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Abstract  14	

Biofilm resistance to biocides is becoming a global issue with an impact on many fields, including 15	

health care, agriculture, the environment, society and industry. Plants offer a virtually inexhaustible 16	

and sustainable resource of very interesting classes of biologically active, low-molecular-weight 17	

compounds (parvome). In the past, the plant parvomes were screened mainly for their lethal effects, 18	

disregarding concentrations and ecologically relevant functions of these molecules in the natural 19	

context. Testing sub-lethal concentrations of plant-derived compounds mimicking environmental 20	

levels may be critical to reveal mechanisms subtler than the killing activity, e.g. those influencing 21	

the multicellular behavior, offering an elegant way to develop novel biocide-free antibiofilm 22	

strategies. In a cross-disciplinary fashion, we illustrated recent successes of sub-lethal 23	

concentrations of plant-derived compounds, their ecological insight, pro et contra, future directions 24	

and impacts, envisioning implications for policy making and resource management. 25	
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Introduction 29	

It has been estimated that at least 99% of the world's microbial biomass exists in form of biofilm, a 30	

complex differentiated surface-associated community embedded in a self-produced polymeric 31	

matrix enabling microorganisms to develop coordinated and efficient survival strategies. Although 32	

the inclination to colonize surfaces is advantageous from the microbial standpoint, it may cause 33	

chronic infections (Cegelski et al. 2008; Estrela et al. 2009), parasitism phenomena in animals and 34	

plants (Skamnioti and Gurr 2009), biodeterioration of historical and artistic objects (Giacomucci et 35	

al. 2011; Cappitelli et al. 2012), biodeterioration of engineered systems (Zhang et al. 2012), and 36	

fouling in food-processing equipments (Ranier et al. 2011). Furthermore, biofilm injury has a 37	

profound socio-economic impact, incurring direct and indirect industrial costs that result in a huge 38	

financial burden for an already over-stretched economy. 39	

For human societies, the most detrimental property of biofilms is the expression of specific 40	

characters that make sessile microorganisms more resistance to antimicrobial agents (up to 1000-41	

fold) than their planktonic counterparts (Høiby et al. 2010; Flemming 2011). As climate conditions 42	

change, natural and engineered ecosystems are increasingly reaching temperatures and humidity 43	

that are conducive to biofilm growth. Although increased biofilm biomass would lead to an 44	

increased use of biocides, questions concerning the biodegradability of biocides, their risk to human 45	

and animal health and their environmental impact, have increasingly discouraged biocide use. This 46	

is readily seen in the number of recent policies, directives, technical reports, strategies, 47	

recommendations and regulatory decisions designed to reduce antimicrobial agents consumption, 48	

ensuring the prudent use of these fragile strategies, and protect specific agents that are critically 49	

important for human and animal health and wellbeing (Directive 98/8/EC; Recommendation 50	

2002/77/EC; SCENIHR report 2009; EFSA Summary Report 2012). Finally, the antimicrobial 51	

arena is experiencing a shortage of lead compounds progressing into both clinical and industrial 52	

trials and growing negative consumer perception against synthetic compounds has led to the search 53	

for natural-derived products (Lam 2007).  54	
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In the last few years, the efforts have been directed towards developing preventive strategies that 55	

can be used to disarm microorganisms without killing them (Cegelski et al. 2008; Rasko and 56	

Sperandio 2010). An innovative approach is the use of biocide-free antibiofilm agents with novel 57	

targets, unique modes of action and proprieties that are different from those of the currently used 58	

antimicrobials. In addition, as these substances do not exert their action by killing cells, they do not 59	

impose a selective pressure causing the development of resistance (Rasko and Sperandio 2010). 60	

Observing the processes of biofilm formation it is reasonable to expect that interfering with the key-61	

steps that orchestrate genesis of virtually every biofilm could be a way for new preventive strategies 62	

that do not necessarily exert lethal effects on cells but rather sabotage their propensity for a sessile 63	

lifestyle (Figure 1). For instance, interfering with the surface sensing process and mystifying 64	

intercellular signals, the biofilm cascade might be hampered. 65	

These strategies might bring new products to the market and cover methodologies and novel 66	

approaches, making significant contributions to innovation and economic productivity in SMEs. 67	

They provide support for cross-cutting actions while offering new tools for society and policy 68	

makers. 69	

 70	

Ecological insight of plant-derived antibiofilm compounds 71	

The need for innovative antibiofilm technologies has led to renewed interest in the ways that 72	

organisms protect themselves against microbial colonization.  73	

Plants lacking cell-based inducible immune responses and that live in nutrient-rich environments 74	

are continuously exposed to a broad array of potentially deleterious microorganisms leading to 75	

increased weight and friction, impeded trans-epidermal exchanges, altered color, smell, and contour 76	

(Wahl et al. 2012). This provides the driving force behind the evolution of a variety of sophisticated 77	

strategies to enhance plant fitness via chemical defenses against biofilms (de Nys and Steinberg 78	

2002; Qian and Fusetani 2010). In addition, one of the main advantages of plant-derived 79	
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compounds with potential pharmaceutical and medical applications is the lack of shared pathogens 80	

between plant and mammals (Cichocka et al. 2010). 81	

Both aquatic and terrestrial plants offer very interesting classes of biologically active, low-82	

molecular-mass (< 5 kDa) compounds (“parvome”, parv=small, -ome= group), like alkaloids, 83	

terpenoids, flavonoids and coumarins, peptides, glycosides, nucleosides and polyphenols. They may 84	

act in a variety of ways: antibiotics, allosteric regulators, catalysis, catalytic cofactors, regulatory 85	

activities at level of DNA, RNA and protein, pigments, mutagens, antimutagens, receptor agonists, 86	

antagonists, signal molecules, siderophores, detergents, metal complexing/transporting agents, 87	

pheromones, toxins and other interesting activities (Davies and Ryan 2012). However, during the 88	

intensive half-century of drug discovery, available natural compounds found in the plant parvome 89	

were screened mainly for their lethal effects, disregarding concentrations and ecologically relevant 90	

functions of these molecules in the natural environments. All that mattered were compounds 91	

effective in killing target microorganisms (inter alias Gibbons 2005; Puglisi et al. 2007; Quave et 92	

al. 2008; Mayavu et al. 2009; Tajkarimi et al. 2010; Artini et al. 2012; Falcão et al. 2012; Guedes et 93	

al. 2012). In contrast, few papers address the inhibition of biofilm formation by using compounds at 94	

sublethal concentrations.  95	

In many cases, the killing activity of a naturally-occurring compounds is primarily a laboratory 96	

property, since the concentrations of these agents available in nature would be insufficient to exert 97	

their lethal effects (Yim et al. 2007; Davies 2011). Several studies on marine plants highlighted a 98	

lack of correlation between antimicrobial activities and abundance of surface-associated 99	

microorganisms, suggesting that chemical defenses may function by mechanisms more subtle than 100	

the simple killing activities like those influencing the multicellular behavior by manipulating the 101	

expression of specific phenotypes that represent different stages of the biofilm process (Harder 102	

2009).  103	

The optimal defense theory asserts that organisms allocate resources to chemical defenses in a way 104	

that maximizes fitness and preserves their primary biological functions such as homeostasis 105	
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maintenance, growth and reproduction (Ivanisevic et al. 2011). The production of toxic compounds 106	

might impose: i) a significant metabolic burden to the plant in order to protect itself from 107	

autotoxicity (Heil and Baldwin 2002) and ii) ecological costs resulting from the myriad of 108	

interactions that a plant has with its biotic and abiotic environment (Heil and Baldwin 2002). In 109	

fact, it has been estimated that a considerable percentage of bacterial genomes is dedicated to 110	

shaping the organisms’ habitat and maintaining their community and niche in the ecosystem 111	

(Phelan et al. 2012). Thus, killing microorganisms is not advantageous for the plant as might affect 112	

local ecological relationship. Finally, sub-lethal concentration represents one mechanism by which 113	

the host minimizes the risk of counter adaptation, which would be likely to occur if secondary 114	

metabolites were toxic to associated microbes (Engel et al. 2002).  115	

Testing sub-lethal concentrations of plant-derived compounds mimicking environmental levels may 116	

be critical to understand biological functions, highlighting different and valuable biological 117	

activities far from killing activities. As a consequence, one of the most pressing issues is the 118	

estimation of the sub-lethal concentrations of secondary metabolites experienced by 119	

microorganisms in nature. In the context of antibiofilm researches, this gap may be filled carrying 120	

out preliminary experiments to define the toxicological threshold zone for the selected model 121	

systems and then screening a wide range of sub-lethal concentrations at frequent intervals in order 122	

to identify the experimental space with the maximum antibiofilm activity. However, the efforts of 123	

industrial, academic, governmental actors are made to reduce time and costs of research 124	

programmes by testing few concentrations at standard conditions, demanding carefully designed 125	

experiments to explore in details and at reasonable cost the low-dose response and the cellular 126	

behavior in complex scenarios. 127	

 128	

Determination of optimal sub-lethal concentrations  129	

The design of experiments technique (DOE) could be successfully employed to clarify the 130	

antibiofilm performance of plant-derived compounds without testing many sub-lethal 131	
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concentrations, but just performing a limited number of experiments according to rigorously 132	

formulated mathematical protocols (Franceschini and Macchietto 2008). With this multivariate 133	

approach it is possible to simulate cellular behavior in complex scenarios, considering effective 134	

factors, interactions and selecting optimum conditions that maximized the antibiofilm response 135	

(Leardi 2009).  136	

Although DoE methods have been around since the mid-20th century, their application in the 137	

discovery of non-toxic antibiofilm compounds has only recently taken hold. DoE has been shown to 138	

perform excellently in a wide range of applications: chemical kinetics, process control, drug 139	

discovery, biological systems (e.g. fermentation and bio-kinetics), pharmacodynamics, process 140	

engineering etc. (inter alias Akhbari et al. 2011; Hu et al. 2012; Papaneophytou and Kontopidis 141	

2012; Jibrail and Keat Teong 2013). However, to the best of our knowledge, only three works 142	

(carried out by the authors of the present paper) successfully modeled the antibiofilm performances 143	

of plant-derived compounds at sub-lethal concentrations exploiting High Throughput Screening 144	

techniques. 145	

By using DoE coupled with microtiter biofilm assay Villa and colleagues (2011) observed that the 146	

best anti-biofilm performance of sub-lethal concentrations of the phenolic compound zosteric acid 147	

(secondary metabolite from the seagrass Zostera marina, figure 2a) against Candida albicans was 148	

obtained at a specific threshold level, which corresponds to the minimum point of the response 149	

surface model and not to the maximum concentration tested (Figure 3). At this level, zosteric acid 150	

played a role in thwarting budded-to-hyphal-form transition, in reducing biofilm biomass and 151	

thickness, in extending the performance of antimicrobial agents and showed cytocompatibility 152	

towards soft and hard tissue (Figure 4). The non-linear response patterns depicted by the surface 153	

response followed a parabola-like shape profile, resembling a hormetic property (the situation in 154	

which the response to an environmental stressor varies with the level of exposure). However, a 155	

biphasic profile is not new in the biofilm world: the biofilm mediators homoserine lactones act in a 156	
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concentration-dependent manner, where upper and lower threshold concentrations trigger the 157	

formation of a biofilm (Rickard et al. 2007).  158	

Escherichia coli cells treated with zosteric acid were characterized by stress-associated (e.g. AhpC, 159	

OsmC, SodB, GroES, IscU, DnaK), motility-related (FliC), quorum-sensing-associated (LuxS) and 160	

metabolism/biosynthesis-related (e.g. PptA, AroA, FabD, FabB, GapA) proteins. This indicated that 161	

the antibiofilm compound targeted key steps involved in biofilm formation by modulating the 162	

threshold level of the extracellular signalling molecule autoinducer-2 (AI-2) and inducing a 163	

hypermotile phenotype unable to firmly adhere on surfaces (Villa et al. 2012b). The compound 164	

seems to act as an environmental stimulus or chemical manipulator that provides advance warning 165	

about environmental changes, allowing the microorganisms to prepare for adversity while 166	

conditions are still favorable. From an ecological perspective, the mechanism of action of the 167	

zosteric acid seems to portray the “xenohormesis theory”. According to the xenohormesis, 168	

heterotrophs (animals and microbes) are able to sense chemical stimuli synthesized by autotrophs 169	

(like plants) in response to stress to mount a preemptive defense response that increases their 170	

chance of survival (Howitz and Sinclair 2008). Interestingly, the synthesis of phenolic compounds 171	

is induced in plants by a variety of environmental stresses and the planktonic phenotype represents 172	

a life-extending physiological trait to escape from adversity improving the colonization of new 173	

favorable habitat. In a similar way, reacting to zosteric acid would allow the bacterial response to 174	

begin ahead of any direct damage or energy deficit, and, more importantly, would not stake the life 175	

of both the plant and the microorganism respecting the ecological relationships and leading to an 176	

extended lifespan of the involved counterparts. 177	

Thus, exploring the effects of sub-lethal concentrations of plant-derived compounds on microbial 178	

behavior (e.g. adhesion, chemotaxis, swimming and swarming motility) has the potential not only to 179	

demonstrate interesting xenohormetic-like responses and the extent and the modality to which 180	

microbial surface colonization is chemically mediated, but also to unveil potent biocide-free 181	

antibiofilm mechanisms. 182	
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 183	

Recent successes of antibiofilm compounds from plants at sub-lethal concentrations 184	

Vattem et al. (2007) have suggested that spices with renowned antibiotic properties could also 185	

possess antipathogenic activities, which may not be related to lethal effects on the target 186	

microorganism. The plant-derived compounds icariin and resveratrol, used in traditional Chinese 187	

medicine, were found potent antibiofilm molecules against Propionibacterium acnes  (Coenye et al. 188	

2012). Importantly, the antibiofilm activity was detected at sub-inhibitory concentrations. Similarly, 189	

extracts from Commiphora leptophloeos, Bauhinia acuruana and Pityrocarpa moniliformis 190	

demonstrated marked Staphylococcus epidermidis antibiofilm activity on polystyrene and glass 191	

surfaces without causing bacterial death (Trentin et al. 2011). The extract 220D-F2 from the root of 192	

Rubus ulmifolius was used to inhibit S. aureus biofilm formation to a degree that can be correlated 193	

with increased antibiotic susceptibility without limiting bacterial growth (Quave et al. 2012). 194	

Ursolic acid from the tree Diospyros dendo (Figure 2b) is completely non-toxic towards E. coli, P. 195	

aeruginosa, Vibrio harveyi, and successfully inhibited the formation of these bacterial biofilms. 196	

Transcriptome analyses showed the induction of chemotaxis and motility genes in E. coli treated 197	

with the plant-derived compound, suggesting that ursolic acid may function as a signal that tells 198	

cells to remain too motile hindering cell adhesion or destabilizing already formed biofilm (Ren et al. 199	

2005). 200	

The methanolic extract obtained from Cuminum cyminum, a traditional food ingredient in South 201	

Indian dishes, was shown to act as quorum-sensing inhibitor. By interfering with the acyl-202	

homoserine lactone activity, it inhibited the production of violacein pigment, swimming and 203	

swarming motility, production of the extracellular polymeric substances and biofilm formation in 204	

several bacterial pathogens (Issac Abraham et al. 2012). Also the extract of Capparis spinosa 205	

showed a high degree of anti-quorum sensing activity in a dose dependent manner without affecting 206	

the bacterial growth of Serratia marcescens, P. aeruginosa, E. coli and Proteus mirabilis. It also 207	

exhibited inhibition in swimming and swarming motility of the bacterial pathogens (Issac Abraham 208	
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et al. 2011). Two synthetic furanones based on those produced by the marine macroalga Delisea 209	

pulchra (Figure 2c) were shown to attenuate bacterial virulence in the mouse models of chronic 210	

lung infection by targeting Pseudomonas aeruginosa quorum-sensing without directly killing 211	

bacteria, not imposing a selective pressure for the development of bacterial resistance (Wu et al. 212	

2004). A number of flavonoids found in citrus species, including naringenin (Figure 2d), 213	

kaempferol (Figure 2e), apigenin (Figure 2f) and quercetin (Figure 2g), which are antagonists of 214	

homoserine lactone and AI-2-mediated cell–cell signaling in V. harveyi, were able to inhibit biofilm 215	

formation by V. harveyi BB120 and E. coli O157:H7 in a dose-dependent manner (Vikrame et al. 216	

2010).  217	

Recently, members of the Transient Receptor Potential (TRP) channels have drawn large attention 218	

as versatile sensors to detect changes in the external environment being associated to sensation of 219	

heat, cold, noxious chemicals, pain, osmotic force, touch, vibration, proprioception and axon 220	

guidance (Vriens et al. 2008) in various animals and in man. Interestingly, fungal genomes present 221	

genes encoding a TRP-like structure. The mechanosensitive TRP channel in Saccharomyces 222	

cerevesiae (Yvc1=TRPY1) has orthologs in other fungal genomes including TRPY2 of 223	

Kluyveromyces lactis and TRPY3 of C. albicans (Chang et al. 2010). Since several plant-derived 224	

taste-active substances are able to modulate/interact with these sensing channels, they are 225	

interesting bioactive molecules with new potential targets for the development of non-toxic 226	

strategies against biofilms. According to this chemosensory-based strategy, the efficacy of sub-227	

lethal concentrations of Muscari comosum bulb extract in modulating yeast adhesion and 228	

subsequent biofilm development on abiotic surfaces and its role as extracellular signal responsible 229	

for biofilm dispersion was reported (Villa et al. 2012a) (Figure 1).  230	

 231	

Drawbacks in the advancement of plant-derived products production 232	

Main reasons for the fact that plant-derived products research has not yet advanced to great lengths 233	

in the last 20 years include the incompatibility of natural product libraries with high-throughput 234	
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screening, the marginal improvement in core technologies for natural product screening and natural 235	

product structure elucidation (Lam 2007). In addition, chemists have been sometimes frustrated by 236	

their inability to resolve complex mixtures at reasonable cost. However, an advantage of using 237	

mixture is that effects may be additive and synergistic, through their ability to affect multiple targets 238	

(Kirakosyan and Kaufman 2009), a smart strategy when dealing with the complex phenomenon 239	

such as biofilm formation in which different pathways are involved. 240	

Recently, the development of new methodologies has revolutionized the screening of natural 241	

products: bio-prospecting, development of a streamlined screening process, improved natural 242	

product sourcing, advances in chemical methodologies, combinatorial biosynthesis and plant 243	

genomics (Lam 2007; Bohlin et al. 2010). For instance, rapid and more cost-effective genome 244	

sequencing technologies coupled with advanced computational power permits extracting chemical 245	

knowledge from genetic information more efficiently (Li et al. 2009). Less expensive DNA 246	

sequencing allows the identification of gene clusters known to be associated with a production of 247	

small molecules. In addition to identify new natural products, genome mining may certainly have an 248	

impact on the understanding the production of natural products (Clardy and Walsh 2004; Lam 249	

2007).  250	

When research leads to the commercialization of an agent, large quantities of the compound are 251	

required. The preferred option is synthesis of the compound. Combinatorial chemistry approaches 252	

are being applied based on phytochemical scaffolds to create screening libraries that closely 253	

resemble antibiofilm-like compounds. In silico techniques like quantitative structure–activity 254	

relationships (QSAR) analysis, pioneered by Hansch et al. (1962), helps to quantitatively correlate 255	

the activity or properties of compounds with their measured or computed physiochemical 256	

properties, playing crucial and rate accelerating steps for the better drug design in the modern era 257	

(Lill 2007; Verma et al. 2010; Kar and Roy 2012; Yao 2012). QSAR approaches have been 258	

developed and have demonstrated appealing advantages, including their low-cost and capability to 259	

scale up easily (Yao 2012). The main assumption in the QSAR approaches is that the all properties 260	
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viz. physical, chemical and biological are purely depending on the molecular structure. QSAR is an 261	

attempt to remove the element of luck from drug design by establishing a mathematical relationship 262	

in the form of an equation between biological activity and measurable/computed physicochemical 263	

parameters. These equations may be used by the chemist to make a more informed choice as to 264	

which analogues to prepare. Currently, QSAR approach has been successfully applied to many data 265	

sets of plant-derived compounds (Wright et al. 2006; Chen and Li 2009; Nargotra et al. 2009; De-266	

Eknamkul et al. 2011; Yao et al. 2011). Thus, by applying the QSAR technique, new organic 267	

synthetic methodologies and biotransformation for the modification of natural product leads would 268	

generate a novel, structurally diverse analogs with improved properties or new activities (Zhou et al. 269	

2012).  270	

However, owing to their structural complexity, some natural products are not currently produced on 271	

an industrial scale by chemical synthesis. Thus, another drawback lies in the sustainability of the 272	

use and management of plant resources, insuring that the population size and the availability of the 273	

extracted product do not decline as a result of harvesting (Gilliland et al. 2009). A solution is 274	

represented by microbial hosts engineered to express plant metabolic pathways as reported by 275	

Ajikumar et al. (2010) and the developing of a platform technology to isolate and culture cambial 276	

meristematic cells (CMCs, multipotent plant cells that give rise to the vascular tissues xylem and 277	

phloem) in the laboratory and then harvesting the desired products from the media in which they 278	

grow (Lee et al. 2010). Finally, tailoring efficient laboratory plant-systems to produce specific 279	

compounds can be an efficient and sustainable source of plant-derived products. 280	

 281	

Concluding remarks  282	

Plants represent a virtually inexhaustible and sustainable resource of biocide-free antibiofilm agents 283	

with novel targets, unique modes of action and proprieties with potential for utilization in a plethora 284	

of medical, agricultural, and industrial fields.  On the one hand, realization of this possibility has so 285	
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far been hindered by insufficient fundamental research to comprehensively understand the 286	

ecologically relevant functions of plant-derived compounds in the real natural environments. 287	

When testing the biocidal action of a naturally-occurring agent against biofilm-forming 288	

microorganisms, we should keep in mind that this might not be the modality whereby this molecule 289	

works in nature. The concept that the killing activity is not the only property of a compound can be 290	

traced back to the 16th century when the Swiss chemist and physician Paracelsus wrote: “All things 291	

are poison and nothing is without poison, only the dose permits something not to be poisonous”. 292	

Now the question is: what happens at sub-lethal concentrations?  293	

This is a common failure of many studies in which the investigator is unaware of the microbial 294	

behavior at sub-inhibitory concentrations. Thus, it is possible that the use of plant-derived 295	

compounds as less toxic or non-toxic antibiofilm products has been neglected or even abandoned 296	

principally because the optimal sub-lethal concentrations and working conditions were not found 297	

and not because the agent was ineffective. This holistic approach provides risk managers and 298	

decision-makers with the evidence they need to prioritize their resources and efforts to develop new 299	

technologies to deal with the spread and recalcitrance of unwanted biofilms. 300	

Sub-inhibitory concentrations of plant-derived compounds might offer an elegant way to interfere 301	

with specific key-steps that orchestrate biofilm formation, mitigating biofilm formation without 302	

affecting their existence, sidestepping drug resistance and extending the efficacy of the current 303	

arsenal of antimicrobial agents. This technology might pave the way to more innovative, resource 304	

efficient and competitive society that reconciles human wellbeing with the sustainable use of 305	

renewable resources for industrial purposes, while ensuring environmental protection.  306	
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Figure captions 502	

 503	

Figure 1: The biofilm life cycle in three main steps (1- reversible and irreversible attachment; 2- 504	

maturation; 3- detachment) and action of some plant-derived bioactive compounds at sub-lethal 505	

concentrations. 506	

 507	

Figure 2: Plant-derived compounds with antibiofilm activities at sub-lethal concentrations: (a) 508	

zosteric acid, (b) ursolic acid, (c) synthetic furanones based on those produced by Delisea pulchra, 509	

(d) naringenin, (e) kaempferol, (f) apigenin and (g) quercetin. 510	

 511	

Figure 3: Three-D response surface model displaying the hormetic properties of zosteric acid, a 512	

secondary metabolite of the seagrass Zostera marina tested against Candida albicans biofilm. Plot 513	

shows interaction between zosteric acid and pH when time and temperature were 12 hours and 25 514	

°C respectively. The variables were coded in the range -1 (minimum selected value) and +1 515	

(maximum selected value). Ranges in the legends represent the number of adhered cells. The graph 516	

shows that the best anti-biofilm performance of the plant-derived compound was obtained at a 517	

specific threshold level, which corresponds to the minimum point of the response surface model. 518	

Thus, the minimum number of adhered cells does not correspond to the high amount of zosteric 519	

acid. Minimum adhesion (that is the maximum response) corresponds to 10 mg/l of zosteric acid. 520	

The maximum response is predicted to be a reduction of fungal spores adhesion by 70%. 521	

 522	

Figure 4: View of 3D reconstruction images of Candida albicans biofilm grown without (a) and 523	

with sublethal dose of zosteric acid (b). Zosteric acid induces morphostructural alterations, 524	

thwarting budded-to-hyphal-form transition. Biofilms were stained with FUN-1 yeast viability stain 525	

(red-orange), indicating that zosteric acid treatment maintains metabolically active cells. Biofilm 526	

samples were visualized using a Leica TCS-SP2 AOBS confocal laser scanning microscope with 527	
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excitation at 488 nm, and emission ≥ 530 nm (green and red channels). Images were captured with a 528	

63X 0.9 NA w water immersion objective and analyzed with the software Imaris (Bitplane 529	

Scientific Software, Zurich, Switzerland). 530	
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