+ 2τ

]
+O(p) ,

Ĝ0,2
th,ρ,ρ =

−1

4πcZ2

(Z(3))2

1− τ2

[
D−(p)

D+(p)
+
D+(p)

D−(p)
− 2τ

]
+O(p) ,

(35)

where τ = λ∞
4πc . Therefore, from (35) and (33), since c = vs,

Ĝ0,2
ρ,ρ(p) =

−1

4πvsZ2

(Z(3))2

1− τ2

[
D−(p)

D+(p)
+
D+(p)

D−(p)
+ 2τ

]
+Aρ,ρ(0) +Rρ(p),

D̂(p) =
−1

4πvsZ2

(Z̃(3))2

1− τ2

[
D−(p)

D+(p)
+
D+(p)

D−(p)
− 2τ

]
+AJ,J(0) + ∆

+RJ (p) ,

(36)

with |Rρ(p)|, |RJ(p)| ≤ C|p|ϑ, 0 < ϑ < 1. The constants Aρ,ρ(0), AJ,J(0) and ∆ are
expressed by convergent expansions, but their values can be determined from the WI for
the model (1); indeed, by (35), Ĝ0,2

th,J,J and Ĝ0,2
th,ρ,ρ are not continuous in p = 0, but they

are bounded, so that (23) holds; this condition fixes the values of AJ,J(0)+∆ and Aρ,ρ(0)
so that

Ĝ0,2
ρ,ρ(p) =

1

πvsZ2

Z(3))2

1− τ2
v2sp

2

p20 + v2sp
2
+Rρ(p) ,

D̂(p) =
1

πvsZ2

(Z̃(3))2

1− τ2
p20

p20 + v2sp
2
+RJ(p) .

(37)

Moreover, the vertex functions verify the following WI, see (35) of [1]:

−ip0
Z

Z(3)
Ĝ2,1
th,ρ;ω(k,k+ p) + ωp vs

Z

Z̃(3)
Ĝ2,1
th,J;ω(k,k+ p) =

=
1

1− τ
[Ĝ2

th;ω(k)− Ĝ2
th;ω(k+ p)] ;

(38)

hence, by using (34) and by comparing (38) with the WI (18), we get that the bare
parameters are not independent, but verify the relations:

Z(3)

(1− τ)Z
= 1 , vs

Z(3)

Z̃(3)
= 1 , (39)

implying that

Ω̂ρρ(p) =
K

πvs

v2sp
2

p20 + v2sp
2
+Rρ(p) ,

D̂(p) =
vs
π
K

p20
p20 + v2sp

2
+RJ(p) ,

(40)

with K = 1−τ
1+τ . Eq. (52) of [8] shows that K is indeed the critical index X+, see (11);

hence, by using (8) and (10), we get the relations (15) and (13), which immediately imply
(16), so that Theorem 1.1 is proved.
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