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This paper shows how a compact finite difference Hessian approximation scheme can be proficiently
implemented into semiclassical initial value representation molecular dynamics. Effects of the ap-
proximation on the monodromy matrix calculation are tested by propagating initial sampling distri-
butions to determine power spectra for analytic potential energy surfaces and for “on the fly” carbon
dioxide direct dynamics. With the approximation scheme the computational cost is significantly re-
duced, making ab initio direct semiclassical dynamics computationally more feasible and, at the
same time, properly reproducing important quantum effects inherent in the monodromy matrix and
the pre-exponential factor of the semiclassical propagator. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4789759]

I. INTRODUCTION

Semiclassical (SC) molecular dynamics provides a gen-
eral and well-defined tool for including all quantum effects
in classical mechanics.1–3 In particular, semiclassical initial
value representation (SC-IVR) theories have proven to be
quite accurate, as demonstrated by numerous applications.4–20

The fundamental advantage of the SC-IVR propagator over
basis set evaluations of the quantum propagator, such as the
multiconfigurational time-dependent Hartree21 or the coupled
coherent states methodology,22 is that it exclusively relies
on classical trajectories and, therefore, it can be straight-
forwardly implemented with “on the fly” direct molecular
dynamics calculations. In addition, basis sets and other23, 24

approximate evaluations of the quantum propagator need a
global potential energy surface, while SC-IVR depends only
on the local potential.25 This aspect is of fundamental rele-
vance, as a major challenge in quantum dynamics is the simu-
lation of complex systems, i.e., ones with multiple degrees of
freedom, for which the development of an analytic potential
energy surface may be a formidable task.26–33

The version of the SC theory that has proven most use-
ful for quantum dynamics is the coherent states implementa-
tion of the SC-IVR propagator,24, 34, 35 which goes under the
name of Herman-Kluk or Heller-Herman-Kluk-Kay SC-IVR
approximation

e−iĤ t/¯ = 1(
2π¯

)F

∫
dp(0)

∫
dq(0) Ct (p(0), q(0))

×eiSt (p(0),q(0))/¯ |p (t) , q (t) 〉〈 p(0), q(0)| , (1)

where (p(t), q(t)) is the set of 2F-dimensional classically
evolved phase space coordinates, St is the classical action and
Ct is a pre-exponential factor that arises from local harmonic
fluctuations about the classical paths.1, 8, 13–15, 17, 19, 36, 37 The

a)michele.ceotto@unimi.it.

pre-exponential factor Ct (p(0), q(0)) represents the biggest
stumbling block in ambitious applications of this theory and
the computational effort required for its calculation is a ma-
jor concern for SC-IVR simulations. In particular, it repre-
sents most of the SC-IVR computational cost when “on the
fly” direct dynamics simulations are performed, since it re-
quires the calculation of the Hessian matrix directly from the
electronic wavefunction. Therefore, important implementa-
tions of the coherent states SC-IVR theories are those which
provide an approximation that conserves the properties of the
original propagator and, at the same time, reduces the compu-
tational costs so as to make “on the fly” simulations a viable
tool.

To overcome the pre-exponential factor issue, in this pa-
per we implement a compact finite difference (CFD) approx-
imation for the Hessian calculation recently developed by
Zhuang et al.38 This is a numerical approximation of the pre-
exponential factor, with the goal of reducing computational
costs and, thus, making ab initio SC-IVR direct dynamics vi-
able for an extensive range of simulations which accurately
and properly include the pre-exponential factor. The accuracy
of this approximation has been tested only on single trajec-
tory simulations39 and it is not obvious how it will perform
for the phase space integration of Eq. (1). This paper deals
with this issue and shows how the CFD approximation may
be successfully implemented into the SC-IVR propagator for
power spectra calculations and how it performs for an ensem-
ble of trajectories instead of a single one.

Another issue regarding the pre-exponential factor is
its numerical stability, especially for chaotic systems. Be-
sides removing trajectories,40 several paths have been taken
in the past to obviate this issue in SC dynamics. Lin-
earization of the SC-IVR propagator (LSC-IVR)15, 41–45 re-
sulted in the most drastic approximation in terms of ac-
curacy. Then, the Forward-Backward (FB) SC-IVR method
was proposed for correlation function calculations.46(a), 13, 47

Another route is one of filtering the classical trajectories

0021-9606/2013/138(5)/054116/13/$30.00 © 2013 American Institute of Physics138, 054116-1
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to avoid the numerical instabilities associated with the pre-
exponential factor. These filters were inspired by Filinov48

and Wang et al.46(e) based on physical considerations.49 One
can also employ the log-derivative representation50 for a
more convenient numerical integration. Another approach in-
volves introducing approximations of the pre-exponential fac-
tor, such as Johnson’s multichannel WKB (Wenzel-Kramers-
Brillouin) approximation51 or the adiabatic approximation.52

Also, the prefactor has been partially suppressed in Pollak’s
series propagator expansion11 and totally suppressed in Takat-
suka’s amplitude-free quasicorrelation function.37 More re-
cently, a “poor person’s” Frozen Gaussian propagator has
been proposed,25 where the pre-exponential factor is calcu-
lated from only a single trajectory by artificially extracting it
from the phase space integral of Eq. (1).

In this paper, we employ the time-averaging filter53

(Secs. II and III) which controls the numerical issues of
Ct (p(0), q(0)). It also reduces the extent of the phase space
integration but at the cost of a longer simulation time. The lat-
ter is alleviated by the CFD approximation described in Sec.
IV, which reduces the computation cost of the Hessian cal-
culation. The results are presented in Sec. V, followed by a
discussion in Sec. VI. Section VII concludes the paper.

II. TIME-AVERAGING SC-IVR FOR POWER SPECTRA
CALCULATIONS

We calculate the power spectra in the time-dependent
representation

I (E) = 1

2π¯

∫ +∞

−∞
〈χ |e−iĤ t/¯|χ〉eiEt/¯dt, (2)

and approximate the propagator e−iĤ t/¯ using the semiclassi-
cal initial value representation (SC-IVR) of Eq. (1). In the
coherent-state24, 34 version of SC-IVR, the pre-exponential
factor

Ct (p(0), q(0))

=
√

1

2

∣∣∣∣ ∂q(t)

∂q(0)
+ ∂p(t)

∂p(0)
− i¯γ

∂q(t)

∂p(0)
+ i

γ¯

∂p(t)

∂q(0)

∣∣∣∣
(3)

is given by the determinant of the combination of the four
F × F size blocks of the 2F × 2F symplectic (monodromy or
stability) matrix M(t) ≡ (∂(p(t), q(t))/∂(p(0), q(0))). By em-
ploying Hamilton’s equations, the time-evolution of M(t) is
obtained as

d

dt
M(t) = K · M(t), (4)

where

K =
(

0 − ∂2V (q)
∂q2

1
m 0

)
. (5)

We monitored the accuracy of the classical propagation by
checking the deviation of the determinant of the monodromy
matrix (or better of the positive-definite matrix MT M) from
unity. The coherent states in Eq. (1) are given by the direct

product of one-dimensional coherent states

〈q|p(t), q(t)〉
=

∏
i

(γi/π )F/4

×exp

[
−γi

2
· (qi − qi(t))

2 + i

¯
pi(t) · (qi − qi(t))

]
, (6)

where γ i is fixed and equal to the width of the harmonic os-
cillator approximation to the vibrational wave function for the
ith normal mode. Finally, the SC-IVR approximation for the
survival probability in Eq. (2) is represented in the semiclassi-
cal approximation by the following Monte Carlo phase space
integration,

〈χ |e−iĤ t/¯|χ〉

= 1

(2π¯)F

∫
dp(0)

∫
dq(0) Ct (p(0), q(0))

× eiSt (p(0),q(0))/¯〈χ |p(t), q(t)〉〈p(0), q(0)|χ〉 (7)

for any given reference state |χ〉 = |peq, qeq〉.
In order to smooth the oscillatory integrand in Eq. (7),

the time averaging filter was introduced,53 where the num-
ber of trajectories required for the Monte Carlo integration
is reduced at the cost of longer simulation times.54 The TA
(time-averaging) SC-IVR expression for the spectral density
is

I (E) = 1

(2π¯)F

∫
dp(0)

∫
dq(0)

Re

π¯T

∫ T

0
dt1

×
∫ T

t1

dt2 Ct2 (p(t1), q(t1))

×〈χ | p(t2), q(t2)〉 ei(St2 (p(0),q(0))+Et2)/¯

× [〈χ | p(t1), q(t1)〉ei(St1 (p(0),q(0))+Et1)/¯]∗, (8)

where the sets (p(t1), q(t1)) and (p(t2), q(t2)) of the position
and momentum variables are the evolution of the initial phase
space point (p(0), q(0)) at times t1 and t2, respectively, and T
is the total simulation time. The time integration in t1 acts as
the Fourier transform of Eq. (2), while the one in t2 does the
filtering job. It is important to note that the two time-integrals
imply two nested do-cycles. In other words, for a trajectory
run from time 0 to time T all possible time-intervals from t1
and t2 are considered. In this way, this integration sums over
all possible trajectories that are generated as segments of the
time length T − t1 for a single long trajectory from time 0 to
time T.

The most computational intense part of Eq. (8) is the
calculation of the prefactor Ct2 (p(t1), q(t1)), for two reasons.
First, because it requires the Hessian calculation; second, be-
cause it depends on two time variables, since its calculation
is done by taking all possible trajectories for the T − t1
time interval. This last requirement can be controlled by
adopting the separable approximation, where Ct2 (p(t1), q(t1))
≈ exp[i(φ(t2) − φ(t1))/¯] and φ(t) = phase[Ct (p(0), q(0))].
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Then, Eq. (8) becomes

I (E) = 1(
2π¯

)F

1

2π¯T

∫
dp(0)

∫
dq(0)

×
∣∣∣∣
∫ T

0
dt 〈χ | p (t) , q (t)〉

× ei(St (p(0),q(0))+Et+φt (p(0),q(0))/¯)
∣∣∣∣
2

, (9)

where now the double time integral is simplified to a single
and positive-definite time integral. In this paper we will em-
ploy this approximation for Eq. (2), since we have found it to
be accurate53, 55 and an order of magnitude less computational
demanding than Eq. (8).

III. TIME AVERAGING MC-SC-IVR IMPLEMENTATION

In order to perform ab initio direct semiclassical dynam-
ics simulations, the number of trajectories employed for inte-
grating Eq. (7) should be greatly reduced. This is done only
in part by the time-averaging filter, since about a thousands of
trajectories are needed per each degree of freedom53 to con-
verge the integration of Eqs. (8) and (9). For these reasons,
recently the MC-SC-IVR method was developed by Ceotto
et al.55–57 This SC-IVR implementation enhances as much
as possible the overlap between the reference state |χ〉 and
the exact quantum eigenfunctions. As a result, representation
of spectral peaks for excited vibrational states are less noisy,
more intense and accurate. To reach such a goal, the extra
coherent states of the MC-SC-IVR method are placed either
nearby the classical turning points of excited vibrational states
or, equivalently, at higher momentum (i.e., kinetic energy)
values comparable with the eigenstate energy (see Figure 1
in Ref. 55). Then, one can further reduce the number of tra-
jectories to a few “eigen-trajectories,” each one crossing a co-
herent state location, or sample at different coherent states lo-
cations per time. Importantly, the coherent states momenta do
not need to be chosen at an energy close to the peak location
because the Gaussian spreading of each coherent state is gen-
erally wide enough to include the peak energy shell, as tested
numerically.55, 59

Thus, in the MC-SC-IVR approximation, the reference
states |χ〉 are chosen to be a combination of coherent states,

|χ〉 =
Nstates∑
i=1

∣∣pi
eq , qi

eq

〉
, (10)

which have the equilibrium molecular position qeq and initial
momenta such that p2

eq,j /2m = ¯ωj(n + 1/2) for each nor-
mal mode frequency ωj. Quantum mechanical delocalization
is reproduced here because the coherent states are placed in a
non-local fashion, even if their centers are kept fixed during
the simulation time. Now, by inserting Eq. (10) into Eq. (8)
the final expression for the multiple coherent states spectra

calculation is

I (E)= 1(
2π¯

)F

Re

π¯T

∫
dp(0)

∫
dq(0)

∫ T

0
dt1

×
∫ T

t1

dt2 Ct2 (p(t1), q(t1))

×
Nstates∑
i=1

〈
pi

eq , qi
eq | p(t2), q(t2)

〉
ei(St2 (p(0),q(0))+Et2)/¯

×
[

Nstates∑
i=1

〈
pi

eq , qi
eq

∣∣p(t1), q(t1)
〉
ei(St1 (p(0),q(0))+Et1)/¯

]∗

,

(11)

where the convenient combination of Nstates coherent state
centers of Eq. (10) has been introduced. An analogous ex-
pression holds after the separable approximation is invoked.
Due to the approximation in the coherent state combination of
Eq. (10), the MC-SC-IVR method provides information about
the peak locations and not about their relative intensities with
respect to a ground state transition. In order to further reduce
the computational effort for a direct dynamics calculation, the
phase space integral may be approximated by a sum of tra-
jectories starting from each set of coherent state coordinates

I (E)= 1

(2π¯)F
Re

π¯T

Nstates∑
j=1

∫ T

0
dt1

∫ T

t1

dt2 Ct2 (pj (t1), qj (t1))

×
Nstates∑
i=1

〈
pi

eq , qi
eq | pj (t2), qj (t2)

〉
ei(St2 (p(0),q(0))+Et2)/¯

×
[

Nstates∑
i=1

〈
pi

eq , qi
eq

∣∣pj (t1), qj (t1)
〉
ei(St1 (p(0),q(0))+Et1)/

]̄∗

.

(12)

Applications of Eq. (12) include accurate power spec-
tra for the gas phase H2O molecule55 and CO molecules
chemisorbed on Cu(100) using analytical potentials,58 while
an “on the fly” approach has been employed for CO2

55, 59 and
H2CO57 vibrational energy level and vibrational eigenfunc-
tion calculations.56

IV. THE CFD METHOD FOR THE MONODROMY
MATRIX CALCULATIONS

To calculate the monodromy matrix M(t) elements, the
Hessian is needed at every time step to solve Eq. (4). An
ab initio Hessian calculation is computationally very expen-
sive, and hence an accurate Hessian approximation that can
preserve properties of the ab initio Hessian is highly desir-
able. Hessian updating is a way to approximate the Hes-
sian in a stepwise fashion with one direction of the Hes-
sian approximated using the latest available information,
while the remaining directions of the Hessian remain almost
unchanged.60
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Hessian update schemes have evolved since 1950s and
were originally developed for optimization (see Refs. 60–65
and references therein), and some have been used in direct
dynamics simulations.66–68 Most of the schemes are based on
a first-order Taylor expansion which, for optimization, is the
equation that quasi-Newton methods are based upon. The ac-
curacy of the first-order Taylor expansion is sufficient for op-
timization, as evidenced by fast convergence of quasi-Newton
methods.62 For direct dynamics, a higher accuracy is desirable
and a recent study38 has shown the effectiveness of a highly
accurate Hessian approximation in attaining high simulation
quality. The Hessian approximation schemes reported in Ref.
38 were developed using a CFD method,69–73 which has an
approximation accuracy one order higher than that of the first-
order Taylor expansion.

CFD is a high-order finite difference approximation for
differentiation of functions without incurring a larger stencil,
the set of sampling points in the approximation formula. The
high accuracy is attained by including differentiated terms at
more locations within the stencil. The “compact” refers to
the compactness of the stencil for attaining a high-accuracy
approximation. The CFD-based Hessian approximations start
with the equation

1

2
[H (q1) + H (q2)](q2 − q1) = G(q2) − G(q1), (13)

where G(q1) and G(q2) are the gradients of the potential en-
ergy at q1 and q2, respectively, and H(q1) and H(q2) are the
Hessians at q1 and q2. Compared with the first-order Taylor
expansion

H (q2)(q2 − q1) = G(q2) − G(q1) (14)

of G(q1) about the point q2, the CFD-based Eq. (13) has
an error of O(‖q1 − q2‖3) while the Taylor expansion in
Eq. (14) has an error of O(‖q1 − q2‖2). Note that Eq. (13) has
the same stencil as Eq. (14), but with the Hessian included at
one more location of the variable q. When G(q1), G(q2), and
H(q1) are given, a Hessian update scheme is to approximate
H(q2) using the given information of G(q1), G(q2), H(q1), and
q1 and q2. Equation (14) is the equation for which most ex-
isting Hessian update schemes are based upon. When the co-
ordinate q has n scalar entries, that is, q = (x1, x2, ···, xn),
both Eqs. (13) and (14) have an n(n − 1)/2-dimensional so-
lution space. A dimension-restriction technique pioneered by
Bofill,65 originally for the first-order Eq. (14), can be applied
to the CFD Eq. (13), with which one can obtain a family of
Hessian update schemes

�H = (1 − λ)
R RT

RT �q

+λ

(
�q RT + R �qT

‖�q‖2
− RT �q

‖�q‖4
�Xq �qT

)
, (15)

from which H(q2) can be obtained using H(q2) = H(q1)
+ �H, where λ is a parameter allowed to vary, �q = q2 − q1,
and

R = 2[G(q2) − G(q1) − H (q1)(q2 − q1)]. (16)

Equation (15) is called the CFD-Bofill family38 of Hes-
sian update schemes, where the CFD contribution is ef-
fected through Eq. (16) for R, and Eq. (15) reduces to the
CFD-Powell Symmetric Broyden (CFD-PSB) scheme when
λ = 1. It is worth noting that when R is half of Eq. (16), that
is, R = G(q2) − G(q1) − H (q1)(q2 − q1), Eq. (15) gives the
family of Bofill update schemes that are solutions of the first-
order Eq. (14). A practical value for λ is

λ = 1 –
(RT �q)2

‖R‖2 · ‖�q‖2
. (17)

Equation (17) for λ is due to Bofill,65 and Eq. (15) with λ

given by Eq. (17) is called the CFD-Bofill Hessian update
scheme, which was found to be a simple and accurate Hes-
sian approximation.38

With the Hessian update schemes, the monodromy ma-
trix M(t) can be calculated by solving the governing Eq. (4)
with the velocity Verlet algorithm or higher order symplectic
algorithms. Hessian updating is used in a manner that for ev-
ery K time steps, an ab initio Hessian is calculated in the first
step followed by K—1 steps of Hessian updates.

V. RESULTS

A. Preliminary pre-exponential factor monitoring

The accuracy of the pre-exponential factor
Ct2 (p(t1), q(t1)) is preliminarily monitored by looking at
the phase φ(t) = phase[Ct (p(0), q(0))] and at the modulus
for calculations with different K values. Here K is the
number of time-steps within a fixed interval for which the
Hessian is estimated according to the CFD approximation. In
Figure 1, the phase differences between the phase of the
exact pre-exponential factor and the CFD approximated ones
are plotted. The left-panel of Figure 1 is for a CO2 ground
state energy trajectory simulation (10 a.u. step-size for 5000
time-steps) and it shows that accuracy is preserved up to
K = 32. Though there are a few points with a π off-phase
pre-exponential factor, the imaginary part is still the same.
The right-panel of the same Figure is for a H2O ground
state energy trajectory with 4000 time-steps of 5 a.u. In
this case, the approximation is much less accurate. This is
probably due to the presence of the light hydrogen atoms and
chaotic dynamics, where the CFD approximation performs
more poorly.39 However, the phase differences in Figure 1
represent those for a single trajectory and in the following
calculations are presented for thousands of trajectories.

Thus, it is not possible to extend a priori the accuracy
shown in Figure 1 to each trajectory of the Monte Carlo phase
space integration for the TA-SC-IVR with the separable ap-
proximation. Lower kinetic energy trajectories better preserve
the accuracy of the CFD approximation (see Sec. V B), since
for high kinetic energies it becomes more probable to visit
chaotic regions of the potential energy surface where at least
one of the local Hessian eigenvalues is negative.39

If one does not adopt the separable approximation of
Eq. (9), it is important to establish the resulting error in the ab-
solute value of the prefactor when the CFD approximation is
used. The relative error of the modulus of the pre-exponential
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FIG. 1. Prefactor phase differences φ(t) = phase[Ct (p(0), q(0))] at different levels K of the CFD-PSB approximation for the ground state energy. The left panel
is for a CO2 trajectory and the right for a H2O trajectory.

factor Ct2 (p(t1), q(t1)), at each time step, is reported in Fig-
ure 2. The notation is the same as in Figure 1. As far as the
CO2 set of simulations are concerned, the accuracy limit of K
= 16 is observed, showing that the approximation is less ac-
curate for the modulus than the phase calculation. The same
considerations hold for the H2O simulations, where the ac-
curacy limit is about K = 8. These results are encouraging
and show that the CFD approximation will be helpful even
for SC-IVR simulations where the separable approximation
is not employed. In order to have a comprehensive evaluation
of the CFD Hessian approximation for the SC-IVR integra-
tor, a better approach is to directly monitor the power spectra
peaks for increasing K values, as done in Sec. V B.

B. Accelerated SC-IVR power spectra with the CFD
approximation

From Sec. IV and Figure 1, it is clear that the accuracy of
the CFD approximation deteriorates when the number of Hes-
sian updates between two consecutive ab initio Hessian calcu-
lations increases. Also, the CFD Hessian calculations for high
kinetic energy trajectories are less accurate than for lower ki-
netic energy trajectories as stated above. Thus, when perform-
ing the Monte Carlo integration of Eqs. (8) and (9) with the
CFD approximation, high energy trajectories are more proba-
ble to be rejected, since their monodromy matrix determinants
deviate substantially from unity as a result of round-off error
propagation discussed above. This bias increases when the
CFD Hessian approximation is invoked for more time-steps
and for higher kinetic energy trajectories. To have a clear pic-
ture of this sampling issue, we performed a preliminary statis-

tical study of time averaging SC-IVR calculations with differ-
ent sampling choices in order to understand how discarding
high momentum trajectories approximates the power spec-
trum. In particular, the goal of this preliminary set of exact
(i.e., without CFD approximation) semiclassical calculations
is to find the largest sampling standard deviation which gives
accurate results for a given power spectrum energy range. In a
second stage, the CFD approximation is applied to determine
a K-threshold for an accurate calculation.

The water molecule analytical potential of Thiel78 was
chosen for a realistic simulation of a molecular spectrum.
This molecule has stiff stretching modes strongly coupled to
a floppy bending one. To perform the Monte Carlo integra-
tion of Eqs. (8) and (9), the Husimi sampling distribution of
Eq. (A1) is usually employed2, 3, 10 and this approach was
used here. This distribution guarantees that a wide enough
phase space region is sampled. The sensitivity of the Monte
Carlo integration was studied for different sampling widths
of the Husimi distribution and different numbers of tra-
jectories calculated for the distribution. The left panel
of Figure 3 shows the distribution of trajectories versus
the total (kinetic plus potential) trajectory energy for the
different sampling widths and different numbers of tra-
jectories. The sampling width was narrowed by increas-
ing the a, b parameters introduced in the Appendix in
Eq. (A1) to 5a,5b; 10a,10b; and 15a,15b. Two ensemble sizes
were considered for sampling the Husimi distributions; i.e.,
one with 32 000 trajectories and the other with 3200. The for-
mer were integrated for 3000 time-steps with a 5 a.u. time
interval, while the latter was integrated for 4000 time-steps
with the same time interval. The trajectory integration was
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FIG. 2. Prefactor modulus relative error at different levels K of the CFD-PSB approximation for the ground state energy. The left panel is for a CO2 trajectory
and the right for a H2O trajectory.

performed with a 4th order symplectic algorithm14, 79 and
trajectories with a monodromy matrix determinant deviation
from unity greater than 10−4 were discarded. The latter be-
comes important for trajectories with a large kinetic energy.

The power spectra, calculated using Eq. (9), are shown in
the right panel of Figure 3 for the different Husimi ensembles
of trajectories in the left panel. Overall, the spectra are in-

sensitive to the samplings of the Husimi distribution. For the
Husimi distribution with parameters 1a, 1b the energy range
extends to 14 000 cm−1 beyond the ZPE level. The number of
rejected trajectories is large for this broad sampling width, as
a result of the large kinetic energies of some of the trajecto-
ries, and it is significant that this sampling gives an accurate
spectrum. It is also important that the same Husimi distribu-
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FIG. 3. Water molecule vibrational dynamics. (Left panel) Normalized trajectory distribution versus the total initial trajectory energy for different Gaussian a,
b sampling standard deviations; the bin width for the histogram distributions is 200 cm−1. (Right panel) The resulting power spectrum.
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TABLE I. Water vibrational energy levels for the sampling distributions re-
ported in the left panel of Figure 3.a

ν1ν2ν3 σ σ 5σ 10σ 15σ

traj.s Harm. 32 000 3200 3200 3200 3200

000 (A1) 4711 4644 4646 4648 4644 4640
100 (A1) 6361 6236 6238 6239 6231 6231
200 (A1) 8011 7793 7796 7791 7787 7796
010 (A1) 8541 8361 8360 8356 8352 8351
001 (B2) 8652 8441 8441 8450 8446 8446
300 (A1) 9661 9314 9313 9307 9348* 9368*
110 (A1) 10 191 9933* 9923* 9928 9932 9945
101 (B2) 10 302 9974 9980 9997 10 008 10 025
210 (A1) 11 841 11 505 11 512 11 516 11 558 11 567
201 (B2) 11 952 11 666 11 662 11 662 11 693*
020 (A1) 12 372 12 053* 12 065 12 061 12 058 12 058
011 (B2) 12 483 12 134 12 134 12 153 12 146 12 145
002 (A1) 12 593 12 226* 12 227 12 242 12 240 12 245
120 (A1) 14 022 13 513* 13 482* 13 513
111 (B2) 14 133 13 667 13 657 13 681 13 683 13 700
102 (A1) 14 244 13 750* 13 724* 13 762 13 807 13 833

aThe 3200 Husimi sampling power spectrum (4th column) is at convergence by com-
parison with the 32 000 simulation (3rd column). Husimi distribution sampling is for
σ = (a; b). Uncertain peaks are marked with (*). For multiples of σ the spectra become
gradually less accurate.

tion, but with ensembles of trajectories which vary in size by
an order of magnitude give the same spectrum (see black ver-
sus red lines). This is a result of the time-averaging filtering.
In addition, it is seen that the intensity of the higher energy
peaks gradually decrease as the sampling distribution is nar-
rowed with larger a,b parameters.

To have a better comparison between the different sam-
pling strategies adopted in Figure 3, the vibrational eigen-
values from the spectra are reported in Table I. The second
column (labeled “Harm.”) gives the harmonic frequencies for
the analytic potential and comparison with the following one
shows the degree of anharmonicity. Comparison with the third
and fourth column shows that a 3200 trajectory simulation
is already at convergence thanks to the time-averaging filter.
Then, by comparing the frequencies in the following columns,
it is apparent that as the sampling parameters a, b are in-
creased and the distribution narrowed, the accuracy of the
semiclassical calculation for the highest vibrational states de-
creases. However, discrepancies are always contained within
10−20 cm−1 and with respect to the vibrational eigenvalues
this is an uncertainty of about a 1–2 per thousand. These re-
sults show that only drastic changes in the Husimi sampling
will significantly bias the power spectra results and reason-
able sampling variations (up to a multiple of 5 in the sampling
standard deviation) will leave the spectra invariant.

A comparison between the current semiclassical levels
and the quantum mechanical ones is not given in Table I be-
cause this was already done in a previous paper55 and because,
here, we are interested in comparing the approximation for the
SC-IVR method with the original SC-IVR formulation. Any
agreement between our approximated SC-IVR levels and the
quantum mechanical, better than that found with the original
SC-IVR, would be completely fortuitous.
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FIG. 4. Dependence of the distribution of rejected sampled trajectories with
respect to the value of K for the CFD interpolated Hessian. Orange line is
for the total number of sampled trajectories and other color lines are for the
rejected trajectories. The sampling width is nσ = (na, nb) where n is an
integer.

As discussed above, trajectories with a monodromy ma-
trix determinant deviation from unity greater than 10−4 were
discarded. Reported in Figure 4 are the energy distributions
of the discarded trajectories for different widths of the Husimi
sampling distribution and different levels of the CFD approxi-
mation. The energy distribution for the total number of trajec-
tories is given by the orange line in each panel, while the dis-
tributions for the discarded ones are given by the other colors,
depending on the level of the CFD approximation. A higher
energy trajectory is more probable to visit chaotic regions of
the potential and, consequently, is more probable to be re-
jected. By comparing the panels in Figure 4, it is seen that
fewer trajectories are rejected when the sampling is peaked at
smaller energy values, i.e., the Husimi sampling coefficients
a and b are increased from the Husimi value of σ . In addition,
within each panel it is apparent there are more rejected tra-
jectories when the CFD interpolation interval K is increased.
This shows that the effect of the CFD approximation is either
to make the already negative local Hessian eigenvalues more
negative or to introduce additional negative eigenvalues.39

Here, we want to understand when these higher rejection
rates are prejudicial for the power spectrum calculation. As an
example, the a, b sampling parameters are fixed at the Husimi
value of σ and the water power spectra (shown in Figure 5)
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FIG. 5. Water power spectra, given by the colored lines, calculated with dif-
ferent levels of approximation of the CFD-Bofill Hessian update scheme. A
total of 3200 trajectories are sampled according to the Husimi distribution
with the a,b parameters set to σ . The black line is the spectrum without the
Hessian approximation.

calculated for different K values. K is the number of consecu-
tive integration time-steps for which the Hessian is estimated
according to the CFD approximation, before calculating it ac-
curately. The effect of increasing K is analogous to that of
restricting the sampling width, i.e., higher energy trajectories
are discarded and higher vibrational energy level peaks are

less intense. Nevertheless, the spectra in Figure 5 appear quite
similar.

To obtain a quantitative comparison of the above power
spectra calculations, the vibrational eigenvalues obtained with
different sampling parameters and different levels of the CFD
approximation are listed in Table II, where they are compared
with the “exact” semiclassical values. These results, together
with the ones in Figure 5, show a quite accurate threshold of
K = 4 for the CFD approximation. K = 4 shows very few
peaks deviating by more than 20 cm−1 from the “exact” semi-
classical simulation, while the deviation is about double for K
= 8. Since we are employing a 4th order algorithm, with K
= 4 the Hessian is evaluated 16 times less than for an “exact”
simulation. For a semiclassical direct dynamics simulation,
calculation of the Hessian dominates the computational time
and, thus, with the CFD approximation the simulation is about
16 times faster than without. Another important observation
from Table II is that, as the sampling parameters a and b are
increased and the sampling distribution becomes more differ-
ent from the Husimi one, the spectrum accuracy is poorer and
some peaks are missing. Thus, direct application of the CFD
approximation to the Husimi distribution is the preferred ap-
proach. Sampling distributions that are more narrow than the
Husimi one may make the CFD approximation more accurate
for some vibrational peaks, but the spectra precision for the
higher vibrational peaks is substantially degraded.

C. MC-SC-IVR power spectra and the CFD
approximation

As presented in Sec. III, a viable tool for an ab initio
semiclassical calculation is the MC-SC-IVR approximation,
where the number of trajectories is reduced to very few. In this
section we study application of the CFD approximation to a
MC-SC-IVR direct dynamics calculation. As described in the
Appendix, for the MC-SC-IVR method the trajectory initial
conditions are chosen by performing Box-Muller76 samplings

TABLE II. Water vibrational energy levels.a

ν1ν2ν3 σ σ σ 2σ 2σ 3σ 3σ 4σ 4σ 5σ 5σ

traj.s 32 000 K = 4 K = 8 K = 4 K = 8 K = 4 K = 8 K = 4 K = 8 K = 4 K = 8

000 (A1) 4644 4642 4627 4641 4627 4639 4626 4646 4623 4645 4635
100 (A1) 6236 6235 6223 6230 6218 6233 6222 6234 6231 6234 6225
200 (A1) 7793 7790 7782 7792 7777 7791 7791 7791 7797 7785 7769
010 (A1) 8361 8356 8341 8350 8334 8350 8333 8359 8333 8352 8339
001 (B2) 8441 8439 8416 8441 8427 8441 8424 8446 8426 8445 8429
300 (A1) 9314 9312 9321 9300 9329 9313 9335 9297 9286* 9305 9298
110 (A1) 9933* 9923* 9942 9925 9934* 9929* 9988 9915
101 (B2) 9974 9973 9948 9987 9974* 9998 9959 9984 9961 9931 9974
210 (A1) 11 505 11 492* 11 485∗ 11 510 11 506 11 494 11 500 11 508 11 483 11 510 11 509
201 (B2) 11 666 11 688 11 573 11 617 11 646* 11 637
020 (A1) 12 053* 12 072 12 072* 12 054 12 041* 12 055 12 038 12 061 12 039* 12 060 12 039*
011 (B2) 12 134 12 118 12 094 12 128 12 109 12 129 12 109 12 146 12 118* 12 149 12 117
002 (A1) 12 226* 12 221 12 206 12 220 12 205 12 217 12 197 12 221 12 213* 12 235 12 209
120 (A1) 13 513* 13 607* 13 604* 13 595* 13 610* 13 602*
111 (B2) 13 667 13 643 13 623 13 672 13 662 13 682 13 648 13 675 13 658 13 673 13 661
102 (A1) 13 750* 13 716 13 725∗ 13 768* 13 776* 13 779 13 761* 13 744 13 753 13 743

aThe 2nd column is for the 32 000 trajectory simulation from Table I. The remaining columns are for the 3200 trajectory simulations in this table. Uncertain peaks are marked with
(*).
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FIG. 6. Energy distributions for sampled and rejected trajectories for multiple coherent states sampling of the water molecule with eight Gaussian sampling
centers (see text). The orange line is the distribution for the total trajectories and the other lines are for the rejected trajectories at different levels of the CFD
approximation.

centered at each coherent state per time. Figure 6 shows the
energy histogram distribution for the sampled trajectories us-
ing the same water potential as above. Also shown are the dis-
tributions of rejected trajectories without the CFD approxima-
tion and with different levels of the CFD approximation. Each
panel gives the results for a fixed sampling standard deviation,
equal for all centers. The original MC-SC-IVR formulation,
where the number of trajectories is equal to a small num-
ber (few) coherent states as given by Eq. (10), corresponds
to a sampling standard deviation equal to infinity, i.e., only
the centers (pi

eq , qi
eq ) are sampled. For this reason, in Figure

6 finite large values of the standard sampling deviation are
considered to have a gradual approach to the few trajectory
MC-SC-IVR sampling case. The results in Figure 6 are very
similar to the above SC-IVR calculations; i.e., the wider the
sampling distribution the higher the number of rejected trajec-
tories when employing the CFD approximation. The main dif-
ference with respect to the sampling results of Figure 4 is that
for the larger standard deviations the single-center Husimi
sampling distribution is biased around the ZPE energy part
of the spectrum, while the MC-SC-IVR sampling procedure
keeps an even sampling distribution across the power spec-
trum. This last kind of sampling is clearly going to be more
representative of the power spectrum as compared to an arbi-
trarily chosen single-center Husimi standard deviation.

Details of the MC-SC-IVR calculations may be appre-
ciated by inspecting the power spectra. In Figure 7 power
spectra of the water molecule are given for MC-SC-IVR
simulations with both 8 and 3200 trajectories. The coherent
states in Eq. (10) are restricted to the lower eight vibrational
levels, including the ZPE one, which are represented by the
harmonic approximation as described in Ref. 55. If only 8
trajectories are used, we obtain the black line spectrum at the

5000 6000 7000 8000 9000 10000 11000 12000 13000

Energy [wavenumbers]

I(E)

Exact
K = 8

σ = ∞

σ = (15a, 15b )

σ = ( 10a, 10b )
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FIG. 7. Water power spectra for MC-SC-IVR simulations with different
sampling parameters. For each set of parameters the K = 8 CFD approxi-
mated spectrum (red line) is compared with the MC-SC-IVR spectrum with-
out the CFD approximation (black line). The σ = ∞ is the 8-trajectory
simulation.
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TABLE III. Water vibrational eigenvalues with the CFD approximation included with the MC-SC-IVR method.a

ν1ν2ν3 5σ 5σ 10σ 10σ 10σ 15σ 15σ 15σ ∞ ∞ ∞
CFD σ 5σ K = 4 K = 8 K = 4 K = 8 K = 4 K = 8 K = 4 K = 8
traj.s 32 000 3200 3200 3200 3200 3200 3200 3200 3200 3200 8 8 8

000 (A1) 4644 4648 4648 4625 4651 4645 4631 4642 4639 4623 4639 4634 4620
100 (A1) 6236 6234 6228 6218 6230 6225 6212 6226 6221 6207 6231 6228 6216
200 (A1) 7793 7789 7784 7765 7794 7789 7777 7793 7789 7777 7790 7787 7777
010 (A1) 8361 8358 8354 8340 8354 8350 8335 8351 8349 8331 8353 8347 8336
001 (B2) 8441 8454 8447 8434 8447 8444 8421 8451 8448 8422 8444 8439 8426
300 (A1) 9314 9314 9313 9301 9337 9341 9339 9350 9348 9344 9341 9338 9327
110 (A1) 9933* 9925 9917 9906* 9928 9928 9908 9926 9923 9907 9935 9931 9922
101 (B2) 9974 10 001 9997 9973 9998 9991 9985 10 003 9999 9998 10 008∗ 10 008∗ 10 020∗

210 (A1) 11 505 11 483 11 483 11 450∗ 11 494∗ 11 484 11 473 11 493 11 489 11 476 11 493 11 488 11 478
201 (B2) 11 666 11 545 11 527 11 513 11 559 11 562 11 548 11 592 11 590 11 576 11 569* 11 569* 11 550
020 (A1) 12 053* 12 053 12 051 12 040 12 054 12 057 12 043 12 054 12 052 12 036 12 052 12 043 12 030
011 (B2) 12 134 12 142 12 136 12 120 12 139 12 128 12 108 12 138 12 132 12 112 12 121* 12 111* 12 093∗

002 (A1) 12 226* 12 222 12 221 12 201 12 234 12 229 12 206 12 234 12 230 12 210 12 226* 12 241 12 232
120 (A1) 13 513* 13 629* 13 628* 13 610* 13 610* 13 609* 13 633 13 631 13 622
111 (B2) 13 667 13 692 13 689 13 652 13 674 13 660 13 666 13 643 13 638 13 613 13 701
102 (A1) 13 750* 13 775 13 764 13 726 13 750 13 770* 13 668* 13 731* 13 727∗ 13 687∗ 13 791∗ 13 785 13 774

aFirst row gives the type of sampling, the second gives the level of the CFD approximation, and the third gives the number of trajectories. If the column is blank the CFD approximation
is not employed. The last three columns refer to the 8-trajectory MC-SC-IVR calculations. Uncertain peaks are marked with (*).

bottom of Figure 7 and if the CFD approximation with K = 8
is additionally invoked we obtain the red line spectrum. From
the bottom spectra of Figure 7 it is seen that the CFD approx-
imation is not introducing any significant deviation to the 8-
trajectory MC-SC-IVR approximation. The situation is differ-
ent when 3200 trajectories are employed for the MC-SC-IVR,
as represented by the other spectra in the figure.

To understand how the CFD approximation should be ap-
plied for a MC-SC-IVR direct dynamics simulation, water
vibrational eigenvalues are reported in Table III for several
sets of sampling parameters and K values. The first row re-
ports the sampling choice, the second row reports the level
of the CFD approximation (if blank, the approximation was
not employed), and the third row gives the number of trajec-
tories. To assist in the comparison, in the second column of
Table III the eigenvalues from Table I are reported for the
“exact” 32 000 trajectory SC-IVR simulation. The remaining
columns give the eigenvalues for different sampling widths
without the CFD approximation and with the K = 4 and K
= 8 CFD approximation. If the CFD approximation is not
applied, the 8-trajectory MC-SC-IVR simulation and the 5σ

sampled one are of the same accuracy and comparable with
the 32 000 SC-IVR trajectory simulation, while the others are
of lower accuracy. The accuracy of the 5σ sampling 3200 tra-
jectory MC-SC-IVR simulation in Table III can be explained
by considering that the sampled phase space is quite similar to
the 3200 trajectory Husimi sampling SC-IVR one. However,
it is quite unexpected that the 8-trajectory MC-SC-IVR simu-
lation performs better than those with 3200 trajectories when
sampling is wider than 5σ . This may be due to the ad hoc
MC-SC-IVR sampling procedure adopted here and described
in the Appendix. As far as the accuracy of the CFD approx-
imation is concerned, we find again that using K = 4 does
not significantly change the spectrum for any of the sampling

choices. This means that the threshold for the CFD approxi-
mation can be chosen irrespective of the SC-IVR version used
and, by comparing with the results of Ref. 39, this is also the
case for a single trajectory simulation.

D. First principles semiclassical direct dynamics
results

The ultimate goal of approximating the Hessian in SC-
IVR molecular dynamics is to enhance ab initio semiclas-
sical molecular dynamics. In this section, an illustrative ex-
ample is reported of the power spectrum calculation for car-
bon dioxide. This spectrum is quite a challenging one, given
the strong anharmonic couplings between the symmetric and
bending modes and the numerous Fermi resonances. First-
principles classical trajectories and Hessian calculations were
performed at the level of B3LYP/cc-pVDZ level of theory
with the VENUS package80, 81 interfaced with NWCHEM.82 A
version of the integrated VENUS/NWCHEM was developed to
determine all the classical quantities needed for the semiclas-
sical calculations. The simulations were performed in nor-
mal mode coordinates, after an initial Hessian diagonaliza-
tion. During the time-evolution the Hessian is calculated ev-
ery K time-steps, as illustrated above.

Figure 8 shows “on-the-fly” CO2 power spectra calcu-
lated for various values of K. Major difference is apparent at
higher energies, where some peaks significantly lose intensity
at the level of spectral noise. In order to better appreciate these
differences, the vibrational energy values in cm−1 are reported
in Table IV. In the first column of the Table, the “traditional”
terminology is used to label the vibrational levels, where the
first number refers to the symmetric stretch, the second to the
bending modes and the last one to the asymmetric stretch.
Fermi resonances occur between the symmetric stretch and
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FIG. 8. Direct dynamics power spectra for carbon dioxide calculated at dif-
ferent levels of the CFD-Bofill Hessian update scheme. The simulations were
performed with the MC-SC-IVR method using 8 trajectories. The black line
is the spectrum without the Hessian CFD approximation and the colored lines
are for different levels of the CFD Hessian approximation.

bending modes, as previously reported.55, 59 These Fermi cou-
pled states are denoted by superscript symbols. In the sec-
ond column, the vibrational levels in the harmonic approxi-
mation are reported, where several degeneracies are present
which are removed by the Fermi couplings. The third column
gives the MC-SC-IVR results obtained with 8 classical tra-
jectories. For the trajectory initial conditions, the coordinates
are not displaced from equilibrium and momenta is added to
the modes so that the first eight vibrational levels are harmoni-
cally spaced (see discussion above in Sec. III). Table IV shows
that, by using Bofill’s algorithm for the CFD approximation,
only at K = 70 does the power spectrum start to have miss-
ing peaks, including deviations of the peak positions on the
order of 10 cm−1 or greater. In terms of ab initio molecular
dynamics, the use of K = 70 corresponds to a two order of
magnitude decrease in computational time for a velocity Ver-
let algorithm, since calculating the Hessian requires most of
this time.

VI. DISCUSSION

Of the many methods elaborated in the past to enhance
the monodromy matrix calculation, we have found that only
the one of Garashchuk and Light83 does not invoke an addi-
tional approximation beyond a numerical one. For this reason,

TABLE IV. MC-SC-IVR vibrational spectra for CO2 obtained with direct
dynamics and the CFD Hessian approximation.a

States Harmonic Exact K = 10 K = 20 K = 40 K = 60 K = 70
ZPE 2538 2512 2518 2520 2510 2504 2495

0, 11, 0 3190 3148 3156 3158 3150 3145 3132
0, 20, 0� 3843 3782 3792 3794 3790 3784 3763
1, 00, 0� 3895 3901 3910 3910 3905 3901 3882
0, 31, 0† 4495 4415 4425 4425 4430 4419 4398
0, 33, 0 4495 4537 4547 4548 4542 4536 4525
1, 11, 0† 4547 4622 4630 4637 4614
0, 00, 1 4950 4870 4879 4886 4990 4884 4852*
0, 40, 0‡ 5148 5046 5056 5058 5036 5051 5031
0, 42, 0§ 5148 5174 5182 5185 5175 5173 5161
0, 44, 0‡ 5148 5298 5307 5306 5298 5297
1, 22, 0§ 5200 5511 5519 5521 5526 5524 5492
2, 00, 0‡ 5252 5679 5690 5691 5671 5679 5668
1, 00, 1 6307 5829 5819 5820 5810 5808 5791

aThe first column gives the vibrational spectroscopic terms, with Fermi resonance states
indicated by a distinct superscript symbol for each group of resonant states. The sec-
ond column gives the harmonic results and the third gives the semiclassical energy lev-
els without a Hessian approximation. The remaining columns give the energy levels
obtained with different levels of the CFD Hessian approximation according to Bofill’s
algorithm. The energies are in cm−1. Uncertain peaks are marked with (*).

their approximation may be directly compared to the present
CFD one. Garashchuk and Light proposed to calculate the
second derivatives for the Hessian by generating 2N (where
N is the number of degrees of freedom) auxiliary classical
trajectories, whose initial conditions differ from the main ref-
erence trajectory by a displacement in one of the phase space
variables.83 Then, the monodromy matrix was calculated as
the product of monodromy matrices for infinitesimal time-
steps. The overall computational cost scales linearly instead
of quadratically.

We find the present CFD approximation to offer several
advantages with respect to the Garashchuk and Light method,
which, however, has the desirable property to be numerical.
First, the CFD method allows for “tuning” the approximation
by varying the number of consecutive time intervals for which
the Hessian is estimated, i.e., by changing the value of K. This
feature allows any user to set her/his level of approximation,
according to the accuracy desired for observables of interest.
Second, the CFD approximation does not require any further
calculation of auxiliary trajectories, except those used for the
statistical convergence of the Monte Carlo integration. Third,
Garashchuk and Light formulation of the second derivatives is
accurate up to first order. In contrast, the CFD approximation
is higher order, depending on the choice of the algorithm. For
these reasons, our understanding is that the present numerical
approximation of the SC-IVR propagator represents a signif-
icant step forward with respect to other monodromy matrix
approximations.11, 19, 50, 52, 83

VII. CONCLUSIONS

A semiclassical (SC) IVR calculation requires numerical
integration of classical trajectories for evaluations of the mon-
odromy matrix versus time. Evaluating this matrix requires
the Hessian, which is computationally quite expensive for di-
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rect dynamics simulations. The work reported here shows that
the CFD approximation for the Hessian is a very useful ap-
proach that can significantly reduce the computational time
required for a SC direct dynamics calculation. The CFD ap-
proximation may decrease the computational time required
for a SC-IVR direct dynamics calculation by orders of magni-
tude. Such an enhancement in the efficiency of the calculation
makes SC-IVR direct dynamics computationally tractable for
a broad range of problems.
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APPENDIX: MONTE CARLO SAMPLING

The natural Monte Carlo sampling distribution of Eq. (8)
is given by the value of the integrand at time zero. Given a
reference state |χ〉 = |peq , qeq〉, this is proportional to

〈χ |p(0), q(0)〉〈p(0), q(0)|χ〉 = e−a(q0−qeq )2−b(p0−peq )2
, (A1)

where the vectors a and b are such that the ith element is a(i)
= ωi/2 and b(i) = 1/(2ωi), and ωi is the harmonic vibrational
frequency of the ith normal mode. This phase space prob-
ability distribution is called the Husimi distribution.74 Re-
cently, an efficient time-dependent importance sampling ap-
proach has been advanced for SC-IVR molecular dynamics
of time correlation functions.75 Here, we have shown how the
power spectra depends on the sampling parameters a and b.
A correct and converged Monte Carlo sampling is such that
the integration results do not depend on the sampling param-
eters. However, since the CFD Hessian approximation is in-
voked in the prefactor calculation, trajectories are run and the
contribution of a trajectory is removed if the determinant of
the matrices product MT M deviates from unity more than a
given threshold. In principle, when using a symplectic prop-
agator, the deviation from unity should be within a round-off
error.14(c) However, we have previously proved that the effect
of the CFD approximation may introduce negative Hessian
eigenvalues that cause the monodromy matrix elements to
become significantly large in magnitude, with an associated
round-off error as well. For this reason, more trajectories are
rejected as the CFD approximation becomes more severe, and
the SC-IVR sampling is consequently biased. Here we have
shown how the power spectra and the number of rejected tra-
jectories change by changing the sampling parameters and the
level of the CFD approximation.

For a MC-SC-IVR calculation of Eq. (11), the reference
state is given by Eq. (10) and, consequently, there are multiple

sampling centers. This is seen from the integrand expression
at zero-time,

〈χ | p(0), q(0)〉 〈p(0), q(0) | χ〉 =
∑

i

e−a(q0−qi
eq)

2−b(p0−pi
eq)

2

,

(A2)
where the sum runs over the coherent states’ centers. As
explained above, the MC-SC-IVR approximation was intro-
duced to drastically reduce the number of trajectories for
“on the fly” semiclassical calculations. The minimum num-
ber of trajectories is equal to the number of coherent states,
as given by Eq. (12). In the examples quoted above, these
have never been more than a few trajectories. The need for
such a low number of trajectories opens up the possibility
of ab initio semiclassical direct dynamics calculations.55, 57, 59

This choice is equivalent to putting Dirac-delta distributions
at the positions of the Gaussian distributions in Eq. (A2) and
initiating trajectories one by one from each (qi

eq , pi
eq) phase

space point. In contrast, to sample trajectories according to
Eq. (A2), positions and momenta should be randomly chosen
within given intervals. Equation (A2) may then be sampled,
with the phase space point rejected or accepted by the von
Neumann rejection technique.77 This acceptance/rejection al-
gorithm heavily relies on the initial sampling interval, whose
unbiased determination is postponed for future work. Instead,
in this paper, we look for a close comparison between the
MC-SC-IVR calculations of Eq. (12) and those of Eq. (11).
In order to accomplish this, we found it reasonable to have
the trajectories sampled separately from each Gaussian distri-
bution of Eq. (A2) by a Box-Muller method.76
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