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ABSTRACT 

 

Recent reports indicate copy number variations (CNVs) to be 

functionally significant. This study presents a medium resolution 

map of CNV regions (CNVRs) in Brown Swiss dairy cattle, from 

to this day, the largest CNV genome scan in any cattle breed. We 

genotyped 1,342 bulls and after quality filtering on males we 

called CNVs with PennCNV and with “Copy Number Analysis 

Module” (CNAM) of SVS7 software (Goldenhelix) for a total of 

46,728 loci anchored on the UMD3.1 assembly. We corrected for 

sequence composition flanking each SNP and employed principal 

component analysis for CNAM to correct for technical 

background noise to reduce false positive calls. PennCNV and 

SVS7 identified a total of 5,099 and 1,289 CNVs segregating in 

632 and 651 bulls respectively. These were summarized at the 

population level into 1,101 (220 losses, 774 gains, 107 complex) 

and 277 (185 losses, 56 gains and 36 complex) CNVRs, covering 

682 Mb (27.14%) and 33.7 Mb (1.35%) of the autosome, 

respectively. We then obtained the consensus between the two 

CNV scans using the approaches suggested by Redon et al. 

(2006), union set, and by Wain et al. (2009), intersection, 

covering 146 Mb (5.88%) and 17.1 Mb (0.68%), respectively. 

CNVRs were annotated with the bovine Ensembl gene set v69 and 

tested for enrichment of GO terms using DAVID database. 

Consensus CNVRs are enriched for protein-coding genes. 

Go analysis identified genes (Bonferroni corrected) in the CNVRs 

related to cytoplasm, intercellular part, cellular processes, 

cytoplasmic part, and intracellular organelles.  
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CHAPTER 1 – INTRODUCTION 

1.1 GENOME AND STRUCTURAL VARIATIONS 

Over the last few years, genomic studies have progressed rapidly 

and innovative High Throughput Technologies (HTT) have been 

carried out to investigate the structure and the characteristics of 

the human and bovine genome generating a number of valuable 

information. Since the similarity between human and bovine 

genome is 80% and it is higher than the analogy between human 

and mice, the bovine genome may be considered a model 

organism to better understand the genetic complexity and 

variation of human evolution 

(http://www.csiro.au/en/Outcomes/Food-and-Agriculture/Bovine-

genome-decoded/Similarities-between-cow-and-human-

DNA.aspx).  

The human genome is comprised of 6 billion nucleotides, and the 

DNA is organized into two sets of 23 chromosomes, one set 

inherited from each parent (http://cnv.gene-quantification.info/), 

while the bovine genome is enriched of 3 billion nucleotides of 

DNA packaged into two sets of 30 chromosomes. The DNA 

encodes roughly 27,000 and 22,000 genes for the human and 

bovine genomes, respectively (Elsik et al., 2009).  

http://www.csiro.au/en/Outcomes/Food-and-Agriculture/Bovine-genome-decoded/Similarities-between-cow-and-human-DNA.aspx
http://www.csiro.au/en/Outcomes/Food-and-Agriculture/Bovine-genome-decoded/Similarities-between-cow-and-human-DNA.aspx
http://www.csiro.au/en/Outcomes/Food-and-Agriculture/Bovine-genome-decoded/Similarities-between-cow-and-human-DNA.aspx
http://cnv.gene-quantification.info/
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It was generally thought that genes were almost always present in 

two copies in a genome; but recent discoveries have revealed that 

genes are sometimes present in one, three, or more than three 

copies; in a few rare instances genes are missing altogether (Wain 

L.V. et al., 2009). 

Large segments of DNA, ranging in size from thousands to 

millions DNA bases, can vary in copy-number (Iafrate et al., 

2004, Redon et al., 2006). Until now, the covering of copy 

number variants (CNVs) corresponds to 12% and 4.6% on human 

and bovine genomes, respectively (Redon et al., 2006; Hou et al., 

2011). Such copy number variations can encompass genes leading 

to dosage imbalances, and differences in DNA sequence may 

contribute to the uniqueness of the genomes. These changes that 

can influence most traits including susceptibility to disease, are 

important sources of genetic and phenotypic variation (Nguyen et 

al., 2006, Xu et al., 2011). It was thought that single nucleotide 

polymorphisms (SNPs) in DNA were the most prevalent and 

important form of genetic variation (Van Tassell et al., 2008; 

Matukumalli et al., 2009). The current studies reveal that CNVs 

comprise at least three times the total nucleotide content of SNPs, 

(http://cnv.gene-quantification.info/). 

The understanding of the mechanisms of CNV formation may 

help to better comprehend genome evolution and to create a more 

http://cnv.gene-quantification.info/
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accurate and complete genome reference sequence for different 

species including human and bovine. The creation of the CNV 

map may be adopted to improve scientific and genetic research in 

different fields that can be summarized as: 

o Identification of genes responsible for common diseases; 

o Study of familial genetic conditions; 

o Detection of defects caused by chromosomal rearrangements. 

The genomic studies and their use in selection programs are 

having a strong impact in dairy cattle selection (Hou et al., 2011). 

CNVs may represent an important source of information to 

integrate the genomic selection programs, because the availability 

of their knowledge is expected to improve the genomic breeding 

values (GEBVs) of animals (Bae et al., 2010). 

1.1.1 REFERENCE GENOME  

1.1.1.1 General Description 

The reference genome is a nucleic acid sequence database, 

assembled by researches as a guide, on which new genomes are 

built and compared; it aims to provide, for a huge number of 

species (Human, Mouse, Zebrafish, Primates, Rodents, 

Laurasiatheria, Afrotheria, Xenarthra, Other Mammals, Birds 

and Reptiles, Fish, Amphibians, Other Cordathes, Other 

Eukaryotes), a comprehensive, integrated, non-redundant, well-

http://en.wikipedia.org/wiki/Nucleic_acid_sequence
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annotated set of sequences, including genomic DNA, transcripts, 

and proteins. The sequencing of DNA was obtained from different 

donors providing a good approximation, especially in the regions 

with high polymorphism, of the nucleic acid composition. 

The human reference genome is maintained and improved by the 

Genome Reference Consortium (GRC) by building new 

alignments that contain fewer gaps, and fixing misrepresentations 

in the sequences. The human genome was assembled using the 

isolated mapped and sequenced bacterial artificial chromosomes 

(BACs). The disadvantage of BAC method is the high cost and to 

reduce that, the whole genome shotgun (WGS) method has been 

applied to improve the human assembly. 

The bovine reference genome is obtained and improved by the 

Bovine Genome Sequencing and Analysis Consortium (2009). 

The WGS and the hierarchical (BAC clone) methods were used to 

create the bovine genome assembly (Zimin et al., 2009, Liu et al., 

2009). The sequencing combines BAC shotgun and WGS reads 

from small insert libraries as well as BAC end sequences (BES). 

The DNA for WGS libraries was from white blood cells from a 

Hereford cow (L1 Dominette), and the DNA for BAC libraries 

was from a Hereford bull (L1 Domino), the sire of the ancestral 

animal (Liu et al., 2009, The bovine HapMap consortium 2009). 

In the last years, public browsers (Ensembl, NCBI, USCS 

http://en.wikipedia.org/wiki/Genome_Reference_Consortium
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Genome Browser) including several reference assemblies, have 

been made available. The first Bos Taurus assembly (UMD2) was 

created from University of Meriland (Zimin et al., 2009). Table 1 

shows the differences between the two most recent assemblies: 

Bos Taurus-UMD3.1 (2009) and Btau4.6.1 (2011) 

(http://www.ncbi.nlm.nih.gov/genome/82).  

Table 1: Differences between the two most recent assemblies. 

1.1.1.2 Database of elements annotated on Reference Genome 

In the reference genome several elements are annotated: gene, 

proteins, trascriptome, non-coding RNA (nc-RNA) and structural 

variation (Table 2). The nc-RNA are represented by: transfer 

RNA (tRNA), transfer RNA located in the mitochondrial genome 

(Mt-tRNA), ribosomal RNA (rRNA), small cytoplasmic RNA 

(scRNA), small nuclear RNA (snRNA), small nucleolar RNA 

(snoRNA), microRNA precursors (miRNA), miscellaneous other 

RNA (misc_RNA), Long intergenic non-coding RNAs (lincRNA) 

Organism Assembly Chr Size (Mb) GC % Gene Protein

Bos Taurus Bos_taurus_UMD3.1 30 2670.42 41.9 27155 22070

Bos Taurus Btau_4.6.1 31 2983.32 4.5 29754 23594
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1.1.2 STRUCTURAL VARIATIONS 

1.1.2.1 Structural Variation as a Source of Genetic Diversity 

The existence of the genome structural variations (SVs) was 

described starting from the early years of the XX century in 

Drosophila (Bridge 1921, 1936), in 1950s in cattle (Knudsen 

1958), and in humans from the 1980s (Goossens et al., 1980). 

The progress in high-throughput genome scan technologies, has 

allowed the identification of sequence variation and several types 

of structural variation (genomic or chromosomal rearrangements) 

on the whole genome (Alkan et al., 2011). Genetic variation is 

mostly present in different forms and sizes ranging from the 

ubiquitous SNPs, to fine-scale copy number change such as small 

insertions and deletions (INDELs), microsatellite and minisatellite 

repeats, to larger scale structural variants from several kilobases to 

megabases such as inversions, translocations and CNVs (Feuk et 

al., 2006; Mills et al., 2006; Conrad and Hurles 2007). These 

variation and polymorphisms represent the dynamic genome 

architecture and underline the differences between subjects. A list 

of the most common genome variations is reported in Table 2; 

Figure 1 (Feuk et al., 2006) is a graphical scheme for deletion, 

insertion, inversion, copy number variant and segmental 

duplication.  
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Single Nucleotide Polymorphism (SNP): DNA sequence variation 

occurring when a single nucleotide (A, T, C, and G) in the genome 

differs respect to the reference genome. 

Copy number variant (CNV): DNA segment of at least 1 kb to 

several megabases in size that differs in copy number respect to the 

reference genome. 

Copy number polymorphism (CNP): CNV which appears in more 

than 1% in a population. 

Inversion: DNA segment with reversed orientation respect to the 

major sequence of a chromosome. 

Segmental Duplication (SD) or low copy repeats (LCRs): DNA 

very similar blocks that occur in more than one site within haploid 

genome (> 90%sequence identity). SDs can also be CNVs. 

Traslocation: DNA segment with a modified position in the genome 

that has no gain or loss in DNA content. The traslocation can occur 

within a chromosome (intra-chromosomal) or between different 

chromosomes (inter-chromosomal). 

Table 2: List of the genome variations (Feuk et al., 2006) 

 

 

 

 

 

 

 

Figure 1: Graphical scheme for deletion, insertion, inversion, copy number variant 

and segmental duplication (Feuk et al. 2006).  
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1.1.2.2 Copy Number Variants (CNVs) 

The copy number variants (CNVs) are a type of DNA variation 

including deletion, duplication and insertion of DNA fragments 

ranging from 1 kilobase (kb) to several megabase (Mb) and 

present variable copy number in comparison with a reference 

genome (Redon et al., 2006, Feuk et al., 2006). The first 

association of CNV with a phenotype was described by Bridge 

(1936), with the duplication of the Bar gene in Drosophila 

melanogaster, and recently CNV map for the Drosophila 

melanogaster was published (Dopman and Hartl 2007; Emerson 

et al., 2008; Zhou et al., 2008). In cattle in the 1950s Knudsen 

(1958) detected chromosomal translocation involvement in the 

reduced fertility of carrier bulls. In the human genome, this type 

of submicroscopic structural variation has been detected by 

Goossens et al., (1980) starting from the 1980s in a fraction of -

globin loci. 

The CNVs can be inherited or may occur through de novo 

formation. Moreover, Gu et al., (2008) have been shown that the 

CNVs can be manifested on germ line and somatic cells. The 

major mechanisms responsible for the CNV formation are the 

non-allelic homologous recombination (NAHR), the non-
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homologous end-joining (NHEJ), the fork stalling and the 

template switching (FoSTeS). 

The NAHR method requires, as recombination substrates, two 

segmental duplications (SDs) (Sharp et al., 2005) or low copy 

repeats (LCRs) (Lupski 2003) with a sufficient size (usually from 

10 to 300 kb) and with high homology (major than 95-97%). 

Usually the frequency of deletions should be higher than the 

frequency of duplication because of biological reasons (Gu et al., 

2008). However, Conrad et al., (2010) observed that the main 

rearrangement mechanism of large CNVs size was NAHR (Figure 

2). 
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Figure 2: The genomic rearrangements (From Gu et al., 2008). Genomic 

rearrangements resulting from recombination between low-copy repeats (LCRs). 

LCRs are depicted as black arrows with the orientation indicated by the direction 

of the arrowhead. Capital letters above the thin horizontal lines refer to the 

flanking unique sequences (for example, A). Homologues on the other strand (can 

be another chromatid or the homologous chromosome) are also shown (for 

example, a). Thin diagonal lines refer to a recombination event with the results 

shown by numbers 1, 2 and 3. a1 Recombination between direct repeats results in 

deletion and/or duplication. a2 Recombination between inverted repeats results in 

an inversion. b. Schematic representation of reciprocal duplications and deletions 

mediated by interchromosomal (left), interchromatid (middle) and intrachromatid 

(right) non-allelic homologous recombination (NAHR) using LCR pairs in direct 

orientation. Chromosomes are shown in black, with the centromere depicted by 

hashed lines. Yellow arrows depict LCRs. Letters adjacent to the chromatids refer 
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to the flanking unique sequence (for example, A, a). Interchromosomal and 

interchromatid NAHR between LCRs in direct orientation result in reciprocal 

duplication and deletion, whereas intrachromatid NAHR only creates deletion. 

Signatures of homologous recombination include the sequence identity of the 

substrates (LCRs) used for NAHR, recombination hotspots within the LCRs, and 

evidence for gene conversion at the crossovers within the LCRs. 

 

The NHEJ is a pathway that repairs double-strand breaks in DNA 

and can affect some simple non-recurrent rearrangements. NHEJ 

proceeds in four steps: detection of DBS; molecular bridging of 

both broken DNA ends; modification of the ends to make them 

compatible and ligatable; and the final ligation step. This 

mechanism is more prevalent in unstable regions of the genome, 

as in the subtelomeric regions (Nguyen et al., 2006; Kim et al., 

2008), and it has been implicated in different genomic disorders 

(Shaw and Lupski 2005). 

The FoSTeS model is the main DNA replication-based 

mechanism for complex rearrangements that are induced by errors 

in the replication procedure (Figure 3). 
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Figure 3: Genomic rearrangement mechanisms (From Gu et al.,2008). a. Non-

homologous end-joining (NHEJ) in vertebrates. A double-stranded DNA break 

(DSB) occurs and is repaired via NHEJ mechanism. The two thick lines depict two 

DNA strands with DSB, the thin segments in the middle represent the 

modifications which the ends have gone through before the final ligation. At step 3 

some addition or deletion of bases may be required, leaving behind a 'signature' of 

NHEJ. b. After the original stalling of the replication fork (dark blue and red, solid 

lines), the lagging strand (red, dotted line) disengages and anneals to a second fork 

(purple and green, solid lines) via micro homology (1), followed by (2) extension of 

the now 'primed' second fork and DNA synthesis (green, dotted line). After the 

fork disengages (3), the tethered original fork (dark blue and red, solid lines) with 

its lagging strand (red and green, dotted lines) could invade a third fork (gray and 

black, solid lines). Dotted lines represent newly synthesized DNA. Serial replication 

fork disengaging and lagging strand invasion could occur several times (e.g. 

FoSTeS x 2, FoSTeS x 3, ... etc.) before (4) resumption of replication on the original 

template. 

 

The local genomic architecture is crucial for all the three models 

described above. In fact, it has been show that the CNVs are not 
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distributed uniformly in the genome, but the higher relative 

frequency of CNVs are correlated with the distance to the 

telomeres and centromeric regions, and to the simple tandem 

repeat sequences and segmental duplication (SDs) (Nguyen et al., 

2006). Also, the genomic waves (variation in hybridization 

intensity) may affect the CNV formation as reported by Diskin et 

al., (2008).  

Redon et al., (2006) defined the copy number variants regions 

(CNVRs) as the union or merge of the overlapping CNVs call. 

The CNVRs can be represented from duplication events, deletion 

events and even complex events, and their distribution is non-

uniform along the genome but preferentially clustered SDs 

(Bailey et al., 2002). These CNVRs can encompass hundreds of 

genes, functional elements, disease loci, and segmental 

duplications (Redon et al., 2006).  

The accuracy of CNV boundaries is affected by multiple factors 

as robustness of the statistical method, batch effects, population 

stratification, and differences between experiments (Dellinger et 

al., 2010).  
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1.1.3 COPY NUMBER VARIANTS IN HUMAN GENOME  

1.1.3.1 CNV studies in human genome 

Singleton et al., (2003), Iafrate et al., (2004), Sebat et al., (2004) 

and Redon et al., (2006) were the first researches who showed the 

distribution of CNVs in the human genome on genome-wide scan 

and reported several CNVs with a low size and breakpoint 

resolution.  

Singleton et al. (2003) were the first to demonstrate mutations, 

more specific a triplication event, in the alpha-synuclein (SNCA), 

implicated in Parkinson’s disease.  

In the brief communication of Iafrate et al., (2004) it has been 

reported the detection of large-scale copy-number variations 

(LCVs) in the genome of unrelated individuals using the array-

based comparative genomic hybridization (array CGH). They 

showed that the LCVs are not limited to the intergenic or intronic 

regions, and some of these variants were located close to loci 

associated with human genetic syndromes or with cancer. This 

suggests that the variations could lead to chromosomal 

rearrangements responsible for diseases and phenotypic variation 

by influencing the expression of genes.  
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Sebat et al., (2004) found a relationship between copy number 

polymorphism (CNPs) and susceptibility to health problems such 

as neurological disease, cancer, and obesity.  

The first-generation CNV map of the human genome came in 

2006 from Redon et al. In this study 270 individuals were 

genotyped from four populations with ancestry in Europe, Africa 

and Asia using different technologies and the importance of CNV 

in genetic diversity and evolution was underlined. 

The identification of CNVs into whole-genome exploded in 2006 

and 2007 with a supplementary issue of reviews on Nature 

Genetics journal (Volume 39, S1, 2007). These researches focused 

on how to integrate the CNVs datasets in genome wide 

association studies and in clinical diagnostics, and on the 

description of the different technologies to detect CNV, their 

impact on population and potential contributions on phenotypic 

variation.  

1.1.3.2 Association with phenotypic variation and disease 

The aim of different studies in humans was the inclusion of CNVs 

in the whole-genome association scans, and until now, several 

strong associations with neurodegenerative and 

neurodevelopmental diseases have been detected (De Cid et al., 

2009; Glessner et al., 2010).  
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Recent publications have reviewed the effects of CNVs on gene 

expression and on simple genomic diseases as mental retardation 

and seizure (Sharp et al., 2008), and on several complex human 

diseases like Autism spectrum discorder (Pinto et al., 2010, Sebat 

et al., 2007), Schizophrenia (Xu et al., 2008, Walsh et al., 2008, 

Stefannson et al., 2008, 2009), Parkinson (Singleton et al., 2003), 

Crohn’s disease (Aldhous et al., 2010), HIV/AIDS susceptibility 

(Gonzalez et al., 2005) and cancer (Campbell et al., 2008, Diskin 

et al., 2009). 

1.1.4 COPY NUMBER VARIANTS IN BOVINE GENOME 

1.1.4.1 CNV studies in bovine genome 

In the bovine species (Bos Taurus, Bos Indicus) and Zebu several 

authors (Fadista et al., 2010, Liu et al., 2010, Hou et al., 2011, 

Bae et al., 2010, Matukumalli et al. 2009, Bickhart et al., 2012) 

have detected the CNVs using different methods and platforms. In 

the Table 3 a list of these studies is reported.  
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Table 3: List of CNVs studies on Bovine genome: the breeds, the platform and technologies applied, the total number of 

CNVRs identified, and the coverage on the genome.  

References Breeds Technologies # CNVRs % Coverage /(CNVR in Mb)

Bickhart et al. (2012) Angus, Holstein, Hereford, Nelore Read-depth analysis (Illumina GAIIx) 1265 2.1/(55.6)

Hou et al. (2011)

Holstein, Angus, Limousin, Hereford, Jersey, Charolais, BrownSwiss,

Piedmontese, Ramagnola, Guernsey, Norwegian Red, Red Angus,

Gelbvieh, Simmental, Gir, Nelore, Brahman, Beefmaster, Santa Geltridis,

N’Dama, Sheko, Gaur, North American Bison, Lowland Anoa, Bantang,

Yak, Cape Buffalo

BovineSNP50 BeadChip (Illumina) 743 4.6/-158

Fadista et al. (2010) Holsteins, Red Danish, Simmental, Hereford Bovine 2.1 M aCGH array (NimbleGen) 304 0.68/ (22)

Liu et al. (2010)

Angus, Bonsmara, Charolais, Gelbvieh, Hereford, Holstein, Limousin,

N’Dama, Red Angus, Romosinuaro, Simmental, Brahman, Gir, Guzerat,

Beefmaster, Brangus, Santa Gertrudis

Bovine 385k aCGH array 177 1.07/(28.1)

Bae et al. (2010) Bos taurus coreanae BovineSNP50 BeadChip (Illumina) 368 (63.1)

Matukumalli et al. (2009)

Hereford, Charolais, Holstein, Piemontese, Norwegian Red, Limousin,

Romagnola, Angus, Red Angus, Guernsey, Jersey, Brown Swiss,

Simmental, Gelbvieh, Beefmaster, Santa Gertrudis, Sheko, N’Dama,

Brahman, Gir, Nelore

Infinium BovineSNP50 BeadChip (Illumina) 42 (49.1)
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The improvement of the SNP array permitted to detect CNVs by 

high-throughput genotyping on different set of breeds. More CNV 

loci were identified in African, composite, and indicine breeds and 

also in the taurine breeds (Matukumalli et al., 2009). Bae et al., 

(2010) and Fadista et al., (2010) created two CNV maps of bovine 

genome using SNP and CGH arrays (BovineSNP50 BeadChip by 

Illumina and Bovine 2.1 M aCGH array by NimbleGen, 

respectively). The size range of CNVRs in the Fadista et al., 

(2010) study was 1.7 Kb - 2 Mb, while in the Bae et al., (2010) 

study it was 50-200 Kb. The coverage of CNVRs on the bovine 

genome reported in these studies have a range from 0.68% 

(Fadista et al., 2010) to 4.6% by Hou et al., (2011) that 

corresponds to 22 Mb and 139.9 Mb, respectively. 

These differences in the range size may have probably a 

methodological origin and can reflect the higher resolution of 

CGH array versus the SNP array platform.  

1.1.4.2 Association with phenotypic variation and disease 

Different authors found associations between CNV and genes in 

cattle genome. Liu et al., (2009, 2010), Matukumalli et al., 

(2009), Seroussi et al., (2010), Bae et al., (2010) and Hou et al., 

(2011) reported that these gene families include olfactory 
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receptors, ATP-binding cassette (ABC) transporters, Cytochrome 

P450, β-defensins, interleukins, the bovine MHC (BoLA) and 

multiple solute carrier family proteins. 

Liu et al., (2010) found over 200 candidates CNVRs in total and 

177 within known chromosomes. The CNVRs spanned about 400 

annotated cattle genes with specific biological functions, such as 

immunity, lactation, and reproduction.  

Bae et al., (2010) identified 368 CNVRs that contained 538 genes 

significantly enriched in multicellular organismal process, 

regulation of biological quality, and cell morphogenesis.   

Fadista et al., (2010) detected 304 CNVRs in the genome of 20 

bovine samples from 4 dairy and beef breeds. These CNVRs were 

found to be enriched for genes with functions related to 

environmental response, such as immune and sensory functions.  

Hou et al., (2011) detected marked variation in copy number 

among individuals and across different cattle species (Bos Taurus, 

Bos indicus, and Bubalus), breeds (Table 3) and/or groups, 

detecting variations of TLR3 (toll-like receptor 3) and PPARA 

(peroxisome proliferator-activated receptor alpha) receptors. This 

CNV analysis have supported the hypothesis that the important 

differences of CNVRs frequencies among breeds, may be constant 

and have suggested one of the possible sources of variability than 

could have contributed to breed differentiation (Nei et al., 2005, 
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Matukumalli et al., 2009; Liu et al., 2010; Seroussi et al., 2010; 

Hou et al., 2011; Clop et al., 2012). 

Bickhart et al., (2012) published the first study of sequenced-

based CNV within cattle genomes analysing the genomic 

sequence of five Bos Taurus Taurus (Angus, Hereford, and 

Holstein) and one Bos Taurus indicus (Nelore) individuals. Total 

of 1,265 unique CNVRs were detected containing 413 genes. 

They reported breed-specific copy number differences in a Nelore 

individual as excellent candidate for pathogen and parasite 

resistance (CATHL4, ULBP7, and KRTAP9-2). In addition, copy 

number differences were detected for several lipid metabolism 

and transport genes in the taurine individuals.  

1.2. METHODS OF CNVs DETECTION 

The genome structural variation events can be discover by a 

modern technologies useful to genome-wide application as array 

comparative genomic hybridization, next generation sequencing, 

and SNP genotyping arrays. Alkan et al., (2011) described: i) the 

hybridization-based technologies that infer a copy number 

compared to a reference sample or population; ii) the next 

generation sequence that focuses on mapping sequence reads to 

the reference genome and subsequently identifies discordant 
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signature or patterns that are diagnostic of different classes of 

structural variation.  

However, some CNVs were detected several years ago by 

standard methods of molecular genetic analysis at individual 

genetic loci, including cytogenetic methods and PCR-based 

approaches (Wain L.V et al., 2009).  

1.2.1 CLASSIC CYTOGENETIC TECHNIQUES  

Classic cytogenetic have identified structural variation as 

microscopically visible alteration using the fluorescent in-situ 

hybridization (FISH) (Wain L.V et al., 2009).  

FISH is an in situ hybridization technique in which a labelled 

probe of specific DNA sequences is hybridized to a preparation of 

metaphase chromosome or interphase DNA, usually attached to a 

glass slide. The chromosomal DNA and probe mixture is then 

denatured, allowing the single-stranded probe and single stranded 

DNA to re-anneal, with the probe hybridizing to the 

complementary sequences on the DNA and reformed a double 

stranded molecule. The unbound probes are washed away after the 

hybridization step, while the hybridized probes are visualized 

directly if they are tagged with fluorochromes (Langer, 1981).  
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1.2.2 COMPARATIVE GENOME HYBRIDIZATION ARRAY 

(CGH-ARRAY) 

The array CGH platform has opened new opportunities to assess 

copy number rearrangements associated with disease and genetic 

variation. A typical CGH array consists of mapped DNA 

sequences that can arise from different sources, which could be 

classified as genomic inserts (BAC or fosmid clones (Snijders et 

al., 2001), cDNA clones (Pollack et al., 1999), genomic 

Polymerase Chain Reaction (PCR) products (Dhami et al., 2005), 

or oligonucleotides (Urban et al., 2006). The first generation of 

BAC arrays was based on BAC, while an alternative of this type 

of DNA source was the oligonucleotide-arrays which are mostly 

supplied commercially. Array CGH platforms are based on the 

principle of comparative hybridization of two labelled samples 

(test and reference) to a set of hybridization targets (long 

oligonucleotides or bacterial artificial chromosome (BAC) 

clones), and the signal ratio is used for the detection of copy 

number. The test and reference samples are mixed together and 

applied to the chip and hybridisation takes place (the fragments of 

DNA hybridise with their matching probes on the array) (Figure 

4). The chip is then scanned in a machine called microarray 

scanner which measures the amount of red (test sample) and green 
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(reference sample) fluorescence on each probe. The microarray 

scanner together with computer analytical software calculates the 

ratio of the red and green fluorescent dyes to determine whether, 

for the piece of DNA represented by each probe, the sample has 

the correct amount of DNA, too much DNA (duplication) which 

would be shown by too much red, or too little DNA (deletion), 

shown by too much green. 

Currently, Roche NimbleGen and Agilent Technologies are the 

major suppliers of whole-genome array CGH platforms.  

 

 

 

 

 

 

 

Figure 4: Graphical representation of the mechanism to detect CNV using CGH-

array (http://www.rarechromo.org/information/other/array%20cgh%20ftnw.pdf). 

 

http://www.rarechromo.org/information/other/array%20cgh%20ftnw.pdf
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1.2.3 SNP MICROARRAY TECHNOLOGY  

Similarly to CGH platform, the SNP microarray platforms are 

based on hybridization; but for this array the hybridization is 

performed on a single sample per microarray and log-transformed 

ratios are obtained by clustering the intensities measured at each 

probe across multiple samples. Also, the probe are specific for 

SNPs that increase CNV sensitivity, distinguishing alleles and 

identifying regions of uniparental disomy through the calculation 

of the B allele frequency (BAF). 

Recently SNP arrays incorporated finer SNP selection criteria for 

complex regions of the genome and non-polymorphic copy-

number probes to improve the coverage of CNV regions.  

1.2.3.1 Illumina Infinium II Whole Genome genotyping assay 

The Infinium II Whole Genome genotyping assay was created for 

the interrogation of huge number of SNPs (from 10,000 to 

hundreds of thousands) at unlimited levels of multiple loci using a 

single bead type and dual color channel approach 

(http://www.illumina.com/). Genotypes are obtained comparing 

the two-color signal intensities produced by a BeadChip marker to 

the canonical genotype clusters. The values of canonical cluster 

(CC) are by 0 for the homozygous genotype (AA), 0.5 for the 

http://www.illumina.com/
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heterozygous (AB), and 1 for the homozygous genotype (BB). 

The millions of calls are visualized in the Genome Studio 

software.  

The standard protocol developed by Illumina is characterized 

from the following steps: denaturation and neutralization of 50 ng 

of genomic DNA (gDNA), amplification with PCR-free, 

enzymatic fragmentation of the amplified product, and 

precipitation using isopropanol. This product is resuspended in 

formamide-containing hybridization buffer. All beadchips are 

prepared for hybridization in a capillary flow-through chamber. 

The samples are applied to beadchips and the loaded beadchips 

are incubated overnight in the Illumina Hybridization Oven. 

Unhybridized and non-specifically hybridized DNA is washed 

away, and beadchips are prepared for staining and extension 

(Figure 5). The results in intensity values are obtained from the 

readout of the two colors channels (two alleles) for each SNP 

marker on the Infinium BeadChip. 
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Figure 5: Illumina Infinium II Whole Genome genotyping assay. 

 

The BeadChips are scanned on the Illumina BeadArray Reader 

using default settings, and intra-chip normalization is performed 

using the Illumina’s Genome Studio software v.1.0.1 with a 

GenCall cut off of 0.1 and call rate cut off of 98%. Illumina 

BeadChips can detect several classes of variants: CNVs 

(amplification, duplication, deletion) and copy- neutral structural 

variants (copy neutral LOH).  

1.2.3.2 Genome Studio 

The GenomeStudio software is a powerful informatic tool, with a 

user-friendly graphical interface, that allows to visualize and to 
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analyse data generated by all Illumina's platforms. This software 

comprises the modules DNA/RNA sequencing, genotyping, gene 

expression, methylation, protein analysis and ChIP sequencing 

that enable to compare data from different applications to obtain 

an overall view of the genome.  

Genotyping data generated using Illumina Infinium II Whole 

Genome genotyping assay are analysed in the Genome Studio 

Genotyping (GT) module. This module uses algorithms to 

perform primary data analysis, such as raw data normalization, 

clustering, and genotype calling. Many factors can influence the 

distribution of raw intensity values generated from each chip, and 

the normalization of raw values is necessary before making 

comparisons between subjects.  

The specific algorithm applied to the raw data normalization 

includes five steps: outlier removal, translation correction, 

rotational correction, shear corrections and scaling correction 

(Peiffer et al., 2006). With the normalization step the signal 

intensities from A and B alleles for a specific locus are 

transformed into X norm and Y norm. After normalization step, a 

polar coordinate plot of normalized intensity (R) is calculated with 

the following formula R= X norm + Y norm, while the allelic 

intensity ratio (theta) is calculated with the formula θ = (2/π) * 

arctan(Y norm/X norm) (Peiffer et al., 2006). 
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R and θ values are used to create a canonical cluster for each 

SNPs marker per sample, and to determine SNP genotypes and 

copy number estimates. 

In the GenomeStudio software the canonical clusters are three and 

they are visualized with three colours: red for the genotype AA, 

pink for the genotype AB and blue for the genotype BB. If the 

signal intensity per SNP is inside of one of these clusters, this 

SNP will be associated to the corresponding genotype of the 

cluster, but if the intensity value per SNP falls outside of a cluster, 

it is not possible to associate it to any genotype (Figure 6) (Peiffer 

et al., 2006). 

To detect the copy number variants some software use two 

parameters from GenomeStudio, the log R ratio (LRR) and the B 

allele frequency (BAF). The LRR value represents the total signal 

intensity of the probe, and BAF value is the allelic balance. 

The LRR of signal intensities is calculated as 

log2(Rsubject/Rexpected). The Rsubject is the observed total 

signal intensity for SNP for each individual, while the R expected 

is the interpolation of the midpoints of two neighbouring 

canonical clusters.  

The BAF is calculated from the θ value of a sample, and it is an 

estimate of the relative frequency of allele B at a locus for an 

individual, ranging from 0 to 1. The BAF equal or close to “0” 
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corresponds to the AA genotype, “0.5” corresponds to the AB 

genotype, and “1” corresponds to the BB genotype (Figure 6). The 

allele frequency is calculated by linear interpolation with the lines 

D1 and D2 for an observed θ value of a sample that is localized 

between two clusters. The D1 is the difference of the distance of 

an observed θ value to the midpoint of the closest cluster solution, 

while the D2 is the difference of the distance between the θ values 

of the two canonical clusters. In other hand, the B allele frequency 

is calculated as BAF= [(D1/D2)* CC] (Peiffer et al., 2006). 

 

 

 

 

 

Figure 6: Analyzing SNP data (From Peiffer et al., 2006). (A) The log2 R ratio 

compares the observed normalized intensity (Rsubject) of the subject sample to the 

expected intensity (Rexpected; gray dot) based on the observed allelic ratio, θ 

subject, through a linear interpolation (gray lines) of the canonical clusters AA, 

AB, and BB (shown as circles) in the GenomeStudio. The normalized intensity 

value obtained from a single SNP is represented as a purple dot. The R and θ 

values for the subject are shown with thick black dotted lines. (B) The canonical 

clusters (shown as circles) are also used to convert θ values, that is, θ subject, to B 

allele frequency (allelic copy ratio). This is accomplished by a linear interpolation 
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of the known allele frequencies assigned to each cluster (0.0, 0.5, and 1.0). The 

allele frequency for an observed θ value falling between two clusters is also 

calculated by linear interpolation with lines D1 and D2.  

 

1.2.4 ADVANTAGE AND DISADVANTAGE OF 

MICROARRAY PLATFORMS 

The advantages offered from this type of technology are in terms 

of throughput and costs. Since the CNVs are very rare in the 

population, it is important to screen thousands of individuals to 

determine the significance of any structural variation. Considering 

the low cost and the large collection of SNP public data available 

for the genome-wide association studies, microarray data provide 

an opportunity to analysed the CNV landscape of large data sets 

(Peiffer et al., 2006). The disadvantages of this type of technology 

may be summarized as:  

o low sensitivity in the detection of a single copy gains 

compared with the deletion; 

o low sensitivity to detect events below 10 Kb; 

o use of hybridization-based assays in repeat-rich and 

duplicated regions. For both array platforms it is assumed that 

each location is diploid in the reference genome, but this is 

not valid in duplicated sequence. This point is very crucial 

because CNVs have a strong correlation with the segmental 
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duplications and many breakpoints lie in duplicated regions. 

For these reasons, the accurate boundaries and copy number 

of these events will require additional technologies as next 

generation sequencing data (Alkan et al., 2011).  

1.2.5 SEQUENCING 

Next-generation sequencing (NGS) technologies replaced the 

microarrays technologies for discovery and genotyping. There are 

four types of strategy, all of them focusing on mapping sequence 

reads to the reference genome and identifying different classes of 

structural variation. The four strategies are: read-pair, read-depht, 

split-read, and sequence assembly. The read-pair, split-read and 

the assembly methods may be used to discover variants from all 

classes of structural variants, while the read-depth approach 

focuses on the detection of losses and gains and cannot 

discriminate between tandem and interspersed duplication (Alkan 

et al., 2011).  

The read-pair method analyses the mapping information of paired-

end reads and their discordancy from the expected span size and 

mapped strand properties. Sensitivity, specificity and breakpoint 

accuracy are dependent on the read length, insert size and physical 

coverage  (Alkan et al., 20011).  



 
37 

The read-depth analysis examines the increase and decrease in 

sequence coverage to detect duplications and deletions, and to 

predict absolute copy numbers of genomic intervals (Alkan et al., 

20011).  

The split-read algorithms are capable of detecting exact 

breakpoints of all variant classes by analysing the sequence 

alignment of the reads and the reference genome; however, they 

usually require longer reads than the other methods and they have 

less power in repeat- and duplication-rich loci (Alkan et al., 

20011).  

Sequence assembly is the most powerful algorithm to detect SVs 

of all classes at the breakpoint resolution, even if the assembling 

of short sequences and inserts often result in contig/scaffold 

fragmentation in regions with high repeat and duplication content 

(Alkan et al., 20011). 

1.2.5.1 Advantages and disadvantages of NGS technology 

The main advantage of NGS technologies is that is possible to 

identify multiple of variant classes with a single sequencing 

experiment. Also, it is a power tool to understand the genetic 

variation. The disadvantage of NGS may be that each of the four 

methods has a different way to detect the structural variations; this 
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may be critical because validated variants remains unique to a 

particular approach.  

1.2.6 VALIDATION AND DETECTION OF CNV USING PCR 

APPROACHES 

PCR approaches were used to discover and verify CNV (Wain et 

al., 2009). These approaches are required for several reasons: i) as 

independent platforms to validate array-based CNV discoveries; 

ii) to detect map breakpoints of CNV regions; iii) to develop low 

cost, reliable assays for large-scale genotyping in large number of 

samples. 

PCR approaches includes, the quantitative Fluoroscent Real-time 

PCR (qPCR) (Higuchi et al., 1992; Heid et al., 1996), the 

multiplex ligation-dependent probe amplification (MLPA) 

(Schouten et al., 2002), the multiplex amplicon quantification 

(MAQ) and the multiplex amplifiable probe hybridization 

(MAPH) (Armour et al., 2000; White et al., 2002).  

Quantitative Fluoroscent Real-time PCR (qPCR) is still of 

particular use for molecular validation and studies of putative 

regions of variation (Wain et al., 2009).  

The multiplex approaches facilitate parallel screening of a large 

number of samples across a large number of putative CNV loci 

with low costs and high reliability (Figure 7).  
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Figure 7: Sensitivity and throughput of several CNV detection techniques 

(From: ftp://ftp.sanger.ac.uk/). x-axis: maximum resolution of the technique 

(sensitivity); y-axis: number of loci that can be screened at a time. PCR: 

polymerase chain reaction; qPCR: quantitative PCR; MLPA: multiplex 

ligation-dependent probe amplification; MAPH: multiplex amplifiable probe 

hybridization; MAQ: Multiplex Amplicon Quantification; FISH: fluorescence 

in-situ hybridization; SNP Array: single nucleotide polymorphism genotyping 

array; CGH Array: Comparative Genome Hybridization array. 

1.2.7 SOFTWARE ANALYSIS  

The main function of CNV algorithms is to detect regions with a 

structural variation in which the mean of Log R Ratio (LRR) 

differs from the reference sample. Several CNV algorithms that 

use SNP data array are available. 
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In Table 4 some of the algorithms used to detect CNVs from array 

intensity data are reported: Circular binary Segmentation (CBS) 

approach is a nonparametric method, Hidden Markov Model uses 

the distribution of intensity data, and the Copy number analysis 

method uses the optimal segmenting algorithm.  

The CBS model, developed by Olshen et al., (2004), is a 

modification of the binary segmentation approach (Sen and 

Srivastava, 1975), and the idea was to split each chromosome into 

regions of equal copy number that accounted for the noise in the 

array data. The CBS model was based on the fact that the CNVs 

are discrete gains or losses in contiguous regions of the 

chromosome that cover multiple array probes.  

 

Algorithm Software Supplies 

Circular Binary 

Segmentation (Olshen et al., 

2004) 

cnvPartition Illumina Inc., San Diego, CA 

Nexus Copy 

Number 
Biodiscovery Inc., El Segundo, CA 

Hidden Markov Models 

(HMMs) 

QuantiSNP 
Wellcome Trust for Human Genetics, 

University of Oxford 

PennCNV University of Pennsylvania 

Golden Helix Optimal Segmentation (CNAM) Golden Helix Inc. 

Table 4: List of different algorithms and software available for the identification of 

CNVs.  
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1.2.7.1 PennCNV software 

PennCNV is a free software for CNV detection from SNP 

genotyping arrays, and implements a hidden Markov model 

(HMM) that integrates several sources of information. It differs 

from segmentation-based algorithm in that it considered SNP 

allelic ratio distribution as well as other factors, in addition to 

signal intensity alone 

(http://www.openbioinformatics.org/penncnv/; Wang et al., 2007, 

2008).  

The HMM is a statistical technique that assumes that the 

distribution of an observed intensities data point depends on an 

unobserved (hidden) copy number state at each locus, where the 

elements of the hidden states follow a Markov process. CNV 

detection commonly uses aggregating information from multiple 

consecutive SNPs; for this reason, HMM provides a natural 

framework to model dependence structure between copy numbers 

at nearby markers. Transitions between copy number states are 

calculated by the probability of moving from one state to another 

state (Wang et al., 2007). 

PennCNV software incorporates different information for each 

SNPs into the HMM in order to detect CNVs and to differentiate 

http://www.openbioinformatics.org/penncnv/
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copy number neutral (LOH) regions from normal state regions. 

These information are: the LRR, the B allele frequency (BAF), the 

population allele frequency and the distance between adjacent 

SNPs. Six hidden states are identified in the software: deletion of 

2 copies, deletion of 1 copy, normal state, copy neutral with loss 

of heterozygosity (LOH), single copy duplication, and double 

copy duplication (Wang et al., 2007, Colella et al., 2007) (Table 

5). 

Hidden 

State 

Total copy 

number 
Description for autosome CNV genotype 

1 0 Deletion of two copies Null 

2 1 Deletion of one copy A, B 

3 2 Normal State AA, AB, BB 

4 2 Copy-neutral with LOH AA, BB 

5 3 Single copy duplication AAA, AAB, ABB, BBB 

6 4 Double copy duplication AAAA, AAAB, AABB, ABBB, BBBB 

Table 5: Hidden states, copy number, and their description by Colella et al., (2007) 

applied in PennCNV (Wang et al. 2007) and QuantiSNP (Colella et al., 2007). 

 

Both the LRR and BAF values can be displayed and exported 

from GenomeStudio software given an appropriate clustering file 

with canonical cluster positions for each SNP. The distance 

between neighbouring SNPs determines the probability of having 

a copy number state change between them. Each SNP has two 

alleles referred to as the A and B alleles, thus the term “population 
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frequency of B allele” is used to differentiate it from the BAF 

term that measures allelic intensity ratio.  

A flowchart outlining the procedure for CNV calling from 

genotyping data in PennCNV software is represented in Figure 8. 

The first step for LRR and BAF calculation can be alternatively 

performed by the GenomeStudio software, given a clustering file 

containing canonical genotype cluster positions. The HMM 

integrates several sources of information to give CNV calls. When 

genotype data are available for family members, the pedigree 

information can be incorporated to model CNV events more 

accurately. 

 

 

 

 

 

 

 

Figure 8: Flowchart that represents CNV calling from genotyping data by 

PennCNV software.  
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1.2.7.2 Copy Number Module (CNAM) of Golden Helix SNP and 

variation Suite 7.6.4  

Another method to detect the CNVs is the powerful optimal 

segmenting algorithm called Copy Number Analysis Method 

(CNAM), implemented in SNP & Variation Suite c7.6.4 (SVS7) 

(Golden Helix, Bozeman, MT, www.goldenhelix.com) software. 

SVS7 improved two optimal segmentation algorithms that can 

detect inherited and de novo CNVs: the univariate analysis (that 

utilizes one sample at a time and is useful to detect rare and/or 

large CNV) and the multivariate analysis (that considers all 

samples and is useful for detecting small and common CNVs).  

Respect to Hidden Markov Models, which assume that the means 

of different copy number states are consistent, the CNAM 

algorithm delineates CNV boundaries even at a single probe level, 

with controllable sensitivity and false discovery rate 

(www.goldenhelix.com). This algorithm can be applied to the data 

obtained by CGH and SNP arrays. A flowchart outlining the 

procedure for CNV calling from genotyping data in SVS7 

software is represented in Figure 9.

 

http://www.goldenhelix.com/
http://www.goldenhelix.com/
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Figure 9: Flowchart that represents CNV calling from genotyping data by SVS7 

software. 

 

 Process raw data and generate log ratios. This step is 

necessary before the comparison among subjects. The 

measurement that is most commonly used to determine copy 

number status is the LRR, also called “Log2 ratio”. The copy 

number variation corresponds to significant variation of Log2 

ratios from segment to segment. CNAM module incorporates 

the Log2 ratio data and an appropriate genetic marker map 

that includes name, distance or position information for the 

genetic markers, and the chromosome information. 

 Quality assurance. Significant sources of variation can affect 

analysis. This software offers several types of quality filters: 

the derivative log ratio spread (DLRS), the genomic wave 

detection and correction identified by Diskin et al., (2007) to 

control wave effects, and the principal component analysis 

(PCA) to correct for multiple batch effects. DLRS is a 

measurement of point to point consistency or noisiness in log 

R ratio data. This value is correlated with low quality SNP 

call rates and over/under abundance of identified copy 

number segments. Samples with higher values of DLRS tend 

to have poor signal-to-noise properties and accurate CNV 
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detection is often difficult for these samples.  

Genomic waves are not platform-specific and Diskin et al., 

(2008) showed that they are an artefact caused by probe 

hybridization on an array. A signal intensity value is 

calculated for each probe, and these intensity measures are 

used to identified gain or losses of genomics segments. 

Several studies (Marinoni et al., 2007, Nannya et al., 2005) 

suggest a strong correlation between signal intensity of the 

probes and the local GC content. However, the GC content is 

correlated with many genomic features. Two quantitative 

measures (the wave factor and the GC wave factor) are used 

in SVS7 software to summarize the signal fluctuation. The 

first parameter summarises the total signal fluctuation of a 

genotyped sample across the genome, while the second 

parameter measures the fraction of signal fluctuation 

correlated with patterns of GC distribution.  

PCA detects the presence of batch effects and other technical 

artefacts. The batch effects are represented from plate, 

machine, site variation, the sample extraction and preparation 

procedure, cell types, DNA source, array scanners, processing 

order and/or date and the temperature fluctuation. All these 

types of variation can lead to complications, which are 

represented from poorly defined segments and higher number 
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of false and non-replicable finding.  

 Detect of CNV. The objective in this step is to determine 

regions in the genome where a given sample’s mean LR value 

differs from the reference using univariate and/or multivariate 

analysis.  

 Statistical analysis of CNVs. This can be done visually using 

advanced plotting techniques, or statistically using simple 

summary statistics or advanced association and regression 

analysis.  

 Make sense of findings. This can be done looking at the 

genomic annotations, pathway analysis, and gene ontologies.  

1.3. BIOLOGICAL IMPACT OF COPY NUMBER 

VARIATION 

1.3.1 FUNCTIONAL CONSEQUENCES OF CNVs 

Different phenotypic features can occur by genetic variants (for 

size and form) and can be explained by modification of gene 

expression (by action on transcription, splicing, or translation and 

stability) and/or by the alteration of protein structure. Usually, 

CNVs could encompass parts of genes, that reside entirely outside 

of genes or in the case of larger variants include several known 

genes (Wain et al., 2009). 
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Below are reported some examples of CNVs effects and their 

functional consequences (Lupski and Stankiewicz 2005; Feuk et 

al., 2006b; Eichler et al., 2007; Conrad & Antonarakis 2007; 

Zhang et al., 2009; Stankiewicz and Lupski 2010): 

 Gene copy number changes (deletion and duplication) 

resulting in alteration of gene expression; 

 Variation of gene expression (with long-range effect) can 

occurs by rearrangements that modify the regulatory elements 

for nearby gene (Kleinjan and van Heyningen 2005); 

 CNVs may disrupt a gene (causing functional loss or 

modification); 

 The generation of new fusion protein can occur by 

rearrangement (by fusing different protein domains); 

 CNVs may affect and change microRNA level in the genome, 

which in turn may lead to alterations in gene expression. 

(Henrichsen et al., 2009). This alteration may propagate to 

other genes located in downstream pathways or regulatory 

networks (Henrichsen et al., 2009).  

From an evolution’s point of view, a duplicated gene could be 

modified for new functions, and facilitating a diversification and 

evolution of species (Lynch and Conery 2000; Dermitzakis and 

Clark 2001; Korbel et al., 2008). Some of these variations may 

have been favoured in positive selection processes, but also in 
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negative selection and can be predicted in deletion events where 

deleterious loss-of-function alleles could be generated. 

1.3.1.1 CNVs effects on gene expression 

The effect of CNVs on gene dosage is prominent in genomic 

disorders. These disorders are defined as diseases caused by 

genomic rearrangements affecting dosage sensitive genes 

(Stankiewicz and Lupski 2002; Lupski 2007). The gene dosage is 

the number of functioning gene copies and determines the amount 

of gene product (Wain et al., 2009). Because genomic disorders 

are caused by de-novo deletions, insertions, or other chromosomal 

rearrangements, these structural variants contribute to non-

heritable components of disease risk, although evidence suggests 

that common CNVs are inherited and therefore caused by 

ancestral structural mutations (McCarroll et al., 2008). 

Below are reported some examples of CNVs effects and the 

relationship with the dosage-sensitive and non-sensitive genes.  

1) Dosage-sensitive gene: 

 Positive relationship between the effects of CNVs and the 

gene expression: it suggests that higher CNVs increase the 

expression gene level; 
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 Negative relationship between the effects of CNVs and the 

gene expression: higher CNVs decrease the expression gene 

level; 

 Complex relationship between the CNVs effects on gene 

expression: a small change in gene copy number could 

completely switch a biological network from one alternative 

steady state to another; 

 Neutral relationship between the CNV that may not 

necessarily translate into gene expression. This situation may 

be explained by the genomic location of CNV, if the CNV’s 

region was poor of genes, the insensitivity of the CNV genes 

to dosage, or the effect of dosage compensation are a 

mechanism which would balance out gene expression 

changes resulting from CNVs.  

2) Non-dosage sensitive gene:  

 Gene Disruption: the CNV might modify phenotypes and 

cause diseases by disrupting genes and modifying protein 

function.  

1.3.1.2 CNVs and diseases 

Several studies show that the CNVs play an important role in 

sporadic diseases, resulting from de-novo CNVs formation 

(Lupski 2007), and rare inherited copy number changes, 
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Mendelian disorders and on multifactorial and complex disease 

phenotypes. 

The definition of these diseases are reported below: 

 Genomic disorders are defined as diseases caused by genomic 

rearrangements affecting dosage sensitive genes (Stankiewicz 

and Lupski 2002; Lupski 2007). These types of disorders can 

be the results obtained by reciprocal deletions/duplications of 

the same loci, showing that the variation of the dosage at the 

same gene or genes could results in different phenotype 

(Lupski and Stankiewicz 2005); 

 Rare inherited CNVs that act in the same way as Mendelian 

mutation (Estivill and Armengol 2007); 

 Common and multi-allelic CNVs in multi-factorial or 

complex diseases: the frequently multi-allelic CNVs (several 

duplication of genomic segment could produce a wide range 

of diploid of copy number), play an important role in the 

complex diseases susceptibility, in conjunction with the 

context of population and ethnicity matters (Eichler et al., 

2007).  

 

1.3.2 CONSEQUENCES IN HUMAN 

An example of genomic disorder with a positive relationship 

between CNV and the increase of the gene expression was 
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represented from the human salivary amylase gene (AMY1). In 

this case, the diploid copy number varies ranging from 2 to 15 

depending of the quantity of starch in the diet. In other hand, the 

population with higher starch diet usually have higher AMY1 

copy number and vice versa (Perry et al., 2007). Perry et al. 

(2007) also showed that this CNV locus affects gene expression at 

both the transcriptional and translational levels, and that copy 

numbers are correlated with mRNA and AMY1 protein level in 

human saliva samples. Other types of genomic disorder in human 

genome are Williams Beuren Syndrome (WBS) 

[del(7)(q11.23q11.23)], Velocardiofacial/ DiGeorge Syndrome 

(VCFS/DGS)[del(22)(q11.2q11.2)], Prader–Willi (PWS)[pat 

del(15)(q11.2q13)] or Angelman syndrome (AS) [mat 

del(15)(q11.2q13)], and Charcot Marie Tooth Disease (CMT) 

with reciprocal Hereditary Neuropathy with Liability to Pressure 

Palsies (HNPP) (Lupski 2006). Moreover, high number of 

genomic disorders are involved on nervous system disorders and 

neuropathies (example PW/AS with autism (Veltman et al., 2005). 

A negative relationship, in which higher copy number decreases 

expression levels, was observed by Lee et al., (2006) with the 

proteolipid protein gene (PLP1). In contrast with the other 

example of AMY1, in this case a small duplication downstream of 
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the PLP1 cause gene silencing by positional effect, thus lowering 

gene expression. 

One example of gene disruption was represented by complete 

deletion of the RHD gene. A subject’s (diploid) genome could 

contain two, one or zero copies of RHD, with the zero copies 

corresponding to rhesus-negative and absence of D antigen 

expression (Wain et al., 2009; Avent et al., 1997).  

Two examples of disorders due to inherited CNVs were 

represented by the Parkison’s diseases (Singleton et al., 2003; 

Chartier-Harlin et al., 2004) and the Alzheimer disease 

(ADEOAD) (Rovelet-Lecrux et al., 2006). Singleton et al., (2003) 

were the first that have demonstrated the triplication or the 

duplication of the alpha-synuclein (SNCA) locus that caused the 

hereditary Parkison’s disease with dementia. Rovelet-Lecrux et 

al., (2006) confirmed that the duplication of the amyloid precursor 

protein (APP) on chromosome 21 caused the Alzheimer disease 

(ADEOAD) with amyloid angiopathy (CAA). The alteration in 

the APP gene probably lead to the accumulation of amyloid 

precursor protein which results in neurodegeneration and the APP 

gene is as a dosage sensitive gene.  

In autism, large-scale of structural abnormalities have been 

recognised, including inherited duplication (15)(q11;q13). Strong 

evidence that rare CNVs are causally related to familial and 
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sporadic autism has come out from studies using a range of 

molecular approaches. Most of CNVs are rare and unique to an 

individual or family, and are difficult to replicate in independent 

studies. However, autism has been associated with uncommon de-

novo and inherited deletions and duplications of genomic 

segments on chromosome 16 (Weiss et al., 2008). Also, in 

schizophrenia have been recognised several rare CNVs including 

del(1)(q21.1), del(15)(q11.2), del(15)(q13.3), and del(22)(q11.2) 

(Stefansson et al., 2008; The International Schizophrenia 

Consortium, 2008).  

1.3.3 CONSEQUENCES IN LIVESTOCK 

Fadista et al., (2010) and Hou et al., (2011) showed genes related 

to several functions in cattle: immunity and defence, for example 

macrophage, natural-killer- and T-cell-mediated immunity, major 

histocompatibility complex (MHC); sensory perception are related 

with the olfactory receptors, chemosensory perception; response 

to stimuli and neuro- logical system processes. Hou et al., (2011) 

also reported the genes that participated in gene transcription, cell 

cycling and nucleic acid binding and metabolism. 

In the small ruminants, goats and sheep, Fontanesi et al., (2010, 

2011) showed an over-representation of genes related to the 

MHC. Also other genes have shown an over-representation and 
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are related to metabolic pathway, for example the lipid binding, 

transport and localization; these results may have implication to 

identify loci that affect milk and carcass fat content and 

composition (Bickhart et al., 2012). 

1.3.3.1 CNVs and phenotypes  

1.3.3.1.1 Coat Pigmentation in horse, pigs, and sheep 

The mutation of coat pigmentation on horse species has been 

suggested by the duplication of the equine syntaxin 17 (STX17) 

gene, and a progressive hair depigmentation syndrome 

accompanied by an increased susceptibility to melanoma 

(Rosengren-Pielberg et al., 2008). It has been hypothesized that 

this mutation can affect a regulatory effect by upregulating STX17 

and/or NR4A3 mRNA levels.  

In swine, dominant white colour has been associated with two 

mutations, a duplication encompassing the whole gene (Giuffra et 

al., 2002), and a mutation causing the skipping of exon 17 

(Giuffra et al., 1999), at the KIT gene. It is important to specify 

that changes in gene copy number do not always translate into 

differences in gene expression, in fact, in this case several factors 

might keep mRNA levels stable, as a Dosage compensation, 

differences in the chromatin environment  (Henrichsen et al., 

2009). The KIT gene has a role in the proliferation, survival and 
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migration of melanocytes (Wehrle- Haller 2003), and it also 

affects oocyte and follicle development (Hutt et al., 2006). For 

this reason, it would be interesting to test the impact of selection 

for white colour on reproductive traits, such as sow fertility and 

prolificacy.  

In the case of sheep, dominant white coat is associated with a 

tandem genomic duplication encompassing three genes, the agouti 

signalling protein (ASIP) gene (which regulates melanin 

biosynthesis), the itchy E3 ubiquitin protein ligase homolog 

(ITCH) and the adenosylhomocysteinase (AHCY) loci (Norris & 

Whan 2008). This duplication causes an abnormal expression of 

the second copy of the ASIP gene because its transcription 

controlled by an ITCH promoter (Norris & Whan 2008). Similar 

situation in goats are reported by Fontanesi et al., (2009). 

These mutations are expected to be relatively recent, subsequent 

to  domestication, because they segregate in specific breeds and 

they are absent from genomes of wild ancestors. 

1.3.3.1.2 Producion Traits 

Recent studies have reported the relationships between CNVs and 

production traits of economic values. 

Seroussi et al., (2010) identified the associations between CNVR 

(on BTA18), and index of genetic evaluations for protein and fat 



 
57 

production in Holstein cattle. These results are important because 

they constitute the demonstration that complex traits of livestock 

are modulated in part by CNVs and that genomic selection 

schemes might benefit from the incorporation of CNV data. 

However, there are still technical limitations that need to be 

overcome to implement such approaches. One possible way to 

solve many of these technical drawbacks, is represented by a 

systematic next-generation sequencing of bull genomes. 

 1.3.3.1.3 Diseases and development of abnormalities 

In domestic animals, CNVs have been mostly related to the 

occurrence of Mendelian diseases, but their impact on complex 

traits is now starting to be understood. Some examples of diseases 

and development abnormalities are reported below. 

Liu et al., (2011) reported the existence of associations between 

CNV and susceptibility to intestinal nematodes in cattle. A 

prevalent cause of disease is the genomic deletions interrupting 

genes and affecting their biological function.  

In cattle three diseases such as, anhidrotic ectodermal displasia, 

osteopetrosis and renal tubular dysplasia are explained by 

rearrangements.  

Bovine anhidrotic ectodermal dysplasia is characterized by 

hypotrichosis and dental defects, and the causal mutation consists 
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of a deletion (ranging from 2 kb to lager size) encompassing exon 

3 of the ectodysplasin A (EDA) locus (Drogemuller et al., 2001). 

This rearrangement implies that the function of this gene becomes 

completely suppressed.  

Bovine osteopetrosis is a skeletal disease involving the growth of 

extremely dense and fragile bones because of a deficiency in 

osteoclast activity. One study showed that in Angus red cattle, this 

disease is produced by a 2.8-kb deletion of part of intron 1, exon 

2, intron 2 and half of exon 3 of the solute carrier family 4, anion 

exchanger, member 2 (erythrocyte membrane protein band 3-like 

1) (SLC4A2) gene (Meyers et al., 2010). This gene plays a key 

role in osteoclast function by exchanging bicarbonate for chloride 

ions, a necessary step in the acidification of the resorption lacuna 

and in bone demineralization (Meyers et al., 2010).  

Also the renal tubular dysplasia is a bovine disease caused by a 

genomic deletion. This disease is characterized by renal failure, 

owing to the malfunction of the epithelial cells of the renal tubules 

and growth retardation (Hirano et al., 2000; Ohba et al., 2000). 

Moreover, the occurrence of abortions and stillbirths in cattle has 

been recently linked to a 110-kb genomic deletion encompassing 

the 3′ end of the MER1 repeat containing imprinted transcript 1 

(non-protein coding) (MIMT1) gene that shows a semi lethal 

pattern of inheritance (Flisikowski et al., 2010). 
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CHAPTER 2 - THE AIM OF THIS STUDY 

 

The objective of this study was to produce a medium resolution 

map of CNVs in the Italian Brown Swiss breed using the 

genotyping array Illumina BovineSNP50 BeadChip. 

In this study, two different algorithms were used. One from 

PennCNV software and one as in the module CNAM from SVS7 

software by Golden Helix. CNV regions were defined with both 

analyses. Subsequently a consensus map was then created 

between the two maps generated according to the two different 

algorithms. Two different criteria were used for the consensus. 

The detected common CNVRs, were annotated with genes and 

other Ensembl available elements (protein coding, pseudogene, 

retrotrasposed, miRNA, miscRNA, rRNA, snRNA, snoRNA).  

 

This study was part of the European Quantomics project (contract 

n. 222664-2) with the collaboration of The Italian Brown Breeders 

Association (ANARB) that provided part of the used data. 
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CHAPTER 3 - MATERIAL AND METHODS 

3.1 SAMPLES PREPARATION  

A total of 1,342 bulls of the Italian Brown Swiss breed were 

sampled for this study. Genomic DNA was extracted from semen 

using the ZR Genomic DNA TM Tissue MiniPrep (Zymo), and 

from blood utilizing Macherey-Nagel NucleoSpin® Blood kit. 

Sample DNA was quantified using NanoQuant Infinite®m200 

(Tecan, Switzerland) and diluted to 50ng/ul. The Quality Control 

(QC) was performed on each sample to verify the DNA integrity 

on Invitrogen E-Gel 1% Agarose Gel, needed to apply the 

Illumina Infinium II protocol. A total of 775 bulls were genotyped 

by Geneseek, USA (http://www.neogen.com/) while 578 bulls 

were processed at Kos Genetics in Milan, Italy 

(http://www.kosgenetic.com/).  

DNA samples were genotyped using Illumina Bovine SNP50 

BeadChip interrogating 54,001 polymorphic SNPs with an 

average probe spacing of 51.5 kb and a median spacing of 37.3 kb 

(Illumina Inc., USA). Nevertheless only 46,728 SNPs anchored on 

UMD3.1 assembly on autosomal chromosomes, were used to 

detect CNVs.  

 

http://www.neogen.com/
http://www.kosgenetic.com/
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A call rate > 90% and a call frequency > 98% were used as a 

lower limit to classify high-quality SNPs. 

UMD3.1 assembly was the reference genome used in this study. 

 

3.2 SOFTWARE AND BIOINFORMATICS TOOLS USED 

 BEDTools software was developed for a fast, flexible and 

easy manipulation of large and complex genomic datasets 

by Quinlan and Hall (2010). It is a genome arithmetic tool 

with an intuitive Python interface, and exploring complex 

genomic datasets in many common (BED, VCF, GFF, 

BEDGRAPH, SAM/BAM) formats. 

 UNIX bash system  

 R software for statistical analysis and graphics. Using R 

2.15.0 version (http://www.cran.org)  

 PennCNV (http://www.openbioinformatics.org/penncnv/) 

a free software tool for detection of CNV from Illumina 

and Affimetrix SNP array 

 CNAM the copy number module implemented in SNP & 

Variation Suite v.7.6.4 (Golden Helix, Bozeman, MT, 

www.goldenhelix.com) were used to detect CNVs.  

http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://www.cran.org/
http://www.openbioinformatics.org/penncnv/
http://www.goldenhelix.com/


 
64 

 The Database for Annotation, Visualization and Integrated 

Discovery (DAVID, http://david.abcc.ncifcrf.gov/) v6.7 

was used to disclose biological interpretation behind large 

list of genes. 

 Hotspot Detector for Copy Number Variants (HDCNV, 

http://daleylab.org) was used to obtain a graphical 

representation of the CNV calls from multiple samples. 

3.3 DATA QUALITY ASSURANCE  

Several filters were applied to data with PennCNV and CNAM. 

3.3.1 CNAM: DERIVATIVE LOG RATIO SPREAD 

The filter applied by Golden HelixSVS7 software was the 

derivative Log ratio spread (DLRS) parameter (an indicator of 

noise for samples). Pinto et al., (2011) describe the DLRS like the 

“absolute value of the log2 ratio variance from each probe to the 

next, averaged over the entire genome”. They also describe the 

used interquartile range as the “measure of the dispersion of 

intensities in the centre of the distribution” less sensitive to 

outliers. 

 

http://daleylab.org/
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3.3.2 CNAM: WAVE FACTOR FILTER 

The identification and correction for GC content was 

automatically generated by CNAM module of SVS7. 

 

3.3.3 OUTLIERS REMOVE FROM PENNCNV 

691 bulls were discarded from the PennCNV dataset. These 691 

bulls were indicated as outliers from the DLRS and the WF filter 

criteria from SVS7 software. The DLRS filter was used instead of 

the standard deviation of Log R ratio filter, because for biological 

reason is here considered more suitable in identifying the signal 

intensity variation in CNV region. . In PennCNV software was 

used only the bulls considering by SVS7 software for a total of 

651 animals.  

3.3.4 PENNCNV SOFTWARE: WAVE FACTOR FILTER  

The fasta sequence for UMD3.1 assembly 

(ftp://ftp.ncbi.nih.gov/genomes/Bos_taurus/Assembled_chromoso

mes/seq) was downloaded for each of the 29 autosomes 

chromosomes. 

The wave factor filter was applied using the method as described 

by Diskin et al., (2008): 

Using the –fastaFromBed command of BEDTools software 

(Quinlan and Hall, 2010) 1Mb window sequence (500 kb each 

side) for each SNP was extracted.  

ftp://ftp.ncbi.nih.gov/genomes/Bos_taurus/Assembled_chromosomes/seq
ftp://ftp.ncbi.nih.gov/genomes/Bos_taurus/Assembled_chromosomes/seq
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Using the nucBed command of BEDTools software to calculate 

GC content, equivalent to the sum of all occurrences of G and C, 

and dived by 1Mb window sequence for each SNP without ‘NNs’ 

(gaps in the sequence of the assembly). 

3.3.5 PRINCIPAL COMPONENT ANALYSIS (PCA) 

The principal component analysis (PCA) was used in order to 

detect the possible presence of batch effects and in this case to 

correct the signal intensity values. 

The PCA was also applied to LRR values in order to detect 

clustering patterns related to handling processes of samples during 

genotyping. For this purpose the variables included in the PCA 

analysis were: lab project ID, dilution plate ID, dilution plate well 

ID, amplification plate ID, date, and amplification plate code, 

sample well ID, sentrix barcode, sentrix position, call rate, DNA 

extraction date, DNA 260/280 ratio, technitian , person 

genotyped, and scanner. 

Two different approaches for the identification of the number of 

principal components necessary to correct the signal intensities 

values were. The first method is a graphical way based on a plot 

with principal component versus LRR eigenvalue and the second 

based on LRR Eigenvalues > 1.  
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3.3.6 FILTERING FOR THE CENTROMERE AND 

TELOMERE REGIONS 

The telomere and centromere regions information were 

downloaded from www.bovinegenome.org for the autosomal 

chromosomes.  

An overlapping of at least 10% among CNVs and 

telomere/centromere regions was chosen to filter out the CNVs, 

using the intersectBed command of BedTools software (Quinlan 

and Hall, 2010).  

The same filtering criteria analysis for centromere and telomere 

regions here described for PennCNV software was also used for 

CNAM.   

 

3.4 DETECTION OF CNVS 

3.4.1 PENNCNV SOFTWARE 

The CNV call was performed on autosomal chromosomes using –

detect_cnv.pl feature which include also the correction for the 

wave factor, the expected signal intensity values and the expected 

transition probability for different copy number state.  
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3.4.2 SVS7 SOFTWARE 

The identification of CNVs was performed using univariate 

analysis. The criteria considered for the analysis were: univariate 

outlier removal; maximum segments 10 per 10,000 markers; 

minimum number of markers per segment equal to 1; maximum 

pairwise permuted p-value was 0.005 for 2000 permutation per 

pair.  

 

3.5 CNVRS DEFINTION 

For both algorithms CNVRs were defined and created using the –

mergeBed command by BedTools (Quinlan and Hall,2010) 

software, with criteria as suggested by Redon et al. (2006). 

 

3.6 CONSENSUS BETWEEN PENNCNV AND CNAM 

A consensus analysis was performed comparing the CNVRs 

obtained from both the algorithms. Two different approaches were 

applied (Redon et al, 2006, Wain et al., 2009), using the –

mergeBed (Redon) and the interesectBed (Wain) commands of 

BedTools software (Quinlan and Hall, 2010).  

 

3.7 ANNOTATION OF CNVRS 
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The gene list was downloaded, for the autosomal chromosomes 

from  Ensembl v69 

(http://www.ensembl.org/biomart/martview/76d1cab099658c68bd

e77f7daf55117e).  

A catalogue of genes in the CNVRs was obtained using the 

intersectBed command by BedTools software (Quinlan and Hall, 

2010).  

The DAVID software (http://david.abcc.ncifcrf.gov/) was used to 

test the hypothesis that the molecular function, biological process, 

cellular component and pathway terms were under or over 

represented in CNVRs after Bonferroni correction.  

 

3.8 COMPARISON WITH THE LITERATURE 

CNVRs datasets available in literature were downloaded from 

Hou et al. (2011), Fadista et al. (2010), Liu et al. (2010), Bae et al. 

(2010), Bickhart et al. (2012). Using BedTools software, a list of 

the common regions among the results of the present study and 

those from literature was created. 

 

 

  

http://www.ensembl.org/biomart/martview/76d1cab099658c68bde77f7daf55117e
http://www.ensembl.org/biomart/martview/76d1cab099658c68bde77f7daf55117e
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CHAPTER 4 - RESULTS 

 

The distribution of DLRS values on whole genome for each 

sample was used to determine which individuals to exclude. The 

inter-quartile range (IQR) of the distribution was used to identify 

the outlier and filter for them.  

The Table 6 shows the distribution of this metric for each 

autosome chromosome. 
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Table 6: Derivative log R ratio spread values obtained from 1342 bulls. Chr – 

chromosomes, Minimum, Q1 – first quartile, Median, Mean, Q3 – third quartile, 

Maximum, Threshold – upper outlier threshold, IQR – inter quartile range, All 

considering genome wide analysis, Median considering by chromosomes values 

analysis. 

Chr Minimum Q1 Median Mean Q3 Maximum Threshold IQR 

1 0,192 0,254 0,283 0,294 0,318 0,838 0,414 0,064 

2 0,173 0,226 0,255 0,269 0,294 0,897 0,396 0,068 

3 0,170 0,230 0,259 0,271 0,298 0,808 0,399 0,068 

4 0,161 0,214 0,247 0,261 0,291 0,898 0,408 0,078 

5 0,167 0,232 0,263 0,272 0,298 0,899 0,396 0,065 

6 0,174 0,236 0,268 0,281 0,311 0,878 0,423 0,075 

7 0,185 0,254 0,287 0,297 0,326 0,841 0,434 0,072 

8 0,168 0,234 0,265 0,275 0,304 0,866 0,409 0,070 

9 0,190 0,266 0,301 0,311 0,347 0,898 0,468 0,081 

10 0,166 0,245 0,279 0,287 0,316 0,827 0,423 0,071 

11 0,163 0,233 0,266 0,275 0,304 0,900 0,409 0,070 

12 0,181 0,255 0,296 0,304 0,338 0,915 0,462 0,083 

13 0,181 0,247 0,272 0,282 0,304 0,848 0,391 0,058 

14 0,170 0,224 0,254 0,266 0,292 0,825 0,395 0,069 

15 0,181 0,260 0,296 0,304 0,333 0,879 0,442 0,073 

16 0,171 0,239 0,270 0,282 0,312 0,814 0,423 0,074 

17 0,189 0,259 0,289 0,298 0,325 0,843 0,425 0,066 

18 0,166 0,219 0,250 0,261 0,291 0,948 0,399 0,072 

19 0,154 0,225 0,255 0,266 0,298 0,794 0,408 0,073 

20 0,171 0,228 0,262 0,273 0,301 0,838 0,409 0,072 

21 0,166 0,255 0,287 0,295 0,323 0,804 0,424 0,068 

22 0,157 0,212 0,244 0,257 0,288 0,923 0,403 0,077 

23 0,180 0,270 0,321 0,327 0,372 0,894 0,526 0,102 

24 0,166 0,230 0,262 0,274 0,303 0,772 0,413 0,073 

25 0,153 0,204 0,230 0,240 0,261 0,902 0,347 0,057 

26 0,198 0,259 0,289 0,300 0,328 0,751 0,430 0,068 

27 0,155 0,219 0,258 0,271 0,308 1,094 0,442 0,089 

28 0,182 0,256 0,292 0,301 0,337 0,850 0,458 0,081 

29 0,163 0,229 0,261 0,271 0,301 0,871 0,409 0,072 

All 0,206 0,245 0,272 0,283 0,304 0,864 0,393 0,059 

Median 0,196 0,238 0,266 0,277 0,300 0,866 0,393 0,062 
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The upper Outliers threshold values are reported in the 

“threshold” column (Table 6). The threshold values are calculated 

as Q3 + IQR *1.5. The threshold cutoff value for excluding the 

outlier from the other analysis is the average value among all 

chromosomes reported: 0.393. Thus every individual with a 

median DLRS value above 0.393 have been discarded. According 

to this edit a total number of 54 animals were excluded from  

subsequent analysis. The median of the derivative Log R ratio per 

bulls is represented in Figure 10. 

 

Figure 10: Histogram of Median of Log R ratio spread per bulls. 
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The Figure 11 is a graphical example of the difference between 

two individuals with a high (black) or low (grey) quality of the 

signal intensity noise of Log R ratio in whole genome space.

 

Figure 11: Plot of numeric values from Log R ratio values for one sample with a 

good signal to noise ratio (black) and with other sample with a bad signal to noise 

ratio (in grey). 

 

4.2.2 CNAM: WAVE DETECTION AND CORRECTION 

In the Table 7 some parameters relative to the wave detection and 

correction are reported. The threshold value for the Abs Wave 

Factor (median absolute deviation of signal intensities calculate 

for every 1Mb non-overlapping window in the genome) is 0.1124; 
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the threshold for the GC correlation (correlation between median 

signal intensity and local GC content in all 1Mb non-overlapping 

windows) results 0.7262; the threshold for the Wave Factor 

(summary of a total intensity signal fluctuation of a genotyped 

sample across the genome) is 0.1977. Finally the threshold for the 

GC Wave Factor (summary measure of the intensity signal 

fluctuation explained by local GC content) is 0.0401.  

 

 

 

Table 7: Summary statistic of waviness. Minimum, Q1 – first quartile, Median, 

Mean, Q3 – third quartile, Maximum, Threshold IQR – inter quartile range, 

Variance. The Abs Wave Factor - median absolute deviation of signal intensities 

calculate for every 1Mb, GC Correlation - correlation between median signal 

intensity and local GC content in all 1Mb, WF - summary of a total intensity signal 

fluctuation of a genotyped sample across the genome, GCWF - summary measure 

of the intensity signal fluctuation explained by local GC content. 

 

The Figure 12 shows the distribution of the median absolute 

deviation of signal intensities across all samples.  

Column Minimum Q1 Median Mean Q3 Maximum Threshold IQR Variance 

AbsWave 

Factor 
0.0234 0.0374 0.0497 0.0561 0.0674 0.2519 0.1124 0.0300 0.0007 

GC Correlation -0.5605 -0.0575 0.1343 0.0831 0.2559 0.6499 0.7262 0.3135 0.0547 

WF -0.1459 -0.0335 0.0391 0.0228 0.0589 0.2519 0.1977 0.0925 0.0033 

GCWF -0.0810 -0.0020 0.0051 0.0059 0.0148 0.1599 0.0401 0.0168 0.0004 
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Figure 12: Distribution of Abs Wave Factor on sample population. 

 

The Figure 13 shows the relationship between the Wave factor 

(WF) and the GC content wave factor (GCWF) explaining the 



 
76 

variability of wave factor caused by the local GC content. The 

GC-wave factor was determined by product of WF value and the 

absolute values of GC correlation.  

 

Figure 13: Histogram with wave factor (grey) and GC content-caused wave factor 

(black) before correction of Log R ratio measurements. 
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The Plot in Figure 14 represents an example for a low quality 

sample, (with high wave factor), while the plot in Figure 15 refers 

to a high quality sample (with low wave factor). In the x- axes the 

position of the probe for whole genome space, and in y-axes the 

Log R ratio values before and after the wave factor correction.. 

 

Figure 14: Plot of the total signal intensities (LRR) without wave factor correction 

versus whole genomic space for a low quality sample, with high wave factor (black) 

and with a high quality sample, with low wave factor (grey). 
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Figure 15: Plot of the total signal intensities (LRR) after the wave factor correction 

versus whole genomic space for a low quality sample, with high wave factor (black) 

and with a high quality sample, with low wave factor (grey). 

 

A total number of 691 outlier bulls were identified after 

application of the DLRS and the wave factor corrections. These 

bulls were deleted in the subsequent analysis performed with 

PennCNV and SVS7. 

 

4.2.3 CNAM: PRINCIPAL COMPONENT ANALYSIS  

The principal component analysis was used to detect the presence 

of batch effects and/or technical variables. The Figures 16 and 17 
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are the plots of the second versus the third principal components 

to discover the batch effects that can influence the analysis. The 

Figure 16 is the representation of clustering according to the 

technician operating the genotyping of the samples. It shows a 

clear separation in three clusters. Figure 17 is the representation of 

clustering according to the scanner (Geneseek vs Kos) used in 

sample processing. These plots show a clear separation in two 

different cluster. 
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Figure 16: Plot of the second versus the third principal component that can explain 

the batch effects on different people that have genotyped the data.  

 

 

 

Figure 17: Plot of the second versus the third principal component that can explain 

the systematic difference between the two scanners used in the sample processing 

with a clear separation of the two clusters.  
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The first four PCs were used to correct the LRR values in the PCA 

because their value larger than 1 (Figure 18 and Table 8). 

 

 

Figure 18: Plot of the Eigenvalues (y-axis) versus the principal component (x-axis). 

 

Label Eigenvalue 

1 19.52 

2 2.73 

3 1.97 

4 1.35 

5 0.95 

6 0.76 
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Table 8: The first six eigenvalues parameters were reported. 

 

4.2.4 PENNCNV SOFTWARE: REMOVE OUTLIER BULLS 

A total of 5,406 CNV events on 651 bulls were detected. In Table 

9 some descriptive statistics are reported.  

The overall threshold for WF and GCWF were 0.1364 and 0.0144, 

respectively.  

 Column Minimum Q1 Median Mean Q3 Maximum Threshold IQR 

WFa* -0.2249 -0.0419 -0.0288 -0.00186 0.0365 0.1677 0.1541 0.0784 

GCWFa§ -0.0823 -0.0057 -0.0006 -0.0012 0.0037 0.0298 0.0178 0.0094 

WFb* -0.05860 -0.03175 0.0284 0.01064 0.0355 0.1588 0.1364 0.0673 

GCWFb§ -0.0169 -0.0021 0.0016 0.001143 0.0045 0.0221 0.0144 0.0066 

Table 9: Statistic summary of waviness.  

*: Wave Factor 

§: GC Wave Factor  

a: are the values obtained before the filtering of outlier bulls  

b: are the values after the application filter  

4.3 PENNCNV CNVS CALLING RESULTS  

4.3.1 FILTERING FOR CENTROMERIC AND TELOMERIC 

REGIONS 

According to the criteria hereinbefore exposed, i.e. using an 

overlap of at least 10% between the 5,406 CNV events and the 

centromeric and telomeric region, 307 CNV events were filtered 

out. Thus the final dataset used downstream analysis was 

composed to 5,099 CNVs. 
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4.3.2 DESCRIPTIVE STATISTICS OF CNVS RESULTS 

PennCNV software detected 5,099 CNVs call, and as described in 

Table 10, these CNVs encompass 97 homozygous deletion, 2,086 

heterozygous deletion, 2,915 heterozygous duplication and 1 

homozygous duplication, that corresponds to copy number type 

equal to zero, one, three, and four (Colella et al., 2007) on 632 

bulls.  

Chr type 0 type 1 type 3 type 4 # totali CNV 

1 6 95 121 0 222 

2 2 61 231 0 294 

3 4 87 104 0 195 

4 7 67 126 0 200 

5 12 40 130 0 182 

6 11 83 89 0 183 

7 4 279 146 0 429 

8 3 174 102 0 279 

9 2 178 87 0 267 

10 4 4 141 0 149 

11 4 30 158 0 192 

12 4 114 39 0 157 

13 1 41 138 0 180 

14 1 189 99 0 289 

15 1 25 61 0 87 

16 0 51 79 0 130 

17 3 140 70 0 213 

18 3 124 76 0 203 

19 4 22 130 0 156 

20 1 16 84 0 101 
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21 5 29 122 0 156 

22 3 17 82 0 102 

23 1 68 88 0 157 

24 2 57 81 0 140 

25 4 30 68 1 103 

26 0 29 59 0 88 

27 1 5 47 0 53 

28 1 27 54 0 82 

29 3 4 103 0 110 

Total 97 2086 2915 1 5099 

Table 10: Frequency table of CNVs events identified by PennCNV software for 

each chromosomes, and with a different states (type 0, type1, type3, type4) and 

with the total of CNVs. 

 

Table 11 shows the descriptive statistics of CNVs call identified 

by PennCNV software. Within a CNV, the minimum number of 

SNPs is 3. The length of CNV (expressed in base pairs) ranges 

from 40.4 kb to 4.46 Mb, with 350 and 230 kb as mean and 

median, respectively. The median of CNV number per bull is 4 as 

represented in the Figure 19.  

 

 

  Mimimum Q1 Median Mean Q3 Maximum 
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Table 11: Descriptive statistics of CNVs detected with PennCNV. Minimum, Q1 – 

first quartile, Median, Mean, Q3 – third quartile, Maximum, # SNPs in CNV – 

number of SNPs within CNV, Length CNV (bp), # CNV per bull – number of CNV 

for each bull. 

 

Figure 19: Plot of the distribution of the number of CNV per bull detected with 

PennCNV software. 

 

# SNPs in CNV 3 4 6 9.451 12 111 

Length CNV (bp) 40374 125551 229759 350297 446944 4457756 

# CNV per bull 1 2 4 8.068 6 91 
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More features on the CNV length are reported in the Table 12. 

The variable length was transformed in log10 and it was tested for 

the normality distribution with Kolmogorov-Smirnov test 

(D=0.059831, and p-value was < 0.01 thus reject the H0). 

Copy number Mean Median Sum Min Max 

0 311345 245646 30200500 46665 1053143 

1 159066 134534 331711379 40374 1688267 

3 488559 385138 1423739019 41449 4457756 

4 511301 511301 511301 511301 511301 

Table 12: Descriptive statistics of CNV length separate for each copy number (0 = 

homozygous deletion, 1 heterozygous deletion, 3 heterozygous duplication, and 4 

homozygous duplication). For the copy number 4 was detected only one event. 

 

The effect of the CNV state (loss, gain) on the log10 

transformation of the CNV length was tested with the correction 

of Tukey-Kramer of SAS.  

The losses (homozygous and heterozygous deletion) are 

significantly (p-value < 0.0001) smaller respect to the gains 

(homozygous and heterozygous duplication) with the R-square of 

the model of 0.209. 

All these results were tested and verified with a nonparametric test 

Kruskal-Wallis (p-value <0.0001). 
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Copy number lsmeans Type lsmeans 

0 5.29 0 or 1 (loss) 4.99 

1 4.98     

3 5.47 3 or 4 (gain) 5.47 

4 5.71     

Table 13: Least square means of log10 CNV length for each copy number states 

separately, and for the loss (homozygous and heterozygous deletion) and for the 

gain (homozygous and heterozygous duplication). 

 

4.3.2.1 Genome Map of CNVs obtained by PennCNV software 

 

Figure 20 shows the genome wide map of CNVs identified by 

PennCNV. 
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Figure 20: Genome map of CNVs identified on UMD3.1 autosomes by PennCNV 

software; x-axis represents the Position in Mb along each chromosome; y-axis 

represents the autosomes. Each lines identify CNV; 0 (Yellow): homozygous 

deletion, 1 (red): heterozygous deletion, 3 (blue): single copy duplication and 4 

(green): homozygous duplication.  
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4.3.2.2 Graphical Representation of CNVs 

A graphical representation of CNVs events obtained by PennCNV 

software for each chromosomes and visualized by HDCNV 

software (http://bioinformatics.oxfordjournals.org/). The red circle 

represents CNVs events with high number of overlap with the 

other events across all samples, ranging to blue events with no 

overlap (Figure 21).  

 

Figure 21: Karyotype of CNV events obtained by PennCNV software in bovine 

chromosome 1-29 and visualized by HD-CNV. Graph: each graph represents 

events for one chromosome. Node: a dot indicates a CNV event. The size for each 

chromosome depending from the total length of the chromosome. Edges: lines 

connect CNV events whose genomic regions overlap by at least 40%. Color: red 

indicates events with a high number of overlap with the other events, ranging to 

blue events with no overlap. 

 

http://bioinformatics.oxfordjournals.org/content/early/2012/11/04/bioinformatics.bts650.abstract.html?papetoc
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4.3.3 CNVRS IDENTIFIED WITH PENNCNV 

A total of 1,101 CNVRs were mapped with PennCNV software. 

Among these: 220 are the homozygous or heterozygous deletion; 

774 are the homozygous or heterozygous duplication; 107 

represents complex regions. The total length of the sequence 

covered by the CNVRs is 682 Mb which correspond to the 

27.14% of the bovine autosome genome in the Brown Swiss 

breed. The percentage of sequence covered by CNVRs ranges 

from 16.59 to 50.14% (Table 14). 
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Table 14: Feature of CNVRs identified by PennCNV; Chr: number of autosome 

chromosome, length of chr: total length of the sequence for each autosome, # loss: 

number of loss events, # gain: number of gain events, # complex: number of 

complex events.  

 

Chr
Total length of 

CNVRs

Length of Chr 

(bp)

% Sequence 

covered by CNVRs
# Loss # Gain # Complex Total # CNVRs

1 34697950 158337067 21,91 21 42 4 67

2 27559864 137060424 20,11 12 32 6 50

3 30977497 121430405 25,51 11 39 8 58

4 22868847 120829699 18,93 13 36 5 54

5 21613076 121191424 17,83 7 21 7 35

6 24642236 119458736 20,63 22 25 7 54

7 32333080 112638659 28,71 9 42 6 57

8 27607064 113384836 24,35 8 51 2 61

9 18355335 105708250 17,36 8 26 2 36

10 28653731 104305016 27,47 3 51 2 56

11 30510446 107310763 28,43 5 31 4 40

12 15125214 91163125 16,59 11 25 3 39

13 35001179 84240350 41,55 2 38 4 44

14 23677776 84648390 27,97 7 26 4 37

15 16578816 85296676 19,44 5 31 1 37

16 20477059 81724687 25,06 6 17 3 26

17 23143843 75158596 30,79 11 21 6 38

18 16540305 66004023 25,06 5 13 5 23

19 32119692 64057457 50,14 7 22 3 32

20 19307024 72042655 26,8 9 24 2 35

21 26064953 71599096 36,4 5 21 4 30

22 24984552 61435874 40,67 4 25 1 30

23 20627415 52530062 39,27 1 16 2 19

24 21250774 62714930 33,88 10 20 3 33

25 19126823 42904170 44,58 1 13 5 19

26 15594191 51681464 30,17 7 17 3 27

27 15333620 45407902 33,77 5 20 0 25

28 14613734 46312546 31,55 5 11 2 18

29 22312716 51505224 43,32 0 18 3 21

Sum 681698812 2512082506 27,14 220 774 107 1101
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In Table 15 a descriptive statistics of CNVRs length (express in 

bp) for each type of CNVR (loss, gain and complex) obtained by 

PennCNV software is reported. The effect of CNVR type 

(complex, loss, and gain) on log10 transformation of the CNVR 

length was tested with the GLM procedure of SAS accounting for 

multiple comparison (Tukey-Kramer). The length is significantly 

different in losses respect to gains (p-value < 0.0001) with a R
 
 

square of 0.299 (Table 16). 

 

CNVRs Type Mean Median Sum Min Max 

Loss 210454,3773 148427,5 46299963 40754 977685 

Gain 596255,2752 403827 461501583 45465 3873856 

Complex 1625208,093 1068260 173897266 179707 6703707 

 

Table 15: Descriptive statistics for each type of CNVRs (loss, gain and complex) 

obtained by PennCNV software with the Mean, Median, Sum, Min - Minimum and 

Max - Maximum values. 

 

 

 

 

CNVR Type Lsmeans 

Complex 6.07 
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Gain 5.63 

Loss 5.21 

Table 16: Least square means for the log10 CNVR length obtained by PennCNV 

versus the independent variable the type (complex, gain, and loss). 

 

4.4 CNAM CNVS CALLING RESULTS WITH UNIVARIATE 

ANALYSIS 

4.4.1 DESCRIPTION OF THE INFLUENCE OF WAVE 

CORRECTION AND PRINCIPAL COMPONENT ANALYSIS 

 

The histograms in Figure 22, 23, 24 represent the LRR means 

values segments calculated at the moment of run CNV detection. 

Figure 22 represents uncorrected LRR values, Figure 23 

represents the LRR values corrected for wave effects only and 

Figure 24 represents the LRR values corrected for wave effects 

and cluster identified by PCA. All these Figures are scaled on 

same vale to make possible a direct comparison. Another 

important feature of all these Figures is the negative LRR values, 

corresponding to the homozygous deletions, being much more 

frequent respect to the positive ones. 
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Figure 22: Histogram of Log R ratio segment means with uncorrected Log R ratio 

values. 
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Figure 23: Histogram of Log R ratio segment means with wave corrected Log R 

ratio values. 
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Figure 24: Histogram of Log R ratio segment means based on wave corrected R 

ratio values that were also corrected for the first 4 PCS. 
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The comparison between the count of the segments obtained by 

SVS7 are reported in the Table 17 for the three groups of LRR 

values: the first is for uncorrected values, the second is for the 

wave corrected, and the third is for the wave and the PC corrected. 

In this Table is not reported the number of segments covering 

LRR means ranging between +/- 0.02 to +/- 0.36, that could be 

not a copy number or a single copy duplications and deletions. 

 

 

Table 17: A comparison of the number of identified genomic segments based on 

uncorrected and corrected Log R ratio (LRR) data for WF and PCA, seg= 

segments, avLRR= LRR segment mean. 

 

The wave and PCs correction are useful to obtain clearer signals 

to identify a breakpoints. In this case, it’s possible to make the 

hypothesis that the total number of segments is smaller because 

the number of information contained in the chip (54,000 SNPs) 

were too spread to identify accurately segments breakpoints. 

The overall large number of segments with an average value of 

LRR +/- 0.02 is possibly caused by the more appropriate wave 

and PCs joint correction. In the same time, the small number of 

# Seg #Seg avLRR <-.36 (loss) #Seg avLRR > .36 (gain)
#Seg -.02 >avLRR <.02 

(neutral)

Uncorrected LRR 74,093 8,239 (11.12%) 649 (0.88%) 17,338 (23.4%)

Wave corrected LRR 22,999 1,720 (7.48%) 69 (0.3%) 12,337 (53.64%)

Wave & PC corrected LRR 22,618 827 (3.66%) 538 (2.38%) 17,810 (78.74%)
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negative values (losses), could explain a possible reduction of the 

false positive segments.  

 

4.4.2 FILTERING FOR CENTROMERIC AND TELOMERIC 

REGIONS 

Using an overlap at least of 10% between the 1,365 CNV events 

and the centromeric and telomeric region, 76 CNV events were 

filtered. The final dataset used for the follow analysis was 

composed to 1,289 CNVs, which encompass 762 losses and 527 

gains.  

 

4.4.3 DESCRIPTIVE STATISTICS OF CNVS RESULTS 

A total number of 1,289 CNVs call have been identified by 

CNAM using the univariate analysis. These CNVs encompass 762 

losses and 527 gains, segregating in 651 bulls. Details are shown 

in Table 18.  
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Table 18: Frequency table of CNVs events identified by CNAM applied univariate 

analysis for each autosomes chromosomes, and with a different states (loss and 

gain) and the total of CNVs. 

 

Chr Loss Gain # Total CNV

1 8 10 18

2 15 6 21

3 11 16 27

4 81 26 107

5 5 4 9

6 12 7 19

7 15 42 57

8 46 11 57

9 11 1 12

10 5 0 5

11 10 3 13

12 42 12 54

13 10 2 12

14 40 49 89

15 44 28 72

16 9 14 23

17 8 6 14

18 21 28 49

19 17 6 23

20 9 5 14

21 30 8 38

22 19 19 38

23 17 2 19

24 11 1 12

25 14 9 23

26 67 71 138

27 14 12 26

28 161 126 287

29 10 3 13

Total 762 527 1,289
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Table 19 shows the descriptive statistics of CNVs call identified 

by CNAM. The minimum number of SNPs within a CNV is 2. 

The length of CNV (express in base pairs) ranges from 11.3 kb to 

1.4 Mb, with median 45 kb and average 88.9 kb. The median of 

the number of CNV per bull is 2 as represented in Figure 25. 

 

Table 19: Descriptive statistics of CNVs detected with CNAM using univariate 

analysis, and are reported: #SNP in CNV – number of SNPs within CNV, Length 

CNV (bp), #CNV per bull – number of CNV per bull, Minimum, Q1 – first 

quartile, Median, Mean, Q3 – third quartile, Maximum 

 

 

Mimimum Q1 Median Mean Q3 Maximum

# SNPs in CNV 2 2 2 2.607 3 27

Length CNV (bp) 11315 30182 45200 88900 136783 1440751

# CNV per bull 1 1 2 2.306 3 9
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Figure 25: Histogram of the distribution of the number of CNV detected per bull 

using CNAM. 

 

In Table 20 some descriptive statistics on the CNV length for 

deletion and duplication of copy number states are reported. The 

average variability of losses results larger respect to the variation 

of gains.   
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Copy number Mean Median Sum Min Max 

Loss 94830.4 57612,5 72260727 11315 1,440,751 

Gain 80324.4 37591 42330968 20342 770,044 

Table 20: Descriptive statistics of CNV length separate for each copy number 

(losses, and gains). 

The variable length was transformed in log10 and it was tested for 

the normality distribution with Kolmogorov-Smirnov (D = 

0.163303 and p-value < 0.01 thus reject the H0). 

The effect of copy number state was tested on the log10 

transformed length. The losses are significantly smaller respect to 

the gains (p-value 0.002) being the R-square of the model was 

0.007391. (Table 21). This result was verified with a 

nonparametric test (Kruskal-Wallis) confirm the significant 

difference between gains and losses (p-value <0.0001). 

Copy number states lsmeans 

0 or 1 (loss) 4.74 

    

3 or 4 (gain) 4.8 

    

Table 21: Least square means of log10 CNV length for CNV call for losses and gain 

copy number states separately. 

4.4.3.1 Genome map of CNVs obtained by CNAM 
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Figure 26 shows a genome wide map of CNVs identified by 

CNAM. 

 

Figure 26: Genome map of CNVs identified on UMD3.1 autosomes by CNAM; x-

axis represents the Position in Mb and y-axis represents the autosomes. Each y line 

identifies CNV; 0 (Yellow): homozygous deletion, 1 (red): heterozygous deletion, 3 

(blue): single copy duplication and 4 (green): homozygous duplication.  
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4.4.3.2 Graphical Representation CNVRs 

A graphical representation of CNVs events obtained by CNAM 

for each chromosomes and visualized by HDCNV software. The 

red circle represents CNVs events with high number of overlap 

with the other events across all samples, ranging to blue events 

with no overlap (Figure 27).  

 

Figure 27: Karyotype of CNV events obtained by SVS7 software in bovine 

chromosome 1-29 and visualized by HD-CNV. Graph: each graph represents 

events for one chromosome. Node: a dot indicates a CNV event. The size for each 

chromosome depending from the total length of the chromosome. Edges: lines 

connect CNV events whose genomic regions overlap by at least 40%. Color: red 

indicates events with a high number of overlap with the other events, ranging to 

blue events with no overlap. 
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4.4.4 CNVRS IDENTIFIED WITH CNAM 

The CNV calls were summarized at population level according to  

Redon’s approach, resulting into 277 (185 losses, 56 gains and 36 

complex) CNVRs. The total length of the sequence covered by the 

CNVRs is 33.71Mb (1.35%) of the bovine autosomes (Table 22). 

The percentage of sequence covered by CNVRs ranges between 

0.12% to 3.5%.  

 

Chr
Total length of 

CNVRs (bp)

Length of Chr 

(bp)

% Sequence 

covered by 

CNVRs

# Loss # Gain # Complex Total # CNVRs

1 755248 158337067 0,477 5 2 1 8

2 964331 137060424 0,7036 8 2 1 11

3 835421 121430405 0,688 8 2 1 11

4 1617402 120829699 1,3386 13 4 4 21

5 2109507 121191424 1,7406 3 2 1 6

6 1001626 119458736 0,8385 8 4 1 13

7 1295002 112638659 1,1497 6 1 1 8

8 1885802 113384836 1,6632 8 1 3 12

9 242071 105708250 0,229 2 1 0 3

10 126202 104305016 0,121 2 0 0 2

11 935462 107310763 0,8717 8 1 1 10

12 3230778 91163125 3,544 9 3 2 14

13 572916 84240350 0,6801 4 0 1 5

14 2171830 84648390 2,5657 12 2 2 16

15 837756 85296676 0,9822 1 1 1 3

16 1437331 81724687 1,7587 7 5 0 12

17 964817 75158596 1,2837 5 1 1 7

18 1169431 66004023 1,7718 7 1 2 10

19 1351321 64057457 2,1095 10 3 2 15

20 1093115 72042655 1,5173 7 3 1 11

21 1142692 71599096 1,596 1 0 1 2

22 1941717 61435874 3,1606 11 5 1 17

23 149508 52530062 0,2846 1 0 1 2

24 518267 62714930 0,8264 8 1 0 9

25 1263893 42904170 2,9459 7 3 2 12

26 828044 51681464 1,6022 8 1 1 10

27 1127107 45407902 2,4822 6 2 1 9

28 1401323 46312546 3,0258 3 3 3 9

29 739246 51505224 1,4353 7 2 0 9

Sum 33709166 2512082506 1,3419 185 56 36 277



 
106 

Table 22: Feature of CNVRs identified by CNAM; Chr=autosome number, length 

of chr – total length of the sequence for each autosome, # loss – number of losses 

events, # gains – number of gains events, # complex – number of complex (losses 

and gains) events.  

 

In Table 23 descriptive statistics of CNVRs length (bp) for each 

type of CNVR (loss, gain and complex) obtained by CNAM 

algorithm are reported.  

The effect of copy number type (complex, loss, and gain) was 

tested on the log10 transformed length accounting for for multiple 

comparison (Tukey-Kramer). The losses are significantly smaller 

respect to the gains (p-value 0.0214) with R-square of 0. (Table 

24). 

CNVRs Type Mean Median Sum  Min Max 

Loss 116378,6162 61523 21530044 11314 1440750 

Gain 115358,0179 83498,5 6460049 20341 460833 

Complex 158863,1389 127525,5 5719073 21916 770043 

Table 23: Descriptive statistic for each type of CNVRs (loss, gain and complex) 

obtained by CNAM algorithm.  
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CNVR Type Lsmeans 

Complex 5.03 

Gain 4.91 

Loss 4.84 

 

Table 24: Least square means of dependent variable the log10 transformation of 

CNVR length obtained by CNAM versus the independent variable the type 

(complex, gain, and loss). 

 

4.5 CONSENSUS CNVRS 

Descriptive statistics of consensus CNVRs obtained by the two 

methods, Redon and Wain respectively are reported in Table 25. 

According to Redon et al., (2006) considering CNVRs 

overlapping for at least 1 bp of their sequence 139 consensus 

regions were obtained spanning a total length of 146 Mb (5.88 % 

autosome covered). The second method (Wain et al., 2009) 

considers only CNVRs that fully overlap one each other: a total of  

151 consensus regions were identified with a total length of 17.1 

Mb (0.68 % autosome covered).  
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Redon’s method identify a smaller number of CNVRs, because 

being these regions longer, may contain multiple regions identify 

by Wain’s approach. 

 

Consensus # 

CNVR 

Total length 

(bp) 

% 

autosome 

covered 

Min 

(bp) 

Max 

(bp) 

Average 

(bp) 

Redon 139 146611379 5.88 41600 6703707 1054758.12 

Wain 151 17064978 0.68 11314 1047092 113013.099 

Table 25: Descriptive statistic of consensus CNVRs obtained by the two methods: 

the union (Redon et al., 2006) , and the intersect method (Wain et al., 2009). 

4.6 ANNOTATION OF CNVRS 

The version 69 of the gene dataset downloaded from Ensembl 

contains a total of 26,740 annotated bovine elements. Within these 

elements 22,118 protein coding genes, 626 pseudogenes, 171 retro 

transposed, 24 MT-tRNA, 405 rRNA, 1,222 snRNA, 1,153 

miRNA, 846 snoRNA and 175 miscellaneous RNA are listed.  

After excluding, 1,267 elements on chromosome X and on UnChr 

(98 miRNA, 7 miscellaneous RNA, 24 MT-tRNA, 941 protein 

coding genes, 52 pseudogenes, 22 retro transposed, 14 rRNA, 39 

snoRNA, 70 snRNA), and repeated information in the file, a total 

number of 23,431 elements on bovine autosome was considered. 

In Table 26 the number and the proportion of annotated elements 

for each biotype classes out of the bovine autosome list is 
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presented. The annotation is reported for CNVRs detected by both 

algorithms, PennCNV and CNAM, and for the two consensus 

methods. The consensus is considered matching when an 

overlapping of at least 80% between the total length of CNVR and 

feature occurs. The elements of protein coding genes (PCGs) are 

the most represented in CNVRs.  
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Table 26: Overview of annotated ensemblv69 elements for each biotype on UMD3.1 autosomes, for the CNVRs obtained by 

both algorithms, and by the two consensus methods: the intersection and the union approach (Wain et al. 2009 and Redon et 

al. 2006), respectively. #: number of elements. The transcript biotype consists in several classes: rRNA – ribosomal RNA, 

snRNA – small nuclear RNA, snoRNA – small nucleolar RNA, miRNA – microRNA, misc_RNA – all other subspecies of 

RNA. 

transcript 

biotype 

autosome 

# 

autosome 

% 
CNAM # 

CNAM 

% 

PennCNV 

# 

PennCNV 

% 
Wain # Wain % Redon # 

Redon 

% 

protein_coding 19135 81,67 296 87,57 6955 84,90 167 88,83 1990 88,92 

pseudo gene 574 2,45 7 2,07 132 1,61 2 1,06 27 1,21 

retrotransposed 149 0,64 1 0,30 33 0,40 1 0,53 7 0,31 

rRNA 391 1,67 3 0,89 93 1,14 0 0,00 20 0,89 

snRNA 1152 4,92 6 1,78 324 3,96 3 1,60 57 2,55 

snoRNA 807 3,44 3 0,89 228 2,78 3 1,60 56 2,50 

miRNA 1055 4,50 21 6,21 381 4,65 12 6,38 67 2,99 

misc_RNA 168 0,72 1 0,30 46 0,56 0 0 14 0,63 

Total 23431 100,00 338 100,00 8192 100,00 188 100,00 2238 100,00 



 
111 

Table 27 shows the results for the hypothesis test that the 

molecular function, biological process, cellular component and 

patway terms were under-or overrepresented in CNVRs after 

Bonferroni correction. 

The analysis was performed with all the four datasets used for the 

annotation with Ensembl elements. 

 

BIOLOGICAL PROCESS 

GO Term GO name p-value 

GO:0044237 cellular metabolism process 0.0419 

GO:0009987 cellular process 2,06E-10 

GO:0044260 Cellular macromolecule metabolic process 1,56E-01 

GO:0008152 Metabolic process 3,79E-01 

GO:0044238 Primary metabolic process 1.27e-4 

GO:0032502 Developmental process 0.001 

GO:0043170 Macromolecule metabolic process 0.001 

GO:0009058 Biosynthetic process 0.001 

GO:0044249 Cellular biosynthetic process 0.001 

GO:0007275 Multicellular organismal development 0.0047 

GO:0010467 Gene expression 0.0058 

GO:0006807 Nitrogen compound metabolic process 0.019 

GO:0016071 mRNA metabolic process 0.048 

GO:0007166 Cell surface receptor linked signal transduction 0.01 

CELLULAR COMPONENT 

GO:0005737 Cytoplasm 3.63e-4 

GO:0005622 Intracellular 4.28e-4 

GO:0044424 Intracellular part 8,60E-01 

GO:0043226 Organelle 3,00E-08 

GO:0043229 intracellular organelle 8,10E-13 
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GO:0043227 Membrane-bounded organelle 1,13E-06 

GO:0043231 Intracellular Membrane-bounded organelle 2,18E-06 

GO:0044444 Cytoplasmatic part 1,31E-01 

GO:0044446 Intracellular ogganelle part 4,17E-01 

GO:0044422 Organelle part 5,16E-01 

GO:0005634 Nucleus 1,76E+00 

GO:0044428 Nuclear part 0.0039 

GO:0031974 Membrane enclosed lumen 0.0129 

GO:0043233 Organelle lumen 0.02523 

GO:0070013 Intracellular organelle lumen 0.0321 

MOLECULAR FUNCTION 

GO:0004364 Glutathione transferase activity 7.59e-4 

GO:0005515 Protein binding 3,91E-07 

GO:0005488 Binding 1,87E-04 

GO:0017076 Purine nucleotide binding 0.0058 

GO:0003824 Catlytic activity 0.0091 

GO:0032553 Ribonucletide binding 0.014 

GO:0032555 Purine ribonucleotide binding 0.014 

GO:0004871 Signal transducer activity 0.0203 

GO:0060089 Molecular transducer activity 0.0203 

KEGG PATWAY 

Bta00980 Metabolism of xenobiotics by cytochrome P450 0.0056 

Bta03040 Spliceosome 0.0042 

Bta03010 Ribosome 0.0076 

Bta04740 Olfactory transduction 0.049 

 

Table 27: Enriched GO terms associated with the CNVRs (Bonferroni p-value ≤ 

0.05) obtained in this study. 
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CHAPTER 5 –DISCUSSION 

Several authors have reported the large-scale variability across 

CNV-detection methods and also across platforms for genotyping. 

Additional substantial false positive and false negative rates can 

be associated with the methods used. For these reasons, the 

available copy number studies are frequently characterized by 

comparison of several calling algorithms and platforms.  

Winchester et al. (2009) using two SNP array (Affimetrix and 

Illumina) discussed the comparison between CNV detection using 

the two different platforms.  

Tsuang et al. (2010) studied the effect of four algorithms 

(PennCNV, QuantiSNP, HMMSeg, and cnvPartition) on copy 

number variant detection. In the same year, another author 

(Dellinger et al. 2010) suggested and emphasized a comparative 

analyses of seven algorithms for copy number variant 

identification from SNP array. 

Pinto et al. (2011) compared CNV detection on eleven microarray 

platforms (CGH / SNP)  to evaluate data quality and CNV calling, 

reproducibility, concordance across array platforms and laboratory 

sites, breakpoints accuracy and analysis tool variability. In this 

study, he found a low concordance < 50% between CNV calls 

using the same raw data but different analytic tools. 
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Haraksingh et al (2011) have quantified the abilities of twelve 

genome-wide CNV detection platforms, including CGH arrays 

(NimbleGen and Agilent Thecnologies) and SNP arrays (Illumina 

and Affymetrix), finding significant difference in performance. 

These differences take in account the sensitivity, the total number, 

the size range and the breakpoint resolution of CNV calls. 

There are no available studies comparing CNV detection 

differences between the two algorithms here used: the PennCNV 

and the CNAM (copy number variation module of SVS7). In this 

context, additionally to the fact that this is the first mapping with 

CNAM in the Brown this study, bring to the knowledge of CNV 

mapping original results. 

5.1 COMPARISON AND CONSENSUS BETWEEN 

PENNCNV AND CNAN CNVS 

The total number of CNVs detected by PennCNV and CNAM are 

5,099 and 1,289, respectively.  

In Figure 21 and Figure 27 a graphical representation of CNVs 

events are reported. The differences between these two graphical 

representations can be explained by the following: 

-) first of all by the datasets used to create the graphical 

representation had large differences in the total number of CNVs; 

-) secondly the algorithms used to detect the CNVs are different. 
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This is in line with the hereinbefore just mentioned discussion on 

extreme variability in CNV detection according to algorithms 

used.  

The median length of CNVs according to PennCNV (230 kb) was 

greater respect to the one detected by CNAM (45 kb). This could 

indicate a large variability in CNV breakpoints identified by 

PennCNV.  

The number of CNVs detected for each bull ranging 1 to 91 is 

much larger in PennCNV, respect to CNAM where is ranging 

between 1 to 9. This could indicate the tendency to map a larger 

number of false positive in PennCNV.  

The CNVs obtained by CNAM shows a major number of losses 

respect to the gains events. As was reported in the literature 

(Fadista et al. 2010, Gu et al. 2008, Turner et al. 2008), this over 

representation of deletion events can be explain by the type of 

chromosomal rearrangement (NAHR).  

The CNVs obtained by PennCNV software shows a larger number 

of gains respect to the losses, but at best of our knowledge there is 

no biological reason to explain this phenomena.  

The asymptotic Kolmogorov-Smirnov two-sample test ‘proc 

npar1way’ (SAS 9.2, SAS Institute) was used to test the 

differences in the empirical cumulative CNV frequency 

distribution, and it was  significant (Figure 28). 
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Figure 28: Empirical cumulative distribution of CNV frequencies for CNVs 

identified by PennCNV and CNAM. 

5.2 COMPARISON AND CONSENSUS BETWEEN 

PENNCNV AND CNAM CNVRS 

The total number of CNVRs identified by PennCNV is four time 

the number of CNVRs obtained by CNAM, and correspond to 

1,101 and 277, respectively. The percentage on the bovine 

autosome of the Brown Swiss breed correspond to the 27.14% and 

1.35%, respectively. This confirm the hypothesis that from same 

data set algorithms highly can affect CNV mapping. 
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5.3 COMPARISON TO LITERATURE 

The comparison between the CNVRs here detected by Wain’s 

approach (151) and the other five published CNV studies is 

reported in Table 28.  

Hou et al. (2011) and Bae et al. (2010) used an SNP array 

platform, with Illumina BovineSNP50 BeadChip (Illumina) while 

Fadista et al. (2010) and Liu et al. (2010) used the comparative 

genomic hybridization array platform (NimbleGen). Bickhart et 

al. (2012) for the first time used a Next Generation Sequence to 

map CNV (Illumina GAIIx).  
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Table 28: Common CNVRs between my consensus regions and five different authors. 

This study
Length 

(Mb)

Hou et al. 

(2010)

Length 

(Mb)

Fadista et 

al. (2010)

Length 

(Mb)

Bae et al. 

(2010)

Length 

(Mb)

Liu et al. 

(2010)

Length 

(Mb)

Bickhart et 

al. (2012)

Length 

(Mb)

This study 151 17.1 57 22.4 4 1.3 13 4 3 1.3 12 2.3

Hou et al.(2010) 57 22.4 682 158 27 21.3 61 39.3 19 13.8 74 35.9

Fadista et al. (2010) 4 1.3 27 21.3 304 22 15 4.7 45 12.1 56 12.6

Bae et al. (2010) 13 4 61 39.3 15 4.7 368 63.1 5 1.7 31 7.4

Liu et al. (2010) 3 1.3 19 13.8 45 12.1 5 1.7 177 28.1 98 24.2

Bickhart et al. (2012) 12 2.3 74 35.9 56 12.6 31 7.4 98 24.2 1265 55.6
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A graphical representation of the comparison, in term of count and 

length, between the results of this study and the other five datasets 

already published is represented in Figure 29. These graphs were 

created using the package Venn Diagram of R software.  

The comparison with literature confirms the existence of the high 

variability across platform, methods breeds and populations used 

to detection of CNVs. In the Venn Diagram for the  SNP array 

Platform negative values respect to the length are reported. This 

occurs because Hou’s detected regions are larger respect to the 

regions obtained in this study.  
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Figure 29: Comparisons between 151 consensus regions and the other existing 

cattle CNVRs datasets in term of count and length. The first Venn Diagram: 

Consensus Region shows the two datasets obtained in this study using PennCNV 

software and CNAM. The intersection part shows the total number of the common 

regions and the length identified by both algorithms; Venn Diagram: SNP array 

Platform shows the comparison between the results of this study and CNVR 

derived from SNP array (Bae et al, 2010, Hou et al. 2011); the Venn Diagramm: 

CGH array Platofrom shows the comparison between the results of this study and 

the two CNVR datasets derived from array CGH studies (Liu et al,2010; Fadista et 

al, 2010); Venn Diagram: NGS Platform shows the comparison between the results 

of this study and the only public dataset obtained by NGS technology (Bickhart et 

al. 2012); the summaries and legends of existing cattle CNVR datasets. 

 

 

5.3 FUNCTIONAL ANNOTATION 

Another comparison with the literature was based on the 

functional annotation. From the results obtained by Gene 

Onthology analysis and KEGG Patway a similarity with other 

authors is found. Bae et al. (2010) reported genes significantly 

enriched in the identified bovine CNVs for the cytoplasm, 

intracellular part, cytoplasmic part, and intracellular organelle. 

Hou et al. (2011) reported that several CNVs are important in 

drug detoxification, defense/innate and adaptive immunity and 

receptor and signal recognition. These gene families include 
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olfactory receptors, ATP-binding cassette (ABC) transporters, 

Cytochrome P450, β-defensins, interleukins, the bovine MHC 

(BoLA) and multiple solute carrier family proteins.  

 

 

 

 

 

 

 

 

CHAPTER 6 - CONCLUSION AND COMPARISON WITH 

LITERATURE 

 

In this study a genomic analysis of Brown Swiss dairy bulls using 

two different algorithms to detect CNVs based on whole genome 

SNP genotyping data was performed. A total of 139 and 151 

CNVRs were identified with the consensus analysis, covering 146 

Mb (~ 5.88%) and 17.1 Mb (~ 0.68%) of the bovine autosome, 

respectively.  

The comparison between the other studies in cattle CNV shows us 

a high variability that may be due to the different platforms or 
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technologies used. However, a subset of CNVRs obtained by this 

study, overlap with other CNVRs dataset cattle studies.  

Future analysis will be processed to confirm this genomic scan 

map using next generation sequencing data, and/or molecular 

technique. 

The SNP data combined with available CNV data scan may help 

to identify genes undergoing artificial selection in domesticated 

animals and to improve the selection program. 
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