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Abstract — The analysis of the wood types is important in many
industrial sectors such as the furniture industries and the wood
panel production. Different woods have different aspects, properties
and costs. The analysis of the wood type is very important to
guarantee that the final product has the required features and
characteristics. Unfortunately, the analysis made by human experts
is not rapid and it presents a not standardized accuracy due to the
operator’s capabilities and tiredness.

The presented paper shows how that it is effectively possible to
accurately classify the wood types by the analysis of the
fluorescence spectra in real time and during the production
activities. In particular, the paper presents a prototype schema and
a set of techniques suitable to extract features from the spectra and
how to used the extracted feature to train an inductive classification
system. Results show that a good accuracy in the classification can
be achieved, and that the proposed setup can be used also in real-
time industrial processes.
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I. INTRODUCTION

The automatic classification of the wood is a problem
which is present in many industrial contests such as the
furniture industries and the wood panel production [1]. The
need to correctly identify the wood type is related to that fact
that different woods have different aspects, properties and
costs. The correct classification of the wood type is very
important to guarantee that the final product has the required
features and characteristics.

For example in the production of wood panels the choice
of the wood type can influence the needed quantity of the
glue that must be present in the panel to guarantee the proper
mechanical properties. In addition the glue has a great impact
on the final cost of the panel and it effects the overall
environmental impact of the wood panel production. In the
paper industry, the wood type is related to the final quantity
of the cellulose in the paper, and hence to the quality of the
paper [2].

Most of the time, the analysis of the wood type is
performed by human experts by observation, but this activity
is not rapid and it presents a not standardized accuracy due to
the operator’s capabilities and tiredness. More expensive
chemical test are available, but they are slow and can be done
only on samples of the production.

The paper we present describes the design of an accurate
and standard method for the automated classification of the

wood types by a contact-less measurement and classification
of the wood by visible and near infrared spectra. Experiments
has been made in order to test a classification capability up to
21 different wood types.

The paper is structured as follows. Section 2 focuses on
the proposed approach to the problem and compares it with
respect to the literature. Section 3 shows the experimental
results obtained by applying the proposed method. The
description of the creation of the dataset of wood spectra is
given, then the section describes how to create and train
different models of inductive classification systems such as
the k-nearest neighbor classifiers, linear and quadratic
Bayesian classification systems. Finally, it follows the
discussion of the accuracy and the performances of the
overall system.
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Figurel. Picture of the experimental setup: the 473 nm DPSS laser (left)
excites fluorescence of wood sample (bottom right), while the miniature
spectrometer above acquires the emission spectrum. The laser line is blocked
by an optical long pass filter placed on the spectrometer.

II. THE MEASUREMENT SYSTEM

The characterization of wood samples has been carried out
by fluorescence spectroscopy. Such approach presents some
advantages in comparison with those proposed in literature
which are mainly based on vibrational spectroscopic
methods: such near-infrared (NIR) [3], mid-infrared (MIR)
[4, 5], and Fourier-Transform Raman [6, 7] spectroscopies .



Vibrational spectroscopies, despite the richness of the
providing information, present several drawbacks for the
industrial application both for costs and experimental
difficulties for its implementation in on-line and real time
measurement systems operating in industrial environment.
For example, all these techniques require normally long
integration times and expensive cooled detectors. In
particular IR measurements are affected by the some
environmental variables which are not easily controllable in
the production line: such the presence of thermal sources,
dust and humidity. As a matter of fact the tail of the thermal
radiation in the detectors sensitivity range produces a noisy
background, the random presence of dust produces several
artifacts in a long time measurement and some water vapor
absorption bands overlap the wood spectral features useful
for the recognition.

Fluorescence spectroscopy, on other hand, working in the
visible spectral region has a higher signal to noise ratio
unaffected by thermal noise or water absorption and
furthermore the high sample rate for example allows to reject
measurement on flying particles. Fluorescence represents
also convenient choice due to the availability of lower cost
components: as the modern high performance silicon based
CCD (charge coupled device) detector and high power DPSS
(diode pumped solid state) laser. The use of the modulation
capability DPSS laser (up to 100 KHz) together with a
synchronous detection, allows a further improving of the
signal to noise ratio, fast measurements and subtraction of
the environmental light. All these features make fluorescence
spectroscopy particularly suited for real time measurement
system operating in an industrial environment.

The prototype measurement system we set up, consists of
a miniature spectrometer (Ocean Optics USB2000) and a
frequency doubled DPSS laser operating at 473 nm,
respectively for fluorescence detection and excitation. In the
setup (see Figure 1) the exciting laser beam, with modulable
optical power up to 50 mW, impinges on samples at 45
degrees respects to the vertical direction corresponding to the
axis of the collection optics. The spectrometer, provided with
an adjustable objective lens focusing the collected light into
the entrance slit, is positioned few centimeters above the
sample. A long pass filter, with cutoff wavelength of 500 nm
inserted between the sample and spectrometer, removes the
laser line from the collected light.

The fluorescence intensity is then measured in the spectral
range between 500-1000 nm at 1 nm resolution and with 10
ms of integration time. The intensity of fluorescence spectra
have been normalized using as reference signal the intensity
of laser sub-harmonic (at 946 nm) or of the pumping diode
(at 808 nm), in order to correct the effects due to sample
absorption. Such reference signals, which will be employed
as feedback for an autofocus system, has been manually
maximized during the experiment.

Figure 2 plots the input spectra of the following wood
types: Wild Cherry, Oak Chestnut, Walnut and Larch. Figure
2 shows only the most significant part of the spectra
qualitatively estimated in the range from 490nm to 750nm.

The main assumption we assume is that the emitted spectra of
the different wood types are enough different to be classified
with accuracy.
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Figure 2. Examples of inputs spectra.
III. THE CLASSIFICATION SYSTEM

The exact relationship between the shape of the spectra
and the wood types is not well known, hence it is not possible
to directly design an algorithm for a classification system. On
the contrary, the capability of the inductive classifiers to learn
input-output relationships from examples can be exploited to
create a proper classification system [8, 9]. In our study we
propose different kinds of classification systems such as the
k-nearest classifiers, linear and quadratic classifiers Bayesian
classifiers.

Since the acquisition system produces vectors of 242
samples for each wood acquisition, the cardinality of the
input is very high. It cannot be considered as adequate to be
directly used as input to the classifiers, hence a reduction of
the number of the input features has to be considered
(features selection/extraction phase [9]).

The reduction of the dimensionality of the input space can
be achieved using different methods [8]. The most popular is
the Principal Components Analysis (PCA) which can
compress most of the variation measured in the overall
spectrum into a minor number of components [10]. Since the
PCA-like mapping mixes the input components into a
reduced set of new features, the direct relationship between
the regions of the spectra and their importance in the wood
classification is less explicit [11]. Similar approaches in the
literature are based on the neural networks [6] and the genetic
algorithms [7]. In [12] the linear prediction models were
produced using multivariate analysis and regression methods
on a very specific application: the compression wood in
Norway spruce (Picea abies). In [13] the spectra coming from
a satellite spectrometer has been classified using Self-
Organizing Maps.



The approach we propose integrates the spectral energy
into N fixed bands producing a vector of N elements which
can be used as input to the classification system. This
approach permits very easily to test the functioning of the
system with different spectral definitions of the spectrometer,
and to directly identify which bands of the spectrum are more
relevant into the classification problem.
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Figure 3. Structure of the proposed classification system.

The final classification system can hence be designed by
considering the following four phases (Figure 3):

1) acquisition of the input spectra (V sample vectors);

2) integration of the spectrum in A/ contiguous bands;

3) feature selection/extraction of the L values;

4) classification of the wood using the L values.
In the next section it will be described the four phases, the
creation of the dataset, the creation of the classifiers, the
training phase of the classifiers and the accuracies of the
proposed classification systems.

IV. EXPERIMENTAL RESULTS

A set of the 21 different wood types (of certified origin
purchased at Woodtechnology Gmbh) belonging the most
common species has been analyzed. Twenty spectra for each
sample have been acquired in different points by moving the
samples under irradiation. During the measurements we
ensured to probe all wood zones namely heartwood,
sapwood, and growth ring. The 21 wood types belonging to
the dataset with the caption number assigned by the provider
are the following: (1) Wild Cherry; (2) Oak Chestnut; (3)
Walnut; (4) Larch; (5) Wild Pear Tree; (6) Poplar; (7)
Cembar Pine ; (8) Beech Tree; (9) Alnus incana; (10) Linden
Tree; (11) Alnus incana; (12) Scots Pine; (13) Oak tree; (14)
Spruce; (15) Maple; (16) Taxus baccata; (17) Elm; (18)
Silver Fir; (19) Birch Tree; (20) Black Locust; (21)
Carpinus betulus.

The first classification problem we considered -Problem
A- is the binary classification between the confier and broad-
leaved wood spectra. This problem is related to the fact that,
in some specific applications such as the wood panel

production, the properties of the wood types belonging to the
same class (conifer or broad-leaved) can be considered as
similar. The second classification problem we considered -
Problem B- is the classification of the 21 different wood
types. Problem B can be considered as more difficult than
Problem A since the number of classes is 10 time more.

The capability to classify the wood types via fluorescent
spectra has been tested using different classification
paradigms. The first model we adopted is the Linear Bayes
Normal Classifier (LDA in the following), a method which
builds a linear classifier between the classes of the dataset by
assuming normal densities with equal covariance matrices in
the input data [14]. Based on similar hypothesis, but using
instead a second-order mapping of the input, we considered
the Quadratic Bayes Normal Classifier (QDC) [11, 15]. As
third family of classifier systems, we adopted the well-known
k-Nearest Neighbor classifier with odd values of the
parameter k (1,3,5). In order to test the real advantage of
using feature extraction techniques in this applicative case,
we considered the application of the PCA technique as
preprocessing for the LDA and kNN (k=1) classifiers. In the
following we refer to these systems as PCA+LDA and
PCA+INN.

The classification error of the cited systems has been
estimated using the cross-validation technique (using 10
rotations) [14]. The test has been applied to all cited
classifiers producing the mean classification error and its
standard deviations.

In order to understand the effect of the spectral resolution
of the available power spectra, the values of each spectrum
have been integrated in M bands of the same size, as
discussed in the previous section. Results for Problem A and
Problem B have been plotted in Table A and Table B. The
tables report the classification errors and its standard
deviations for the tested classifiers, with respect to the
number M of used bands. Tables A and B do not report the
classification error of the PCA+LDA and PCA+INN
classifiers since the application of the PCA does not
significantly affect the classification errors with respect to the
LDA and INN classifiers.

Table A shows that the classification between confier and
broad-leaved woods can be suitably achieved with different
classification systems. All tested classifiers behave with
similar accuracies. The minimal classification error value is
about 2.9% with a standard deviation of 0.1% for the QDC
(13 bands). Similar classification errors are achieved by the
1-NN classifier and by the LDC with an error of 0.3% (81
bands) with a 0.2% standard deviation.

Results of the classification of the 21 wood types (Table
B) show that the classification can be achieved with a
classification error of 6.4% (with a 0.9% standard deviation)
by the QDC algorithm.

The errors related to the two classification problems are
very promising since they are obtained by using a single
spectrum acquisition. A second method can be also be
considered: more than one spectrum acquisition can be taken
from the same point (or considering points that are in a



narrow neighborhood of the same wood sample). In this case,
it is possible to achieve different operations of classification
from the same points/area of the sample, and then to process
an average/voting operation on the class outputs. More
experiments will be done to control if the averaging/voting
method can effectively further reduce the classification
eITOors.

All the tested classifiers achieve the classification in a
computational time which ranges between Ims and 45ms,
depending on the number of inputs (the M bands) and the
complexity of the algorithms. LDCs and 5NNs classifiers
have the minimum computational times and the maximum
computational times, respectively. All tests have been
performed using a Pentium 1,7GHz, 1GB RAM, using
Windons XP Professional. The whole system has been
implemented in Matlab by exploiting the available
Toolboxes.

The obtained computational times suggest that is possible
to adopt the proposed classification method in real time
applications.

TABLE A - Conifer/ Broad-leaved
LDC QC 1-NN 3-NN 5NN
Bands| er. [ std [ er [ std [ er [ std [ er [ std | er | sa
12110.714 0000 [ 0179 0017 (0033 0003 [0.038 0003 |0.034 0003
8110712 0001 (0173 0074 ]0.030 | 0.002 | 0.038 0.002|0.036 0.003
61/ 0.034 0007 (0115 0.009|0.030 | 0.003 |0.036 0.002|0.035 0.001
4910032 0002 (0059 0005(0.032 0002|0039 0002]0.033 0003
3110032 0003 (0031 0002|0032 0004|0039 0002]0034 0002
25/0.035 0002 (0031 0003|0.036 0004|0036 0.002]0035 0003
13[0.030_] 0.002 [0.029] 0.007 | 0.033 0.003 [0.037 0.002 | 0036 0.003
9] 0.031 0.001 [0.035 0003|0033 0002 (0034 0002 (0.038 0002
7/10.035 0001 (0037 0005|0036 0002|0037 0002|0042 0003
5(0.034 0002|0054 0009|0036 0.004]0.039 0002]0036 0002
4(0.033 0007|0052 0008 |0.053 0.005]0.047 0.004]0.053 0.003
3[0108 0002|0130 0017|0113 0.005]0.085 0.004]0.091 0.006
TABLE B- 21 wood types
LDC QC 1-NN 3-NN 5NN

Bands| er. [ std [ er [ std [ er [ std [ er | sd | er | sd
12110950 0000|0949 0003|0194 0004 (0205 0007 [0.206 0.006
8110919 0004 (0932 0008|0194 0.009|0.209 0.003]0.209 0.008
61 0.121 0.005 0901 0006 (0193 0006 (0204 0004 (0204 0003
4910110 0006 [0.794 0016|0194 0.006 |0.206 0.007 |0.207 0.005
31{0007 0007 [0.064] 0.009 | 0191 0.006 (0206 0.006 |0.206 0.008
25[0.104 0004 [0.097 0070|0194 0007 |0.209 0.005]0.209 0.004
13/0.123  0.003 0135 0013|0215 0007 (0215 0005|0223 0005
9[0.144 0006 |0115 0005|0220 0.009 |0.227 0.006 |0.228 0.005
7(0196 0006 |0135 0005|0228 000410243 0.005]0221 0003
50215 0007|0160 0008 |0.245 0.008 10250 0.004 0240 0.007
400252 0005|0202 0008|0323 0009|0304 0.006]0294 0.008
3/0376 0007|0373 0014|0387 0.008]0361 0.004]0338 0.008

V. CONCLUSIONS

The paper presented a method for the automated
classification of wood types based on the analysis of
fluorescence spectra. The proposed method partitions the
input spectra in different bands equally spaced. The energy
contained in each band is used in input to an inductive
classifier. Results show a good classification accuracy up to
21 different wood types. The presented approach has a
general validity, and it can be used with spectrometers of
different resolutions and with different classification systems,

encompassing k-nearest neighbor classifiers, linear and
quadratic Bayesian classification systems. The simple
experimental set set-up and the limited overall computational
complexity permit the adoption of the proposed method in
real time applications.
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