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1.0. ABSTRACT 

Background  

Melatonin (MLT), a pineal gland hormone, seves as a bioclock and bio-calendar to mediate many 

receptor- or non-receptor functions. In addition to its immunomodulatory and neurological effects, MLT has a 

relevant oncostatic activity especially with respect to breast and prostate cancers, but the mechanism of 

action is still unclear. The growth of androgen-independent LNCaP prostate cancer cells has been 

demonstrated to be inhibited by MLT both in vitro and in vivo in a nude mice xenograft model. Clearly, the 

oncostatic effects of MLT may not be related to a single function, but rather to a complex interaction of 

several factors that involve the redox state, the immune system, the modulation of the endocrine system and 

membrane receptors. 

MLT also increases sleepiness, decreases core temperature and increases peripheral temperature 

in humans. The role of MLT in the treatment of sleep disturbances, to prevent jet lag or as a part of the 

sepsis treatment is widely discussed; yet the role in critically ill patients still deserves further investigation. 

Critically ill patients suffer from severe sleep disturbances during their stay in an Intensive Care Unit (ICU). 

Moreover, these patients require high levels of antioxidants due to their critical illness. 

Aims of the thesis  

The main object of my PhD thesis was to confirm the pleiotropy of MLT molecule by testing its 

activity in two of the most promising clinical applications: the cure of prostate cancer and the regulation of the 

sleep/wake rhythm as adjuvant in the sedative therapy in critically ill patients.   

Spcific Aims: 

 To evaluate the oncostatic effect of MLT administered intraperitoneally (i.p.) by saline solution on 

human prostate tumor. To this purpose I have selected an in-vivo experimental model of nude mice 

(athymic), xenografted subcutaneously with tumor cells of a human prostatic line (LNCaP). 

 Using the same animal model and the same administration route (i.p.) and treatment schedule of 

MLT administered in saline, to investigate the efficacy of a novel and promising pharmaceutical 

formulation: MLT included in a solid lipid nanoparticles system (SLN-MLT).  

 Using the same mouse model of human prostate cancer, to test whether MLT can be administered 

efficiently using alternative ways that are more sustainable for prolonged treatments than i.p. MLT, 

e.g., transdermal delivery through the skin barrier directly onto the tumor via a novel and patented 

technique named cryoRx.  

 To focus on the underlying action mechanism of MLT at the tumor cellular micro-environment and 

the possible influence on such a mechanism of the lipid nanocarrier employed.  

 To evaluate in a cohort of ICU patients, if the circadian rhythm of MLT secretion is disrupted and to 

which extent MLT administration by different routes and different drug formulations (MLT as a tablet 

administered os, MLT encapsulated in SLN administered os as a suspension and MLT encapsulated 

in SLN applied transdermally as a suspension with the aid of a patch) is feasible in terms of 

absorption efficiency and adequacy in achieving and maintaining nocturnal peak plasma hormone. 

 To evaluate if the restoration of the melatoninemia by the different ways of drug delivery in critically ill 

patients may be useful to restore the pleiotropic function of this hormone: facilitate the resolution of 

sleep-wake cycle disorders, improve the quality of sleep, reduce the number of episodes of anxiety, 

confusion and agitation, and reduce the amount of sedatives used, especially at night. 
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Materials and Methods  

We used an in vivo model of human prostate tumor LNCaP cells xenografted into nude athymic 

mice. MLT has been administered i.p. as saline (n=13) and by SLN (n=13) or transdermally by cryoRx 

(n=14). For each treatment controls were also included. Each group received the same administration 

schedule: 3 treatments per week, for 6 week. At the end the animals were sacrificed and along the treatment 

period the mice weight were recorded as well as the tumor volume was measured. MLT concentration was 

assessed in plasma and tissues by ELISA test and tumors were evaluated for morphology, MLT content and 

HIF-1α expression. 

The clinical effects of  MLT administration as well as the pharmacokinetics profiles as a function of 

different administration ways (oral as MLT, oral as SLN and transdermal as SLN) have been studied in ICU 

patients. During the 2
nd 

day of the ICU stay, serial withdrawal were taken to determine the endogenous MLT 

secretion, and then after MLT administration, additional plasma samples were obtained during the 3
rd

 day to  

evaluate the exogenous plasma MLT content, for a total of 20 withdrawal for each patient. Each blood 

sample was centrifuged and the plasma stored at -20°C. To determine the MLT concentration we used an 

ELISA kit that includes a pre-purification of the sample by SPE (solid phase extraction) cartridges. 

Results 

Tumors developed slowly in all the MLT-treated (topical and i.p.) groups and at the end of the 

treatment, the mean volume was significantly lower vs control. Both tumoral and plasma MLT levels were 

significantly higher in treated (topical and i.p.) vs not-treated animals. Harvested tumor showed a strong 

inflammatory reaction which seemed to surround and infiltrate the tumor cells. In SLN-MLT treated animals, 

in addition to a strong lymphocyte infiltration, the tumor appeared limited also by the presence of fibroblast 

type cells. Preliminary results showed HIF-1α expression increased in both treatment groups (topical and 

i.p.) vs Ctrl. 

In the clinical study, we have seen that MLT administration, is safe, reduces need for analgesic and 

sedative drugs restoring the normal circadian rhythm. In patients who received MLT or SLN-MLT by os, the 

absorption was rapid: the peak plasma concentration had a median of 30 min and after only 5 min, the MLT 

levels were significantly higher than physiological ones. The AUC of SLN-MLT was significantly higher than 

when MLT was administered by saline solution. SLN-MLT by transdermal route, presented a delayed peak 

plasma concentration (4 h) and a lower bioavailability but MLT plasma levels reached however the 

pharmacological concentration able to restore the pleiotropic function of this hormone and facilitate the 

resolution of sleep-wake cycle disorders.  

Conclusions 

We have confirmed the positive effects of MLT on tumor growth and we have focused on its effect on 

hypoxia. The possible role as anti-tumor drug candidate deserves to be further investigated. We 

demonstrated that different alternative and novel ways to deliver MLT are effective as well. This would 

accelerate the transferability of obtained data towards a therapy. on MLT oncostatic activity. 

In the clinical study, we have proved that MLT is able to normalize the sleep-wake cycle, to 

ameliorate the sleep quality and to reduce the number of sedative drugs used in ICU pts. We proved also 

that transdermal administration by SLN is effective in rising plasma MLT levels as well as enteral 

administration and is more practicable in clinical setting. 
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Abbreviation’s list 

4P-PDOT  4-phenyl-2-propionamidotetralin 

AANAT   arylalkylamine N-acetyltransferase 

ADCC   antibody dependent cellular citotoxicity 

AFMK  N
1
-acetyl-N

2
-formyl-5-methoxykynuramine 

ALT  alanine aminotransferase 

Akt  serine-threonine kinase 

AMK  N
1
-acetyl-5-methoxykynuramine  

aMT6s  6-sulfatoxyMLT 

AR  androgen receptor 

AST  aspartate aminotransferase 

AUC  area under the concentration curve 

BCLC  Barcelona clinic liver cancer 

BKCa  Ca
2+

-activated large conductance potassium channels 

BP  blood pressure 

BSA  bovine serum albumin 

BSP  bone sialo protein  

cAMP  cyclic AMP 

CAT  catalase 

CE  capillary electrophoresis 

CIN  contrast induced nephropathy 

C-LOS  conditional length of stay 

COX  cyclooxygenase 

C-PAP  continuous positive airway pressure 

CREB  cAMP response element-binding protein 

CryoRx  cryotherapy 

CsA  cyclosporine A 

CV  coefficient of variation 

DLMO  dim light MLT onset 

DNR  do not resuscitate 

EDTA  ethylenediaminetetraacetic acid 

EEG  electroencephalograph 

EHS  Engelbreth-Holm-Swarm 

ELISA  enzyme-linked immunosorbent assay 

EP  E-type prostaglandin 

EP1  E-type prostaglandin receptor 

ER  estrogen receptor 

ESI  electrospray ionization 

ETC  electron transport chain 

G6PDH  glucose-6-phosphate dehydrogenase 

GABA  -aminobutyric acid 
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GC-MS  gas chromatography-mass spectrometry 

GI  gastrointestinal 

GITS  gastro-intestinal therapeutic system 

GPCR  G protein-coupled receptor 

GPx  glutathione peroxidase 

GSH  glutathione 

GSSG  oxidized glutathione 

Hb  hemoglobin 

HBV  hepatitis B virus 

HETE  hydroxyeicosatretanoic acid 

HIF-1  hypoxia inducible factor-1 

HIOMT  hydroxyindole-O-methyltransferase 

HPH  high pressure homogenization 

HPLC  high performance liquid chromatography 

HPLC-MS  HPLC-mass spectrometry 

ICU  intensive care unit 

IFN  interferon 

IgG  immunoglobulin G 

IL   interleukin 

i.m  intramuscular 

iNOS  inducible nitric oxide synthase 

i.p.  intraperitoneal 

i.v.  intravenous 

I/R  ischemia/reperfusion 

LC-MS  liquid chromatography-mass spectrometry 

LD  light-dark 

LL  continuous light 

LO  lipoxygenase 

LOS  length of stay 

LPS  lipopolysaccharide 

M-CSF  macrophage colony-stimulating factor 

MEL  MLT 

MHC  major histocompatibility complex 

MMP  matrix metalloproteinase 

MRM  multiple reaction monitoring 

MtPTP  mitochondrial permeability transition pore 

NA  noradrenaline 

NAS  N-acetylserotonin 

NE  norepinephrine 

NF-kB  nuclear factor kappa B 

NK  natural killer 

NO  nitric oxide 
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NOS  nitric oxide synthase 

OCT  optimal cutting temperature 

PCa  prostate cancer 

PGs  prostaglandins 

PSA  prostate-specific antigen 

PSV  pressure support ventilation 

REM  rapid eye movement 

RIA  radio immune assay 

RZR/ROR  retinoid-related orphan nuclear receptor family 

SAD  seasonal affective disorder 

SAPS II  simplified acute physiology score 

s.c.  subcutaneous 

SCA  salvage cryoablation 

SCF  stem cell factor 

SCN  suprachiasmatic nucleus 

SCT  spray CryoRx 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SIM  selected ion monitoring 

SIRS  systemic inflammatory response syndrome 

SLN  solid lipid nanoparticles 

SOD  superoxide dismutase 

SOFA  sequential organ failure assessment 

TACE  transcatheter arterial chemoembolization 

TdT  terminal deoxynucleotidyl transferase 

TGF  transforming growth factor 

Th  T-helper 

TMR  tetramethylrhodamine 

TNF  tumor necrosis factor 

VEGF  vascular endothelial growth factor 

WBC  white blood cell 



 9 

2.0 INTRODUCTION 

2.1. MLT 

Melatonin (MLT), is a natural substance that has been identified in all major living species, including 

bacteria and other unicellular microorganisms, plants and animals, as well as in humans (Pandi-Perumal et 

al., 2006; Paredes et al., 2009). It is possible that the first function of MLT in phylogeny was related to its 

activity as direct and indirect antioxidant.  

MLT is normally synthesized and secreted during the dark phase of daily photoperiod. Though it is 

produced primarily in the pineal gland, MLT is also synthesized in other organs like the retina, skin and 

lymphocytes. Reports on plasma MLT levels among subjects of different ages reveal a decrease in MLT 

production with advanced age (Pandi-Perumal et al., 2005)  

Among the various functions attributed to MLT in the control of the immune system, antitumor 

defense assumes a primary role (Lissoni et al., 1996; Maestroni and Conti, 1990; Maestroni et al., 1988; 

Martins et al., 1998). The nighttime physiological surge of MLT in the blood or extracellular fluid has been 

suggested to serve as a “natural restraint” for tumor initiation, promotion and/or progression (Blask et al., 

2005)  

 

 

Fig. 1 - MLT structure. 

 

2.1.1. MLT biosynthesis 

MLT is synthesized from the amino acid tryptophan, taken up from blood, via its conversion to 

serotonin(Pandi-Perumal et al., 2006). Serotonin is then acetylated to form N-acetylserotonin (NAS) by the 

enzyme arylalkylamine N-acetyltransferase (AANAT), which, in most cases, represents the rate-limiting 

enzyme. NAS is converted into MLT by the enzyme hydroxyindole-O-methyltransferase (HIOMT). The 

enzymatic machinery for MLT biosynthesis was first identified by Axelrod et al. in the pinealocytes (Axelrod, 

1974). The enzymes of MLT biosynthesis have recently been indentified in human lymphocytes (Carrillo-Vico 

et al., 2004), and locally synthesized MLT is probably involved in the regulation of the immune system. 

Among various other extrapineal sites of MLT biosynthesis, the gastrointestinal (GI) tract is of particular 

importance as it contains amounts of MLT exceeding by several hundred fold those found in the pineal 
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gland. GI MLT can be released into circulation, especially under the influence of high dietary tryptophan 

levels (Bubenik, 2002). 

 

 

Fig. 2 - MLT biosynthesis. 

 

2.1.2. The control by endogenous circadian clock and environmental light as a 

chemical expression of darkness 

Pineal MLT production exhibits a circadian rhythm with low levels during daytime and high levels 

during night. This circadian rhythm occurs in all living organisms irrespective of whatever they are diurnally or 

nocturnally active. An exception to this “high-at-night” rule is the retina of some salmonoid fish, where MLT 

levels are high during the day or not significantly different (Besseau et al., 2006). These species-specific 

variations in MLT rhythm profiles may have developed as a result of changes in regulatory mechanisms 

during the course of evolution (Iigo et al., 2007) 

In mammals, the regulation of pineal MLT biosynthesis, by ambient illumination is mediated by the 

retinohypothalamic tract that projects from the retina to the suprachiasmatic nucleus (SCN), the major 

circadian oscillator (Moore, 1997). Special photoreceptive retinal ganglion cells are the origin of the 

retinohypothalamic projection (Berson et al., 2002). These ganglion cells contain a special photosensitive 

pigment, known as melanopsin, which is involved in the phototransduction mechanism (Brainard et al., 

2001). 

Nerve fibers from the SCN project to a multisynaptic descending pathway that passes through the 

paraventricular nucleus, medial forebrain bundle and reticular formation and makes synaptic connections 

with intermediolateral cells of the cervical spinal cord. From there, preganglionic fibers project to the superior 

cervical ganglia where postganglionic sympathetic fibers innervating the pineal gland are located, regulating 

pineal MLT synthesis by releasing norepinephrine (NE) at their postganglionic nerve terminals (Moore, 1997) 

The release of NE from pineal nerve terminals occurs during nighttime. NE, by binding to -

adrenergic receptors at the pinealocyte membrane, activates G-protein subunits to stimulate adenylate 

cyclase and the subsequent cyclic AMP (cAMP) production. The increase of cAMP promotes the synthesis of 

enzymes involved in MLT biosynthesis (Klein, 2004) 

Circulating MLT derives almost totally from the pineal gland, as shown by the fact that undetectable 

MLT level are found after pinealectomy. After its release, MLT binds to albumin (Cardinali et al., 1972) and 

reaches all tissues within a very short period (Cardinali and Pevet, 1998). MLT half-life is biexponential with 

a first distribution half-life of 2 min and a second of 20 min (Claustrat et al., 2005). MLT released to the 
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cerebrospinal fluid via the pineal recess attains, in the third ventricle, concentrations up to 20-30 times higher 

than in the blood. These concentrations, however, rapidly diminish with increasing distance from the pineal 

gland (Tricoire et al., 2003) thus suggesting that MLT is taken up by brain tissue. MLT production exhibits 

considerable inter-individual differences (Macchi and Bruce, 2004). Some subjects produce more MLT than 

others, during their lifetime, but the significance of this variation is not known. Studies of twins suggest that 

these differences may have a genetic base (Griefahn et al., 2003).  

 

2.1.3. MLT catabolism and secretion regulation 

 MLT produced by the pineal gland is released into the circulation and gains access to various fluids, 

tissues and cellular compartments. Because this highly lipophilic hormone is not stored in the pineal gland, 

the profile of its plasma levels reflects pineal activity . MLT catabolism occurs mainly in the liver, where it is 

first hydroxylated in the C6 position (6-hydroxyMLT) by the hepatic cytochrome P450, then conjugated with 

sulfate and, to a lesser extent, with glucuronic acid, and finally excreted in urine (Skene et al., 2006). In 

some mouse strains, MLT has been shown to be metabolized to 6-glucuronylMLT rather than to 6-

sulfatoxyMLT (aMT6s) (Ma et al., 2008). Very small amounts of free 6-hydroxyMLT are excreted unchanged 

in the urine; other minor metabolites have also been identified. Urinary aMT6s excretion closely reflects the 

plasma MLT profile and is frequently used for the evaluation of MLT rhythm, especially in humans (Arendt, 

2006). The metabolism of MLT is rapid, and its half-life in humans following exogenous administration is 

short, ranging between 10 and 60 minutes. MLT is also metabolized into kynuramine derivates (Hirata et al., 

1974). It is interesting to note that the antioxidant properties of MLT are shared by some of their metabolites 

like N
1
-acetyl-5-methoxykynuramine (AMK) and N

1
-acetyl-N

2
-formyl-5-methoxykynuramine (AFMK) 

(Hardeland et al., 2009). Thus MLT gives rise to a cascade of antioxidant molecules that multiply the free 

radical scavenger effect. Metabolic breakdown of retinal MLT is different from that of MLT synthesized by the 

pineal gland. Initially, aryl-acylamidase (aryl-acylamide amidohydrolase) catalyzes the deacetylation of MLT 

to 5-methoxytryptamine. Subsequently, 5-methoxytryptamine is metabolized via the same pathway of 

indoleamines and catecholamines, with deamination by monoamine oxidase to form 5-methoxyindole 

acetaldehyde, and further oxidation to 5-methoxyindoleacetic acid or reduction to 5-methoxytryptophol 

(Grace et al., 1991). 
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Fig. 3 - MLT metabolism. 

 

2.1.4. MLT receptors, other binding sites and signaling mechanism 

MLT exerts some of its actions through interaction with MT1 and MT2 receptors (Dubocovich et al., 

2010; Dubocovich and Markowska, 2005). These two receptors are members of the 7-transmembrane G-

protein-coupled receptor (GPCR) family (Fig. 4). A third binding site, identified initially as MT3, was 

subsequently characterized as the enzyme quinone reductase 2 (Nosjean et al., 2000). Many G-protein-

coupled receptors, including MT1 and MT2 receptors, exist in living cells as dimers. The relative propensity of 

the MT1 homodimer and MT1/MT2 heterodimer formation are similar whereas that of the MT2 homodimer is 3-

4 fold lower (Daulat et al., 2007). Another MEL-related receptor, named GPR50, has also been found in 

different species, including humans. This receptor does not bind MLT, thus may have a role in MLT function 

by altering binding to the MT1 receptor. 

MLT also acts by binding to cytoplasmic proteins like the calcium binding protein calmodulin 

(Benitez-King, 2006) or tubulin and to nuclear receptors like RZR/ROR (Wiesenberg et al., 1998). The MLT 

receptor present in the skin has been identified as MT1 (Slominski et al., 2005). MT2 receptors have been 

detected in neonatal keratinocytes, and in cutaneous melanoma cells as well as in normal and malignant 

uveal melanocytes (Roberts et al., 2000). 
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The decrease in cAMP production caused by MLT via MT1 and MT2 receptor interaction reduces the 

uptake of linoleic acid, an essential fatty acid by affecting a specific fatty acid transporter (Blask et al., 2002). 

Linoleic acid can be oxidized to 13-hydroxyoctadecadienoic acid by 15-lipoxygenase, serving as an energy 

source for tumor growth and tumor growth-signaling molecules. Inhibition of linoleic acid uptake by MLT is 

regarded as a mechanism of its antiproliferative effects (Blask et al., 2002). 

Some studies have also suggested that modulating the expression and function of nuclear receptors, 

RZR/ROR, as the mechanism for biological effects of MLT. By binding to nuclear receptors, MLT alters the 

transcription of several genes that play a role in cellular proliferation (i.e., 5-lipoxygenase , p21 or bone 

sialoprotein) (Carlberg, 2000). 

Another mechanism of action of MLT may be its ability to modulate intracellular calcium and 

calmodulin activity. Calcium-activated calmodulin is involved in the initiation of the S and M phases of the cell 

cycle, in the cell cycle-related gene expression regulation and in the reentry of quiescent cells from G0 back 

into the cell cycle MLT has been shown to increase calmodulin degradation trough a direct binding as well as 

trough redistributing it, thereby inhibiting cell cycle progression (Benitez-King, 2006) 

MLT also serves as a potent modulator of gene transcriptional activity. MLT has been shown to 

target a large number of genes, in central or in peripheral tissues. It has been hypothesized that MLT 

mediate seasonal photoperiodic control via phasing the expression of clock genes in the pars tuberalis . 

In addition, MLT down-regulates gene expression of integrin and integrin-associated protein-

encoding genes in rat retina, while up-regulates the cAMP response element binding protein (CREB) gene in 

retinal pigmentary cells (Wiechmann, 2002). 

Notably, MLT has also demonstrated a pronounced effect on the expression of genes related to 

oncogenesis (e.g. Mybl1, Rasa1, Mllt3 and Enigma homolog 2) and calcium metabolism (Kcnn4 and Dcakl1) 

(Anisimov et al., 2006). 

MLT shows a significant effect on mitochondrial genes expression, like genes encoding 16S 

ribosomal RNA (mt-RNr2), cytochrome C oxidase subunits I and II (mt-Co1, mt-Co3) and NADH 

dehydrogenase 1 (mt-Nd1) (all-upregulated) and ATP synthase subunit 6 (mt-ATP6; down-regulated) 

(Anisimov et al., 2006). 
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Fig. 4 – MLT receptor structure Picture modified from: http://www.hivehealthmedia.com/melantonin-drug-potential-cure-insomnia-
invented/. 

 

2.2. THE PLEIOTROPY OF MLT: ITS MAJOR CELLULAR 

AND PHYSIOLOGICAL FUNCTIONS 

MLT is a pleiotropic molecule that mediates many seasonal physiological, immunological and other 

receptor- or non-receptor mediated functions (Fig. 5). 

 

 
Fig. 5 – The pleiotropy of MLT. Picture modifed from Pandi-Perumal-2006. 
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2.2.1. Circadian rhythmicity and actions on SCN: antiexcitatory effects, 

avoidance of Ca2+  

In mammals, MLT appears to have a more modest role in the organization of adult circadian 

physiology. In contrast to seasonal physiology, MLT appears to be mostly associated with sleep propensity 

and the core temperature rhythm. MLT may be more important in the perinatal period. However, there is 

convincing evidence that MLT can indicate the time of day to the circadian system. For example, sleep is 

worse and the core temperature rhythm amplitude is blunted in the absence of MLT during the night 

compared to when it is present (Scheer and Czeisler, 2005).There is also evidence for an influence of MLT 

on the circadian aspects of systems such as glucose homeostasis (la Fleur et al., 2001), the immune system 

(Maestroni et al., 1988) and cardiovascular function (Scheer et al., 2004).The most direct link between MLT 

and the circadian system was shown by in vitro experiments on the SCN. In the mammalian SCN, MLT 

acutely inhibits neuronal firing (van den Top et al., 2001). This effect appears to be mediated through 

stimulation of MT1 MLT receptors (Jin et al., 2003) and is thought to result from the activation of Kir3 

potassium channels and an increase in potassium conductance with subsequent neuronal hyperpolarization 

(van den Top et al., 2001). In addition, MLT applied at certain circadian times phase advanced the peak of 

the circadian rhythm of neuronal firing and other measured SCN outputs (Hunt et al., 2001). Initially, this 

phase shifting effect of MLT was attributed solely to MT2 receptors. However, more recently it appears that 

there is redundancy between MT1 and MT2 receptors in terms of the regulation of the circadian activity (Jin 

et al., 2003). 

 

2.2.2. Regulation of the cardiovascular function and temperature 

In rat caudal arteries, stimulation of the MLT MT1 receptor produced vasoconstriction while activation 

of the MT2 receptor resulted in vasodilatation (Masana et al., 2002). The vasoconstrictive action of MLT 

appears to be mediated by inhibition of Ca
2+

-activated large conductance potassium channels (BKCa). It is 

suggested that MLT-induced vasodilatation of arteries and an increase in blood flow in the distal parts of skin 

regions that are important for heat loss regulation may underlie the hypothermic effects of the hormone 

(Krauchi et al., 1997). 

 

2.2.3. Inhibition and downregulation of cyclooxygenase 2 

Cyclooxygenase 2 (COX-2) is the key enzyme that catalyzes the two sequential steps in the 

biosynthesis of prostaglandins (PG)s from arachidonic acid. COX-2, the inducible isoform of COX, plays a 

critical role in the inflammatory response, and its overexpression has been associated with several 

pathologies including neurodegenerative diseases and various types of cancer. Mayo et al. have 

investigated the suppressive effect of MLT and its metabolites on the activities of COX-2 and inducible nitric 

oxide synthase (iNOS), using LPS-activated RAW264.7 macrophages as model (Mayo et al., 2005). In 

addition, Deng et al. have shown that MLT, but not tryptophan or serotonin, time- and concentration-

dependently inhibits the LPS-induced protein levels and promoter activities of COX-2 and iNOS in 

RAW264.7 cells (Deng et al., 2006). Noteworthy MLT, like serotonin and tryptophan, is an indole derivative. 

Furthermore, Noguchi et al. have suggested that COX-2-dependent exogenous PGE2 downregulates IL-1 

induced production of matrix metalloproteinase-13 (MMP-13) via E-type prostaglandin (EP) receptor 1 (EP1) 
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in human periodontal ligament cells (Noguchi et al., 2005). Endogenous PGE2 may be involved in regulating 

the destruction of extracellular matrix components in periodontal lesions. However, exogenous PGE2 may 

act as an anti-inflammatory agent via the inhibitory prostanoid receptor(s) EP receptor (Meja et al., 1997). 

Therefore, MLT may prevent various oral diseases including periodontitis, even neoplastic diseases such as 

precancerous leukoplakia, lichen planus, and oral cancer (Gomez-Moreno et al., 2010). Murakami et al. 

(Murakami et al., 2012) in a recent study, have found that MLT significantly inhibits Pg fimbria-induced 

expression of the COX-2 gene through suppression of NF-kB activation in RAW264.7 cells and thus may 

help prevent Pg-induced oral diseases and chronic infections in the body. 

 

2.2.4. Regulation of the immune system 

 

2.2.4.1. B cells, T cells, NK cells, thymocytes and bone marrow 

It is important to note that MLT is produced not only by the pineal gland, but also in the retina, 

kidneys and digestive tract (Jaworek et al., 2005). This suggests that the immune system might be affected 

by MLT originating from different organs of the body. Additionally it was found that human peripheral blood 

mononuclear cells synthesize biologically relevant amounts of MLT (Carrillo-Vico et al., 2004). This indicates 

a potential intracrine and paracrine role of MLT in immune regulation. 

It is believed that MLT influences cells of the immune system via MLT receptors. Both membrane 

and nuclear receptors have been identified on leukocytes. Membrane receptors were found mostly on CD4
+
 

T lymphocytes, but also on CD8 T and B cells (Maestroni, 2001). Through these receptors, MLT modulates 

the proliferative response of stimulated lymphocytes. On the other hand, MLT induces cytokine production by 

human peripheral blood mononuclear cells via the nuclear MLT receptor. 

The immunoregulatory activity of MLT was determined with the use of following experimental 

models: surgical or functional pinealectomy, in vivo treatment with MLT or in vitro treatment of immune cells 

with MLT. Some studies demonstrated an immunoenhancing activity for MLT. Daily afternoon injections of 

MLT induced an increase in thymus weight in the gerbil and spleen hypertrophy in the Syrian hamster. 

Treatment with MLT also increased the mitogenic response of mouse spleen cells to concanavalin A and 

lipopolysaccharide (LPS). The mechanism by which MLT acts to enhance the immune response is not fully 

understood. It is believed that, in part, it may act to increase phagocytosis and antigen presentation 

(Maestroni, 2001). Indeed it was shown that treatment with MLT enhanced antigen presentation by splenic 

macrophages to T cells with a concurrent increase in MHC class II expression and synthesis of the pro-

inflammatory cytokines IL-1 and TNF-. Additionally, MLT was observed to induce IL-12 production to drive T 

cell differentiation towards the Th1 phenotype. The activating effect of MLT on the immune system is also 

mediated through the regulation of gene expression of cytokines in the spleen, thymus, lymph nodes and 

bone marrow. It was shown gene expression of M-CSF, TNF-, TGF- and SCF was increased in peritoneal 

macrophages, while IL-1, IFN-, M-CSF, TNF- and SCF was increased in spleen cells of mice treated with 

MLT. 

Other studies have shown that MLT administration increases NK cell activity in humans. Similar 

observations were made in mice where treatment with MLT increased antibody dependent cellular 

cytotoxicity (ADCC) (Vermeulen et al., 1993). Aside from activation of immune cells by MLT, this hormone 
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also enhances production of NK cells and monocytes in the bone marrow of mice (Currier et al., 2000). MLT 

seems also to promote the survival of precursor B cells in mouse bone marrow(Yu et al., 2000). 

To summarize, MLT is considered as a modulator of hematopoiesis and of immune cell production 

and function. MLT as been demonstrated to stimulate cytokine production, enhanced phagocytosis, 

increased NK cell activity and skewing of the immune response toward a helper T cell type 1 profile. 

MLT has been shown to aggravate Th1 dependent inflammatory response in animal models of 

multiple sclerosis and rheumatoid arthritis. Additionally, it was found in rats that MLT is important in 

controlling cell recruitment from the bone marrow and their subsequent migration to the lung. It may suggest 

that MLT is involved in allergic lung inflammation (Martins et al., 2001)This observation in line with human 

studies showing that elevated serum MLT is associated with the nocturnal worsening of asthma (Sutherland 

et al., 2003) Moreover, it is suggested that MLT may play a role in the etiology and treatment of several 

dermatoses e.g. atopic eczema, psoriasis and malignant melanoma (Kimata, 2007).  

Importantly, while many studies have implicated MLT as a positive regulator of immune responses, a 

number of other reports have suggested that MLT may act as an anti-inflammatory agent, inhibiting immune 

responses in some cases. It is believed that the anti-inflammatory action of MLT is at least partly due to the 

induction of Th2 lymphocytes that produce IL-4, thereby inhibiting the function of Th1 cells (Shaji et al., 

1998). Indeed, MLT has been shown to be protective in septic shock (Escames et al., 2006), an animal 

model of ulcerative colitis (Nosal'ova et al., 2007) and experimental pancreatitis (Leja-Szpak et al., 2004). 

 

2.2.5. Upregulation of antioxidant enzymes 

 

2.2.5.1. GSH peroxidase; GSSG reductase; γ-glutamylcysteine synthase; G-6-P 

dehydrogenase; hemoperoxidase/catalase, Mn- and Cu-Zn-SODs 

Besides its actions in direct free radical scavenging and membrane stabilization, MLT acts on 

enzymes that either generate or metabolize reactive oxygen intermediates, thereby further increasing its 

protective activity toward free radicals. Superoxide dismutase (Abulencia et al.), of which there are several 

isoforms (i.e. Mn- and Cu-Zn-SODs) is considered a major antioxidant enzyme, because it dismutates O2
•- 

to 

H2O2, thereby not only removing the anion but also reducing the formation of ONOO
- 

(Rodriguez et al., 

2004).
 
MLT has also been shown to influence antioxidant enzyme gene expression. As first reported by 

Antolin et al. (Antolin et al., 1996) MLT increases mRNA levels for both Cu-Zn-SOD and Mn-SOD in the 

Harderian gland of female Syrian hamsters after its exogenous administration. Increases in antioxidant 

enzyme gene expression following MLT injections were later confirmed by the same group in rat brain cortex. 

Once generated, H2O2 can be easily converted into the highly reactive and destructive 
•
OH in the 

presence of ferrous ion (Fe
2+

) via the Fenton reaction. Two enzymes participate in the removal of H2O2 from 

the cellular environment, peroxidases and CAT. The most abundant peroxidase is the glutathione peroxidase 

(GPx), which is present in both the cytosol and mitochondria. This enzyme has the transition metal selenium 

at its active site and uses reduced glutathione (Appeltans et al.) as a substrate to transfer electrons to H2O2 

(and other peroxides) thereby converting it into two molecules of water. The second H2O2 metabolizing 

enzyme is catalase (Sjogren et al.); being mainly present in the peroxisomes, it contains a molecule of ferric 

ion at its active site and converts two molecules of H2O2 into one molecule of water and diatomic oxygen 

(Mates, 2000). 
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Pharmacologically, and possibly physiologically as well, MLT stimulates the activity of GPx to 

remove H2O2 from cells; in doing so glutathione (Appeltans et al.) is converted to oxidized glutathione 

(GSSG); GSSG is reduced back to GSH in the presence of the enzyme GSSG reductase (Fig. 6).  

 

 

Fig. 6 - H2O2 is metabolized to nontoxic products by glutathione peroxidase (GPx); in the process glutathione (Appeltans et 

al.) is oxidized to form oxidized glutathione (GSSG). GSSG is converted back to GSH by the enzyme glutathione reductase (GR); this 

reaction requires the cofactor NADPH, which is generated by the enzyme glucose-6-phosphate dehydrogenase (G6PDH). GPx, GR, 

and G6PDH are all reportedly stimulated by MLT, thereby lowing the concentration of H2O2 and reducing 
•
OH formation. Picture 

modified from Reiter-1998. 

 

The activity of this enzyme is also stimulated by MLT, thereby replenishing the important antioxidant 

GSH. GSSG reductase requires the cofactor NADPH, which is generated from NADP in a reaction catalyzed 

by G6PDH (Fig. 6); the activity of this enzyme is also reportedly increased in the presence of MLT. Thus, 

several important anti-oxidative enzymes seem to be stimulated by MLT, protecting cells from oxidative 

damage.  

 

2.2.6. Downregulation of pro-oxidant enzymes 

 

2.2.6.1. NO synthases  

The activity of the enzyme nitric oxide synthase (NOS) determines the amount of NO
•
. As noted 

above, NO
•
 reacts with the O2

•-
 to form the toxic agent ONOO

-
. Thus, NOS can be considered a pro-oxidative 

enzyme, and any factor that reduces its activity would be considered an antioxidant. It has been shown that 

in both the cerebellum (Pozo et al., 1997) and hypothalamus physiological levels of MLT reduce NOS 

activity. Thus, inhibition of NO
•
 production may be another way used by MLT to reduce oxidative damage 

under conditions such as neural ischemia/reperfusion where NO
•
 seems to be important in terms of the 

resulting damage (Guerrero et al., 1997). 

 

2.2.6.2. Lipoxygenases 

Lipoxygenases catalyze the stereo-specific insertion of molecular oxygen into polyunsaturated fatty 

acids. In mammals, significant knowledge has accumulated about 5-lipoxygenase (5-LO), the enzyme 

responsible for the synthesis of inflammatory leukotrienes from arachidonic acid. In addition to their 

inflammatory action, which appears to be crucial for the pathophysiology of asthma, leukotrienes and the 5-

LO pathway may play another important physiological role. It has been suggested that the 5-LO pathway is 

involved in the regulation of pineal MLT synthesis. On the other hand, the pineal hormone MLT, is capable of 
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regulating the expression of 5-LO gene. The latter mechanism was first described in human B lymphocytes 

and involves the binding of MLT to a nuclear receptor RZR/RORα, which in turn binds the promoter region of 

the 5-LO gene and suppresses its expression. In line with this mechanism is the recent observation that MLT 

deficiency created in rats by pinealectomy resulted in increased expression of 5-LO mRNA in the 

hippocampus. 

Uz et al. (Uz and Manev, 1998) proposed that pineal 5-LO might represent a step in feedback control 

of MLT synthesis. This scheme could function as follows. During the period of light (Hum et al.), pineal 

RZR/ROR expression is low which, along with the low levels of MLT, favors the pineal expression of the 5-

LO gene. This results in the synthesis of 5-LO protein that is not fully active. Namely, several factors, 

including intracellular calcium increase, are required for the activation of the 5-LO enzyme. At the onset of 

darkness, noradrenaline (NA) is released from pinealopetal fibers, whose perikarya are in the superior 

cervical ganglia. Interaction of NA with pineal adrenergic receptors during the night may increase intracellular 

calcium, activate 5-LO and lead to formation of leukotrienes, which in turn are needed for stimulation of MLT 

synthesis. Increased MLT levels, along with the circadian up-regulation of RZR/ROR, gradually suppress 5-

LO mRNA expression and, with time, downregulate the 5-LO pathway and attenuate the effect of NA. At the 

onset of light, NA stimulation ceases, MLT levels drop, RZR/ROR expression decreases, and the 5-LO gene 

is again up-regulated. 

In another study, conducted by Zhang et al. (Zhang et al., 1999) MLT has been seen to reduce, in 

vivo, 12-lipoxygenase (12-LO) expression. The MLT-induced reduction in 12-LO protein level was abolished 

in the presence of the MLT receptor antagonist luzindole, further establishing the role of MLT in this process. 

Incubation of pineal homogenates with exogenous MLT partially inhibited 12-LO activity. Taken together, an 

inverse relationship exists in the endogenous production of 12-hydroxyeicosatetranoic acid (12-HETE), 12-

LO mRNA and protein with respect to MLT production in the rat pineal gland. MLT decreased both 12-LO 

mRNA and protein levels in addition to 12-LO enzyme activity, indicating that MLT is an endogenous 

modulator of pineal 12-lipoxygenation. 

 

2.2.7. MLT’s antioxidant action: clinical significance  

2.2.7.1. Decrease of free radicals and other oxidants via scavenging of (
•
OH), (O2

•–
), (CO3

•–
), 

organic cation radicals, O2 (
1
Δg), O3  

Since the discovery that MLT is oxidized by photocatalytic mechanisms involving free radicals, its 

scavenging actions have become a matter of particular interest (Hardeland et al., 1993). MLT’s capability for 

rapidly scavenging hydroxyl radicals has stimulated numerous investigations into radical detoxification and 

anti-oxidative protection. Evidence has shown that MLT is considerably more efficient than the majority of its 

naturally occurring analogs (Poeggeler et al., 2002), indicating that the substituents of this indole moiety 

strongly influence reactivity and selectivity (Hardeland and Pandi-Perumal, 2005). Rate constants 

determined for the reaction with hydroxyl radicals were 1.2 * 10
10

- 7.5 * 10
10

 m
-1

* s
-1

, depending on the 

method applied. Regardless of the differences in the precision of determination, MLT has been shown 

independently, by different groups, to be a remarkably good scavenger for hydroxyl radicals.  

Contrary to most of its analogs, MLT is largely devoid of pro-oxidant side-effects. Contrary to initial 

claims in the literature that almost all MLT is metabolized in the liver to aMT6S followed by conjugation and 

excretion, recent estimates attribute almost 30% of overall MLT degradation to pyrrole ring cleavage (Ferry 
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et al., 2005). The rate of AFMK formation may be even higher in certain tissues because extrahepatic P450 

mono-oxygenase activities are frequently low and, consequently, smaller amounts of aMT6S are produced. 

AFMK appears to be a central metabolite of MLT oxidation, especially in non-hepatic tissues 

(Hardeland, 2005). It should be noted that the kynuric pathway of MLT metabolism includes a series of 

radical scavengers with the possible sequence of MLT - cyclic 3-hydroxyMLT - AFMK - AMK. In the 

metabolic steps from MLT to AFMK, up to four free radicals can be consumed (Tan et al., 2003). However, 

the complete cascade should be only expected under high rates of hydroxyl radical formation. Otherwise, 

MLT forms AFMK directly and the conversion to AMK is, according to present knowledge, predominantly 

catalyzed enzymatically. Recent studies have shown a greater number of free radicals eliminated than 

predicted from the cascade, and many previously unknown products are now being characterized (Than-

2006 and J. Rosen & R. Hardeland, unpublished results). The potent scavenger, AMK, consumes additional 

radicals in primary and secondary reactions (Than et al., 2006). Interestingly, AMK interacts not only with 

reactive oxygen but also with reactive nitrogen species (Guenther et al., 2005).  

MLT has also the capacity of up-regulate and down-regulate enzymes as we have seen before. The 

attenuation of NO (nitric oxide) formation for example, by MLT, is significant as it limits the rise in the levels 

of the pro-oxidant metabolite, peroxynitrite, and of free radicals derived from this compound (ie. NO2, CO3
-
 

and OH radicals). It also helps to reduce the inflammatory response (Hardeland, 2005). 

Since mitochondria are the major source of free radicals, the damage inflicted by these radicals 

contributes to major mitochondria-related diseases. Electron transfer to molecular oxygen at the matrix site, 

largely at the iron–sulphur cluster N2 of complex I, is a main source of free radicals (Genova et al., 2004). 

This process also diminishes electron flux rates and therefore the ATP-generating potential. MLT increases 

mitochondrial respiration and ATP synthesis in conjunction with the rise in complex I and IV activities (Leon 

et al., 2005).  

The effects of MLT on the respiratory chain may represent new opportunities for the prevention of 

radical formation, in addition to eliminating radicals already formed. A model of radical avoidance, in which 

electron leakage is reduced by single electron exchange reactions between MLT and the components of the 

electron transport chain (ETC), was proposed by Hardeland and his coworkers (Hardeland et al., 2003b). 

According to this model, a cycle of electron donation to the respiratory chain at cytochrome c should 

generate a melatonyl cation radical which can compete, as an alternate electron acceptor, with molecular 

oxygen for electrons leaking from N2 of complex I, thereby decreasing the rate of O2
-
 formation. In the 

proposed model, not only are electrons largely recycled to the respiratory chain, but most of the MLT is also 

regenerated in the cycle. Inasmuch as the recycled electrons are not lost for the respiratory chain, the 

potential exists for improvements in complex IV activity, oxygen consumption and ATP production. 

Similarly, the highly reactive MLT metabolite, AMK, may undergo single-electron transfer reactions 

(Ressmeyer et al., 2003). The mitochondrial protection by AMK was proposed (Hardeland et al., 2003b). and 

experimentally confirmed (Acuna-Castroviejo et al., 2003). In a manner similar to the action attributed to 

MLT, AMK exerts its effects on electron flux through the respiratory chain and seems to improve ATP 

synthesis. 
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2.2.8. Prevention of apoptosis 

2.2.8.1. Direct inhibition of mtPTP opening and attenuation of mitochondrial electron leakeage  

 Numerous study have been conducted investigating the effects of MLT on mitochondria. A direct 

inhibition of the mitochondrial permeability transition pore (mtPTP) by MLT is observed at elevated 

concentrations (Andrabi et al., 2004) and presumably based on a low-affinity binding site, should be of 

importance in experiments on prevention of apoptosis. Interpretations concerning effects in the lower 

pharmacological range, as by administration via the drinking water, would require other interpretations. One 

idea had been that MLT might participate in a kind of redox cycling by interacting with components of the 

ETC and contributing to an electron shuttle (Hardeland et al., 2003a). This possibility was also discussed for 

the MLT metabolite AMK (Hardeland, 2005) which also exerts protective effects in mitochondria (Acuna-

Castroviejo et al., 2003). This interpretation would require further substantiation. Another recent finding 

concerns the existence if a high affinity binding site with a Kd of 150 pM, localized according to inhibitor 

studies at the amphipathic ramp of complex I. These results have not yet been published in detail, but were 

cited a couple of times (Hardeland, 2009). If MLT binding to this site is not related to electron exchange 

reactions, as previously assumed (Hardeland, 2005) its presence would imply a regulatory role at the first 

control point of the ETC and should, therefore, be assumed to modulate electron flux. This possibility would 

go beyond classic mitochondrial protection by an antioxidant and antinitrosant agent, but could likewise 

contribute to anti-oxidative effects by metabolic adaptation. 

 Another kind of metabolic adaptation, with respective consequences for respiratory capacity, energy 

efficiency and electron leakage, might be achieved by stimulation of mitochondrial biogenesis. We had 

previously suggested a relationship between MLT and sirtuins an assumption that has recently gained some 

support. In SAMP8 mice, a few, rather preliminary data showed upregulation of SIRT1 by MLT (Gutierrez-

Cuesta et al., 2008). More detailed studies have now demonstrated that MLT favors the hippocampal 

expression of SIRT1 in a model using sleep-deprived rats (Chang et al., 2009). In another investigation, 

effects of MLT were compared in neuronal cultures from young and aged rats (Tajes et al., 2009). MLT 

stimulated SIRT1 expression in the aged neurons to levels approximating those from young rats and caused 

enhanced deacetylation of various SIRT1 substrates, such as PGC-1α, FoxO1, NFκB, and p53, effects 

which were largely reverted by the SIRT1 inhibitor sirtinol (Tajes et al., 2009).  Although this has not yet been 

demonstrated directly, the MLT-induced deacetylation of PGC-1α strongly suggests that a long-term 

treatment with the indoleamine would stimulate mitochondrial biogenesis. Finally, another connection 

between MLT and SIRT1 seems to exist, which may deserve further attention. SIRT1 was shown to 

modulate chromatin remodeling via the circadian clock gene protein CLK. Thereby, it seems to directly 

influence at least peripheral oscillators by interacting with the CLK/BMAL1 complex (Nakahata et al., 2009). 

Remodeling of chromatin represents a necessity of circadian gene expression and is also influenced by 

MLT, the major non-photic synchronizer. Relative MLT deficiency, as occurring during aging, causes 

circadian dysregulations (Jung-Hynes and Ahmad, 2009). Pronounced rhythms in metabolism exist in 

numerous organs including the brain, and consequently lead to periodic radical generation (Hardeland et al., 

2003b). To reduce oxidative stress, a delicate internal coordination of rhythms is required Hence, the 

convergence and eventual interdependence of MLT and sirtuin pathways might be of high interest in terms of 

aging and radical avoidance. The effects on chromatin structure should lead to numerous secondary 

changes in circadian functions, including mitochondrial metabolism. 
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2.3. MLT: THERAPEUTIC AND CLINICAL UTILIZATION 

2.3.1. Insomnia and phase shift conditions: jet lag and shift work  

Evidence from studies in both day-active animals and humans that the circadian pacemaker 

promotes wakefulness at certain times of day, together with evidence that neuronal firing of the mammalian 

SCN is inhibited by SCN Mel1a receptor-specific MLT binding, has led to the hypothesis that MLT may act to 

facilitate sleep by inhibiting the circadian drive for waking that emanates from the SCN (Scheer and Czeisler, 

2005). The direction in which MLT phase shifts the circadian system depends on its time of administration. 

When given late in the subjective day (at dusk), MLT phase advances the clock while its administration early 

in the subjective day (at dawn) phases delays circadian rhythms. Although results are still controversial, 

studies suggest that night-time MLT administration help induce sleep in people with disrupted circadian 

rhythms (such as those suffering from chronic insomnia or jet lag or poor vision or those who work the night 

shift) and those with low MLT levels (such as some elderly subjects) (Brzezinski et al., 2005). When used to 

improve sleep, i.e. to decrease sleep latency and/or cause more prolonged sleep, it is taken roughly 30 min 

prior to bedtime. MLT has been successfully used with various degrees of effectiveness to enhance sleep 

processes in elderly individuals with insomnia and in individuals with restless leg syndrome, REM sleep 

disorder behavior, delayed sleep phase syndrome, manic patients with insomnia and in patients with 

fibromyalgia. Recently, in a meta-analysis by Brzezinski et al. (Brzezinski et al., 2005) in which 17 studies 

were included to investigate the sleep-promoting potency of MLT, it was found that MLT has only a modest 

sleep-promoting effect, with an increase in sleep efficiency of 2–3%. Jet-lag is the result of long distance 

travel east/west crossing time zones at a rapid rate. Symptoms such as sleep disturbance, loss of appetite, 

reduced psychomotor efficiency and general malaise may occur. Circadian rhythms need about 1 day to 

adapt for each time zone crossed. In other words, 5-h time difference will require approximately 5 days of 

adaptation. In fact, a recent review of scientific studies found that MLT supplements help prevent phase-shift 

conditions: shift work and jet lag, particularly in people who cross five or more time zones (Arendt and 

Skene, 2005). Multi-centre clinical trials are needed to investigate whether chronic MLT administration may 

be beneficial for the treatment of phase-shift conditions and chronic insomnia. In addition to the potential 

beneficial influences on sleep, chronic night-time MLT administration may also be of clinical relevance in the 

treatment of hypertensive patients with an impaired BP rhythmicity (Claustrat et al., 2005).  

 

2.3.2. Immunity  

Circadian rhythmicity is revealed in circulating cells, lymphocyte metabolism and transformability, 

circulating hormones and other substances that may exert various actions on different targets of the immune 

system, cytokines, receptors, and adhesion molecules, cell cycle events in health and cancer, reactions to 

antigen challenge, and disease etiology and symptoms Interactions between MLT and the immune system 

have been known for nearly three decades, and in virtually all cases, MLT has been proven to have immune-

enhancing effects. Currently, accumulated evidence shows that the pineal is able to play an important role in 

modulating the immune response (Guerrero and Reiter, 2002). MLT can stimulate the immune response and 

correct immunodeficiencies secondary to acute stress, viral diseases or drug treatment. Binding of MLT to its 

specific receptors resulted in an up-regulation of cytokine production and immune function. In humans, daily 

oral MLT administration increases natural-killer cell activity (Guerrero and Reiter, 2002). Additionally, MLT 

reportedly regulates gene expression of several immunomodulatory cytokines including tumor necrosis 
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factor-, transforming growth factor-beta and stem cell factor by peritoneal macrophages as well as the 

levels of interleukin-1beta, interferon gamma, tumor necrosis factor-a and stem cell factor by splenocytes 

(Liu et al., 2001). The rise in blood MLT levels in humans at night stimulates associated rise in the thymic 

production of peptides including thymosin 1a and thymulin. Finally, MLT is a potent inhibitor of apoptosis in 

immune cells. In addition, interactions between the pineal gland and the immune system are bidirectional as 

interleukins and cytokines (interferon gamma) affect MLT synthesis and release. Also, there has been 

described MLT scavenging of nitric oxide or free radicals in lymphoid cells, which could explain the MLT-

modulated circadian variation in the experimental chronic inflammation.  

This kind of approach raises new questions regarding the mechanism of chronic inflammation, in 

disorders such as rheumatoid arthritis and nocturnal asthma, diseases that present rhythmic symptoms 

during a 24 h period (Sulli et al., 2002). It is clear that MLT provides a functional link between the 

neuroendocrine and immune-hematopoietic systems. The pineal neurohormone MLT has been widely shown 

to exert an immunostimulatory and anti-apoptotic role, mainly by acting on Th cells and on T- and B-cell 

precursors respectively. The increased prevalence of autoimmune diseases, such as rheumatoid arthritis, 

which is seen in northern Europe also may be related to the increased immunostimulatory effects that are 

exerted during the night by MLT and to a reduced neuroendocrine modulation during the light phase of the 

photoperiod (cortisol) (Maestroni et al., 2005). Nocturnal asthma is associated with elevation and phase 

delay of peak serum MLT levels (Sutherland et al., 2003). Elevated MLT levels might contribute to the 

pathogenesis of nocturnal asthma. However, MLT can improve sleep in patients with asthma Further studies 

looking into long-term effects of MLT on airway inflammation and bronchial hyper-responsiveness are 

needed before MLT can be recommended in patients with asthma(Campos et al., 2004). However, for 

individuals with chronic sarcoidosis who do not respond to corticosteroids, MLT may be an effective 

alternative therapy. In one study, individuals with sarcoidosis who did not respond to corticosteroid therapy 

experienced the following improvements after taking MLT for 4–12 months: improved breathing; decreased 

lymph node swelling and normalization of blood tests. Once the MLT supplements were discontinued, 

however, these improvements disappeared. Given that MLT is generally considered to be 

immunostimulatory, the question as to whether it should be taken by individuals with an autoimmune disease 

has been raised. To date, the information is meagre on this issue, although in one case of Crohn’s disease, 

a condition of excessive immune reactivity of the gut wall was reported; MLT did aggravate the condition 

(Calvo et al., 2002). Whether this will be a general finding in autoimmune diseases, however, remains to be 

established. 

 

2.3.3. Cardiovascular diseases  

Cardiovascular diseases (coronary heart disease, stroke, etc.) remain the major cause of death in 

most developed countries. The clinical importance of circadian biological rhythms has been strengthened by 

a number of studies showing a circadian distribution of cardiovascular events such as myocardial infarction, 

stroke, complex arrhythmia or sudden cardiac death. Incidence of cardiovascular events showed a maximum 

during the early morning hours after awakening from sleep. In addition, a number of pathophysiological 

mechanisms have been identified to coincide with this peak including blood pressure (BP) and heart rate 

surges, decreased endothelial dilatory capacity of peripheral and coronary arteries, enhanced sympathetic 

activity, decreased cardiac electrical stability and increased platelet aggregation. This time window of high 

risk for the incidence of cardiovascular events has been identified as a target for new treatment and 
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prevention strategies including new release forms of antihypertensive and anti-ischemic drugs. Decreased 

MLT production was found in several cardiovascular diseases (Altun et al., 2002). The use of MLT as an 

antihypertensive, antioxidant and anti-ischemic drug has been explored and opens new opportunities for the 

management of cardiovascular dysfunction and disease from a circadian perspective (Altun and Ugur-Altun, 

2007). 

 A role of MLT in the control of cardiovascular rhythmicity is supported by animal and human studies. 

Pinealectomy of laboratory rats results in hypertension while the hypertensive effect of pinealectomy was 

blocked by administration of exogenous MLT. There is an inverted relationship between plasma MLT 

concentrations and acrophase of the BP rhythm in man, as high MLT level coincides with lower BP values. In 

humans, administration of exogenous MLT decreases BP in normotensive patients, in patients with essential 

hypertension (Scheer et al., 2004) and in patients with diabetes mellitus type 1(Cavalli et al., 2003). Single 

exogenous MLT intake can lower BP, but only when MLT is taken during the daytime, when general SCN 

neuronal activity is high and endogenous MLT levels are low. On the contrary, repeated nighttime MLT 

intake supports the endogenous MLT rhythm, improving circadian rhythmicity (Sharkey and Eastman, 2002). 

Synthesis and release of MLT are stimulated by NE via beta1-adrenoceptors, and this process is 

further potentiated by stimulation of alpha1-adrenoceptors. Accordingly, beta-blockers have been shown to 

reduce the production of MLT. Carvedilol is an effective adrenergic alpha1- and beta1-antagonist. However, 

Stoschitzky et al. (Stoschitzky et al., 1999) reported that carvedilol does not decrease nocturnal MLT 

production. Verapamil does not alter MLT release . Lacidipine treatment in hypertensive patients increases 

endogenous MLT production (Escames et al., 2004). However Lusardi et al. (Lusardi et al., 2000) showed 

that the chronic evening ingestion of MLT in hypertensive patients well-controlled by nifedipine GITS induces 

a BP increase and a heart-rate acceleration. Kinetic or pharmacodynamic interaction between MLT and 

nifedipine, is able to impair the antihypertensive efficacy of the calcium-channel blocker. This suggests 

caution in uncontrolled use of MLT in hypertensive patients. As the pineal hormone might interfere with 

calcium-channel blocker therapy, it cannot be considered simply a dietary supplement. Zaslavskaia et al. 

(Zaslavskaia et al., 1998) showed that combination losartan and MLT-reduced BP more noticeably than 

losartan alone. Recently, this group also showed that combination moxonidine and MLT is more effective on 

hemodynamic parameters in patients with arterial hypertension than moxonidine alone. MLT (1–5 mg) has 

been widely used as a nutritional supplement in the United States for several years, without any serious 

adverse side effects being reported. Daytime exogenous MLT intake may result in sleepiness and 

hypothermia during the day and should thus be avoided. MLT taken at night could thus be a gentle 

alternative or supplement to regular antihypertensive medication.  

The increased formation of cardiac malondialdehyde and serum nitric oxide, and the decreased 

activity of cardiac antioxidant enzymes (i.e. superoxide dismutase, glutathione peroxidase and catalase) 

were found on chemotherapeutic drug-induced oxidative damage in the heart tissue. Paskaloglu et al. 

(Paskaloglu et al., 2004) showed that MLT or insulin alone can provide limited protection against 

hyperglycemia-induced oxidative damage in diabetes. Combined treatment with insulin and MLT can 

suppress hyperglycemia, prevent oxidative damage and can restore endothelial function completely, 

implying that treatment of diabetes mellitus with this combination would be beneficial. Zaslavskaya et al. 

(Zaslavskaya et al., 2004) studied MLT effects on contractile myocardial function; patients with post-

myocardial infarction and heart failure, assessed as stage II-III by New York Heart Association (NYHA). They 

found MLT associated anti-anginal and anti-ischemic effects, indicating improvement of contractile function. 
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The ejection fraction increased; the anti-anginal effect appeared by the fifth day of treatment. Thus O’Rouke 

(O'Rourke et al., 2003) showed that additional anti-ischemic effect of MLT, acting via specific MLT receptors, 

inhibits nitrate tolerance in coronary arteries and that this effect is dependent on the presence of vascular 

endothelium. MLT has been found to protect heart tissues against oxidative damage induced by other free 

radical-generating agents and processes.  

Disturbances in renal hemodynamics and direct cytotoxicity have been identified as key factors in the 

pathogenesis of contrast induced nephropathy (CIN). Contrast agents markedly aggravate this physiological 

hypoxia of the outer medullary layer because they cause enhanced metabolic activity and oxygen 

consumption as a result of osmotic diuresis and increased salt delivery to the distal nephron. The result of 

the hemodynamic changes is hypoxia followed by oxidative stress and repair. Recently, we experimentally 

demonstrated for the first time that pre- and post-treatment with MLT did prevent and protect renal function 

as measured by Fe-Na, serum Cr and Cr clearance in rats with CIN (Gazi et al., 2006). MLT protects renal 

function against the development of CIN and opens a new era in the management of CIN. This study 

revealed that only pretreatment with MLT was not sufficient to prevent renal deterioration completely and 

improve renal function in CIN. However, rats pre- and post-treated with MLT showed significant improvement 

in their renal function possibly related to ongoing continuous MLT effect.  

Several recent publications present evidence that MLT has significant protective actions against the 

cardiac damage and altered physiology that occurs during ischemia/reperfusion (I/R) injury (Sahna et al., 

2002). Sahna et al. (Sahna et al., 2005) showed that physiological concentrations of MLT were important in 

preventing I/R-induced cardiac infarct size. The results showing increased I/R-induced cardiac injury after 

reduction in physiological levels of MLT have implications for elderly people in as much as in old individuals 

endogenous levels of MLT are significantly lower than in young individuals. Several studies have reported 

that humans with cardiovascular diseases have noticeably lower circulating MLT levels than do age-matched 

subjects without significant cardiovascular deterioration. Similarly, patients suffering from cardiac syndrome 

X have an attenuated nocturnal peak in serum MLT levels relative to those of age-matched individuals with 

no cardiac pathology (Altun et al., 2002). It remains unknown, however, whether the reduced endogenous 

MLT levels in patients with cardiovascular disease is a cause, an effect or even related to the compromised 

cardiovascular function. 

 

2.3.4. Neurological disorders  

A large number of individuals suffer from primary headache (migraine and cluster headache). 

Migraine and cluster headache can be viewed as transient disturbances of the body adaptive response to 

internal or external environmental changes. Among these factors, light is a major precipitating or aggravating 

factor of attacks (Claustrat et al., 2004). Abnormalities in the secretion of MLT and cortisol in patients with 

migraine and cluster headache have been documented (Peres, 2005). MLT mechanisms are related to 

headache pathophysiology in many ways, including its anti-inflammatory effect, toxic free radical scavenging, 

reduction of pro-inflammatory cytokine upregulation, nitric oxide synthase activity and dopamine release 

inhibition, membrane stabilisation, γ-aminobutyric acid (GABA) and opioid analgesia potentiation, glutamate 

neurotoxicity protection, neurovascular regulation, serotonin modulation and the similarity of chemical 

structure to that of indomethacin. Treatment of headache disorders with MLT is promising, particularly in 

cluster headaches, hypnic headaches, indomethacin-responsive headaches and migraine (Peres, 2005). 
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Recent studies showed disruption of nocturnal surge of MLT in ischemic stroke patients and patients 

with acute cerebral hemorrhage. Endogenously produced and exogenously administered MLT may reduce 

the degree of tissue damage and limit the biobehavioral deficits associated with ischemia/reperfusion injury 

in the brain (i.e. stroke). MLT’s protective actions against ischemia/reperfusion injury are believed to stem 

from its direct free radical scavenging and indirect antioxidant activities, possibly from its ability to limit free 

radical generation at the mitochondrial level (Reiter et al., 2005). Recently, a meta-analysis demonstrated a 

marked efficacy of MLT in animal models of focal cerebral ischemia, identified priority areas for future animal 

research, and suggested MLT as a candidate neuroprotective drug for human stroke (Macleod et al., 2005). 

The decline in MLT production in aged individuals has been suggested as one of the primary 

contributing factors for the development of age-associated neurodegenerative diseases. Parkinsonism is the 

second most common neurodegenerative disorder after Alzheimer’s disease. MLT not only plays an 

important role in the regulation of circadian rhythms, but also acts as an antioxidant and neuroprotector that 

may be of importance in ageing and neurodegenerative diseases. MLT has been shown to be effective in 

arresting neurodegenerative phenomena seen in both in vivo and in vitro studies of Alzheimer’s disease and 

Parkinsonism (Srinivasan et al., 2005). 

Decreased MLT levels have also been reported in patients with some forms of epilepsy. Some 

authors suggest a potential use of MLT as an adjunct to anti-epileptic therapy because of its diverse 

spectrum of action as an antioxidant, neuroprotector and free radical scavenger, thus offering the advantage 

of reducing oxidant stress and subsequent damage. The beneficial effects of MLT on sleep, its wide safety 

window and its ability to cross the blood–brain barrier have the potential to improve quality of life in pediatric 

epilepsy (Gupta et al., 2004). Molina-Carballo et al. (Molina-Carballo et al., 1997) showed that high doses of 

MLT as adjunctive anti-epileptic therapy in a child with severe myoclonic epilepsy improved both the 

frequency of seizures and the EEG tracing. MLT could be beneficial in combination with other anti-epileptic 

medications (Gupta et al., 2004). However, Sheldon (Sheldon, 1998) showed that proconvulsant effects of 

MLT in neurologically disabled children. Although MLT had a positive effect on sleep disorders, four of six 

children with severe neurological disabling conditions and seizures had increased seizure activity after MLT 

treatment. Seizure frequency returned to baseline after MLT was discontinued and re-challenge resulted in 

recurrence. 

 

2.3.5. Psychiatric diseases  

In normal subjects, the secretion of MLT, the pineal hormone that regulates the rhythm of many 

functions, exhibits a circadian pattern synchronized with the day–night cycle. An alteration of this secretory 

pattern has been found in various psychiatric disorders (seasonal affective disorder (SAD), bipolar disorder, 

unipolar depression, bulimia, anorexia, schizophrenia, panic disorder, obsessive compulsive disorder and 

delirium) (Pacchierotti et al., 2001). Numerous studies have reported low MLT secretion in depression, but 

other studies have suggested no deficit or an increase (Crasson et al., 2004). Recent studies evidence 

conflicting results (normal MLT peak, normal or phase delay rather than phase advanced peak) which could 

be explained by methodological differences (size of samples, duration of drug wash-out, selection of patients 

and comparison of patients with not strictly matched controls) and seniority of the disease(Crasson et al., 

2004). Seasonal affective disorder is a condition of regularly occurring depressions in winter with a remission 

the following spring or summer. In addition to depressed mood, the patients tend to experience increased 

appetite and an increased duration of sleep during the winter. SAD is a relatively common condition, 
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affecting 1–3% of adults in temperate climates, and it is more prevalent in women. SAD patients’ circadian 

rhythms are delayed relative to the sleep/wake or rest/activity cycle (Magnusson and Boivin, 2003). MLT 

levels in the SAD patients were found to be on average 2.4 times as high as in the controls (Karadottir and 

Axelsson, 2001). Heterogeneous results were also observed for MLT profiles in schizophrenia and anorexia 

nervosa . Delirium is a common syndrome among hospitalized elderly patients. In humans, sleep and 

circadian rhythms are disturbed during delirium, and both are influenced by the hormone MLT. Recently, a 

study showed that urinary MLT metabolite during delirium was higher in hypoactive and lower in hyperactive 

patients (Balan et al., 2003). At present, it is not known if such alterations have an etiological role or are 

secondary to the dysfunctions underlying various psychiatric disorders. An understanding of the role of the 

MLT and of its alterations in psychiatric diseases could help to identify the biological mechanisms underlying 

such disorders. 

 

2.4. MLT: USE IN SLEEP DISRUPTION IN CRITICALLY ILL 

PATIENTS 

Sleep disruption in critically ill patients is a well-recognized phenomenon. Indeed, one intensive care 

unit (ICU) reported that none of their mechanically ventilated patients displayed a normal sleep pattern 

(Cooper et al., 2000). The consequences of inadequate sleep are catabolism induction and impaired cellular 

and humoral immunity, which may lead to delayed healing. Additionally, Eveloff and Gabor et al. (Gabor et 

al., 2001) have reviewed the consequences of sleep disruption in the ICU and concluded that it can cause 

respiratory dysfunction, which could prolong mechanical support. This type of respiratory dysfunction is due 

to increased respiratory muscle fatigue and decreased ventilator responsiveness to hypercapnia (Gabor et 

al., 2001). Patients themselves perceive their sleep in the ICU as worse than usual and that this does not 

improve during their ICU stay . Difficulty in sleeping is a common symptom identified by cancer patients 

receiving intensive care (Nelson et al., 2001). Patients also report that sleep disruption is also one of the 

most stressful components of their time in the ICU. 

Some patients will be predisposed to sleep disturbances in the ICU due to chronic illness. Patients 

with chronic obstructive pulmonary disease have increased sleep latency, reduced total sleep time and 

experience increased arousals. Cheyne-Stokes respiration is common in patients with chronic heart failure 

whose ejection fractions are less than 40% and is associated with sleep fragmentation and reduced sleep 

efficiency (Quaranta et al., 1997). Patients with acute neurological disorders (e.g. intracerebral hemorrhage, 

meningitis) may also suffer from Cheyne-Stokes respiration. Asthmatic patients are known to experience 

sleep disorders including early awakening (Janson et al., 1990). 

The causes of disrupted sleep in critically ill patients have been reviewed extensively (Gabor et al., 

2001). Effects of environmental factors such as excess noise and lighting, the patient’s acute illness itself, 

patient care activities and mechanical ventilation are detrimental to quality sleep in the ICU. Noise is often 

regarded as the most disruptive on sleep function. However, environmental noise was not found to be a 

major determinant of sleep disruption in mechanically ventilated medical patients (Freedman et al., 2001). 

Another study found that only 30% of sleep arousals and awakenings were due to noise and patient care 

activities (Gabor et al., 2003) which suggests that other environmental or patient related factors are 

important in the etiology of this condition. 
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The effect of medication on sleep disturbances in critically ill patients has not been documented 

systematically. Polypharmacy, increased use of the intravenous drugs and the particular drugs commonly 

used in ICU increase the risk of drug induced sleep disturbances in this group of acutely ill patients. This 

review outlines pharmacological considerations relating to sleep disruption in critically ill patients, and the 

various treatments available. 

 

2.4.1. Normal sleep architecture 

Sleep occurs in two distinct phases, involving rapid eye movement and non-rapid eye movement. 

Non-rapid eye movement comprises four subdivisions (1–4) with increasing sleep depth. The more restful 

sleep of stages 3 and 4 represent slow wave sleep. Rapid eye movement (REM) is also a restful period of 

sleep but has a lower threshold for awakening than slow wave sleep. Dreaming normally occurs during 

periods of rapid eye movement sleep. Normal sleep architecture is described by a continuous cycle during 

the night between non-rapid eye movement and rapid eye movement sleep, the sleep cycle lasts 

approximately 90 min. Rapid eye movement periods become more prolonged the further into the total sleep 

episode. 

The sleep-wake cycle and sleep stages are regulated by a complex interplay of numerous 

neurotransmitters including NE, serotonin, acetylcholine, dopamine, histamine and γ aminobutyric acid 

Adenosine has a role in the initiation of the more restful sleep phases (Porkka-Heiskanen et al., 2002). 

Pituitary hormones may affect sleep and be of functional significance in the maintenance and quality of sleep 

The neurohormone MLT is also important in regulating the sleep-wake cycle in humans (Sack et al., 1997). 

Drugs that have an effect on these neurotransmitters and hormones may influence normal sleep 

architecture. Sleep stage classification and spectrum analysis using polysomnography (continuous 

polygraph of multiple physiological variables during sleep) can provide detailed information on the adverse 

effects of drugs on sleep (Dietrich, 1997). However, few data are available, especially in relation to critically 

ill patients. Hence data forming the basis of this review is drawn from studies related to sleep disorders in 

healthy subjects and non-critically ill patients.  

 

2.4.2. Sleep disorders associated with critical care 

The article by Bourne et al. (Bourne and Mills, 2004) focuses on the common sleep disorders in 

critically ill patients on ICU, principally insomnia (an intrinsic sleep disorder (dyssomnia)) and nightmares (a 

parasomnia). Drugs that suppress rapid eye movement sleep can cause nightmares, possibly due to 

increased rapid eye movement intensity over shorter periods. Insomnia and nightmares comprise some of 

the characteristic symptoms of the post-traumatic stress disorder, whose importance after ICU discharge is 

becoming more recognized. It has been suggested that post-traumatic stress disorder related to ICU care 

may be associated with periods of amnesia (Jones et al., 2001). Drug related reduction in slow wave sleep 

might affect memory formation and predispose the patient to post-traumatic stress disorder (Jones et al., 

2001). Rundshagen and colleagues found that in sedated and ventilated patients discharged from ICU, 9.3% 

could recall nightmares and 6.6% hallucinations (Rundshagen et al., 2002). Follow-up clinics indicate that 

continued sleep disturbance occurs in patients after ICU care (Eddleston et al., 2000). ICU patients are not 

deprived of sleep over a 24-h period, but demonstrate sleep fragmentation, with increased stage 1 and 
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reduced stage 2, 3 and 4 and little rapid eye movement sleep (Freedman et al., 2001). This sleep pattern 

may also predispose to post-traumatic stress disorder. 

 

2.4.3. Pharmacokinetics of MLT in health subjects 

MLT secretion in humans increases considerably with the fading of the light, reaching peak plasma 

concentrations between the hours of 2:00 and 4:00 (Brzezinski, 1997) then decreased gradually in the 

second half of the night. The age of the subject significantly influences hormone secretion by the pineal 

gland: in infants it is practically absent while it reaches the highest levels and the characteristic circadian 

pattern in children from one to three years and then decrease with age. In the young adult, mean values of 

plasma MLT during the day and at night-peak are, respectively, 10 and 60 pg/ml (Liu et al., 2000). 

The secretory rate of hormone epiphyseal follows the alternating light-dark cycle by integrating the 

signals from the SCN; it is proved, however, that a certain periodicity is retained even in individuals not 

exposed to light for 24 hours (Czeisler et al., 1995). 

Overhead lighting is not directly responsible for the production of MLT secretion but affects the 

circadian secretion managing to completely block the release if the exposure is short but considerable 

intense. In healthy volunteers the inhibition of hormone secretion by the light is dose-dependent: at 

intensities equal to 200 - 400 lux (ordinary fluorescent light) there is an initial inhibition which becomes 

maxima after exposure to 600 lux for an entire hour.  Further increases in light intensity, as well as duration 

of exposure, no additional effects (Brzezinski, 1997). Curious is the observation that, in blind subjects with no 

pupillary reflex at direct light, this still exerts an inhibiting action on MLT secretion, suggesting the existence 

of two different photo-receptive systems: one regulator of hormone epiphyseal secretion and the other one 

responsible for the conscious perception of light exposure (Czeisler et al., 1995). 

In the same subjects the bioavailability of the hormone administered orally varies considerably 

depending on the dose used: 1 to 5 mg of MLT induce the achievement of plasma concentrations 10-100 

times higher than the physiological night peak with prolonged plasma half-life from 4 to 8 hours (Brzezinski, 

1997). In healthy subjects, no side effects were observed taking MLT, although it lacks an accurate 

assessment of the intensity of the physiological effects of the hormone (hypothermia, increased sleep, 

decreased attention span and alertness, alteration of the cycle sex hormone) in the subject that takes, for 

long time, large quantities of the same substance (Liu et al., 2000). Despite MLT do not have an endocrine 

strong action, it’s well-known a decrease in the plasma concentration of luteinizing hormone and an increase 

in that of prolactin, in the subject that assumes pharmacological doses of the pineal derivative (Brzezinski, 

1997). 



 30 

2.4.4. Pharmacokinetics of MLT in ICU patients 

The clinical study carried out by Shilo e al. (Shilo et al., 1999) at the Intensive Care Unit of the Sapir 

Medical Center in Israel is an important starting point in the approach to the regulation of sleep and daily 

secretion of MLT in critically ill patients. The work of Shilo is intended to demonstrate an alteration in the 

production of circadian epiphyseal hormone and a correlation between this data and the unequivocal 

observation of decreased quality of sleep in patients in the ICU (Krachman et al., 1995). The research team 

conducted an observational study, involving fourteen conscious patients (eight women and six men) 

admitted to the ICU, with the following characteristics: mean age 61 years ± 11 years, hospitalization higher 

than 4 days , normal renal function, abstention by drugs whose use interferes with the secretion of MLT 

(beta-blockers, beta-agonists and opioids). 

The results obtained in the group of critically ill patients were compared with those of six patients 

hospitalized in a department of internal medicine with similar characteristics to those of the first group. 

Actigraphy was chosen as the method of detection of sleep time in critically ill patients because it correlates 

precisely with the data coming from the surveys polysomnographic (Cole et al., 1992). During the study 

period, the fourteen patients have worn on the wrist an actigraph, a small tool, like a watch, capable of 

detecting the subject's movements along the arc of twenty-four hours. The results produced by reading the 

traces of actigraph have confirmed the suspicion that the sleep of critically ill patients is not only poor but 

also of poor quality when compared with the patients 'control' (Fig. 7). 

 

 

Fig. 7 – Actigraph recordings in control and in ICU patients. Picture modified from Shilo-1999. 

 
The analysis of the traces presented above it can be seen in critically ill patients completely lacking a 

resting phase, and then to abstain from voluntary movement, which characterizes the central hours of the 

night (from about 22:00 to 7:00 the next morning) in the group of patients "control". 

During the study period, the urine of the fourteen patients was collected every three hours for 24 

consecutive hours and from each sample 5 ml were taken for the determination of the metabolite 6-

sulfatoxyMLT (aMT6s) content using an radioimmunoassay (RIA) method. 
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The results of the study conducted by Shilo and colleagues have been fundamental: patients 

admitted to the ICU, sleep for very short periods during the day and during the night, confirming the fact that 

there must be a deregulation of the internal biological clock. During the night, in fact, even in the ICU, the 

noises are reduced as well as the overall level of activity of the department theoretically allowing a rest 

which, in fact, is not realized. Everything appears to be closely related to the frequent occurrence, in these 

critically ill patients, of delirium and ICU syndrome (Ely et al., 2001). 

The pattern of aMT6s secretion proved to be abnormal in all fourteen patients enrolled with a 

reduction in the concentration of the hormone peak and an abolition of the same in twelve of them when 

compared with the sample of six patients in general medicine (Fig. 8). 

 

 

Fig. 8 – (A) Urinary aMT6s levels in ICU patients. (B) Urinary aMT6s levels in control subjects. Picture modified from Shilo-1999. 

 

Sepsis is a clinical condition is very common in patients admitted to the Intensive Care Unit, 

contribute to its development several factors including immunosuppression, iatrogenic or self-induced. In this 

context, the loss of the regulation of circadian MLT secretion, with its immunomodulator action, constitutes a 

possible key factor in the worsening of the clinical case. The study conducted by Mundigler et al. (Mundigler 

et al., 2002) investigates the relationship between the septic condition and the daily alteration of the 

epiphyseal hormone regulation. To reach this aim, the daily urinary excretion of the major metabolite of MLT 

has been studied in a group of septic patients (Group A) compared with a group of critically ill patients with 

sepsis (Group B) and a group of healthy volunteers (Group C). Group A included 17 patients with severe 

sepsis, defined according to the following criteria: body temperature > 38.5°C or < 35.5°C, leucocytes (WBC) 

> 12000/mm
3
 or < 4000/mm

3
, heart rate > 100 beats / min, tachypnea > 20 breaths / min or hypocapnia 

(PaCO2 <32 mmHg), mean arterial pressure < 60 mmHg or need of vasoactive amines, infection with 

bacterial isolation. In Group B included seven patients admitted to the ICU for reasons other than sepsis (7 
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post-anoxic coma). Group C includes 21 healthy volunteers. Exclusion criteria from the study were: hepatic 

failure, renal failure, use of beta-blockers. In order to avoid accidental exposure to light at night, patients 

belonging to groups A and B are fitted with a mask that covers the eyes and the lights of the department are 

lowered. As the study made by Shilo et al., patients are monitored every 4 hours starting at 6:00 in the 

morning for 24 hours; 5 ml of urine from each of the patients is dosed for the determination of the aMT6s 

content. The results of the study showed a total lack of circadian rhythm related to the production of 

epiphyses in 17 septic patients, whereas in the other seven critically ill patients with sepsis and in the group 

of healthy volunteers this phenomenon does not occur (Fig. 9). 

 

 

Fig. 9 – 24-hour profiles of urinary aMT6s excretion in different patient groups. Values are means ± SD. (a) septic patients (group A), (b) 
non-septic patients (group B), (c) control patients (group C). Picture modified from Mundingler-2002. 

 

It is the severe sepsis to play a key role in this scenario: note the progressive tendency to restore 

circadian rhythm in the 9 patients who gradually went off the septic process (Fig. 10). 

 

 

Fig. 10 - 24-hour profiles of urinary aMT6s excretion of sepsis survivors (n=9) at study entry and after recovery from sepsis. Values are 
means ± SD. Picture modified from Mundingler-2002. 

 
At the end of the work, Mundigler emphasizes the large number of possible therapeutic implications 

of MLT as immunostimulant substance; hormone receptors are present at the level of CD4+ T lymphocytes 

and B lymphocytes (Gonzalez-Haba et al., 1995) while it has been proved its role in promoting the activity of 

monocytes and natural killer cells together with the antioxidant action (Reiter et al., 2002). Considering the 

importance of immunodepression and oxidative stress in the development and maintenance of the septic 

state, the role of MLT, with all its properties clinics, emerges with increasing importance. 
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2.5. MLT AS AN ONCOSTATIC SUBSTANCE 

 

2.5.1. Aging, immune function and cancer 

That the levels of immunity is a predictor of individual longevity in human beings has been suggested 

by several epidemiological studies like OCTO and NONA which revealed the existence of “immunological 

risk phenotypes” that can predict the life span in the elderly (Pawelec et al., 2004; Pawelec et al., 2002). 

Longer life in centenarians has been associated with high natural killer (NK) cell number, augmented 

interferon (IFN)-γ production and phagocytosis (Miyaji et al., 2000). The age-associated increases in NK 

cells were interpreted as a compensatory response to overcome the decreased immune function that could 

otherwise trigger neoplastic growth (Srinivasan et al., 2005). 

Studies of knockout mice have shown the important role of the immune system in controlling the 

spontaneous generation of tumors. Nearly 50% of aged IFN-γ-/-or perforin -/- mice developed lymphomas, 

lung adenocarcinoma or sarcoma (Street et al., 2002). Immune changes during aging may result in tumor 

growth since the incidence of metastatic cancer at autopsy peaks 75-90 years and has been shown to 

decline in 95-99 years old and centenarians (Stanta et al., 1997). That the personality and the emotional 

state of the individual can influence the course of illness by altering the immune function has been well 

documented (Segerstrom, 2005). 

The understanding of the immune changes in the elderly can provide new insights into the 

complexes relationship between immunity and cancer (Hegde et al., 2009). In this respect, the decline in the 

production of MLT with aging was suggested to play an important role in triggering immunoscence, 

especially age-associated neoplastic diseases (Miller et al., 2006). 

Any search for therapeutic agent that can improve the quality of life in the elderly depend upon the 

identification of substances that have both antioxidant and immunoenhancing qualities. As MLT has been 

identified as a natural antioxidant with immunoenhancing properties, it has the potential of becoming an 

effective therapeutic substance in preventing or arresting neolpastic growth. 

 

2.5.2. MLT in immune mechanism 

There are many natural mechanisms that protect against carcinogenesis and they fall into two main 

categories, immune and non-immune. Among the former, immunosurveillance has been suggested as one of 

the major processes by which cancerous cells are detected and eliminated. The activation of lymphocytes 

and monocytes/macrophages by MLT can be one of the major mechanisms in preventing tumor 

development (Martins et al., 1998). MLT has a significant immunomodulatory role in the 

immunocompromised state (Cardinali et al., 2008). The age-related impairment of the immune system first 

appears around the sixth decade of age coinciding with a normal decrease in plasma MLT concentration. 

Aging is associated with a decline in immune function that predisposes to increased incidence of cancer and 

infectious and neurodegenerative diseases like Alzheimer’s disease. 

The diurnal and seasonal changes in the immune function correlate with MLT biosynthesis and 

secretion (Skwarlo-Sonta, 2002). In addition, the synthesis of MLT by human lymphocytes (Carrillo-Vico et 

al., 2004) lead to support the hypothesis that MLT has a role in the regulation of immune function. Other 

studies demonstrated that the MLT synthesized by human T cells contributes to regulation of interleukin (IL)-
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2 production acting as intracrine, autocrine and/or paracrine substance . The presence of high levels of MLT 

in cultured rat thymocytes and expression of mRNAs encoding for AANAT and HIOMT in the rat and human 

thymus cells support that MLT is also synthesized by thymocytes (Naranjo et al., 2007). 

Seasonal changes of MLT secretion are observed in human beings (Ueno-Towatari et al., 2007)and 

it is suggested that MLT has significant role in immune modulation during different seasons of the year 

(Srinivasan et al., 2008). The role of MLT as a possible mediator of seasonal changes effects on immune 

function has been well documented (Nelson, 2004; Nelson and Drazen, 2000). 

MLT receptors are detectable in the monocyte/macrophage lineage (Garcia-Maurino et al., 2000). 

Administration of MLT increases the production of both monocytes and NK cells in bone marrow and spleen 

within 7-14 days of treatment (Currier et al., 2000). As both cell types are components of the non-specific 

immune system, the findings suggest that MLT can be effective in arresting neoplastic growth and in 

destroying virus infected cells. MLT’s stimulatory action on monocyte production could be due either to its 

direct action on MLT receptors in monocytes or to its sensitizing action on monocytes to stimulants like IL-3, 

IL-4 or granulocyte-macrophages-colony stimulating factor (Currier et al., 2000). By this action MLT was able 

to rescue hematopoiesis from the toxic effect of cancer chemotherapy in several experimental models. This 

evidence actually poses the basis for the therapeutic use of MLT as an adjuvant in combination with 

myelotoxic anticancer therapeutic protocols. 

NK cells play an important role in immunosurveillance against neoplasia and virus infected cells 

(Chaplin, 2010). Acute administration of MLT increased NK cell responsiveness to IFN- while its chronic 

administration not only augments NK cell activity but also increases the number of NK cells in circulation. 

The increased NK cell number brought out by MLT is attributed to an increased production of cytokines like 

IL-2, IL-6, IL-12 and IFN-from T helper (Th)-1 lymphocytes and from monocytes (Currier et al., 2000). The 

presence of MLT receptors on T lymphocytes explains MLT’s action in releasing cytokines that enhance the 

NK cell activity and augmented NK cell number. By activating Th-1 cells MLT enhances the production of 

IFN-γMLT’s immunoenhancing effect depends not only upon its ability to enhance production of cytokines 

but also upon its antiapoptotic actions. 

 

2.5.3. MLT and T lymphocytes 

Th lymphocytes play an important role for the protection against malignancy, by recruiting cells of the 

immune system and by activating antigen-specific effector cells (Knutson and Disis, 2005). Importance has 

been given to the stimulation of CD4
+
 Th cell in cancer chemotherapy. CD4

+
 lymphocytes secrete IFN- and 

tumor necrosis factor (TNF)-αthat activate and regulate cytotoxicT cell responses. MLT treatment 

augmented CD4
+
 cells in lymph nodes of rats (Castrillon et al., 2000). Th-1 cells directly kill tumor cells by 

releasing cytokines that activate “death” receptors on the tumor cell surface (Knutson and Disis, 2005). MLT 

also favors Th-2 responses: it not only stimulates the release of IFN-γand IL-2 but also IL-10 (Raghavendra 

et al., 2001). 

In immune-depressed states, MLT’s immunoenhancing action is restricted to T-lymphocytes 

(Maestroni, 2001). Suppression of nocturnal MLT rise in mothers with mastitis was highly correlated with 

increased TNF-αsecretion from immunocompetent cells in calostrum (Pontes et al., 2006). Since the 

proinflammatory cytokine inhibits nocturnal pineal MLT production (Fernandes et al., 2006) the results 
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suggest that during the response to an injury the production of MLT can e transiently shifted from an 

endocrine (pineal) to a paracrine (immunocompetent cells) (Markus et al., 2007). 

 

2.5.4. MLT in melanoma 

MLT acts as a protective agent against damage induced by UV radiation in the human skin (Fischer 

et al., 2006). MLT is also radioprotective against X-ray induced skin damage in the albino rat . The 

Bradioprotective action of MLT is attributed to its antioxidant properties  via direct radical scavenging 

properties and stimulation of antioxidant enzymes as demonstrated in human skin fibroblasts (Kim et al., 

2001). 

MLT has oncostatic properties in melanomas and tumors of epithelial origin (Oh et al., 2001). The 

ability of MLT to stimulate IL-2 production and to enhance its antitumor activity has been tested both in 

experimental animals and in clinical trials. MLT on its own exerted a significant antitumor effect but when 

combined with IL-2 it potentiated the antitumor effect of IL-2 in an additive manner. In cancer patients both T 

and Nk cells are generally depressed, and since MLT administration can augment the production of T 

lymphocytes and NK cells via IL-2 increase, MLT administration could be a useful adjuvant therapy to impair 

tumor growth (Bartsch et al., 2000). 

MLT administration along with IL-2 and naltrexone in patients with untreatable metastatic melanoma 

increased Th-1 and suppressed Th-2 responses, a reportedly favorable result in anticancer treatment 

(Lissoni, 2007; Lissoni et al., 1993a). In the studies by Lissoni et al. it was found that advanced neoplasms 

resistant to IL-2 responded well to il-2 therapy after the concomitant administration of MLT (Lissoni et al., 

2008). Patients who received both IL-2 and MLT exhibited a significantly higher number of lymphocytes, T 

lymphocytes, NK cells and CD4
+
 cells than those receiving IL-2 alone. A further study using IL-2 along with 

MLT and cisplatin demonstrated that it was the most effective immunotherapeutic way for treating metastatic 

melanoma. In that study the combination of MLT with IL-2 was proved to be successful after failure of a first 

line therapy with decarbazine and IFN-MLT not only suppressed tumor growth but also suppressed 

significantly the toxicity of chemotherapeutic drugs and potentiated their anticancer cytotoxic (Brivio et al., 

2010). 

In a study aiming to determine location and intensity of expression of MT1 MLT receptors and of Ki-

67 proliferation-associated antigen in dermal melanoma, material from 48 cases of dermal melanoma, 

including 38 primary tumors and 10 metastatic lymph nodes was examined (Danielczyk and Dziegiel, 2009). 

Expression of MT1 receptor was more pronounced in primary tumors than in related metastatic lymph nodes. 

Depth of tumor infiltration demonstrated a moderate positive correlation with the intensity of MT1 expression 

and a strongly positive correlation with the expression of Ki-67 antigen. In both primary tumors and 

metastatic lymph nodes, a weak correlation was found between the expression of MT1 receptor and the 

expression of Ki-67 antigen (Danielczyk and Dziegiel, 2009). 

MLT was effective in inhibiting cell proliferation of S-91 murine melanoma cells, under both in vitro 

and in vivo conditions (Kadekaro et al., 2004). MLT exerted its antiproliferative action by increasing the 

expression of MT1 receptor and also by increasing the activity of antioxidant enzymes. Early studies 

demonstrates that MLT can act directly at the cellular level to inhibit the proliferation of PG 19 and B16BL6 

mouse melanoma cells in culture (Cos et al., 2001). The antiproliferative action of MLT is dose-dependent 

(Yerneni and Jayaraman, 2003). With the highest MLT concentration employed (19356 pg/cell) the cancer 
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cells became undetectable at day 5 of treatment. The total elimination of cancer cells observe in this study 

was the first of this kind reported in the scientific literature.  

The disruption of circadian rhythmicity becomes significant as a tumor progresses, whereas the 

incidence of cancer augments after disruption of the circadian system. In a study to test whether body 

temperature rhythms are impaired by tumor progression, and to what extent exogenous MLT restricts tumor 

growth and restores circadian rhythmicity, C57 mice were subcutaneously inoculated with melanoma cells 

(Otalora et al., 2008). Animals were then submitted to 12:12 light-dark (LD) cycles or to continuous light (LL), 

with or without MLT administration (2 mg/kg/day). Under LD light conditions, the body temperature rhythm 

exhibited a marked reduction and increased phase instability a the tumor progressed. MLT administration 

increased the body temperature rhythm amplitude and phase stability, reduced tumor weight and prevented 

i.p. dissemination when administered in the subjective night (Otalora et al., 2008).   

The effect of MLT on the growth of uveal melanoma cells has also examined. Hu and his coworkers 

(Hu-1998) by using cultured human uveal melanoma cells, found that MLT (0,1-10 nM) inhibited the growth 

cells in a dose-dependent manner. Growth inhibition occurred at a concentration of 2 nM, the physiological 

levels found in aqueous humor. High affinity MLT binding sites occurred in SK- Mel 28 human melanoma cell 

lines. In these cells use of luzindole, a selective blocker of MT2 receptors reversed the antiproliferative and 

melanogenic effects of MLT. In human melanoma cells SK-Mel 1, the antiproliferative effects of MLT were 

associated with an alteration in the progression of the cell cycle and also with an increase in tyrosinase 

activity, a key regulatory of melanogenesis (Cabrera et al., 2010). Antagonists for MLT membrane receptors 

(luzindole and 4P-PDOT) and the general G-protein-coupled receptor inhibitor, pertussis toxin, did not 

prevent the MLT-induced cell growth arrest; this suggest a mechanism independent of G-protein-coupled 

membrane receptor. The p38 mitogen-activated protein kinase signaling pathway seems to play an important 

role in cell growth inhibition by MLT (Cabrera et al., 2010) 

 

2.5.5. MLT in breast cancer 

MLT is oncostatic and antiproliferative in breast cancer (Hill et al., 2009). Studies using MCF-7 

human breast cancer cells demonstrated that physiological concentration of MLT inhibit cell proliferation. As 

the MLT’s growth inhibitory effect was abolished by MT1 receptor antagonism, the MT1 receptors detectable 

in MCF-7 cells were identified as functional receptors responsible for transducing growth inhibitory effect of 

MLT (Ram et al., 2002). As the antiproliferative effect of MLT is also a serum dependent phenomenon, the 

interaction of MLT with a factor in the serum has been postulated for its antiproliferative action. 

MLT not only blocks the mitogenic effects of estradiol but it is also able to counteract the estradiol-

induced invasiveness of MCF-7 cells . In vitro experiments with the ER-positive MCF-7 human breast cancer 

cells demonstrated that MLT at physiological concentration (1 nM) inhibited the cell proliferation in the 

presence of serum or estradiol and increased the expression p53 and p21WAF1 proteins, which modulate 

the length of cell cycle. There is indication that MLT could exert its antitumoral effects on hormone-

dependent mammary tumors by down-regulating the sulfatase pathway of the tumoral tissue (Gonzalez et 

al., 2010). Since MLT binds to calmodulin in a Ca
2+

 dependent fashion, calmodulin was implicated in the 

antiestrogenic effects of MLT. MLT acts as a calmodulin antagonist inducing conformational changes of the 

Erα-CaM complex thus impairing binding of the Erα-CaM complex to DNA and thereby transcription(del Rio 

et al., 2004). This has been suggested as the mechanism by which MLT exerts oncostatic and 

antiproliferative actions.  
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In recent years increased breast cancer risk in women associate with work at nightshifts has been 

attributed to the low MLT level following light-induced inhibition of MLT synthesis (Flynn-Evans et al., 2009). 

The protective role of MLT in mammary carcinogenesis was also suggested by studies in postmenopausal 

women with advanced breast cancer who have diminished urinary levels of MLT as compared to controls. 

The inhibitory action of MLT on mammary carcinogenesis has been attributed to effect of MLT on immune 

modulation (Vijayalaxmi et al., 2002). Indeed, disturbances of immune mechanisms have been documented 

in experimental models of mammary cancer. For example, the absence of the cytosolic protein Nod1 in 

MCF-7 cells correlated with tumor growth, an increased sensitivity to estrogen induced cell proliferation, and 

a failure to undergo Nod1-dependent apoptosis. 

IL-2 and chemotherapy are employed for treatment of metastatic breast cancer (Burns et al., 2003) 

IL-2 used to achieve an increased efficacy of increasing NK cells and cytolytic function and, in combination 

with IFN- and chemotherapy, as an adjuvant treatment in high-risk breast cancer. The link between MLT 

and immune system in cancer has been explored in phase II studies with MLT causing increase of some 

cytokines and amplification of objective responses to cytokine in patients (Abrial et al., 2005). 

A correlation between tumor size and the nocturnal amplitude of MLT secretion was noted in some 

studies. Peak nocturnal amplitude of MLT was reduced in 50% of patients with primary breast cancer and 

was inversely correlated with tumor size. The nocturnal amplitude of the aMT6s concentration was found to 

be lower in patients with primary breast cancer. The circadian rhythm of nocturnal MLT production may 

represent a “regulatory shift” for the carcinogenesis process; it may exert a “natural restraint” on tumor 

initiation, promotion, and/or progression (Blask et al., 2009). 

 

2.5.6. MLT in ovarian, endometrial, and other cancers of the female 

reproductive tract 

Low MLT secretion has been reported in patients with endometrial cancer, but not in those with non-

invasive cancer or squamous cervical cancer. In vitro, an ovarian adenocarcinoma cell line (BG-1) exposed 

to MLT (1-100 nM) showed a 20-25% reduction in cell number. In another study application of MLT to 

ovarian carcinoma cell cultures revealed that three out of seven ovarian cell cultures were affected by MLT in 

different ways (Bartsch et al., 2000)Cells of one tumor were inhibited by 90% at 10 nM, while in another the 

growth inhibition was by 30% at a concentration of 0,1-1000 nM; a third specimen was stimulated up to 30% 

by 100 nM. The variability in the response was attributed to the presence of some unknown tumor condition 

likely to modify the MLT response (Bartsch et al., 2000). 

MLT did not exert antiproliferative effects on ovarian cancer cell lines at 0,001 nM – 1 μM 

concentrations but enhanced the sensitivity to cisplatin in two ovarian cell lines (Futagami et al., 2001). 

Results were interpreted as indicating that MLT may play a role in the control of telomerase activity and the 

suggestion was made that the resistance of ovarian cancer to cisplatin could be overcome by the 

administration of MLT. 

In ovarian cancer patients, IL-2 treatment has been employed (Zwirner et al., 2010). For example, in 

the analysis of six studies of i.p. immunotherapy in ovarian cancer, 21 individual responses to IL-2 treatment 

were reported out of 69 patients showing a 22% of clinical efficacy (Grande et al., 2006). Since MLT 

increases the production of IL-2, the prospective therapeutic role of MLT in cancer is that it may well acts as 

a modulator of IL-2 and IFN-γproduction by Th1 cells. MLT has the possibility of being used as a novel 

oncostatic adjuvant agent (Ramos et al., 2010; Regodon et al., 2005). 
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2.5.7. MLT in hepatocellular carcinoma 

Hepatocellular carcinoma is the cancer of the liver found after hepatitis B and hepatitis C infection, 

as well as in conditions associated with alcohol abuse (Zerbini et al., 2006). Many immunotherapeutic 

procedures were employed for treating hepatocellular carcinoma, like the use of cytokines or transfer of 

autologous-activated lymphocytes. Intratumoral injection of recombinant adenoviral vectors that induce the 

local release of IL-2 has been employed (Sangro et al., 2004). Improvement in overall recurrence-free 

survival was seen in 155 hepatocellular carcinoma patients after immunotherapy with IL-2 and a CD3 

(Takayama et al., 2000). In another study carried out on stage III and IV inoperable patients, IL-2 

administered along with IFN-γ and transarterial chemotherapy brought about tumor size reduction in 14 out 

20 patients (Reinisch et al., 2002). 

MLT induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line (Ozdemir et al., 

2009). In 100 patients with inoperable advanced primary hepatocellular carcinoma, transcatheter arterial 

chemoembolization (TACE) was used alone or associated with MLT. 

 

2.5.8. MLT in colorectal carcinoma 

Epidemiological studies of nurses engaged in night-shift work indicated an increased incidence of 

colorectal cancer, a finding interpreted as supporting the cancer-promoting effect of MLT inhibition by 

environmental light (Schernhammer et al., 2010). Indeed, many in vitro and in vivo studies have shown that 

MLT exerts antiproliferative effects on intestinal cancer. In a study on CT-26 a murine colon carcinoma-

derived cell line, MLT inhibited growth in a dose-dependent manner (Farriol et al., 2000). A statistically 

significant correlation was found between the decrease in DNA synthesis and the doses of MLT used. The 

growth inhibitory effect found was 22% (1 nM MLT), 25% (2 nM MLT) and 47% (3 nM MLT) (Farriol-2000). 

High MLT binding sites were demonstrated in human colonic mucosa and a MLT concentration of 467 + 99 

pg/g of wet tissue of human colon has been reported. The oncostatic action of MLT appears to depend on 

both MT2 and nuclear RZR/ROR receptors. Luzindole (a MT1 and MT2 antagonist) but not 4P-PDOT (a 

specific MT2 antagonist) diminishes the inhibitory effect of MLT on murine colon 38 cancer cell growth in 

vitro. 

The inhibitory effect of exogenous MLT on colon oncogenesis was investigated using the 

azoxymethane/dextran sodium sulfate rat model (Tanaka et al., 2009). At week 20, the development of 

colonic adenocarcinoma was significantly inhibited by the administration with MLT in a dose-dependent 

manner. MLT exposure decreased mitotic and apoptotic indices in the colonic adenocarcinomas and lowered 

the immunohistochemical expression of nuclear factor k B, TNF-α, IL-1β and STAT3 in the epithelial 

malignancies. These results may indicate the beneficial effects of MLT on colitis-related colon 

carcinogenesis and a potential application for inhibiting colorectal cancer development in the inflamed colon.  

Early studies on the effects of MLT in colorectal carcinoma were based upon the 

immunoneuroendocrine and synergistic relationship between MLT and IL-2 (Barni et al., 1992). In a study on 

24 patients with advanced cell tumors (non-small cell lung cancer, 9 patients; colorectal cancer, 7 patients; 

gastric cancer, 3 patients; breast cancer, 2 patients; cancer of pancreas, 1 patients; hepotocarcinoma, 1 

patient; unknown tumor, 1 patient) who did not respond to previous chemotherapies, IL-2 plus MLT was 

given. MLT was administered starting 7 days before IL-2 injection. While progress was reported in 6/24 

patients, stability was reported in 14/24 patients. IL-2 combination with MLT seemed useful to control tumor 
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growth n patients with advanced neoplasms (Lissoni et al., 1993b). In another study on 35 patients with 

advanced neoplasm of the digestive tract, immunotherapy with a low-dose of IL-2 plus MLT was a well-

tolerated and effective therapy. Complete response was obtained in patients with gastric carcinoma and 

hepatocarcinoma. The overall response rate was 8/35 (23%) (Lissoni et al., 1993b). Similarly, in another 

study a low subcutaneous dose of IL-2 plus MLT was found to be a second-line therapy for tumor regression 

and for prolonging survival of patients with metastatic colorectal cancer (Barni et al., 1995)  

The distinct MLT rhythm with higher concentrations during the darktime was found in plasma of both 

control patients and patients with colorectal carcinoma (Vician et al., 1999).  

Daytime MLT concentrations in gut tissue of colorectal carcinoma patients was found to be 317 + 

87,8 pg/g, nearly 1 times higher than the day time levels in circulation. An increased level of MLT in the gut 

has been found after surgery and it was suggested that they play a protective role against the development 

of colorectal cancer (Vician et al., 1999). 

The interrelationship between MLT and immune function was studied in patients with advanced GI 

cancer (42 patients with colorectal, gastric and pancreatic cancer) (Muc-Wierzgon et al., 2003). The 

circadian rhythm of MLT was altered with peak MLT level reaching at 08:00-09:00 h, with a 5-7 h-delay 

respecting average peak time in healthy humans. The rhythm in TNF-α and soluble TNF-αreceptors (type I 

and type II) also indicated the existence of complex self-regulatory mechanisms between the neuroendocrine 

system and the cytokine network in those patients (Muc-Wierzgon et al., 2003). Suppression of nocturnal 

MLT rise in mothers with mastitis was highly correlated with increased TNF-α secretion from 

immunocompetent cells phagocytes in calostrum (Pontes et al., 2007).  

Besides interacting with cytokines, MLT induces apoptotic cell death in cancer cells. In a study on 

HT-29 human colon cancer cells, MLT potentiated flavones-induced apoptosis (Wenzel et al., 2005). The 

role of MLT as pro-apoptotic agent s a new field of investigation. The pro-apoptotic action of MLT has been 

documented not only in colon cancer cells but also in breast cancer (Cos et al., 2002). The mechanisms 

underlying the pro-apoptotic action of MLT is still not clear. The findings that MLT induces apoptosis 

uniformly in all cancer cells may have important clinical significance. It could involve free radical scavenging 

properties and other intracellular pathways. Indeed, the antioxidant and anti-inflammatory actions of MLT 

counteracting the oxidative status and reducing the production of nitric oxide by cultured HT-29 cells seem to 

be directly involved in its oncostatic properties (Garcia-Navarro et al., 2007).  

 

2.6. MLT IN PROSTATE CANCER 

2.6.1. Prostate cancer 

The prostate is a gland (Fig. 11) found only in men, positioned in front of the rectum and that 

produces a part of the seminal fluid released during ejaculation. Under normal conditions, the size of a 

walnut, but with the passing of time or because of certain diseases can swell up to give mainly affects urinary 

type. This gland is very sensitive to the action of hormones, particularly male ones, such as testosterone, 

which affect their growth. Prostate cancer has its origin from the cells inside the gland begin to grow 

uncontrollably. In the prostate are several types of cells, each of which can be transformed and become 

cancerous, but almost all prostate cancers diagnosed arise from cells of the gland and are accordingly called 

adenocarcinomas (as all cancers that originate from cells of a gland). In addition to adenocarcinoma in the 

prostate can be found in rare cases sarcomas, small cell carcinomas and squamous cell transition. Much 
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more common are the benign conditions that affect the prostate, especially after the age of 50, and 

sometimes cause symptoms that may be confused with those of the tumor. In benign prostatic hyperplasia 

the central portion of the prostate gland swells and the excessive growth of this tissue compresses the 

urethra - channel that carries urine from the bladder through the prostate that, compressed, creates 

problems in passing urine. 

 

 

Fig. 11 – Prostate. Picture modified from: http://www.walktolive.ca/event/prostate-cancer/. 

 

Prostate cancer is classified according to the degree, which indicates the the status of the disease, 

the  aggressiveness, and the stag. Depending on the stage in which the disease is, additional staging 

examinations such as CT (computed tomography) or MRI are carried out. To verify the presence of 

metastases to the skeleton is often used bone scintigraphy. The pathologist who analyzes the tissue taken 

by biopsy assigns to the so-called tumor Gleason score, that is a number between 1 and 5 which indicates 

how the appearance of the tumor glands is similar to or different from that of normal glands: are more similar, 

the lower the Gleason score. The tumors with Gleason score less than or equal to 6 are considered low-

grade, intermediate grade of those with 7, while those between 8 and 10 high grade. The latter have a higher 

risk of progression and spread to other organs. Instead to define the stage at cancer typically uses the TNM 

system (T = tumor), where N indicates the status of the lymph nodes (N: 0 if not affected, if affected 1) M and 

the presence of metastasis (M: 0 if absent, 1 if present). For a complete characterization of the stage of 

disease these three parameters are also associated with the Gleason score and the PSA level. The 

correlation of these parameters (T, Gleason, PSA) can be attributed to the disease three different risk 

categories: low, intermediate and high risk. In general, in the case of a low-risk (ie, a disease that is difficult 

to spread and give rise to metastases) can also decide not to proceed with surgical removal of the gland but 

simply to monitor the evolution of the disorder.  

In its early stages, prostate cancer is asymptomatic and is diagnosed after urological visit, which 

involves digital rectal examination or PSA control, with a blood test. When the tumor grows, it produces 

urinary symptoms: difficulty in urination (especially at start) or need to urinate often, pain when urinating, 

blood in the urine or semen, feeling of not being able to urinate in a comprehensive manner.  Often urinary 

symptoms described above may be linked to prostate problems benign like hypertrophy: further tests are 

needed to classify : Low , intermediate and high risk patients. In the case of a low-risk (ie, a disease that is 

difficult to spread and give rise to metastases) surgical removal of the gland is avoided and the evolution of 

the disorder is simply monitored.  
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Prostate cancer  is an androgen-dependent neoplasia, which, in the metastatic phase or locally in 

the advanced one, has been treated in the first instance pharmacologically with androgen deprivation via 

surgical or chemical castration. In the second instance to the patient surgical treatment (radical 

prostatectomy) and radiotherapy are planned. The drug therapy shows good results with tumor regression 

and decline in serum PSA, however within 2 years about 80% of castrated patients suffer a relapse of the 

disease, with tumor progression from an hormone-dependent stage to a hormone-independent one, 

extremely more aggressive. 

The number of diagnoses of prostate cancer has increased progressively since, in the nineties, the 

test for the measurement of PSA has been approved by the Food and Drug Administration (FDA). Its real 

value in the diagnosis of a tumor, however, the debate is still open. The urinary symptoms of prostate cancer 

appear only in the later stages of the disease, however, may also indicate the presence of problems other 

than cancer. It is therefore very important that the diagnosis be performed by a physician who takes into 

account several factors before deciding how to proceed. In the evaluation of the prostate, the doctor may 

decide to perform the PSA test and digital rectal examination, which is performed in the physician's basic or 

urologist, and sometimes allows to identify the presence of any touch nodules at the level of the prostate. If 

this test gives rise to the suspicion of cancer, proceed normally with a biopsy of the prostate on ultrasound 

guidance. The only test that can identify with certainty the presence of cancer cells in the prostate tissue 

biopsy is performed under local anesthesia, which lasts a few minutes and is done in an outpatient setting. 

Through the guidance of the ultrasound probe inserted in the rectum are made with a special needle, at least 

12 donations by trans-rectal or by trans-perineal (the area between the rectum and scrotum) which are then 

analyzed by the pathologist under a microscope to search of cancer cells. 

Today there are many types of treatment for prostate cancer each of which has specific benefits and 

side effects. Only a careful analysis of patient characteristics (age, life expectancy, etc.) and the disease 

(low, intermediate or high risk) will allow the urologist to recommend the most suitable strategy and 

individualized therapy to agree also based on preferences of those who must submit to treatment. In some 

cases, especially for elderly or patients with other serious diseases, or in the case of tumors of small 

dimensions and with low risk (micro outbreak in biopsy), it may choose not to implement any kind of therapy 

and "wait" is to that the Anglo-Saxons called watchful waiting, a "watchful waiting," which does not require 

treatment, but only controls fairly frequent (PSA, rectal examination, biopsy) that allow you to control the 

evolution of the disease and check for any changes that merit intervention. 

When it comes to active therapy, however, the choice often falls on radical surgery. Radical 

prostatectomy - removal of the entire prostate gland and lymph nodes in the region close to the tumor - is 

considered a curative intervention, where the disease is confined to the prostate. With the significant 

improvements in surgical instruments, now the surgery to remove the prostate can be done in a classic (retro 

pubic radical prostatectomy open), laparoscopically, or through the more modern system of robot-assisted 

laparoscopy. In Italy, the robot suitable for practicing the intervention are becoming increasingly popular all 

over the country. For the advanced stages of malignancies, the scalpel alone often fails to cure the disease 

and there is therefore the need to associate treatments such as radiation therapy or hormonal therapy. For 

the treatment of prostate cancer, in the treatments considered standard, it has been demonstrated that also 

the external beam radiotherapy is effective in tumors of low risk, with results similar to those of radical 

prostatectomy. Another radiotherapy technique that seems to offer similar to the previous results in diseases 

of low-risk brachytherapy, which involves inserting into the prostate small "seeds" that release radiation. 
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When prostate cancer is in a metastatic stage, unlike what happens in other tumors, chemotherapy is not the 

treatment of first choice and it is preferred to hormonal therapy. This is intended to reduce the level of 

testosterone - the male hormone that stimulates cell growth of prostate cancer - but it carries side effects 

such as reduction or cancellation of sexual desire, impotence, hot flashes, weight gain, osteoporosis, loss of 

muscle mass and fatigue. Among the local therapies still under evaluation are cryotherapy (elimination of 

tumor cells in the cold) and HIFU (focused ultrasound on the tumor). Are also being tested, in some cases 

already very advanced, even vaccines that lead the immune system to react against the tumor and destroy 

it, and anti-angiogenic drugs that block the formation of new blood vessels by preventing the cancer from 

receiving the nourishment need to evolve and develop further. 

One of the main risk factors for prostate cancer is age the chances of getting sick are very slim 

before 40 years, but increases significantly after age 50 and about two out of three cancers are diagnosed in 

people over 65 years . Researchers have shown that a great many (between 70 and 90 per cent) men over 

the age of 80 have a tumor of the prostate, although in most cases the disease shows no sign and we notice 

of its presence only in case of autopsy after death. When it comes to prostate cancer, another significant 

factor is undoubtedly the familiar, the risk of illness is double for those who have a relative blood relative 

(father, brother, etc.) with the disease than someone who has no family in case . The presence of mutations 

in genes such as BRCA1 and BRCA2, are already involved in promoting the development of cancer of the 

breast and ovary, or gene HPC1, may increase the risk of developing prostate cancer. The probability of 

becoming ill could also be connected to high levels of hormones such as testosterone, which promotes the 

growth of prostate cells, and the hormone IGF1, similar to insulin, but which works on cell growth and not on 

the metabolism of sugars. No less important are the risk factors related to lifestyle: diet rich in saturated fats, 

obesity, lack of exercise are just some of the bad habits and becoming more widespread in the Western 

world that can promote the development and growth of the prostate cancer. 

Among the more widespread cancers among the elderly population in the developed world and in 

Western countries, prostate cancer is one of the most common cancers and accounts for approximately 11% 

of cancer deaths in males. In Italy are estimated slightly more than 23,500 new cases each year, but the risk 

that the disease has a negative outcome could be lowered if ready diagnosed and cured. The incidence for 

prostate cancer, ie the number of new cases in a given period of time, is still growing, with a doubling in the 

last 10 years, due to the increase in the average age of the population and the introduction examination of 

PSA (prostate specific antigen). Measure through a simple blood levels of this molecule produced only by 

prostate cells allows, in many cases, to understand if the gland there is anything wrong, even if not 

necessarily the case of cancer, because the PSA increases even in the presence of simple inflammations, 

infections or benign thickenings of the gland itself. 

 

2.6.2. MLT and prostate cancer 

It was demonstrated an inverse relationship between MLT production and the incidence of prostate 

cancer in support of a potential preventive or in the very early stages function of development of prostate 

cancer (Pukkala et al., 2006). 

In prostate cancer, MLT seems to act on the androgen mitogenic way. Activating the MT1 receptor, 

there is an upregulation of the gene p27 and an inhibition of proliferation through the mechanisms of 

activation of PKC and PKA (Tam et al., 2007). In a recent study, using a combination of pharmacological and 

genetic manipulations, Tam et al. (Tam and Shiu, 2011) demonstrated that MLT inhibits the proliferation of 
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LNCaP and VCaP prostate cancer cells via activation of the MT1 receptor-mediated antiproliferative 

signaling pathway, namely MT1/(Gas) PKA + (Gaq) PKC/p27Kip1, which they have previously identified in 

the cancerous 22Rv1 and the immortalized, nontumorigenic RWPE-1 prostate epithelial cell lines (Fig. 12). 

 

 

Fig. 12 - MLT signaling in prostate cancer. 

 

The way MLT/MT1/PKA
+
 PKC/p27 characterized in prostate cancer appears to act independently 

from activation of the signal PI3K/AKT: the activation of PI3K/AKT may be the consequence of a mutation or 

loss of function of PTEN, as this event leads to a downstream inactivation of a transcription factor (FOXO) 

and the consequent decrease of p27 expression observed in prostate cancer (Shiu, 2007). Therefore MLT, 

acting independently, can counteract the mutations such as those of PTEN, promoting the synthesis of 

inhibitors of the mitotic cycle in cells in progression. Also it has been proved the relationship between MLT 

and androgens: the activation of the MLT / PKC induces downregulation of  the transcriptional activity 

mediated by the binding of androgens with their AR receptor and induces exclusion of the AR from the 

nucleus (Shiu, 2007). 

Contrary to the receptor hypothesis, the actions of MLT at the intracellular level for several research 

groups, are the key to explain the action that MLT has on cancer cells. At intracellular level, MLT can bind 

the MT3 receptor: the induction of this enzyme is associated with the decrease in tumor progression (Dietz et 

al., 2005). Some studies have also suggested how the binding of MLT to nuclear receptors RZR / RORα and 

RZRβ can alter the transcription of genes that play a role in cell proliferation as 5-LOX, p21, BSP (bone 

sialoprotein) (Carlberg, 2000). Another mechanism could involve the ability of MLT to modulate calcium and 

the activity of calmodulin, both important in cell cycle. MLT detriment of the calcium-calmodulin binding may 

have antiproliferative actions (Blask et al., 2002). The calmodulin is able to modulate some calcium receptors 
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(Li et al., 1999) so it may abolish the entry of calcium induced by sex hormones and the resulting mitogenic 

responses. This effect was observed on LNCaP cells (Xi et al., 2001). In the study, MLT-induced inhibition of 

LNCaP cell proliferation and attenuation of sex steroid-stimulated Ca
2+

 influx were associated with decreases 

in the levels of measurable PSA recovered from the culture fluids of LNCaP cells incubated with high 

physiological and pharmacological concentrations of MLT. These results are in line with the previously 

reported correlation between reduced production of PSA, as reflected by its level in the culture fluids, by 

LNCaP cells and decrease in cell proliferation induced by various pharmacological agents including calcium 

influx inhibitor. Since PSA is a serum marker available for monitoring the progression of prostate cancer and 

response to therapy, the data by Xi et al. suggest that it may be possible to use PSA for monitoring the 

response to therapy by MLT in future pre-clinical or clinical studies on prostate cancer. 

In a study conducted by Jung-Hynes et al. (Jung-Hynes et al., 2011) , they recently demonstrated 

that Sirt1, a NAD+-dependent histone deacetylase, was overexpressed in prostate cancer (PCa) and its 

inhibition resulted in a significant antiproliferative response in human PCa cells. Studies have suggested a 

link between Sirt1 and circadian rhythms, the disruption of which has been linked to cancer. Interestingly, a 

decreased production of the pineal MLT has been shown to deregulate the circadian rhythm machinery and 

increase cancer risk. Furthermore, disruption in MLT production and circadian rhythmicity has been 

associated with aging. Jung-Hynes e al. challenged the hypothesis that MLT will impart antiproliferative 

response against PCa via inhibiting Sirt1. They demonstrated that MLT significantly inhibited Sirt1 protein 

and activity in vitro in multiple human PCa cell lines, and MLT-mediated Sirt1 inhibition was accompanied 

with a significant decrease in the proliferative potential of PCa cells, but not of normal cells. Forced 

overexpression of Sirt1 partially rescued the PCa cells from MLT’s antiproliferative effects, suggesting that 

Sirt1 is a direct target of MLT. Employing transgenic adenocarcinoma of mouse prostate (TRAMP) mice, they 

also demonstrated that oral administration of MLT, at human-achievable doses, significantly inhibited PCa 

tumorigenesis as shown by decreases in (i) prostate and genitourinary weight, (ii) serum insulin-like growth 

factor-1 (IGF-1)/IGF-binding protein-3 (IGFBP3) ratio, (iii) mRNA and protein levels of the proliferation 

markers (PCNA, Ki-67). This anti-PCa response was accompanied with a significant decrease in Sirt1 in 

TRAMP prostate. 

It is clear that the oncostatic action of MLT is not related to a unique function but rather to a sum of many 

factors which include the antioxidant properties, the activation of the immune system, the modulation of the 

endocrine system, the direct action on the tumor via specific membrane receptors. Most of these studies 

have been performed on cell lines "in vitro" or in animal models. The actual mechanism of action by which 

the molecule exerts its antitumor activity "in vivo" is not completely understood and deserves further 

preclinical and clinical research. 
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2.7. SOLID LIPID NANOPARTICLES (SLN) 

In recent years it has become more and more evident that the development of new drugs alone is 

not sufficient to ensure progress in drug therapy. Exciting experimental obtained in vivo are very often 

followed by disappointing results in vivo. Main reasons for the therapy failure include: 

 Insufficient drug concentration due to poor absorption, rapid metabolism and elimination (e.g. 

peptides, proteins). Drug distribution to other tissues combined with high drug toxicity (e.g. cancer 

drugs). 

 Poor drug solubility which excludes intravenous (i.v.) injection of aqueous drug solution 

 High fluctuation of plasma levels due to unpredictable bioavailability after oral administration, 

including the influence of food on plasma levels (e.g. cyclosporine) 

A promising strategy to overcome these problems involves the development of suitable drug carrier 

systems. The in vivo fate of the drug is no longer mainly determined by the properties of the drug, but by the 

carrier system, which should permit a controlled and localized release of the active drug according to the 

specific needs. The size of the carrier depends on the desired route of administration and ranges from few 

nanometers (colloidal carriers), to the micrometer range (microparticles) and to several millimeters 

(implants). For parenteral administration, it is highly desirable to use biodegradable materials, which avoid 

surgery to remove the implant after complete drug release and which make the administration of micro- and 

nanoparticles feasible. The concept has been realized in several commercial products. Implants and 

microparticles based on biodegradable polyesters permit a controlled drug release over a period of weeks to 

months after subcutaneous (s.c.) or intramuscular (i.m.) implantation/injection. Commercially available 

systems have been developed for the treatment of prostate cancer and other GnRH-related diseases 

(Sandow et al., 1990). An example of the concept of localized drug release is the development of 

biodegradable implants for the treatment of gliomas, which ensure very high drug concentrations in the brain 

and minimize drug concentrations in other tissues, include bone marrow (Sipos et al., 1997). 

Implants and microparticles are too large for drug targeting and i.v. administration. Therefore, 

colloidal carriers have attracted increasing attention during recent years. Investigated systems include 

nanoparticles, nanoemulsions, liposomes, nanosuspensions, micelles, soluble polymer-drug conjugates. 

The existence of different colloidal carrier systems raises the question as to which of them might be 

the most suitable for the desired purpose. Of course, there is no simple answer to this question. Aspects to 

include: 

 Drug loading capacity 

 Possibility or drug targeting 

 In vivo fate of the carrier (interaction with the biological surrounding, degradation rate, 

accumulation in organs) 

 Acute and chronic toxicity 

 Scaling up of production 

 Physical and chemical storage stability 

 Overall costs 

Polymers from natural (Muller et al., 1996)and synthetic sources have been used. Polymer based 

systems in the submicron range size include water soluble polymer-drug conjugates, polymer nanocapsules 
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and nanospheres. A certain advantages of polymer systems is the wealth of possible chemical modifications, 

including the synthesis of block- and comb-polymers.  

Problems of polymer based nanoparticles derive from residues from organic solvents used in the 

production process, polymer cytotoxicity and the scaling up of the production processes, the concentration of 

nanoparticles is low and does not exceed 2%. Polymer hydrolysis during storage has to be taken into 

account and lyophilization is often required to prevent polymer degradation. 

Liposomes are spherical vescicles composed of one or more phospholipid bilayers. Lipophilic drugs 

can be incorporated into the lipid bilayers while hydrophilic drugs are solubilized in the inner aqueous core. 

Drug release, in vivo stability and biodistribution are determined by size, surface charge, surface 

hydrophobicity and membrane fluidity. Membrane permeability can be adapted by the selection of the 

phospholipids and the incorporation of additives (e.g. cholesterol). It is possible to prevent a rapid 

reticulendothelial uptake of the liposomes by the incorporation of natural compound or by use of chemical 

modified polyethylene glycols. The development of such sterically stabilized systems permits the practical 

realization of drug targeting strategies. Liposome based drug carriers also permit the intravenous injection of 

lipophilic drugs with very low water solubility. Chemical and physical stability problems might lead to 

liposome aggregation and drug degradation during storage.  

Nanosuspensions are colloidal particles which are composed of the drug and the emulsifier only. 

Possible production procedures include ball milling or high pressure homogenization (Ford et al., 1999). 

Lipid nanoemulsions are made of fatty vegetable oils or middle chain triglycerides, phospholipids and 

glycerol. These systems can be used for the purpose of nutrition and as drug carriers for lipophilic drugs and 

several formulations are commercialized.  

The possibility of controlled drug release from nanoemulsions is limited due to the small size and the 

liquid state of the carrier. For most drugs, a rapid release has been seen. Advantages of nanoemulsions 

include toxicological safety and a high content of the lipid phase as well as the possibility of large scale 

production by high pressure homogenization. 

The use of solid lipids instead of liquid oils is a very attractive idea to achieve drug release, because 

drug mobility in a solid lipid should be considerably lower compared with a liquid oil. Solid lipids have been 

used for several years in the forms of pellets in order to achieve a retarded drug release after oral 

administration. In the beginning of 80s, Speiser et al. developed solid lipid microparticles produced by 

dispersing of melted lipids with high speed mixers or ultrasound. The products contained relatively high 

amounts of microparticles. This might not be a serious problem for oral administration but it excludes an 

intravenous injection. Higher concentration of the emulsifier result in a reduction of the particle size, but also 

increase the risk of toxic side effects.  

In the following years, it has been demonstrated that high pressure homogenization is a more 

effective method for the production of submicron sized dispersions of solid lipids compared to high shear 

mixing or ultrasound. Dispersions obtained in this way are called solid lipid nanoparticles (SLN). Most SLN 

dispersions produced by high pressure homogenization (HPH) are characterized by an average particle size 

below 500 nm and a low microparticle content. Other production procedures are based on the use of organic 

solvents (HPH/solvent evaporation) or on dilution of micro-emulsions. 

SLN combine the advantages and avoid the disadvantages of other colloidal carriers. Advantages include: 

 Possibility of controlled drug release and drug targeting 

 Increased drug stability 
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 High drug payload 

 Incorporation of lipophilic and hydrophilic drug feasible 

 No biotoxicity of the carrier 

 Avoidance of organic solvents 

 No problems with respect to large scale production and sterilization 

 

2.7.1. Ingredients 

The ingredients of the SLN are solid lipid(s), emulsifying agent(s) to increase stability and water. The 

term lipid includes triglycerides (e.g. tristearine), partial glycerides (e.g. Imwitor), fatty acids (e.g. stearic 

acid), steroids (e.g. cholesterol) and waxes (e.g. cetyl palmitate). All classes of emulsifier (with respect to 

charge and molecular weight) have been used to stabilize the lipid dispersion. It has been found that the 

combination of emulsifiers might prevent particle agglomeration more effectively. 

A clear advantages of SLN is the fact, that the lipid matrix is made from physiological lipids which 

decreases the danger of acute and chronic toxicity. The choice of the emulsifier depends on the 

administration route and is more limited for parental administrations.  

 

2.7.2. Administration route 

Numerous formulations SLN for different routes of administration (oral, parenteral, transdermal, 

ocular, pulmonary, rectal) have been developed and studied in vitro and in vivo for different drugs (Mehnert 

and Mader, 2001). Unloaded SLNs, administered i.v., can cross the blood brain barrier. In laboratory animals 

the stealth drug-loaded SLNs administered via the i.v. route have been demonstrated to cross the blood 

brain barrier to greter extent than commercial drug solutions (Gasco, 2007).The pharmacokinetic parameters 

are greatly improved compared to commercial forms, by increasing the amount of stealth agent (Zara et al., 

2002).  

Moreover, unloaded SLNs administered duodenally, are targeted to lymph. The administration by the 

duodenal route of drug-loaded SLNs showed better pharmacokinetic parameters that the commercial i.v. 

solution forms. Tobramycin-SLN administered duodenally provides good absorption by the GI tract; the 

interest in this case is that tobramycin is still only administered by the pareneteral route (Cavalli et al., 2003).  

 

2.7.2.1. Oral administration 

Oral administration forms of SLN may include aqueous dispersions or SLN loaded traditional dosage 

forms, e.g. tablets, pellets or capsules. Increased bioavailability and prolonged plasma levels have been 

described after oral administration of cyclosporine containing lipid nanodispersions to animals. An increased 

uptake of SLN has been described by Bargoni et al. (Bargoni et al., 1998) after intraduodenal administration. 

 

2.7.2.2. Parenteral administration 

SLN (Fig. 13),has been administered intravenously to animals. In a recent study, conducted by 

Rezzani et al. (Rezzani et al., 2009), MLT and SLN-MLT with cyclosporine A (CsA) were injected in rats. CsA 

administration produced morphological and  biochemical changes in the heart of rats, while MLT reversed 

the changes. 
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Fig. 13 – Nanovector’s SLN dried-size distribution and shape. 

 

In particular, since the antiapoptotic MLT’s efficacy is mainly observed when it is loaded in SLN they 

suggest that MT1 /MT2 pathway is not sufficient for apoptosis antagonism and the additional intracellular 

effect may be required. 

Pharmacokinetic studies on doxorubicin incorporated into SLN showed higher blood levels in 

comparison to a commercial drug solution after i.v. injections in rats. Concerning the body distribution, SLN 

were found to cause higher drug concentrations in lung, spleen and brain, while the solution led to a 

distribution more into liver and kidneys. 

Yang et al. (Yang et al., 1999) reported on the pharmacokinetics and body distribution of 

campotethecin after i.v. injection in rats. In comparison to a drug solution, SLN were found to lead to much 

higher AUC/dose and mean residences times especially in brain, heart and reticulendothelial cells containing 

organs. The highest AUC ratio of SLN to drug solution among the tested organs was found in the brain. 

 

2.7.2.3. Transdermal administration 

The smallest particle sizes are observed for SLN dispersions with low lipid content (up to 5%). Both 

the low concentration of the dispersed liquid and the low viscosity are disadvantageous for dermal 

administration. In most cases, the incorporation of the SLN dispersion in a ointment or gel is necessary in 

order to achieve a formulation which can be administered to the skin.  

In the study conducted by Priano et al. (Priano et al., 2007), MLT incorporated in SLN was 

administered by oral and trasdermal route in healthy subjects. This study demonstrated a significant 

absorption of SLN-MLT, with detectable plasma level achieved for several hours in particular after 

transdermal administration.  

A dramatic increase of the elastic properties was observed with increasing lipid content. The 

rheological properties are comparable to typical dermal formulations. The results indicate that it is possible to 

produce high concentrated lipid dispersions in the submicron size range in a one-step production.  

The cosmetic field offers interesting applications. It has been found in vitro that SLN have UV 

reflecting properties. The UV reflectance is related to the solid state of the lipid and was not evident in 

nanoemulsions of comparable composition. Those observations open the possibility of the development of 

SLN-based UV protective systems. The use of physiological components in SLN is a clear advantage over 

existing UV protective systems (UV blockers or TiO2) with respect to skin penetration and potential of skin 

toxicity. 
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SLN have also been found to modulate drug release into the skin and to improve drug delivery to 

particular skin layers in vitro. 

The loss of water after application on the skin causes changes of the lipid modification and SLN 

structure. Electron microscopy indicates that dense films are formed after drying (32°C) of SLN dispersions 

in contrast to spherical structures which have been proposed previously. The formation of the dense 

structure will favor occlusive effects on skin. It is interesting to note that the films made from melts of the lipid 

bulk do not form close films as dried SLN dispersions do. The surfactant plays a significant role in preventing 

pore formation. 
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2.8. CRYOPASS-THERAPY  

Cryopass terapy is an applied physics technique that takes advantage of the action of photon 

kinetics of a laser beam to convey drug molecules frozen at -18°C through the skin to the target site. 

Penetration is atraumatic, and painless, regardless of the blood circulation and the density tissue (Fig. 14). 

 

 

Fig. 14 – Lasericemed-cryoRx- The instrument exists in two configurations, a fixed one, mainly used in medical studies and a portable 
one used for home purpose or directly in the sport field. The devices differ only for the appearance; the laser sources and the powers 

used are the same in both versions. There is also a portable version for veterinary purpose which is used primarily for horses treatment 
using a different configuration of laser capable of eliminating the problem of hair in the passage of the drug. Picture modified form: 

https://www.box.com/s/anr9knr2g9oyv2yb0fqj. 

 

At room temperature, if a photon strikes an electron, the energy applied to the electron make it jump 

at a higher energy level. This energy level is not stable so the electron come back to its originary level, giving 

back a photon (Fig. 15 –. If however, we freeze the substance and we apply again photonic energy, we 

observe that the process of electron decay to its originary level is slower than the process of electron 

excitation to a higher energy level (Fig. 15b). The low temperature causes that the energy absorbed by the 

drug molecules is hold in the upper energy level orbitals from low temperatures in the form of potential 

energy. In contact with the skin, this energy is released as kinetic energy, allowing the penetration of the 

drug through the skin barrier (Fig. 15c). The accelerated drug molecules cross through the skin thanks to the 

temporary depolarization of skin tight junctions.  

This technique allows to use both polar and non-polar drugs, both soluble and non soluble 

substances in the form of dust suspended in the three-dimensional lattice, a particular blend of 

carboxymethylcellulose which in addition to the advantage to be neutral as water, prevents the dashing of 

the solute until formation of crystalline grid 
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Fig. 15 – (a) Energy orbitals at room temperature, (b) at -18°C, (c) and interface cryo applicator-skin. Picture modified form: 
https://www.box.com/s/anr9knr2g9oyv2yb0fqj. 

 
This technique allows to use both polar and non-polar drugs, both soluble and non soluble 

substances in the form of dust suspended in the three-dimensional lattice, a particular blend of 

carboxymethylcellulose which in addition to the advantage to be neutral as water, prevents the dashing of 

the solute until formation of crystalline grid. 

 A large variety has been used with cryoRx: anesthetics, antibiotics, anti-inflammatory 

corticosteroids, muscle relaxants, vasodilators, calcium antagonists, psoralenes, glucosamine sulfate, 

calcium chelators, dronats, controitin sulphate,poly deoxy ribonucleotids, vitamin complexes,hyaluronic acid, 

hyaluronidase,etc. 

This technique demonstrated to be well tolerated by the patients, although some referred a slight 

intolerance to the direct application of ice on skin. This is attenuated by moving the cryo-applicator on the 

skin during the treatment. Skin lesions are avoided due to the low power laser used (source 635 nm, power 

50 mW, laser safety class 3R), the lack  of chemical allergenic or irritating carriers and the lack of electric 

current. 

The active principles penetrate into the tissues to the target site in 15-20 min, depending to the site, 

with a maximum observed in the genital muscle of 6 cm (± 4 mm) (n= 6 patients) (Enrico e Emilio Bonizzoni, 

C.I.R.C.E. Srl, Magnago (MI), Itlaia, Criopass terapia- Nuove frontiere nella veicolazione del farmaco, Roma, 

8 Giugno 2012). 

Repeated serum withdrawals have shown a release of drug (aminophylline) from the tissue to the 

blood circle overlapping mesotherapy but with a less ripid and  more prolonged release curve, thus 

suggesting a stronger link with membrane glycosaminoglycans and independence of capacity of penetration 

by microcirculation (Tab.1). 

 

Tab.1 

Drug used Mesotherapy Elastomesotherapy 
Cryo-laser 
phoresis 

Aminophylline 
(240 mg) 

After 30 
min 

After 60 
min 

After 30 
min 

After 60 
min 

After 30 
min 

After 60 
min 

8,4 mg/l 4,9 mg/l 7,9 mg/l 4,4 mg/l 6,3 mg/l 5,4 mg/l 
 

Tab. 1 - 8 female patients (35 years±4) 

 

The major field in which cryoRx has been tested are: orthopedics and physiatry, dermatology, 

angiology, urology and ginecology, cosmetic medine, plastic surgery and sports medicine. 

a b c 
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Cryotherapy (cryoRx), based on in situ freezing and devitalization of tissues, has been found more 

advantageous than surgical resection in cirrhotic patients because its focal application results in the loss of 

less hepatic parenchyma. Moreover, it is possible to treat several liver segments and the technique can be 

applied and controlled precisely to produce a predictable zone of necrosis. This technology has been used 

intensely in open surgical settings and, more recently, applied percutaneously to treat renal tumors and liver 

metastasis (Atwell et al., 2007).  

Percutaneous management of solid renal tumors with radiofrequency ablation and cryoablation has 

been established as a technically feasible treatment in selected patients (Gupta et al., 2006). Allowing for 

relatively short-term follow-up, these percutaneous techniques are effective in tumor management The 

success rate is 90-100% for radiofrequency ablation (McDougal et al., 2005) and 92-100% for cryoablation 

(Silverman et al., 2005). Although the published findings on percutaneous cryoablation are limited, authors 

(Shingleton and Sewell, 2001) have tended to treat patients with smaller tumors, usually less than 5 cm, 

even though cryoablation technology allows simultaneous operation of several cryoprobes to generate large 

confluent ice balls for tumor treatment. Atwell et al. (Atwell et al., 2007) reviewed their experience in the 

percutaneous cryoablative management of renal tumors measuring 3 cm or more in diameter. They found 

that percutaneous cryoablation of selected renal masses 3 cm or larger was technically feasible, relatively 

safe, and, in the basis of short-term follow-up settings, appeared to be effective in local tumor control.  

The clinical study conducted by Yang et al. (Yang et al., 2012) demonstrated that compared to 

sorafenib alone, the combined cryoRx and sorafenib therapy significantly improved time-to-progression and 

overall survival in HBV-related BCLC stage C hepatocellular carcinoma patients, with acceptable tolerance 

and similar safety profiles as previously reported, resulting in a improved clinical outcome. 

Evolution of cryoRx as a minimally invasive treatment option for men with clinically localized prostate 

cancer is likely to result in modifications of the established surgical technique, including parenchyma-sparing 

modifications adjacent to the urethra and neovascular bundle. Bahn et al. (Bahn et al., 2012) reported the 

follow-up experiences with focal cryosurgery in 73 selected men with clinically unilateral low- to intermediate-

risk prostate cancer. Primary focal cryoablation affords encouraging oncologic and functional outcomes over 

a median 3,7-years follow-up. Close surveillance with follow-up whole-gland biopsies is mandatory. 

Mouraviev et al. (Mouraviev et al., 2012) reviewed current salvage cryoablation (SCA) outcomes in 

patients with locally recurrent prostate cancer following primary radiation therapy. SCA has proved to be 

feasible and efficacious treatment modality, especially using third-generation technology. 

Spray cryoRx (SCT) uses a noncontact system to deliver liquid nitrogen (2 to 4 psi) through an 

endoscopic catheter. Rapid freezing and thawing of tissue causes cellular death and is also haemostatic. 

Finley et al. (Finley et al., 2012) reported the preliminary results from 6 institutions in which SCT was used 

for the treatment of malignant airway tumors. They found that SCT can be used in patients with highly 

vascular tumors, with reduced bleeding complications and a low overall complication rate. Caution is needed 

before SCT is used on a widespread basis, given the intra-operative complications.  
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2.9. Analytical methods for MLT determination 

Due to the very low levels of endogenous MLT, the first important issue for its measurement is the 

adequate extraction from biological samples. From serum matrix, MLT can be extracted by simple 

liquid/liquid procedures, such as the addition of dichloromethane (1:1, v/v). Samples are then vigorously 

mixed and centrifuged to obtain aqueous and organic phases. With this procedure, MLT is retained in the 

dichloromethane phase that is collected and dried under nitrogen atmosphere to concentrate MLT. This 

yields a satisfactory recovery rate (generally more than 70%), and can be also applied to buffer-

homogenized tissues. However, a low precision and accuracy with single liquid–liquid extractions of MLT for 

high performance liquid chromatography (HPLC) coupled to fluorescence detector have been reported 

(Rizzo et al., 2002). For multiple analyses of MLT and its precursors or metabolites, more profound liquid–

liquid extractions have been described using a combination of different solvents.  

In older investigations, chloroform was mostly used for MLT extraction and is still in use today. 

Although this method is effective, dichloromethane is preferred for reasons of lower toxicity. Generally, 

chlorinated methane should be of highest purity and protection from light and redox-active compounds is of 

utmost importance for avoiding formation of reactive intermediates which can destroy MLT. 

Laganà (Lagana et al., 1995) described an extraction procedure for serum samples through an LC-

18 cartridge plus a Carbograph cartridge with a recovery ranging from 86.3 to 91.7% for 10 to 200 pg 

MLT/ml. Briefly, 2 ml of serum sample is passed through an LC-18 cartridge, which is then washed with 2 ml 

of water and 2 ml of water–methanol (90:10, v/v). Thereafter, MLT can be eluted from the column with pure 

methanol, dried and resuspended in an appropriate solution for analysis or can be further purified by eluting 

with 2 ml of water–methanol (40:60, v/v) and loading onto a Carbograph cartridge. The cartridge is then 

washed with 10 ml of methanol and 3 ml of methanol–dichloromethane (80:20, v/v), and MLT is finally eluted 

with 1.5 ml of methanol–dichloromethane (10:90, v/v). The eluate is evaporated to dryness under N2 

atmosphere and resuspended in 100 μl of water–methanol (75:25, v/v) for analyses. 

Sample preparation is also strictly dependent on the method used for analysis, since the presence of 

other compounds in the sample can interfere with the MLT signal. The extent of MLT pre-purification from 

biological samples can, in some cases, be fundamental for the sensitivity of the method used. The procedure 

described above allows MLT detection with high sensitivity and without interference from other components 

in the sample. It has been shown that homogenization in 10 vol of ice-cold 0.1 M perchloric acid can also 

represent an accurate means for MLT determination in tissues by HPLC coupled to electrochemical or 

fluorescence detection. In this case, the homogenate is centrifuged at 10,000×g for 20 min at 4°C and the 

resulting supernatant can be directly injected into the HPLC system. It has also been suggested that 90 μl of 

the supernatant fraction be mixed with 10 μl of 1 M sodium phosphate, pH 4.3, for better resolution of peaks. 

Depending on the method used, further treatment of MLT extracts may be needed. Gas 

chromatography mass spectrometry (GC-MS) detection of MLT requires sample derivatization for MLT 

volatilization by, for example, the use of pentafluoropropionic anhydride or heptafluorobutyrylimidazole 

(Covaci et al., 1999). In another approach, human plasma samples have been directly injected into and 

evaluated in an HPLC system with fluorescence detection without prior extraction or purification, achieving a 

detection limit of 1 ng per ml of human plasma (4 pmol/ ml). Also, it has been reported that derivatization of 

MLT with sodium carbonate and hydrogen peroxide increases sensitivity almost 10-fold for measurement in 

HPLC systems coupled to fluorescence detectors (Tomita et al., 2003)  
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Rolčik (Rolcik et al., 2002) described a highly specific method for MLT isolation and purification from 

complex biological matrices by immune-affinity chromatography. Polyclonal antibodies highly specific against 

MLT were raised by Mannich synthesis and used for preparation of immune-affinity gel, with a 95% recovery 

rate for MLT extraction. In these samples, MLT concentration was determined by HPLC-mass spectrometry 

(HPLC-MS) with a detection limit of 10 fmol. 

Regarding sample preparation for analysis by MS, the use of adequate isotopically labeled internal 

standards represents an important issue; this step improves quantification of the hormone and 

underestimation of actual levels of MLT due to losses which might have occurred in the samples during 

extraction. 

Finally, the correct handling and maintenance of samples is also important. Samples of MLT should 

be kept constantly on ice and protected from light radiation, in order to avoid degradation. Despite its relative 

stability, MLT oxidation can occur over time, including reactions with singlet oxygen. The probability of this 

occurrence varies, and is dependent on oxygen availability and light incidence. For sample freezing, it is 

recommended that samples be dried and preferentially kept under vacuum or nitrogen atmosphere. 

 

2.9.1. Immunoassay 

For the monitoring of MLT in biological fluids, use of immunological methods is the most widespread 

method. Several commercial kits based on these methods are available for MLT determination. Some of 

these methods are highly sensitive and simple to use (lower limit of detection: 0.5 pg/ml) but may suffer from 

a potential risk of cross-reactivity to structurally similar compounds if MLT is not extracted. 

The most crucial aspect of immunoassays is the preparation of the antiserum. Because MLT is too 

small to be capable of producing antisera on its own it must be coupled to an antigenic protein. In such a 

conjugate the small molecular weight substance is called a hapten. The resulting antiserum binds both the 

protein and the hapten plus a portion of the adjacent protein. The hapten has few antigenic determinants 

relative to the protein. Specificity studies of antisera produced by steroid–protein conjugates have shown that 

antisera are not able to discriminate structural differences in the hapten that are immediately at or close to 

the site of coupling. 

The choice of the hapten and conjugation reaction should therefore be determined by the type of 

discrimination that is required. Indolealkylamines have in common a ring nitrogen (position 1) and an 

adjacent carbon (position 2). Thus for MLT, coupling via the position 1 or position 2 should allow resulting 

antisera to discriminate different indoles that are commonly found in tissues. 

Studies of antisera resulting from Mannich coupling of MLT to bovine serum albumin (BSA) have 

revealed that this approach leads to a highly specific MLT antiserum as shown by cross-reactivity studies in 

radioimmunoassay (RIA) (Yang et al., 2006). To determine the locus of attachment of MLT to protein, model 

reactions have been conducted and the resulting products analyzed by nuclear magnetic resonance and 

infrared spectroscopy. The results of the study indicated that coupling was likely at position 2. Further 

studies were done of cross-reactivity of intermediate reaction products revealing that the highest cross-

reactivity occurred with C-2 substituted MLT derivatives. Thus it was concluded that the methylene bridge 

conjugating MLT to BSA occurred at the number 2 position of the indole molecule. This approach has been 

used widely for MLT immunoassays. Recently, two different groups have used this approach for generating 

monoclonal antisera against MLT (Soukhtanloo et al., 2008).  
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Coupling at the ring nitrogen using 1-(p-carboxybenzyl)-MLT coupled to BSA as antigen results in 

antisera that bind MLT specifically. MLT-1- propionic acid coupled to BSA also stimulates production of 

highly specific antisera. A similar approach by coupling 1-(4-carboybutyl)-MLT to protein resulted in a highly 

specific RIA. The MLT derivative, 3-(3-(2-acetamidomethyl)-5-methoxyindol-l-yl) propionic acid coupled to 

bovine gamma globulin produces a specific antiserum that has been used widely in RIA. Yet another 

derivative N-(3-(2-aminoethyl)-5-methoxyindole) hemi succinamide has been used to generate antiserum as 

the basis for a specific RIA. Thus MLT coupled at the N position gives rise to antisera that are highly specific 

for MLT as compared to other indoles. 

Coupling at the side chain has also successfully produced useable MLT antiserum. The methods 

used include N-acetyl-5-methoxytryptophan coupled using carbodiimide, succinyl-5-methoxy-tryptamine 

coupled to protein and indomethacin coupled to protein. MLT coupled via a diazo linkage has also been 

reported to produce a reasonably specific antiserum, however the sensitivity of the resulting assay was 

found to be low. 

Coupling of NAS using formaldehyde generates antiserum that binds MLT and NAS equally; cross-

reactivity studies and model reactions have shown that coupling occurs at the 4
th 

position of the molecule. 

The resulting antiserum has been used as the basis of an RIA that required prior extraction and column 

chromatography to eliminate the cross-reacting indole. 

The chief metabolite of MLT in urine, aMT6s has also been measured by immunologic means. The 

antiserum typically used for this assay is generated by use of the Mannich reaction and is highly specific. 

Antisera produced using these approaches have been used extensively not only for RIA, but also for 

immunohistochemistry and for enzyme-linked immunoassays (ELISA). 

 

2.9.2. Radioimmunoassay  

The principle of RIA method for MLT measurement is that a known amount of radioactive MLT (2-

I
125

-iodoMLT or 
3
H-MLT) is mixed with a fixed amount of antibody raised against MLT. Increasing 

concentrations of unlabeled MLT are added to the mixture, which will compete with labeled MLT causing its 

displacement from the antibody. Free labeled MLT is then separated from remaining antibody-bound 

radioactive MLT and radioactivity is measured. As the concentration of unlabeled MLT increases in the 

mixture, competition for the antibodies also increases and bound labeled MLT decreases. A calibration curve 

constructed from known amounts of labeled and unlabeled MLT allows the determination of unknown MLT 

concentrations in biological samples. 

Fraser (Fraser et al., 1983) described a protocol for MLT measurement by RIA in plasma that has 

been adopted by several researchers, some with slight modifications. Briefly, 200 μl of 1000-fold diluted 

antibody is added to 500 μl of solutions containing different amount of MLT standard (2.5 to 250.0 pg). The 

solution is vortexed and kept at room temperature for 30 min. 
3
H-MLT is added to the tubes(100 μl, 4,000 

cpm), mixed, and kept at 4°C for 18 h. Then, 0.5 ml of Dextran-coated charcoal solution (0.1 g of dextran 75 

plus 10 g of charcoal per 500 ml of buffer) is added and the solution is centrifuged for 15 min at 1500×g and 

4°C, in order to separate the antibody-bound MLT from the free fraction. The supernatant fraction is finally 

decanted into 10 ml of scintillation fluid and radioactivity is counted on a beta scintillator counter. 

Several variations in RIA methods have been described, by using different antibodies (as noted 

above), by changing 
3
H-MLT to 2-I

125
-iodoMLT, or by altering the separation procedure. In general, because 

of its higher specific activity 2-I
125

-iodoMLT allows a lower detection limit thus allowing the use of a smaller 
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amount of sample. The concentration of MLT during daylight can be as low as 0.2 to 0.3 fM (Rolcik et al., 

2002). This could be especially important if measurements are not preceded by MLT purification. However, 

125
I is more prone to nonspecific binding so that some determinations can be faulty. 

Sieghart (Sieghart et al., 1987) reported that prior MLT purification from plasma using reversed-

phase column chromatography greatly reduces the problems of cross-reactivity. Moreover, Rolčik  (Rolcik et 

al., 2002) used immunoaffinity chromatography employing specific antisera to process samples prior to 

HPLC-MS analysis. Nonetheless, it should be recognized that even a weak cross-reactivity can be a problem 

if the cross-reacting molecule is present in large quantities. Thus independent validation of the procedure is 

essential when a different matrix is assayed. 

One example of such a different matrix is saliva for which several RIAs have been described. To 

obtain saliva, different methods have been used, from chewing gum, chewing on cotton swabs, or using 

commercial apparatus. Again, extraction is usually essential especially since levels in saliva are about 40% 

of those in plasma. Saliva is particularly useful if repeated sampling is required: for example to characterize 

the full 24 h rhythm of MLT or to determine the dim light MLT onset (DLMO), a measure that has been shown 

to be very useful in studies on circadian rhythmicity in sleep disorders (Pandi-Perumal et al., 2007). 

Several variants of the time-consuming charcoal separation procedure have been developed and 

successfully applied. In the so-called scintillation proximity assay, the MLT antibody is bound to a secondary 

antibody (e.g. antisheep) attached to scintillator-containing microbeads (“fluomicrospheres”). This relatively 

convenient procedure depends, however, usually on the commercial availability of suitable fluomicrospheres, 

since preparation and standardization of such beads is too time-consuming for the average laboratory. In the 

proximity assay, bound radioactivity is detected directly by the scintillator system of the microspheres. For 

physical and geometrical reasons, such a system has to have a lower scintillation efficiency than a 

homogeneous scintillation cocktail. However, this procedure has other advantages. Apart from being more 

rapid, the system is less affected by nonspecific binding (values close to background) such as occur in the 

charcoal procedure, has a better reproducibility and shows a much lower assay drift upon repetitive 

measurements (proximity assay: about 10% change within 84 h; charcoal method: about 25% over the same 

period). Other variants include separation using a double antibody procedure and ammonium sulfate 

precipitation. 

Considerable interest has also been shown in the major urinary metabolite of MLT, aMT6s. The 24-h 

pattern of excretion of the metabolite accurately reflects the pattern of MLT in blood. RIAs for this substance 

are available and have been useful in assessing pineal function in various conditions(Fideleff et al., 2006). 

 

2.9.3. Enzyme-linked immunoassay 

A variety of ELISAs for MLT have also been reported that employ antisera identical to those used in 

the RIA described above. One such immunoassay employed MLT– hemi succinate–human serum albumin 

absorbed on polystyrene spheres, with the MLT competing for a fixed amount of peroxidase labeled IgG 

antibody to MLT. This method had a detection limit of 22 fmol per tube and therefore required extraction. A 

competitive solid phase ELISA for human and rat serum and rat pineal gland has been described and 

validated using microtiter plates that has a much lower detection limit (1.0 fmol per well) as well as precision 

comparable with other methods and that can be applied without extraction to rat serum. An improved version 

of this assay with a shorter incubation time was subsequently reported. A comparative study of an RIA and a 

commercial ELISA reported that the ELISA required a purification step to be valid when applied to human 
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serum, a step that was not part of the procedure recommended by the manufacturer. With the extraction 

step, the assay had distinct advantages, Enzyme assays have major advantages in that the enzyme 

conjugate is stable, is more convenient than 
3
H or 

125
I and present no problem with disposal of radioactive 

waste. Furthermore if microtiter plates are used centrifugation is not necessary. Although not an enzyme 

immunoassay, it is of interest that a time resolved fluoroimmunassay has also been described (Yamada et 

al., 2002). An enzyme immunoassay for aMT6s has been reported, and commercial kits are available. 

 

2.9.4. HPLC coupled to electrochemical and fluorescence detection 

In many studies, RIA methodology has been replaced by HPLC with electrochemical and 

fluorescence detection for MLT evaluation, due to its great sensitivity and specificity. However, this 

procedure is more adequate for MLT alone, and not for mixtures of several indoles, such as serotonin and 

tryptamine among others, that can cause disruptions in the assay. For example, serotonin/ MLT ratio is 

higher than 100 in rat pineal. This high ratio can cause disturbances in chromatographic separations that can 

make MLT detection difficult, and thus requires a good procedure for MLT extraction. However, the 

avoidance of partial co-elution with other indoles is mostly a matter of the art of chromatography. In the work 

conducted by de Almeida et al. (de Almeida et al., 2011), they have been able to detect MLT with great 

accuracy in blood plasma after simple dichloromethane extraction as described above, and using an HPLC 

system connected to electrochemical detection. Good peak separation was achieved by using a LC-18 

column and 50 mM sodium acetate-100 mM acetic acid (pH 4.3), 0.1 mM Na2-EDTA, and acetonitrile (75:25, 

v/v) as mobile phase pumped isocratically at 1 ml/min. 

Harumi (Harumi et al., 1996) also successfully determined MLT by HPLC with electrochemical 

detection, with very clear peak separation for different indoleamines among MLT. However, the sensitivity of 

this procedure depends on the model of electrochemical cell. Amperometric-based electrochemical cells are 

generally less sensitive than coulometric cells, so that the adequate potential should be previously optimized 

by the construction of hydrodynamic voltammograms. With the coulometric electrochemical system, the best 

MLT signal is obtained at 600 mV. Sensitivity can be also greater with coulometric electrochemical detectors 

such as the ESA coulochem III model (ESA, Bedford, MA, USA), which uses porous electrochemical cells 

that allow greater accuracy in MLT peak resolution. Harumi et al. reported the use of a higher potential, 900 

mV, for good MLT signal with their graphite carbon working electrode, and even so they detected MLT at 

very low levels. Rizzo (Rizzo et al., 2002) also used 900 mV for MLT detection with an amperometric 

electrochemical detector. 

With respect of fluorescence detection, some high sensitive methodologies have been reported for 

MLT detection at the femtomole level (Yang-2002). MLT can be separated on a C18 column by using 75 mM 

sodium acetate pH 5.0 and acetonitrile (72:28, v/v) as the mobile phase pumped isocratically at 1.0 ml/min, 

and directly detected by setting up the fluorescence detector at an excitation wavelength of 275 nm and an 

emission wavelength of 345 nm (Rizzo et al., 2002. Nevertheless, in some cases in which MLT concentration 

is very low, derivatization is recommended to enhance the MLT signal. An oxidation procedure that can 

enhance MLT fluorescence by 6.8 times (allowing its determination at attomole levels) has been described 

using biological samplesMLT was oxidized to a new fluorescent compound with sodium carbonate and 

hydrogen peroxide. However, precautions should be taken when using this kind of approach, because other 

components in the biological sample may lead to the generation of fluorophores, which in turn could interfere 

with the determination of the correct level, thus preventing method specificity (Tomita et al., 2003). 
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In any case, care with sample preparation can improve the MLT signal. Pre-purification of MLT as 

described before will decrease chromatogram noise and avoid the co-elution of MLT with other compounds 

that can interfere with MLT peaks. Generally, the use of fluorescence techniques are affected not only by co-

elution with other fluorescent compounds in the sample, but also by the presence of quenchers. This should 

not be underrated since the majority of aromates absorb around the excitation maximum of MLT. Therefore, 

samples should be tested in advance for quenching by adding known amounts of MLT. 

 

2.9.5. Mass spectrometry 

The GC-MS technique is very sensitive and offers more specificity than HPLC with electrochemical 

or fluorescence detectors; however, a difficulty with this technique is the need of derivatization, and thus it 

has been gradually substituted by liquid chromatography-mass spectrometry procedures. Thus, alternative 

HPLC-MS methods appropriate for use in biological issues have been developed (Motoyama et al., 2004). 

However, this approach is limited by the need of adequate internal standards. Yang et al. described their 

methodology which used N-acetyltryptamine as the internal standard (Yang-2002); however, several factors 

make this approach less than ideal. It is appropriate to use a labeled internal standard whose structure is the 

same of the analyte except for the mass difference. The addition of an isotopically labeled internal standard 

prior to the analysis improves the method’s confidence level. 

Another analytical method has been developed which uses column-switching semi-microcolumn 

liquid chromatography/mass spectrometry and selected ion monitoring (Anisimov et al., 2006) for detecting 

endogenous MLT in human saliva. In the relevant study MLT was monitored based on its fragment ion at m/z 

174 by in-source dissociation and using deuterated MLT as the internal standard, and a detection limit of 10 

fmol was obtained (Rolcik et al., 2002). The main limitation of this methodology is the use of the SIM mode to 

detect the ions generated in the probe, which does not imply an absolute specificity. Yet, Eriksson (Eriksson 

et al., 2003) reported a method for the determination of MLT in human saliva by HPLC-MS/MS, using 7-D-

MLT as internal standard. The limit of detection was 1.05 pg/ml and the limit of quantification was 3.0 pg/ml. 

It has been reported the development of a new HPLC-MS/MS assay with electrospray ionization (Regodon 

et al.) to quantitatively determine MLT and also its degradation product AFMK with high sensitivity and 

specificity. A stable isotopic internal standard MLT-D3 (deuterated MLT) was easily synthesized by the 

reaction of 5-methoxytryptamine with deuterated acetyl chloride (CD3COCl). 

The predominant ion [M+H]+ in the full scan mass spectra of MLT, and MLT-D3 were located. The 

fragments generated in collision-induced dissociation chamber revealed a predominant fragment at m/z=174 

for MLT and MLT-D3 (loss of the N-acetyl group). The m/z transitions from 233 to 174 (MLT) and from 236 to 

174 (MLT-D3) were therefore chosen for the Multiple Reaction Monitoring (MRM) detection experiments, 

which ensured a higher specificity and an accurate quantification of MLT in human plasma. 

 

2.9.6. Other techniques 

Some laboratories have taken and developed capillary electrophoresis (CE) for the separation and 

determination of MLT in blood plasma (Musijowski et al., 2006) and in pineal gland (Chen et al., 

2001)Detection of analyte was performed with a UV and fluorescence (Pobozy et al., 2005) or 

electrochemical detector (Wu et al., 2006). The detection limit of MLT with CE is comparable with the data 

obtained by HPLC methods reported previously. Recently, for the separation of MLT from related 

compounds, CE with micellar electrokinetic chromatography was applied (Hevia et al., 2010). This technique 
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permitted the effective separation of MLT and its precursors or metabolites. Sodium dodecyl sulfate is used 

to produce a pseudo-stationary phase. 
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3.0. AIMS 

3.1. MAIN OBJECT 

The number of signaling pathways which modulation, at different cellular hierarchy, has been 

attributed to MLT molecule, is exceptional. The practical applicability of MLT as a therapeutic agent, 

however, remains unconfirmed inasmuch as most of the effects described have not been validated in a 

clinically relevant setting with the use of a well -defined pharmaceutical formulation and therapeutic scheme.  

The main object of my PhD thesis is to confirm the pleiotropy of MLT molecule by testing its activity 

in two of the most promising clinical applications: the cure of prostate cancer and the regulation of the 

sleep/wake rhythm as adjuvant in the sedative therapy in critically ill patients. The attaining of these 

objectives is necessarily linked to a comprehensive study to assess whether alternative and novel strategies 

to deliver the drug may be competitive (both in animal and in humans) with the routine methods used till now. 

Providing that MLT appears active in fighting prostate cancer and/or in ameliorating critically ill patients 

hospitalization, I will try to elucidate the molecular mechanisms underlying the observed activities, with 

particular attention to the hypoxia signaling pathway and to the antioxidant and scavenger activity. To 

elucidate the molecular events underpinning MLT clinical effects is pivotal to plan effective strategies for 

further research. 

 

3.2. SPECIFIC AIMS 

3.2.1. MLT as antitumoral molecule 

1. To evaluate the oncostatic effect of MLT administered intraperitoneally (i.p.) by saline solution on human 

prostate tumor. To this purpose I will select an in-vivo experimental model of nude mice (athymic), 

xenografted subcutaneously with tumor cells of a human prostatic line (LNCaP), an approach much 

closer to the clinical situation than in vitro cultured cells and that looks therefore adequate to investigate 

the underlying molecular mechanisms in vivo. Tumor growth will be monitored over time (4-6 weeks) in 

relation to a repeated treatment with MLT administered i.p. . The efficacy will be stated in terms of 

inhibition on tumor growth, good animal compliance and low toxicity. This part of the research will 

provide the evaluation of amount of MLT distributed systemically and accumulated in the tumor mass.  

2. Using the same animal model and the same administration route (i.p.) and treatment schedule of MLT 

administered in saline, to investigate the efficacy of a novel and promising pharmaceutical formulation: 

MLT included in a solid lipid nanoparticles system (SLN-MLT). The nanoparticles systems should be 

able to enhance the role of MLT as an inhibitor agent of tumor growth, to reduce the first pass effect 

through the liver, increase the systemic distribution, avoid the destruction in the gastro-intestinal tract 

reducing the inter-individual variation in bioavailability of the drug. This study is intended to find that 

nanocarrier (SLN) are able to promote the systemic absorption of MLT in respect to MLT dispersed in a 

buffered solution, used as reference. The pharmacokinetics (distribution and metabolism of MLT) will be 

investigated in the mouse model. The specific tropism for cancer tissue and for all the target organs 

(prostate, brain, cerebellum, liver, kidney) will be studied.  

3. Using the same mouse model of human prostate cancer, to test whether MLT can be administered 

efficiently using alternative ways that are more sustainable for prolonged treatments than i.p. MLT, e.g., 

transdermal delivery through the skin barrier directly onto the tumor via a novel and patented technique 
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named cryoRx. CryoRx is a system for the delivery of drugs based on the topical application of drugs 

frozen in suitable cryo-applicators connected to a laser source. To assess whether transdermal MLT 

application negatively affects tumor growth in a concentration- and time-dependent manner, so to be 

considered for further experimentation, and the advantages in terms of lower toxicity and greater 

efficacy.  

4. To focus on the underlying action mechanism of MLT at the tumor cellular micro-environment and the 

possible influence on such a mechanism of the lipid nanocarrier employed. To this purpose the cell 

signaling mechanisms involved in the reduction of tumor growth will be investigated and in particular, 

interactions with other regulatory factors such as "hypoxia inducible factor" (HIF-1α), a positive 

regulatory factor induced by hypoxia. Moreover, to complete the understanding of MLT loaded-

nanocarrier effects at the tissue microenvironment in physiological or pathological conditions, the 

antioxidant properties of such systems will be evaluated by studying oxidative stress, damage from free 

radicals and possible residual antioxidant defenses in tissues and blood. 

 Attaining this aim will also help addressing the relevance of these signaling paths during cancer 

development.  

 

The results achieved from the proposed aims will be integrated together and will add knowledge both in 

understanding the crucial pathways for targeting in prostate cancer and in the development of new 

pharmacological devices for the cure and prevention in clinical patients 

 

3.2.2. MLT in ICU patients as sleep/wake regulator 

1. To evaluate in a cohort of critically ill patients admitted to a high-risk Intensive Care Unit (ICU), if the 

circadian rhythm of MLT secretion is disrupted and to which extent MLT administration by different 

routes and different drug formulations (MLT as a tablet administered orally, MLT encapsulated in SLN 

administered orally as a suspension, MLT encapsulated in SLN applied transdermally as a suspension 

with the aid of a patch) is feasible in terms of efficiency of absorption and adequacy in achieving and 

maintaining nocturnal peak plasma hormone even in the early phase of hospitalization in the ICU. To 

study the differences in the pharmacokinetics profile (absorption peak, plasma half-life, mean 

concentration) of MLT as a function of administration by different routes and drug formulations and to 

understand the pathophysiological characteristics that may affect. To test whether some of these 

administration ways are competitive and more likely sustainable in a clinical setting. The nano-

encapsulation should allow for a more effective therapeutic action related to the bioavailability and the 

intracellular hormone concentration. The SLN in fact act as a reservoir of the hormone allowing a 

constant and prolonged effect at the cellular site of action, so it could be more evident a clinical effect 

thanks to the achievement of the intracellular environment regardless of the specific receptors MT1 and 

MT2. Transdermal administration may have several advantages in critical patient, in particular: ease of 

administration (the application of a patch on the skin is possible in almost all clinical settings situations 

excluded from hyperhidrosis, large burns, allergic skin manifestations, cutaneous vasoconstriction etc..) 

and reduced hepatic first-pass effect (reduction of the administered dose with lower peak plasma 

maintaining a constant plasma concentration). 

2. To evaluate if the restoration of the melatoninemia by the different ways of drug delivery in critically ill 

patients may be useful to restore the pleiotropic function of this hormone: facilitate the resolution of 
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sleep-wake cycle disorders, improve the quality of sleep, reduce the number of episodes of anxiety, 

confusion and agitation, and reduce the amount of sedatives used, especially at night. As a first 

approach, the total antioxidant defenses of the patients after the different MLT treatment will be 

evaluated, in order to understand the underlying mechanism of the observed clinical activity.  
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4.0. MATERIALS AND METHODS - MLT AS 

ANTITUMORAL MOLECULE 

 4.1. MATERIALS 

 4.1.1. LNCaP cells 

LNCaP cells are androgen-sensitive human prostate adenocarcinoma cells derived from the left 

supraclavicular lymph node metastasis from a 50-year-old caucasian male in 1977. They are adherent 

epithelial cells growing in aggregates and as single cells (Fig. 16). The LNCaP cell line was established from 

a metastatic lesion of human prostatic adenocarcinoma. The LNCaP cells grow readily in vitro (up to 8 x 10
5
 

cells/sq cm; doubling time, 60 h). The malignant properties of LNCaP cells are maintained. Athymic nude 

mice develop tumors at the injection site (volume-doubling time, 86 h). Functional differentiation is 

preserved; both cultures and tumor produce acid phosphatase. High-affinity specific ARs are present in the 

cytosol and nuclear fractions of cells in culture and in tumors. The cell line does express PSA and MLT 

receptor (MT1). In vivo, the frequency of tumor development and the mean time of tumor appearance are 

significantly different for either sex. Male mice develop tumors earlier and at a greater frequency than do 

females. Hormonal manipulations show that, regardless of sex, the frequency of tumor development 

correlates with serum androgen levels. The rate of the tumor growth, however, is independent of the gender 

or hormonal status of the host. 

 

 

Fig. 16 - LNCaP cells by fluorescence microscope .Picture modified from: 
http://signagen.com/index.php?main_page=product_info&products_id=747. 

 

4.1.2. Cultures  

The androgen-dependent human prostate cancer cell line LNCaP from American Type Culture 

Collection (purchased from Rockville, MD, USA) was grown as monolayer in RPMI-1640 medium 

(Euroclone, Westherby West Yorkshire, UK) supplemented with 10% fetal bovine serum (Euroclone), 100 

http://en.wikipedia.org/wiki/Androgen
http://en.wikipedia.org/wiki/Prostate
http://en.wikipedia.org/wiki/Adenocarcinoma
http://en.wikipedia.org/wiki/Metastasis
http://en.wikipedia.org/wiki/Cell_line
http://en.wikipedia.org/wiki/Phosphatase
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U/ml penicillin (Invitrogen, San Giuliano Milanese, Italy), 100 µg/ml streptomycin (Invitrogen), and was 

maintained at 37°C in 5% CO2 in air. The medium was changed at intervals of 2-3 days. 

 

4.1.3. Animals 

Animals were cared in accordance to the Guide for the Care and Use of Laboratory Animals 

published by the National Institutes of Health (NIH Publication No. 85-23, revised 1996). Seven-week-old 

male Foxn 1
nu/nu

 mice (purchased from Harlan Bioproducts for Science, San Pietro al Natisone, Italy), 

weighing 27-30 g, were housed in a pathogen-free environment inside a laminar-flow hood and fed with food 

sterilized by 
60

Co-γ-irradiation. Water and bedding were heat-sterilized. Mice had free access to water and 

diet until 24 h before sacrifice. A 12/12 h light/dark cycle was maintained. Sterile gloves and masks were 

used whenever the animals were handled. 

  

4.1.4. Matrigel 

The following characteristics of Matrigel Basement membranes are thin extracellular matrices 

underlying cells in vivo. Matrigel Basement Membrane Matrix is a solubilized basement membrane 

preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in extracellular 

matrix proteins. Its major component is laminin, followed by collagen IV, heparin sulfate proteoglycans, 

entactin and nidogen. It also contains TGF-β fibroblast growth factor, tissue plasminogen activator and other 

growth factors which occur naturally in the EHS tumor. Matrigel Basement Membrane Matrix is effective for 

the attachment and differentiation of both normal and transformed anchorage dependent epithelioid and 

other cell types. Basement membranes are highly specialized, continuous sheets of extracellular matrices 

which underlie epithelial and endothelial cells and surround muscle, fat and the entire nervous system. The 

basement membrane plays a key role in diverse biological processes such as providing mechanical support 

for cell layers and formation of barriers between tissue compartments that impede the transmigration of cells 

and passively regulate the exchange of macromolecules. The basement membrane also serves as an 

interactive surface for cells by providing adhesion, cell shape and migratory signals, as well as 

communicating information for regeneration and/or differentiation.  

Matrigel gels rapidly at 22°C to 35°C. Therefore it was thawed at 4°C overnight on ice and kept on 

ice before use. The product was handled using sterile area and gently pipetted using a pre-cooled pipette to 

ensure homogeneity.  

 

4.1.5. LNCaP xenograft  

LNCaP cells were grown to 90% confluence, washed in serum-free RPMI, harvested by quick 

tripsinization, recovered in Falcon tube pooling same cells from different flasks, spinned down (1000 rpm for 

5 min) and finally counted by the Trypan blue test. After centrifugation (800 rpm for 5 min), the cells were 

resuspended in a 50% (v/v) mixture of ice-cold Matrigel (BD Bioscience, Buccinasco, Italy) and serum-free 

RPMI-1640 medium in order to get a suspension containing 3.0 x 10
6
 cells/0.1ml. 

Since Matrigel Matrix forms a gel above 10°C, Matrigel Matrix solution was kept at low temperatures 

and all related equipment (syringes, needles, etc.) and reagents were chilled in an ice bath prior to injection. 

After mixing Matrigel Matrix with cells, the mixture was injected into each flank of the mice subcutaneously. 

An appropriate needle size (26G) was selected to prevent the destruction of cells. To increase the contact 
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area of the injected mixture into tissue, a wide subcutaneous pocket was formed by swaying the needle right 

and left after a routine insertion. The mixture (0.1 ml) was then slowly injected into the pocket.  

 

 

Fig. 17 - Mice xenografted with human LNCaP cells. 

 

4.2. EXPERIMENTAL PROTOCOL  

For the evaluation of the antitumoral activity of MLT we have studied 2 different administration routes: 

intraperitoneal (i.p.) and topical by cryoRx.  

 

4.2.1. Time Schedule  

 

Fig. 18 - Treatment schedule. 

 
For all the experiments we have used the same treatment schedule as shown in (Fig. 18 - 

Treatment schedule which provides that the MLT administration (i.p., or by topical laser administration)  

has been carried out 3 times a week starting from the day after the xenograft for 6 weeks (18 treatments), 

the time required because the tumor to be developed. At the end (42
th
 day) the animals were sacrificed and 

along the treatment period the mice weight was recorded as well as the tumor volume was measured by a 

caliper as soon as it became apparent. 

 
4.2.2. Dosage and MLT preparation for i.p. administration  

The MT i.p. dose delivered at each of the 18 treatments (see above) was 1 mg/Kg both in saline 

solution and enclosed into SLN. As the mice weight rank about from 26-32 g, we planned to administer for 

each i.p. treatment a dose of 0.030 mg/mouse in a 100 μL volume. For each experiment, MT or SLN-MT in 

the suitable quantity for the programmed number of animals, was dissolved in sterile saline solution at the 

final concentration 0.3 mg/mL. This solution was sterilized by filtration through 0.2 µm filter under sterile 

laminar flow hood, capped and stored at 4°C along the treatment period. 
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Saline solutions of the drug have been prepared fresh in our laboratory, while SLN loaded with MLT 

has been provided by Nanovector Srl, Turin, Italy (Gasco and Gasco, 2007) as lyophilized powder in vials 

containing 3 mg SLN-MLT and 41 mg excipients (stearic acid, Epikuron 200, sodium glycocholate, UP water 

and trehalose). 

 

4.2.2.1. Treatment Groups 

Control group (Ctrl): mice treated with injection of saline alone i.p. This group allows the assessment 

of tumor growth without any anticancer treatment. 

 

Group treated with MLT (MLT): mice treated according to the scheme described above with injection 

of MLT dissolved in saline. This group allows to evaluate the effect of MLT has on tumor growth in relation to 

the positive control. 

 

Group treated with MLT incorporated in SLN (SLN-MLT): mice treated with i.p. injections of MLT 

incorporated in SLN. This treatment allows to evaluate the effect MLT incorporated in SLN has on tumor 

growth in relation to positive control and evaluating differences compared to MLT injected without the 

formulation SLN. 

 

4.2.3 Dosage and MLT preparation for topical administration  

For this set of experiments, mice xenografted with human LNCaP cells as described above, received 

MLT topically by the treatment schedule described above. MLT has been prepared fresh each week by 

emulsifying 0,048 mg MLT/ml of 0,8-1% hydroxyethyl cellulose for 7 min at full speed with a Politron ultra-

turrax, keeping the drug in ice and in the dark. Then, 15 ml of the suspension (0,72 mg MLT) have been 

transferred into the cryo-applicator and frozen at -20°C overnight. Each stick have been used for the 

treatment of 6 animals (Figure X). The final dose administered topically is approximately 0,120 mg MLT / 

mouse / treatment, ie 4 mg/kg. In the first stage, the frozen stick connected to a laser source giving the 

energy to penetrate the cutaneous barrier and deliver the active principle to the target area, was rubbed on 

the back of the animal (Fig. 19 – ), where the tumors where xenografted, for 2,5 min (≈ 2.5 min per mouse 

corresponded to the melting of ≈2.5 mL). This treatment time was studied to avoid that the animals of small 

size such the nude mice used here, can go into hypothermia. Longer treatment times are not recommended 

for healthy animals. When necessary, the mice have been placed on a hot plate at 37°C during the 

treatment.  

 

 

Fig. 19 – Frozen stick connected to a laser source rubbed on the back of the animal. 
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The concentration of MLT has been studied to administer the required amount topically in 2,5 min. 

After this first phase, in which the drug was pushed under the skin, mice have been placed in special 

constrictors, immobilized and a high-power laser scanning was applied on the area of drug application for 15 

min to optimize the adsorption through the tissues and facilitate the drug to reach the desired site of activity 

(Fig. 20). At this stage the use of a laser source with a pendulum movement allows the positioning of drug 

molecules to the desired depth. 

 

 

Fig. 20 – Portable configuration of Lasericemed-cryoRx that we used for our experiments. 

 

4.2.3.1. Treatment Groups 

Control group (Ctrl): the tumor are xenografted to athymic mice and, without any anticancer 

treatment, the growth in mice, he tumor mass and mortality have been recorded for all the experiment 

period. It shows the tumor growth for the period of the experiment and the growth of mice and/or mortality in 

the absence of other variables. 

 

Control group treated with cryoRx (laser): the tumors are xenografted to athymic mice and then the 

mice have been treated with frozen gel excipient containing MLT, 3 times a week for 42 days after xenograft. 

This group has the responsibility for determining whether the laser itself can have an influence on tumor 

growth, growth and mortality of mice. 

 

Tumor group treated with cryoRx and MLT (MLT- laser): the tumors are xenografted to athymic mice 

and they have been treated with frozen gel excipient containing MLT,3 times a week for 2 days after 

xenograft. For comparison with the control groups, one can assess the possible increase of the preventive 

effect and / or antitumor activity of MLT is associated with the laser treatment.  

 

4.2.4. Sacrifice  

At the end of the observation period, animals were anesthetized by i.p. Na-thiopental (10 mg/100 g 

body weight) plus heparin (500 units) and weighted. After euthanasia by cervical dislocation, animals were 

taken out of the chamber to be thoracotomized, blood was withdrawn into a heparinized syringe from the left 
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ventricle, tumors were quickly dissected away from surrounding skin and fascia and weighed, internal organs 

were removed, isolated, and harvested. The tumors and the organs were immediately frozen in liquid 

nitrogen and stored at -80°C for biochemical analyses and for histological study. No precaution was taken for 

N mice. 

 

4.3. MEASUREMENTS 

4.3.1. In vivo measurements 

Body weight and tumor volume were measured three times a week. No precaution was taken for N 

mice. The linear dimensions of the tumor were measured with electronic caliper and the tumor volume (in 

mm
3
) was calculated by the formula : 
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widthlength
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
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
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










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223

4

2

1 
  

This formula was derived from a formula for calculating the volume of a hemi-ellipsoid, the geometric 

figure most nearly approximating the shape of tumors (Williams et al., 2007). Tumor growth had to be 

followed through at least four separate measurements to be admitted to statistical analysis. 

 

4.3.2. Trypan Blue test  

The number of viable
 
cells was determined using Kova Glasstic Slide 10 with grids (Hycor 

Biomedical GmbH, Kassel, Germany)
 
under an inverted microscope (Motic AE 31, Motic Incorporation LTD, 

Hong Kong).
 
The cells were trypsinized, centrifuged (1,000 rpm for 5 min) and resuspended in 2 ml RPMI. 

Cell viability was determined by the Trypan Blue exclusion assay,
 
by mixing 10 µL cell suspension,

 
10 µL 

0.4% Trypan blue solution and 80 µL PBS. Dead
 
cells were counted as blue cells and the live cells were 

counted as cells that did not
 
absorb dye.  

 

4.3.3 Protein extraction and Western blot  

Separate extracts were prepared for each biopsy at 4°C. To obtain the cytosolic extract, frozen 

tissue (50-80 mg) was homogenized in a glass potter at 4°C with 1:3 (w:v) solution containing 10 mM 

HEPES, 1.5 mM MgCl2, 0.5 mM DTT, 0.2 mM PMSF, 10 mM KCl and 10% Protease Inhibitor Cocktail 

(Complete Protease Inhibitor Cocktail Tables, EDTA-free, Roche Diagnostics GmbH, Mannheim, Germany), 

pH 7,9. The homogenate was kept in ice for 20 min and centrifuged for 20 min at 14000 rpm at 4°C. The 

pellet was resuspended in the same solution, kept in ice for 10 min and centrifuged for 10 min at 14,000 rpm 

at 4°C. The cytosolic extract was obtained pooling the supernatant fractions from both centrifugations. The 

pellet was resuspended in the solution containing 20 mM Hepes, 1.5 MgCl2, 420 mM NaCl, 0.2 mM EDTA, 

0.5 mM DTT, 0.2 mM PMFS, 25% glycerol, 10% Protease Inhibitor Cocktail (Roche) pH 7,9, kept in ice for 

20 min and centrifuged for 20 min at 14000 rpm at 4°C to obtain the nuclear extract. The proteins 

concentration was measured by the Coomassie Plus Protein Assay reagent Kit (Pierce, Rockford, IL). 

Either the nuclear or the cytosolic extract were separated by sodium dodecyl sulfate polyacrylamide
 

gel electrophoresis SDS-PAGE. Both extract were separated by 8% acrylamide gels and 50-70 µg protein 

was loaded per each lane. After separation, proteins were blotted onto a nitrocellulose membrane 

(Amersham Pharmacia Biotech, Little Chalfont, Buckinghamshire, UK) and blocked with 5% nonfat dry milk 



 69 

in TRIS-buffered saline containing 0.1% Tween (1 h, room temperature). Membranes incubation overnight at 

4°C with the primary antibody, was followed by incubation with horse-radish peroxidase-conjugated 

secondary antibody (1 h, room temperature). The following primary antibodies and dilutions were used: 

rabbit polyclonal anti-HIF-1α (Santa Cruz Biotechnology, 1:2000), rabbit polyclonal anti-VEGF165 

(Calbiochem, 1:1000), mouse monoclonal anti-actin (Sigma Aldrich, St Louis, Mi 1:4000), rabbit polyclonal 

anti phospho-Akt-Ser
473

 (Cell Signaling Technology, 1:1000), rabbit polyclonal anti Akt (Cell Signaling 

Technology, 1:1000), rabbit polyclonal anti α-tubulin (Santa Cruz Biotechnology, 1:500). The secondary 

antibodies included horseradish peroxidase-conjugated anti-mouse IgG (Jackson Immuno Research, West 

Grove, PA, 1:10000) or anti-rabbit IgG (Jackson Immuno Research, West Grove, PA, 1:10000). 

Chemiluminescence was detected by incubating the membrane with LiteAblot Chemiluminescent substrate 

(Lite Ablot, EuroClone, EMPO10004) followed by x-ray film exposure (Kodak X-Omat Blue XB-1 Film, 

Eastman Kodak Company, Rochester, NY). The resulting image was acquired and quantified by Gel Doc 

(Bio-Rad quantitation software Quantity One). 

 

4.3.4. Hemoglobin  

Hemoglobin (Bartsch et al.) concentration/content was measured in blood, tumor mass and a 

reference organ (left kidney). Blood Hb concentration was measured by diluting 10 μl of well-stirred blood to 

1 ml of Drabkin reagent, followed by incubation for 30 min at room temperature and absorbance reading at 

λ=540 nm. The concentration was calculated assuming ε=11.05 cm
-1

 mM
-1

. 

 To measure the tissue Hb content, 10 l extract was diluted in 1 ml Drabkin reagent, (Bartsch et al.) 

was measured and expressed as μg Hb/mg tissue and was calculated by the formula: 

mg

ml

htBiopsyWeig

VolumeExtractionAbs

mgTissue

gHb



 16000

05.11

101
 

 

4.3.5. Immunohistochemistry 

 Biopsies from the frozen organs were included into embedding medium (OCT, optimal cutting 

temperature-compound, Leica Instruments, Nussloch, Germany) and serial 5-μm thick sections were 

obtained in a cryomicrotome (Leica CM1510, Nussloch, Germany) and placed on SuperFrost Plus glass 

slides (Menzel-GmbH & CoKG, Braun Schweig, Germany). The sections were dried at room temperature for 

3 min, fixed in 4% buffered formalin for 45 min at 4°C, rinsed two times for 5 min in PBS, post-fixed with 

ethanol–acetic acid 2:1 (v/v) at -20°C for 5 min, rinsed twice for 5 min in PBS, boiled in 10 mM citrate buffer, 

pH 6.0 for 10 min, washed one time in distilled water and two in PBS, and finally used for either HIF-1α 

immunoperoxidase, HIF-1α immunofluorescence or DNA fragmentation staining. 

 

4.3.5.1. HIF-1α immunoperoxidase staining  

Immunoperoxidase staining reveals HIF-1 -linked peroxidase activity as brown spots in the nucleus 

or in the cytosol. The sections were exposed to 3% H2O2 (5 min) to block endogenous peroxidase, treated 

for 1h with 10% normal goat serum under gentle agitation, incubated overnight at 4°C with a rabbit anti-HIF-

1α polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA, diluted 1:200 in 1.5% normal goat serum 

in PBS), washed three times for 5 min in PBS, incubated at room temperature for 45 min with goat anti rabbit 
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IgG peroxidase conjugated secondary antibody (Sigma, St. Louis, Missouri, diluted 1:800 in 1.5% normal 

goat serum), rinsed four times with PBS, incubated at room temperature with 1 mg/ml diaminobenzidine 

(Dako, Carpenteria, CA), counterstained with Gill’s hematoxylin, and mounted in 9:1 glycerol/ PBS medium, 

pH 7.4. A negative control was prepared for each biopsy by substituting the primary antibody with 1.5% 

normal goat serum. The slides were examined at 10X and 40X magnification in a microscope (Axiolab E, 

Carl Zeiss, Göttingen, Germany) equipped with a CCD camera (Nikon DS 5M, Tokyo, Japan) and the 

images were stored in a PC.  

 

4.3.5.2. HIF-1α quantitative immunofluorescence  

To give a quantitative estimation of HIF-1α, we employed an immunofluorescence technique by 

which the sections were incubated with anti-HIF-1α antibody, then with fluorescein-labeled secondary 

antibody (directed against the primary antibody) which yields a green signal measured by a semi-automatic 

method. After treatment with 10% normal goat serum for 1 h under gentle agitation, the sections were 

incubated overnight at 4°C with a rabbit anti-HIF-1 polyclonal antibody (Santa Cruz Biotechnology, diluted 

1:200 in 1.5% normal goat serum), washed in PBS, treated at room temperature for 45 min with a goat anti-

rabbit IgG fluorescein-conjugated secondary antibody (Santa Cruz Biotechnology, diluted 1:150 in 1.5% 

normal goat serum), rinsed with PBS four times, and mounted in a 9:1 glycerol/PBS medium, pH 8.5, 

containing 0.1% p-phenylenediamine as anti quenching agent. A negative control was prepared for each 

biopsy by substituting the anti-HIF-1α antibody with 1.5% normal goat serum. The slides were examined at 

40X magnification in an inverted fluorescence microscope (Axiovert 25 CFL, Carl Zeiss, Göttingen, 

Germany), equipped with a filter for detection of fluorescein (filter set 09, excitation band-pass 450–490 nm, 

emission low-pass 515 nm), randomly chosen images were acquired by a CCD camera (Nikon DS 5M, 

Tokyo, Japan) and stored in a PC. For HIF-1α quantification, we used an algorithm that allows to perform 

quantitative immunohistochemistry by calculating the cumulative signal strength, or energy, of the digital file 

representing the image. The algorithm involves subtracting the energy of the digital file encoding the control 

image (i.e., not exposed to antibody) from that of the experimental image (i.e., antibody-treated). In this 

manner, the absolute amount of antibody-specific chromogen per pixel could be determined for any cellular 

region or structure. The images were analyzed by IPlab Software (Scanalytics, Inc., MA) and split into RGB 

channels. The green channel was used to calculate the color intensity as the sum of the pixel intensity 

values. Five random fields were selected for each slide, the green color intensity was averaged and 

subtracted of the signal detected in the negative controls. HIF-1α abundance in the image is expressed as 

the sum of green pixel intensity*10
5
/0.037 mm

2
.  

 

4.3.5.3. Apoptosis  

The degree of apoptosis was assessed by the TUNEL method, using the In Situ Cell Death 

Detection Kit, Tetramethylrhodamine (TMR) red (Roche Diagnostics GmbH, Germany). The test is based on 

labeling DNA strand breaks by Terminal deoxynucleotidyl transferase (TdT), which catalyzes polymerization 

of TMR red-labeled nucleotides to free-3’-OH DNA ends in a template-independent manner. The sections 

were incubated in a solution containing TMR red-nucleotides and TdT for 1 h at 37°C in the dark, then 

washed three times in PBS. A negative control was established for each biopsy by substituting TdT with the 

label solution (TMR red-nucleotides without TdT enzyme). The nuclei were then counterstained with 150 

ng/ml bisbenzimides (Hoechst 33258, Sigma Aldrich, St. Louis, MI), for 3 min in the dark at room 
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temperature. Then the sections were rinsed with PBS four times, and mounted in a 9:1 glycerol/PBS 

medium, pH 8.5. Randomly chosen images were acquired as described for HIF-1α immunofluorescence, but 

using 2 different filters: the rhodamine detection filter (filter set 15, excitation band-pass 546 ± 12 nm, 

emission low-pass 590 nm) or a filter for Hoechst staining (Filter set 02, excitation bandpass 365, emission 

420). Then the 2 images acquired with the 2 filters were merged. Two operators counted the number of TdT-

labeled and total nuclei by examining at least 5 random fields in a blinded procedure. Results are expressed 

as number of TdT-labeled nuclei/total nuclei/0.037mm
2
. 

 

4.3.5.4. CD68 quantitative immunofluorescence  

To give a quantitative estimation of CD68, we employed an immunofluorescence technique by which 

the sections were incubated with anti-CD68 antibody, then with fluorescein-labeled secondary antibody 

(directed against the primary antibody) which yields a green signal measured by a semi-automatic method. 

After treatment with 10% normal goat serum for 1 h under gentle agitation, the sections were incubated 

overnight at 4°C with a rabbit anti-CD68 polyclonal antibody (Santa Cruz Biotechnology, diluted 1:100 in 

1.5% normal goat serum), washed in PBS, treated at room temperature for 45 min with a goat anti-rabbit IgG 

fluorescein-conjugated secondary antibody (Santa Cruz Biotechnology, diluted 1:150 in 1.5% normal goat 

serum), rinsed with PBS four times, and mounted in a 9:1 glycerol/PBS medium, pH 8.5, containing 0.1% p-

phenylenediamine as anti quenching agent. A negative control was prepared for each biopsy by substituting 

the anti-CD68 antibody with 1.5% normal goat serum. Randomly chosen images were acquired as described 

for HIF-1α immunofluorescence.  

 

4.3.5.5. Estimation of the tumor and infiltrate sizes  

In order to get a semi-quantitative estimation of the size of the tumor and infiltrate, the digital image 

of the tumor obtained by immunoperoxidase staining was used to delimit by hand the border of the infiltrate 

with IPlab software (Scanalytics, Inc., MA) on a high-resolution monitor. Then the area within the border limit 

(expressed as Pixel) was measured by IPlab software and used to calculate the tumor/inflammatory area. 

This operation was performed in 5 different fields from 3 tumors belonging to N and CH groups. Then the 

ratios were averaged.  

 

4.3.6 MLT quantification by ELISA test  

To measure MLT plasma levels, blood samples were withdrawn by intracardiac puncture. Serum 

samples were immediately separated by centrifugation and stored at -20°C until assayed. MLT plasma and 

tumoral levels were determined by a competitive enzyme immunoassay kit (Immuno Biological Laboratories, 

Hamburg, Germany) according to manufacturer’s instruction. To evaluate tumoral levels of MLT, the tumors 

were weighed (5-20 mg), homogenized in an appropriate volume of PBS using a Politron ultra-turrax for 1 

min and then centrifuged at 12000 rpm for 5 min. Tumor homogenate supernatants were used for MLT 

determination. This procedure was adjusted from one used for tissue sample by Sanchez-Hidalgo et al. 

(Sanchez-Hidalgo et al., 2009). MLT from 500 μL of the samples, standards and control was extracted using 

C18 reversed phase columns (IBL-Hamburg, Germany) and methanol elution. The dried extracts (after 

evaporating methanol) were stored at -20°C for up to 48 hours. MLT levels were measured in duplicate using 

96 well microtiter plate coated with captured antibody goat anti-rabbit Ig. Each microtiter plate was filled 

either with 50 μL blank reagent, extracted calibrators, extracted samples or extracted standard solution 
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(containing 0, 3, 7, 33, 110 or 250 pg/ml of MLT). Then, 50 μL of MLT biotin and 50 μL of rabbit-antiserum 

were added into each well, shaken carefully, sealed with adhesive foil and incubated overnight (14-20 hours) 

at 2-8°C. After washing three times with 250 μL diluted washing buffer, 150 μL of ant-biotin conjugate to 

alkaline phosphatase was added into each well and incubated 2 hours at room temperature. The reaction 

was developed using p-nitrophenyl phosphate and optical densities were determined at 405 nm in an 

automatic microplate reader. The sensitivity of the MLT assay was 1.6 pg/ml. Both intra- and inter-assay 

coefficients of variation (Gregory et al.) were less than 10%. 

 

4.4. STATISTICS  

Data are expressed as meanSEM. Significance level was P=0.05 (two-tailed). To detect differences 

among two group we performed the Student unpaired t test. To detect differences among three groups, we 

performed one-way ANOVA. If this test resulted significant, the differences between selected pairs of data 

were tested using the Bonferroni procedure (InStat, Windows version 3.01, GraphPad Software, San Diego, 

California, USA). To assess the tumor growth rate, we fitted by the least square method the volume of each 

tumor on the equation y=y0*e
kt
, e.g., a first-order exponential growth where t represents time and k the rate 

constant, then averaged the k values for each group. 
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5.0. MATERIALS AND METHODS - MLT IN ICU 

PATIENTS AS SLEEP-WAKE REGULATOR 

5.1. STUDY POPULATION 

The present study (randomized, perspective, pharmacokinetics, monocentric, single blind) named 

“Pharmacokinetics of exogenous MLT in high-risk patients”, was conducted in the Intensive Care Unit (ICU) 

of H. S. Paolo (Milan, Italy), in the period between January and October 2011. For this study, 21 high-risk 

patients have been enrolled, subdivided into three different groups, based on the different administration and 

pharmacological formulation of MLT. The criteria adopted for the enrolment to the treatment was the 

minimization in order to reduce the differences between the major prognostic factors, maintaining the groups 

homogeneous; this allows to attribute to each treatment the eventual differences observed in the outcome. 

For each group we studied seven subjects: this abundance allows enough data collection for a 

pharmacokinetic study. 

 

5.1.1 Inclusion and exclusion criteria 

The inclusion criteria were the following: patients over 18 years old, high-risk patients (SAPS II > 32 

and expected mechanical ventilation > 48 hours). 

Exclusion criteria were: underage, hepatic failure (Child-Pugh class C), dialytic treatment, gut 

impracticability, pregnancy and lactation, home mechanical ventilation, neuropsychiatric disorders, DNR 

orders (Heyland-2003). As soon as their clinical and neurological conditions improved, patients were duly 

informed of the study and their consent was obtained.  

  

5.2. MLT DOSAGE AND FORMULATION 

The drug formulations used in the study were:1
st
 GROUP : 1 cp Tranquillus (Ingredients per tablet: 

MLT (3 mg), additives, microcrystalline cellulose, calcium phosphate, inulin, talc, magnesium stearate) 400 

mg tablets manufactured in Florence-via D. Veneziano, 13 for Functional Point Srl-via Pietro Paleocapa 19 

24122 Bergamo-ITALY)2
nd

 GROUP: MLT incorporated into SLN has been provided by Nanovector Srl, Turin, 

Italy (Gasco-2007) as lyophilized powder in vials containing 3 mg SLN-MLT and 41 mg excipients (stearic 

acid, Epikuron 200, sodium glycocholate, UP water and trehalose. A  hot microemulsion was prepared with 

stearic acid as lipid matrix, phospholipids and taurocholate. The average diameters of the SLN-MLT vary 

depending on the amount of melatonin incorporated. The SLN-MLT had e an average diameter of 120 nm.  

3
rd

 GROUP: MLT incorporated into SLN , 3 mg SLN-MLT and 41 mg excipients were dissolved in BD water  

(0.5 mL) and the solution was applied on an area of 9 cm
2
, using a patch. 

After a period of clinical stabilization after ICU admission (2 days), the pharmacokinetics study began 

on ICU day 3, time at which  MLT was administered to the patients.  

1
st
 GROUP (MLT os) received standard MLT by nasogastric tube: 1 Tranquillus tablet (400 mg) 

containing 3 mg of MLT. 

2
nd

 GROUP (SLN-MLT os) received SLN-MLT by nasogastric tube: 3 mg SLN-MLT. 

3
rd

 GROUP (SLN-MLT td) received SLN-MLT transdermally: 3 mg SLN-MLT, duration of application 

12 h. 
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5.3. TIMING OF BLOOD SAMPLES 

1
st
 day ICU stay: recruitment and stabilization; collection informed consent. 

2
nd.

day ICU stay: blood sampling for basal endogenous MLT levels at 20:00-24.00-03.00-06.00-

14.00 h. 

3
rd

 day of ICU stay: last blood sampling for basal endogenous MLT levels at h 20:00. 

Immediately after this blood sampling, administration of MLT (MLT os/ SLN-MLT os/ SLN-MLT td). 

Blood sampling for exogenous MLT levels at 20:05-20:10-20:20-20:30-20:45-21:30-22:15-23:00-24:00-

03:00-06:00-07:00-14:00-20:00 h. 
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Fig. 21 – Withdrawals timing. 

 
Extreme care has been made to maintain darkness at night when the blood samples were taken via 

central venous catheters. Patients’ sleepiness was monitored by nurses, assuming that observing a calm 

patient with closed eyes meant that the patient was sleeping. All patients received standard intensive 

treatment including ventilator, cardiovascular, nutritional support (continuous enteral nutrition or a 

combination of enteral and parenteral nutrition) and sedatives based on their clinical needs. 

  

5.4. MEASUREMENTS 

To measure MLT plasma levels, blood samples were collected, as previously described, from central 

venous catheters, placed in the internal jugular vein before the beginning of the study. Samples were 

collected in plastic tubes containing ethylenediaminetetraacetic acid (EDTA) as anticoagulant. Serum 

samples were immediately separated by centrifugation at 2000 rpm room temperature, separated from RBC 

and stored at -20°C until assayed. MLT plasma levels were determined by a competitive enzyme 

immunoassay kit (Immuno Biological Laboratories, Hamburg, Germany) according to manufacturer’s 

instruction (see cap 4.4.6). 

 

5.5. STATISTICS 

The basic characteristics and patient outcomes were analyzed using one-way ANOVA for continuous 

variables equally distributed, Kruskal Wallis test for continuous variables not equally distributed; for 

categorical variables Chi square test was used instead. The pharmacokinetic analysis was obtained by 

means of an integral of the trapezoidal melatoninemia. The analysis of the relationship between the 

pharmacokinetic variables and clinical characteristics of patients was conducted by non-linear quantile 

regression and Spearman correlation. All analyzes were performed using the statistical program “Stata 12” 

(Stata Corporation, College Station TX, USA). 
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6.0. Results – MLT as antitumoral molecule 

6.1. MLT and SLN-MLT intraperitoneal (i.p.) 
 
6.1.1. Effect of intraperitoneal MLT and SLN-MLT on animal homeostasis 

This set of experiments was aimed at assessing whether MLT administered by this quite traditional 

route results into an oncostatic situation, and whether administration of the same amount of SLN-MLT is 

oncostatic as well. The athymic mice were implanted with LNCaP cells and not-treated (n=6) or treated with 

MLT 1 mg/kg (n=13) and SLN-MLT 1 mg/kg (n=13). The xenograft rate of success was over 65% and the 

tumors could be measured after 15 days. The (Fig. 22) evidences that animals of two MLT treated groups 

grew better than the control animals all along the treatment period. As far as the final body weight, the mice 

treated with MLT and SLN-MLT showed a significantly higher ( p<0,001 vs control for both groups) body 

weight resulting in a better animal compliance. The treatment with MLT in solution and in SLN has not been 

shown to have different effects, compared to the group control (not-treated), as regard as the changes in 

blood Hb concentration (data not shown). The treatment with MLT and SLN-MLT at concentrations 

previously reported showed no obvious acute toxic effects and mortality was found to be 0% in all three 

references groups. 

 

 

Fig. 22 – Body weight trend for 3 groups (Ctrl, SLN-MLT and MLT) during all the treatment. 
 

6.1.2. Effect of intraperitoneal MLT and SLN-MLT on tumor growth 

 The effect on tumor growth was evaluated in the three treatment groups with measurements of 

tumor volume over time as described in materials and methods. In the control group (not treated) athymic 

mice implanted with human LNCaP cells developed 12 of 12 tumors (100%). In the group treated with ip 

administration of MLT have been developed 20 of 26 tumors (77%) and in the group treated with SLN-MLT 

have been developed 17 over 26 tumors (65 %).  

The statistical analysis shows that starting from day 34 treatment (Fig. 23) with MLT significantly 

inhibited tumor growth than in control (p<0,01 for SLN-MLT and p<0,001 for MLT). The day 41 (last 
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measured point) showed a highly significant difference (p<0,05) for the two groups treated with MLT vs 

control group (Fig. 24).  

Data confirmed that ip treatment with MLT and SLN-MLT has important oncostatic potential. Of 

interest, MLT does not delayed appreciably the time of appearance of the tumors after the xenograft, but 

rather it decreased the growth rate. SLN-MLT seemed to have more or less the same oncostatic potential of 

MLT in solution. 

 

 

Fig. 23 – Kinetic of tumor volume/body weight for 3 groups (Ctrl, SLN-MLT and MLT) during all the treatment. 

 

 

Fig. 24 – Final (at day 42
nd

day)tumor volume/body weight for 3 groups (Ctrl, SLN-MLT and MLT). 

 

6.1.3. Effect of intraperitoneal MLT and SLN-MLT on MLT levels in plasma and 

tumors at sacrifice 

We have evaluated the MLT levels in plasma and tumors at sacrifice by ELISA assay as described 

under material and methods. This method resulted immediately suitable for MLT determination in mouse 

plasma following the producer's instructions, however we needed to conduct different experiments testing  
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different dilutions of the plasma samples, before extracting them using the C18 columns. The diverse 

dilutions were aimed at dosing samples with a MLT concentration within the linearity range of the ELISA kit, 

and were chosen on the base of the putative concentration in relation to the treatment received.  

The determination of MLT at tumor tissue levels was particularly challenging, especially concerning 

the MLT extraction step, since few papers reports experiences on this issue. We have conducted different 

experiments using different methodologies to extract MLT from the tumor samples. We have then adjusted 

the methodology reported by Sanchez-Hidalgo et al. (Sanchez-Hidalgo-2009); the frozen tumors were cut on 

dry ice, weighed (5-30 mg), and immediately homogenized in cold PBS (500 μl) with Politron ultra-turrax for 

1 min keeping the tube in ice during the operation. and then centrifuged at 12000 g for 5 min in a mini Spin 

centrifuge. The homogenate supernatants were then used for MLT determination.  

Results showed that MLT levels in plasma at the time of the sacrifice were significantly higher 

(p<0,05) both in MLT and SLN-MLT groups, vs controls, as expected. No significant differences were found 

between the two methods of MLT delivery (Fig. 25). A similar trend was observed for the MLT levels in 

tumors of treated animals (p<0,05 vs control) (Fig. 25). Although the MLT concentration in plasma and 

tumors of SLN-treated animals resulted always slightly lower than in the group treated with MLT dissolved in 

saline, this difference never resulted significant (Fig. 25).  

 

  
Fig. 25 –Plasma MLT levels (at day 42

nd
day) for Ctrl (n=5),SLN-MLT (n=12) and MLT (n=13) and tumoral MLT levels (at day 42

nd
day) 

Ctrl (n=12),SLN-MLT (n=5) and MLT (n=7). 
 

6.1.4. Effect of intraperitoneal MLT and SLN-MLT on HIF-1α expression 

In Fig. XX are reported the values of HIF-1α expression in the tumor tissue evaluated by 

immunofluorescence as described previously. In both treated groups HIF-1α expression appeared increased 

in respect to controls, although not reaching the significance. Saline SLN, as previously seen for other 

parameters, seem to shift more efficiently HIF-1α expression (Fig. 26). 
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Fig. 26 – HIF-1α expression by immunofluorescence for 3 groups (Ctrl, SLN-MLT and MLT). 
 

6.1.5. Effect of intraperitoneal MLT and SLN-MLT on tumor mass morphology  

For the morphological analysis, the tumor samples, which had different composition and density, 

were treated in such a way to make a homogenous mass. The samples were fixed in formalin, dehydrated 

trough the passage in alcohol and clarified in xylene. After being immersed in paraffin, they were cut into 

sections. These sections were then collected on microscope slides. To staining hematoxylin-eosin was used, 

which allows to display effectively the morphological structure. 

 

   
Fig. 27 – Morphological imagines for 3 groups: Ctrl (a), SLN-MLT (b) and MLT (c). 

 
In all groups, the tumor mass has a lobular organization, with tumor cells interspaced by 

parenchymal cells and characterized by a high nucleus/cytoplasm ratio as well as by nuclear alterations and 

areas of necrosis. 

Untreated tumors exhibit moderate neo-vascularization and lack of significant inflammatory response 

(Fig. 27a). MLT ip tumors were characterized by nests of tumor cells circumscribed by an important 

inflammatory reaction and for the massive presence of lymphocytes and some granulocytes surrounding and 

infiltrating tumor cells (Fig. 27b). Tumors of the SLN-MLT group show characteristics similar to those of the 

MLT group with regard to angiogenesis and the inflammatory response. In this case, the tumor appears 

circumscribed by a high lymphocytes response and by the presence of fibroblast-like cells (Fig. 27c). 

a b c 
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Immunofluorescence analysis carried on the same tumors essentially confirmed the differences seen 

above with control tumor tissue characterized by homogeneous and compact structure without 

disaggregated areas, whereas after MLT i.p. treatment we evidenced small to medium regions of cells highly 

disorganized in all the three dimensions of the space. SLN-MLT treatment seems to impair more strongly the 

tissue architecture, showing some areas still organized with some incipient fragmentation and a strong 

leukocyte infiltration, and some other tumor areas with a much more disorganized structure with overlapping 

tumor cellular layers highly fragmented (Fig. 28). 

 

   
Fig. 28 -Immunofluorescence imagines for 3 groups: Ctrl (a), SLN-MLT (b) and MLT (c). 

 
 

6.1.6. Effect of intraperitoneal MLT and SLN-MLT on CD4 and CD8 expression 

The CD4 and CD8 expression was evaluated by quantitative analysis immunohistochemistry. 

The number of CD4 were not significantly different in the two treated groups vs control (not treated) (Fig. 29). 

The number of cells positive for the marker of CD8 showed a trend to increase  in the MLT and in the SLN-

MLT groups, vs control, although not significantly (Fig. 29). The CD4
+
/CD8

+
 ratio resulted significantly lower 

in both treated groups, in respect to controls (Fig. 29). 

 

   
Fig. 29 – CD4, CD8, CD4/CD8 expression for 3 groups (Ctrl, SLN-MLT and MLT). 

 

6.2. MLT transdermal by cryolaser 

6.2.1. Effect of transdermal MLT by cryolaser on animal homeostasis  

This set of experiments was aimed at assessing whether a novel system of drugs administration  

(Cryopass therapy) is efficient for MLT and comparing this system with traditional administration route (i.p.). 

The athymic mice were implanted with LNCaP cells and not-treated (n=6) or treated with cryoRx (laser) 

(n=10) or with cryoRx and MLT (MLT- laser): 4mg/kg (n=14). The xenograft rate of success was over 65% 

and the tumors could be measured after 15 days. Both the treatment with MLT-laser and with laser alone 

a b c 
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seemed to be well tolerated by the animals, with a good compliance and a body weight higher in respect to 

not treated animals all along the treatment period. The final body weight of treated groups was significantly 

higher (p<0,001 vs control for both groups). 

The treatment with MLT-laser and with laser alone has not been shown to have different effects, 

compared to the group control (not-treated), as regard as the changes in Hb concentration. The treatment 

with laser alone at concentrations previously reported showed no obvious acute toxic effects, and mortality 

was found to be 0% in all three references groups. 

 

 

Fig. 30 - Body weight trend for 3 groups (Ctrl, laser and MLT-laser) during all the treatment. 
 
 

6.2.2. Effect of transdermal MLT by cryolaser on tumor growth 

 The effect on tumor growth was evaluated in the three treatment groups with measurements of 

tumor volume over time. In the control group (not treated) athymic mice implanted with human LNCaP cells 

developed 12 of 12 tumors (100%). In the group treated with laser alone have been developed 15 of 20 

tumors (75%) and in the group treated with topical MLT have been developed 21 over 28 tumors (75%).  

The statistical analysis shows that starting from day 34 treatment, transdermal MLT-laser 

significantly inhibit tumor growth than in controls (p<0,05) (Fig. 31). The day 41 (last measured point) shows 

a highly significant difference (p<0,01) for the group treated with MLT-laser vs control group (Fig. 31.  
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Fig. 31 – Kinetic of tumor volume/body weight for 3 groups (Ctrl, laser and MLT-laser)during all the treatment. 

 

 

Fig. 32 - Final (at day 42
nd

day)tumor volume/body weight for 3 groups (Ctrl, laser and MLT-laser). 
 

6.2.3. Effect of transdermal MLT by cryolaser on MLT levels in plasma and 

tumors at sacrifice 

We have evaluated the MLT levels in plasma and tumors at sacrifice by ELISA assay as described 

under material and methods and following the same strategy followed for the i.p. treatment.  

Results showed that MLT levels in plasma at the time of the sacrifice were significantly higher 

(p<0,05 in MLT-laser group vs controls, as expected. A similar trend was observed for the MLT levels in 

tumors of MLT-laser treated animals (p<0,05 vs control) (Fig. 33). The group treated with laser alone did not 

show any difference in both tumor and plasma MLT levels respect to controls. 
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Fig. 33 - Plasma MLT levels (at day 42

nd
day) for Ctrl (n=5),laser (n=9) and MLT-laser (n=13) and tumoral MLT levels (at day 42

nd
day) 

Ctrl (n=12), laser (n=15) and MLT-laser (n=21). 
 

 

6.2.4. Effect of transdemal MLT by cryolaser on HIF-1α expression 

HIF-1α expression was measured as described above using immunofluorescence. The results are 

similar to those  observed for the MLT ip experiments, in fact the group treated with MLT-laser showed an 

increased HIF-1α expression (p<0,05) in respect to controls. This result has been confirmed with Western 

blot and still deserves further investigation on the mechanisms underlying MLT action. The group laser alone 

showed more or less the same HIF-1α expression of the control using both methods. 

 

 

Fig. 34 - HIF-1α expression by immunofluorescence for 3 groups (Ctrl, laser and MLT-laser). 
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6.2.5. Effect of transdermal MLT by cryolaser on tumor mass morphology  

For the morphological analysis, the tumors samples were treated as described above In all groups 

the tumor has lobular organization, with tumor cells that appear interspaced by some parenchymal cells and 

characterized by a high ratio nucleus / cytoplasm as well as by nuclear well evident alterations. It can also be 

observed areas of necrosis within the tissue. The tumors in the control group exhibited a moderate 

neovascularization and the absence of a significant inflammatory response. 

The tumors in the group treated with MLT-laser were characterized by nests of tumor cells 

circumscribed by a major inflammatory reaction, mainly characterized by a chronic response represented by 

the massive presence of lymphocytes and some granulocytes, which seem to surround and infiltrate  the 

tumor cells. It 's also possible to note an elevated development of blood vessels, which grow indefinitely 

forming cavity rich in erythrocytes. The tumor appears limited not only by high lymphocyte response, but also 

by the presence of fibroblast-like cells. (Fig. 35). 

 

   

Fig. 35 - Morphological imagines for 3 groups: Ctrl (a), laser (b) and MLT-laser (c). 
 

Immunofluorescence analysis carried on the same tumors essentially confirmed the differences seen 

above with a control tumor tissue with a homogeneous and compact structure not showing disaggregated 

areas. The treatment with laser alone still conserve a structure with compact cellular blocks but reveals the 

tendency to form a network of small cords disorganized. When MLT was used as an adjuvant to laser (MLT-

laser group), the tumor tissue tends to be much more disaggregated, showing a mixed structure with 

compact cords and areas most highly disorganized. The luminescence showed in Fig. 36 is due to white 

blood cell infiltrates  

 

 

   
Fig. 36 - Immunofluorescence imagines for 3 groups: Ctrl (a), laser (b) and MLT-laser (c). 

 

 

a b c 

 

a b c 
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6.2.6. Effect of transdermal MLT and SLN-MLT on CD4 and CD8 expression 

The CD4 and CD8 expression was evaluated by quantitative analysis immunohistochemistry. 

The number cells positive for CD4
+
 and for CD8

+
 are significantly higher (p<0,05) in the MLT-laser group vs 

control (Fig. 37). Not significant difference vs control was observed both for CD4 and CD8 expression for the 

group treated with laser. The CD4
+
/CD8

+
 ratio resulted therefore not significantly different in the MLT-treated 

group respect to control.  

 

   
Fig. 37 - CD4, CD8, CD4/CD8 expression for 3 groups (Ctrl, laser and MLT-laser). 
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7.0. Results - MLT in ICU patients as sleep-wake 

regulator 

The study involved 21 patients admitted to the Intensive Care Unit of the Hospital San Paolo, Milan. 

Of these patients, 11 were hospitalized as a result of medical conditions and 10 after emergency surgery or 

complications within the 7
th
 postoperative day, the diagnosis of entry is pneumonia for 5 patients, 3  for 

anastomosis dehiscence colic, 2 for fasciitis, 2 for aortic aneurysm rupture, 2 for hemorrhagic shock, as well 

as individual cases of cardiogenic shock, mediastinitis, infection, vascular flap, cholecystitis, diabetes 

insipidus, pulmonary thromboembolism, bowel obstruction. The clinical characteristics of the patient enrolled 

in the study are reported in Table 2.  

 

Tab. 2 Characteristics of patients 

 
MLT os 
(n=7) 

SLN-MLT os 
(n=7) 

SLN-MLT td 
(n=7) 

p  
value 

     
Age (years) 69±13 71±12 73±5 0,78 

Men n (%) 6 (86) 5 (71) 5 (71) 0,77 

Weight (kg) 76±10 81±15 71±14 0,44 

Height (Patel et al.) 169±6 170±7 167±9 0,72 

Entry SAPS II (points) 59±16 52±10 53±14 0,57 

Entry SOFA score (points) 9±3 6±1 8±4 0,28 

Medical admission n (%) 5 (71) 2 (29) 4 (57) 0,26 

      

Table 3-5 show the patients clinical values collected during the day in which was performed the 

blood sampling for detection of baseline MLT levels (day 1), the day of MLT administration (day 2), and the 

last day of the study in which blood samples were obtained to analyze the pharmacokinetics of exogenous 

MLT (day 3). 
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Tab. 3 Blood test analysis of patients 

 day 
MLT os 
(n=7) 

SLN-MLT os 
(n=7) 

SLN-MLT td 
(n=7) 

p 
value 

      

WBC/mm³ 

1 10684±5137 9729±2963 18680±13561 0.127 

2 10140±3254 10414±3002 16595±10108 0.153 

3 9300±2754 9403±3320 13859±7752 0.214 

      
      

Platelets/mm³ 

1 120429±62801 172143±68307 207000±145777 0.288 

2 87500±26987 154857±67800 142500±69229 0.129 

3 88333±30540 138857±80549 179429±93643 0.124 

      
      

Creatinine 
(mg/dL) 

1 2.1±1.4 0.9±0.3 1.4±0.9 0.145 

2 1.9±1.3 0.7±0.2 1.3±0.9 0.078 

3 1.9±1.5 0.7±0.2 1.1±0.9 0.097 

      
      

Urea 
(mg/dL) 

1 93±75 41±24 64±36 0.255 

2 93±65 41±17 69±27 0.101 

3 97±67 42±20 51±35 0.094 

      
      

AST 
(units/L) 

1 90±125 33±27 35±14 0.454 

      
      

ALT 
(units/L) 

1 30±14 63±98 28±12 0.534 

      
      

Total bilirubin 
(mg/dL) 

1 1±0.4 2.6±3.8 1.3±1.4 0.490 

      
      

Procalcitonin 
(ng/mL) 

1 50.65±45.74 6.5±11.78 11.65±10.19 0.073 

3 5.4±3.11 3.5±3.99 4.28±5.56 0.913 
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Tab. 4  Severity indicators of patients 

 day 
MLT os 
(n=7) 

SLN-MLT os 
(n=7) 

SLN-MLT td 
(n=7) 

p value 

      

SOFA score 
(points) 

1 6±3 5±2 6±3 0.892 

2 7±3 5±2 6±3 0.593 

3 6±3 3±2 5±3 0.195 
      

      

Shock 
(numbers) 

1 3 2 3 0.817 

2 3 2 4 0.558 

3 2 0 3 0.159 
      

      

SIRS/severe 
sepsis/septic shock 

(numbers) 

1 2/3/2 3/2/2 2/2/3 0.860 

2 2/4/1 3/2/2 2/1/4 0.414 

3 2/4/1 3/4/0 2/2/3 0.366 
      

      

Lactates 
(mmol/L) 

1 1.6±0.6 1.5±0.5 1.5±0.9 0.987 

2 1.4±0.5 1.2±0.3 1.2±0.5 0.763 

3 1.1±0.3 1.4±0.5 1.1±0.5 0.384 
      

      

Perfusion state: 
bad/poor/good 

1 1/2/4 1/3/3 2/2/3 0.919 

2 0/3/4 3/2/2 1/3/3 0.353 

3 0/2/5 2/0/5 1/3/3 0.247 
      

      

Systemic 
vasoconstrictors 

Yes/No 

1 1/6 3/4 3/4 0.424 

2 1/6 2/5 4/3 0.223 

3 1/6 0/7 4/3 0.033 
      

      

O2/C-PAP/PSV 
 

1 0/0/7 0/0/7 1/1/5 0.350 

2 0/0/7 1/1/5 1/1/5 0.504 

3 1/0/6 2/1/4 1/1/5 0.754 
      

      

Gastric retention 
Yes/No 

1 0/7 2/5 1/6 0.311 

2 1/6 1/6 2/5 0.734 

3 0/7 1/6 1/6 0.575 
      

      

Prokinetic 
Yes/No 

1 2/5 4/3 2/5 0.446 

2 2/5 4/3 2/5 0.446 

3 2/5 2/5 3/4 0.807 
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Tab. 5  Clinical parameters of patients 

 day 
MLT os 
(n=7) 

SLN-MLT os 
(n=7) 

SLN-MLT td 
(n=7) 

p value 

      

Hourly diuresis 
(mL/h) 

1 122±63 96±49 67±35 0.150 

2 94±46 84±68 78±28 0.840 

3 91±62 130±101 95±39 0.543 

      
      

Axillary temperature 
(˚C) 

1 37.4±0.8 37.7±0.9 37.5±1 0.807 

2 38±0.6 37.4±0.9 37.7±0.8 0.340 

3 37.9±0.4 37.5±0.6 37.4±0.6 0.225 

      
      

Heart rate  
(bpm) 

1 95±20 92±9 101±41 0.823 

2 92±21 95±16 92±14 0.935 

3 94±18 96±12 90±20 0.774 

      
      

systolic BP  
(mmHg) 

1 131±20 122±17 119±19 0.482 

2 125±14 123±11 112±18 0.221 

3 122±15 112±11 118±10 0.320 

      
      

diastolic BP 
(mmHg) 

1 57±10 59±12 53±8 0.535 

2 62±15 66±14 53±9 0.193 

3 55±10 56±12 63±13 0.407 

      
      

Respiratory rate 
(breaths/min) 

1 21±3 17±7 16±5 0.170 

2 23±6 21±4 19±6 0.366 

3 23±7 22±4 23±5 0.869 

      
      

spO2  
(%) 

1 98±2 99±1 98±2 0.732 

2 98±1 99±1 99±2 0.384 

3 99±1 99±1 98±1 0.729 

      
      

pH 

1 7.44±0.04 7.43±0.03 7.42±0.06 0.479 

2 7.46±0.03 7.43±0.03 7.43±0.04 0.241 

3 7.43±0.05 7.45±0.01 7.45±0.03 0.522 

      
      

pCO2 
(mmHg) 

1 48±5 47±8 47±8 0.986 

2 48±7 47±9 48±6 0.962 

3 51±9 49±9 46±6 0.534 

      
      

RASS 
≤-1/0/≥1 

 

1 2/4/1 3/3/1 3/4/0 0.755 

2 3/4/0 2/4/1 2/5/0 0.329 

3 3/3/1 1/6/0 2/5/0 0.202 
       

      

Sedation: 
nothing/enteral/mixed 

1 2/5/0 2/5/0 1/5/1 0.460 

2 3/4/0 2/5/0 1/6/0 0.497 

3 4/3/0 6/1/0 2/5/0 0.097 
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The MLT baseline levels resulted below the nocturnal physiological levels in 71% of patients enrolled 

in the study. In a recent study conducted by Khaleghipour et al. (Khaleghipour-2012) the nocturnal MLT 

plasmatic levels in healthy subjects were found to be: 67.42 ± 16,17 pg/ml. In our study, the MLT baseline 

levels were between 34.1 (14.8-50.3)  and 10,2 (8,5-16,4) pg/ml for the MLT os group; between 44.9 (19.3-

68.9) and 7.4 (6.6-10.1) for SLN-MLT os group and between 58.0 (42.9-110.5) and 16.1 (14.0-22.4) for the 

SLN-MLT td group. Administration of exogenous MLT led all patients to reach pharmacological MTL levels 

(Fig. 38). 

 

  
Fig. 38 – Basal values trend and median basal value recorede in the 2

nd
day of ICU stay in all patients enrolled for the study. 

 

In patients who have received formulations per os (MLT os and SLN-MLT os groups), absorption 

was rapid: the peak plasma concentration has a median of 30 minutes and after just 5 minutes MLT 

plasmatic levels were greater than those physiological in all patients; the group who received transdermal 

MLT (SLN-MLT td group) instead, presented a delayed peak plasma concentration (median value 4 h), 

exceeding, however,  the higher endogenous MLT concentration recorded in the 24 h prior the application. 
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The maximum concentration and the area under the curve (AUC) values showed statistically 

significant differences among the three groups (p <0.01); they were significantly higher in the group that 

received SLN-MLT per os (SLN-MLT os). This group had a peak plasma 2 times higher than that received 

melatonin in the standard formulation (MLT os) (median 61226 pg/mL vs 26793 pg/mL) and 220 times higher 

than the group who were given SLN –MLT td (303 pg/mL). In patients who received enteral nanocapsules 

AUC was 3.8 times higher than those who received MLT per os (148578 pg / mL * h vs. 39126 pg / mL * h), 

and the SLN-MLT td group presents an area under the curve 19 times lower compared to the group which 

received the MLT per os (2050 pg/mL* h vs. 39126 pg/mL* h). The elimination fraction and plasma half-life 

did not differ significantly between the groups (p = 0.56) (Table 6). 

 

Tab. 6 MLT pharmacokinetic characteristics 

 
MLT os 
(n=7) 

SLN-MLT os 
(n=7) 

SLN-MLT td 
(n=7) 

p value 

Maximum concentration 
(Cmax) (pg/mL) 

26793 
[16344-36673] 

61226 
[40408-75353] 

303 
[101-1548] 

0.0003 

Time to reach Cmax 
(h) 

0.5[0.16-0.5] 0.5[0.5-1.5] 4[3-7] 0.0011 

Halflife  
(h) 

3.9[2.6-4.7] 3.1[1.7-3.9] 3.9[2.7-8.0] 0.56 

AUC 
(pg/mL*h) 

39126 
[21706-86150] 

148578 
[55635-195758] 

2050 
[860-12784] 

0.0009 

 

Values are reported as median [interquantile range]. 
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Fig. 39 – Pharmacokinetics MLT plasma levels in the three groups: MLT os (n=7), SLN-MLT os (n=7) and SLN-MLT td (n=7). 

 

 

Fig. 40 – Median plasma MLT levels for 3 groups: MLT os, SLN-MLT os and SLN-MLT td. 



 92 

Table 7 shows that the patients outcome did not vary in relation to the formulation or route of 

administration used (Table 7). 

 

Tab.7 Outocome of the patients 

 MLT os 
(n=7) 

SLN-MLT os 
(n=7) 

SLN-MLT td 
(n=7) 

p value 

LOS   13 [13-24] 10 [7-11] 12 [8-17] 0,12 

C-LOS  13 [10-24] 6 [5-9] 9 [6-14] 0,14 

Ventilation 
(days) 

13 [10-24] 5 [4-9] 9 [5-14] 0,13 

ICU dead 
n(%) 

3 (42,9) 1 (14,3) 1 (14,3) 0,35 

 

 

Table 8 reports the results obtained from the correlation analysis to find a relationship between the 

clinical variables of the patients and the pharmacokinetics parameters.  
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Tab.8. Relationship between clinical variables and pharmacokinetics parameters 

 
 MLT os SLN-MLT os SLN-MLT td Overall 

day Coef. p Coef. p Coef. p Coef. p 

Cmax          

Bilirubin 

1 14114 0.515 1839 0.06 384 0.035 8438 0.012 

2 -11745 . 68850 0.148 948 0.143 -22728 0.523 

3 -23489 . o.ins o.ins 5474 . 11567 0.023 

          

Perfusion* 

1 -0.717* 0.069* 0.347* 0.446* -0.775* 0.041* 0.061* 0.792* 

2 -0.722* 0.069* 0.416* 0.354* -0.81* 0.027* 0.247* 0.28* 

3 0.474* 0.282* -0.158* 0.735* -0.81* 0.027* -0.006* 0.979* 

          

AUC          

Bilirubin 

1 67178 0.205 14824 0.131 3022 0.050 21519 <0.001 

2 -22538 . 452776 0.065 7406 0.191 -10607 0.656 

3 -45076 . o.ins o.ins 51960 . 26405 0.025 

          

Gastric 
retention 

1 *391260 *0.169 8139 0.512 -2163 0.671 113455 0.015 

2 20363 0.583 -29940 0.728 -2163 0.803 24366 0.654 

3 39126 0.169 -29940 0.728 -1531 0.774 113455 0.019 

          

Tmax          

Shock 

1       -1 0.583 

2       -1 0587 

3 0 1 0.5 0.081 -1 0.685 2.5 0.002 

          

Vasoactive 

1 0 1 -1 0.074 -1 0.685 -1 0.583 

2 0 1 -0.18 0.78 -4 0.182 2.5 0.003 

3 0 1 0.5 0.081 -4 0.182 2.5 0.002 

          

Gastric 
retention 

1 *0.5 *0.114 0 1 -1 0.512 -1 0.5 

2 1 <0.001 0 1 -1 0.77 1 0.595 

3 0.5 0.114 0 1 4 0.023 0 1 

          

Half-life          

Bilirubina 
 

1 2.43 0.046 *3.0426 *0.127 0.4488 0.951   

         

          

 

The analyzes were carried out using nonlinear regression quantile; 

* analysis using Spearman correlation. 
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8.0. DISCUSSION 

8.1. MLT AS ANTITUMORAL MOLECULE 

The pleiotropy of MLT molecule is an unique feature that has been proved by the exceptional 

number of papers (17829) appeared on the scientific scenario since 1958 (http: // www. ncbi. nlm. nih. gov. 

pros.lib.unimi.it/ pubmed). In a recent review Carpentieri et al. (Carpentieri et al., 2012) confirm the 

multifaceted activity of this molecule, focusing with a special emphasis on the clinical aspects and potential 

uses of MLT in the sleep-wake rhythms, in the immune function, in cancer therapy, in neuroprotection 

against oxidative damage and antioxidant activities in different tissues. Combined effects of MLT with other 

drugs are also discussed.  

Today, prostate cancer is the leading cancer type (29% of new cases) in the US and accounts for 

9% of the estimated male cancer deaths (Siegel et al., 2013). Planning research on chemoprevention of 

prostate cancer and strategies to improve the quality of life of survivors is thus mandatory. MT-based 

therapies appear promising because in 2007 the WHO International Agency for Research on Cancer (IARC) 

remarked that shift work, e.g., individuals exposed to light during night work that involves circadian rhythm 

disruption, increases the general risk for cancer (Straif et al., 2007), especially prostate cancer (Dumont et 

al., 2012). A recent meta-analysis found an aggregated risk of breast cancer of 1.40 associated with 

prolonged exposure to night work (Viswanathan and Schernhammer, 2009). Other studies also suggest that 

increased cancer risk related to night shiftwork may also extend to endometrial cancer (Viswanathan et al., 

2007), prostate cancer (Kubo et al., 2006), and colorectal cancer (Schernhammer et al., 2003). In 2012 at 

least three important papers appeared on this issue (Davis et al., 2012) (Bonde et al., 2012) (Dumont, 2012 

#1494) relating the decreased pineal MLT secretion in night workers exposed to light with increased cancer 

risk. MLT reduces the initiation and progression of tumor growth by multiple mechanisms chronodisruption, 

sleep deprivation and immunosuppression (Blask, 2009) so a decreased production would deprive night 

workers from MLT’s protective oncostatic effects.  

For some years there has been a growing interest of the scientific community and the public on the 

potential therapeutic effects of MLT in the treatment of certain diseases including prostate cancer, for which 

current treatment options are not yet fully satisfactory. It is not surprising then if research groups have begun 

to study in vitro and in vivo the effect of MLT on the proliferation of tumor cell lines benign (Gilad et al., 1997) 

or malignant (Hill and Blask, 1988).From the above it is clear that the oncostatic action of MLT is not related 

to a single function, but rather to a sum of several factors which include the activation of the immune system 

(Maestroni et al., 1987) the modulation of the endocrine system and direct action on the tumor. The actual 

mechanism of action by which the molecule exerts its antitumor activity is not so completely understood and 

deserves further research. Furthermore, while many evidence supports a possible direct effect of MLT on 

different types of cancer cells through its antiproliferative action (Shiu et al., 1999) others show controversial 

results (Papazisis et al., 1998). Regarding the in vitro proliferation of cells of prostate cancer, has been 

reported inhibition of MLT against PC-3 (androgen independent) (Gilad et al., 1999) LNCaP (androgen-

dependent) (Moretti et al., 2000) and DU 145 (androgen independent). In vivo at contrary, has been reported 

an absence of inhibition in the growth of PC-3 cells due to a possible lack of MLT receptors in these cells (Xi 

et al., 2001). Other in vitro studies show an effect independent receptor (Moretti et al., 2000), using for 

example inhibitors of the receptor of MLT (Sainz et al., 2005). Conflicting data and different results must also 

http://www.ncbi.nlm.nih.gov.pros.lib.unimi.it/pubmed
http://www.ncbi.nlm.nih.gov.pros.lib.unimi.it/pubmed
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be evaluated in view of the different experimental design and MLT concentrations used, but in any case, the 

effect of MLT on prostatic carcinoma cells must be confirmed and deepened.  

 

In the light of these data the first aim of this study was to investigate on the MLT potential as 

oncostatic molecule, testing also different pharmaceutical formulations and different and innovative delivery 

routes. 

At this purpose we decided to use an in-vivo experimental model of nude mice (athymic), 

xenografted subcutaneously with androgen-sensitive human prostate adenocarcinoma (LNCaP) cell , an 

approach much closer to the clinical situation than in vitro cultured cells and that looks therefore adequate to 

investigate the underlying molecular mechanisms in vivo. This protocol has been set up and is  running in 

our laboratory, with a success rate of 70% and <5% mortality.  

In the first set of experiments MLT dissolved in saline solution (1mg/Kg) was administered repeatedly 

(18 treatments) i.p. to the animals for a period of 6 weeks. induced. The results obtained from this set of 

experiments confirmed that treatment with MLT is able to strongly inhibit the prostate tumor growth, inducing 

a significant decrease in the rate of growth of prostate cancer androgen-dependent (LNCaP) in athymic mice 

compared to an untreated control group evident from the 30
th
 day of treatment, and a significant decrease in 

the volume and weight of the tumor to 41 days by xenotransplantation, reaching the highest statistical 

significance in respect to not-treated animals, after 18 treatments just before the sacrifice (Fig. 23). In 

addition to this quite challenging behavior, a second interesting observation from this first set of experiments 

was the complete absence of toxicity (no animal died) and  that the MLT treated animals showed all a better 

compliance to the xenograft in respect o not-treated (Fig. 22).  

The clear oncostatic activity of MLT that we observed using this animal model, prompted us to 

investigate about eventual differences in activity and/or toxicity when MLT is loaded into SLN and 

administered by the same way (i.p.) and with the same treatment schedule. These experiments were 

intended to find that nanocarrier (SLN) systems are able to promote the systemic absorption of MLT and to 

enhance its oncostatic activity in respect to MLT dispersed in a buffered solution, used as reference. 

Numerous SLN formulations for various routes of administration (parenteral, oral, transdermal, ocular, 

pulmonary, rectal) have been developed and studied in vitro and in vivo for different drugs. The SLN-MLT 

system should present advantages so to affect the kinetics and the ability to concentrate the drug at the 

intracellular level.  

Results showed that treatment with the SLN-MLT is safe and well tolerated by the animals that grew 

along the 42 days treatment as the ones treated with saline solution as carrier (Fig. 22). The oncostatic 

activity of SLN-MLT revealed slightly lower in respect to MLT in saline solution, when evaluated as tumor 

volumes over time, although the mean tumor size and weight (at sacrifice) in the two treatment groups was 

never different. 

The evaluation of amount of MLT distributed systemically and accumulated into the tumor mass in 

both treatment groups revealed that at the end of the IP treatment with MLT in physiological or entrapped in 

SLN we got plasma MLT levels significantly higher than in controls, with a lower, but not significant, level in 

SLN-treated animals (Fig. 24). This behaviour inversely mirrored the tumor volumes recorded at the end of 

the treatment (Fig. 23). The MLT tumor uptake showed the same trend observed in plasma but in this case 
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we have found an overload of MLT in the tumor of IP saline solution treated animals in respect to SLN, 

suggesting a different disposition of the drug or a different metabolic fate (Fig. 25).  

Despite the low average life of MLT plasma reported (Yeleswaram et al., 1997), the protocol of 

intraperitoneal injections of MLT has been shown to induce functional responses in our as in other studies Xi 

et al., 2001). The microscopic examination of LNCaP tumors showed changes in histology of the tumor cells 

between treated and not treated with MLT, according to some studies (Siu et al., 2002) and to what has been 

observed in an in vitro study where MLT change morphologically LNCaP cells (Sainz et al., 2005) with 

changes similar to those described in the literature in the terminal differentiation of LNCaP cells (Burchardt et 

al., 1999). This same work shows that the differences in the action of MLT, are dose dependent. 

Observing the histology of the group treated with MLT compared to the control (Fig. 27) the same 

necrotic centers and similar extension of the vasculature are shown, suggesting that inhibition of the 

vascularization is not the only mechanism by which MLT acts to decrease the speed of growth of LNCaP 

tumor in vivo. The differences that were detected by microscopic analysis relate to the presence of a 

predominantly lymphocytic infiltrate in the group treated with MLT. This shows an attempt by the body to 

reject the tumor in mice lacking thymus. This data is not reported in other studies carried out in vivo on 

LNCaP cells (Siu et al., 2002) and have been also thoroughly confirmed by immunofluorescent analysis (Fig. 

28). The morphological evaluation of the tumors treated with SLN-MLT has shown a development of the 

inflammatory response as in the group of MLT, showing an interaction with the immune system although 

probably slightly different. The infiltrate present in the group treated with SLN-MLT in fact presents in 

addition to lymphocytes, also other types of immune cells. Again this picture was confirmed by the 

immunofluorescence analysis. Furthermore it detects an attempt to isolate the tumor through fibrous 

capsules, effect not observed in the treatment with MLT, and in other works using MLT in vivo (Siu et al., 

2002). There seem to be an important effect in the tumor microenvironment of SLN-MLT that shows an 

attempt to tumor rejection and isolation by the immune system. This type of cancer may have less invasive 

capacity compared to cancer shown in the control group and in the one treated with MLT. The volume and 

the tumor mass in the SLN-MLT treated group may also be distorted by the large percentage of connective 

tissue present in the tumor mass. With regard to the vasculature and the morphology of the tumor cells there 

were no significant differences between MLT-saline treated group and the control group.  

The CD4 and CD8 expression evaluated by quantitative analysis immunohistochemistry showed a 

CD4
+
/CD8

+
 ratio significantly lower in both MLT treated groups, in respect to controls, although again in 

MLT-saline this ratio was lower than in SLN-MLT. Diederichsen (Diederichsen et al., 2003) has reported that 

a lower CD4
+
/CD8

+
 ratio is associated with a better clinical course, in patients with colorectal cancer. 

Diederichsen also found that there was no association between the CD4
+
/CD8

+
 ratio and tumor localization 

or growth pattern, while the CD4
+
/CD8

+
 ratio  was inversely associated with tumor differentiation and a better 

prognosis of tumor.  

Hypoxia (low O2 supply with respect to needs) is predicted to play a pivotal role in the development 

of most solid cancers thereby triggering mechanisms leading to inducing  greater resistance of tumor cells in 

a hostile environment (Vaupel, 2004), which translates into repression of apoptosis and autophagy, faster 

turnover and growth (Marignol et al., 2008). When the hypoxia severity in the tumor cell environment in vivo 

is increased, the growth rate in prostate LNCaP cancer near doubles (Terraneo et al., 2010). Many in vitro 

studies indeed point at the paradigm that most of the hypoxia-downstream adaptive patterns are mediated 
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by the hypoxia-inducible factor-1α (HIF-1α), an O2 sensor that activates hundreds downstream genes in 

response to hypoxia. But this pattern was not confirmed by the in vivo study (Terraneo et al., 2010), where 

HIF-1α was not over-expressed in tumors despite faster growth.  

Recently, it has been reported that, in LNCaP cells exposed to mimetic hypoxia, MLT may down-

regulate HIF-1 (Park et al., 2009). Furthermore, MT destabilizes HIF-1α protein in HCT116 human colon 

cancer cell line, secondary to its antioxidant activity, possibly by a mechanism involving the 

dephosphorylation of p70S6K and its target RPS6 (Park et al., 2010). As a matter of facts, however, such 

evidence derives essentially from in vitro experiments, and the interaction of MT with the hypoxia-signaling 

path in vivo is still to be proved. Many clinical trials have started making use of HIF-1α inhibitors, yet with 

non-encouraging results (Onnis et al., 2009), thereby questioning the paradigm of HIF-1 as a central player 

in cancer growth. This controversial issue reflects in apparently contradictory results. For example, whereas 

in one study HIF-1α appears instrumental to determine tumor growth because the drug acriflavine inhibits its 

activity (Lee et al., 2009), in another the drug digoxin inhibits HIF-1α but does not affect tumor growth 

(Gayed et al., 2012).  

So, to clearly  the underlying action mechanism of MLT and the role of HIF-1α at the tumor cellular 

micro-environment, we have evaluated the HIF-1α expression in the tumor tissues by immunofluorescence.  

In both MLT treated groups HIF-1α expression appeared unexpectedly increased in respect to 

controls, although not reaching the significance of the difference. Saline SLN, as previously seen for other 

parameters, seem to shift less efficiently HIF-1α expression (Fig. 26). This preliminary observation if 

confirmed by additional experiments and using also other techniques (western-blot analysis), is  in contrast 

with the finding of Park et al (Park et al., 2009). in in vitro experiments suggesting that MLT could play a 

pivotal role in tumor suppression via inhibition of HIF-1- mediated angiogenesis and opens a different 

scenario to explain the MLT oncostatic activity and its role in the angiogenic signaling pathway during cancer 

development.  

After the demonstration that  i.p. MLT (both in saline solution and entrapped into SLN carrier) is able 

to efficiently reduce the prostate tumor growth in our “in vivo” animal model, the second objective, using the 

same mouse model of human prostate cancer , was to test whether MLT can be administered efficiently 

using alternative ways that are more sustainable for prolonged treatments than i.p. MLT, e.g., transdermal 

delivery through the skin barrier directly onto the tumor via a novel and patented technique named cryoRx. 

Using this technique we delivered the frozen MLT by topical application with a suitable cryo-applicators 

connected to a laser source and we applied the same schedule (18 treatments for 6 weeks) used for i.p. 

study. By this administration route we chose to use a dosage 4-fold higher than i.p. in order to reach about 

the same MLT concentrations  at systemic level.  The topical laser treatment was perfectly tolerated by the 

animals and when MLT was added to the treatment this produced the same beneficial effects on mice 

growth seen for i.p. treatment. Curiously, the laser itself seem to give a better compliance to the xenograft 

compared to controls not treated (Fig. 30). The MLT-laser treatment impaired tumor growth all along the 42 

days and produced tumors with a significant lower weight in respect to control at the sacrifice. Again we 

noticed that the laser itself is able to reduce the tumor growth, although less efficiently than with  MLT as 

adjuvant. The topical treatment with MLT significantly increased the level in the systemic circulation and in 

the tumor tissue, with levels comparable to those found after i.p. treatment. HIF-1α expression, as observed 

with i.p. treatment, again resulted significantly overexpressed by the presence of MLT, and this correlates 
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with the concentration of MLT in the tissue thus confirming that additional study is needed o clarify the role of 

MLT in Hypoxia signaling  pathways in prostate cancer.  

The effect of transdermal MLT by cryolaser on tumor mass morphology are quite similar to those 

reported after i.p. treatment. MLT is able to elicit a immunological response into the tumor characterized by 

nests of tumor cells circumscribed by a major inflammatory reaction, represented by the massive 

presence of lymphocytes and some granulocytes, which seem to surround and infiltrate the tumor cells. It  

was also possible to note an elevated development of blood vessels, which grow indefinitely forming cavity 

rich in erythrocytes and this may be in line with the high expression of HIF-α found in the tissue. The tumors 

appears limited not only by high lymphocyte response, but also by the presence of fibroblast-like cells (Fig. 

35). Immunofluorescent analysis confirmed  that when MLT is used as an adjuvant to laser scan tends to 

disaggregate the tumor tissue even more than with laser alone, and a mixed structure with compact cord and 

areas most highly disorganized is evidenced (Fig. 36). The luminescence evidenced in the figure is due to 

white blood cell infiltrates.  

The results obtained by transdermal application of MLT by cryoRx are extremely promising as this 

application proved to negatively affects tumor growth in a time-dependent manner, so to be considered for 

further experimentation, with the advantages in terms of lower toxicity and greater efficacy.  

CryoRx  is a very interesting technique routinely employed for a lot of different applications spanning 

from orthopaedics and physiatry, dermatology, angiology, urology and gynaecology, aesthetic medicine 

plastic surgery, sports medicine. The use of cryoRx has been tested  to treat patients with burn scars and to 

carry metilprednisolone in acute spinal cord injury in rats. Moreover has been used to deliver ganglioside 

GM1 for treatment of peripheral nerve damage in rats showed more regenerating nerve fibers in the distal 

segment compared to the untreated groups (Prof. Ciro Silva, Md,PhD, University of San Paulo Medical 

School unpublished observations). As far as we know, the this is the first experience in which cryoRx is 

employed for prostate tumor treatment in association with MLT. The results demonstrate that the technique 

is safe and feasible and that is able to vehicle the MLT molecule at the systemic level (plasma) efficiently 

almost as i.p. administration. The tumor growth was inhibited almost at the same level after topical 

administration by cryoRx, although the tumor tissue uptake seems to be lower than after i.p. (Fig. 25 and Fig. 

34). On the other hand, the histological analysis and the immunofluorescence confirm the strong affect of 

MLT-laser treatment in affecting of the tumor tissue architecture and in elicit a significant immunological 

response Additional investigation are needed on this route of administration in order to understand if the 

uptake at cellular level of the drugs is also linked to a different metabolic fate of the molecule.  

The results achieved from this part of the thesis will be integrated together and will add knowledge 

both in understanding the crucial pathways for targeting in prostate cancer. 

 

8.2. MLT in ICU patients as sleep-wake regulator 

The encouraging results obtained with transdermal application of MLT in mice for the cure of prostate 

cancer, prompted us to be involved also in a clinical study, testing MLT transdermal delivery in in a 

cohort of critically ill patients admitted to a high-risk Intensive Care Unit (ICU). In this case the endpoint 

was totally different, as MLT was administered, through different modalities (enteral administration and 



 99 

transdermal through solid lipid nanoparticles, SLN), to test its activity as potential adjuvant in the therapy 

sedative.  

The potential of MLT are not limited to its sleep inducer effects but include a wide range of activities, 

including the immunomodulatory and the antioxidant effect (Leon-Blanco et al., 2003). Critically ill 

patients admitted to the ICU present frequently an altered circadian secretion of the pineal hormone 

(Mundigler et al., 2002). It has recently been hypothesized that the restoration of the melatoninemia in 

critically ill patients may be useful (Bourne and Mills, 2006): to this end, numerous formulations and 

different doses of the hormone have been tested. In particular, a study of 2010 has demonstrated the 

practicability of enteral administration of MLT in terms of effectiveness of absorption, adequacy in the 

rate of establishment of the plasma peak and in the maintenance of plasma concentrations 

pharmacological hormone (Mistraletti et al., 2010) also in the early phase of hospitalization in the ICU. 

Other studies have demonstrated the effectiveness of transdermal administration (Aeschbach et al., 

2009). 

The research here presented includes the transdermal administration because it may have different 

advantages in critically ill patients, in particular: ease of administration (the application of a patch on the 

skin is possible in almost all clinical contexts excluding situations of hyperhidrosis, large burns, allergic 

skin manifestations, cutaneous vasoconstriction, etc.) and reduced hepatic first-pass effect (reduction of 

the administered dose with lower peak plasma maintaining a constant plasma concentration). 

Furthermore, the possibility of incorporating the MLT in SLN should allows to obtain a greater therapeutic 

efficacy connected intracellular action of the hormone itself. The SLN in fact act as a reservoir of the 

hormone effect allowing a constant and prolonged the site of action, so it could more evident clinical 

effect thanks to the achievement of the intracellular environment regardless of specific receptors MT1 

and MT2 (Priano et al., 2007). 

The design of this clinical study was aimed at evaluate, at first, if the circadian rhythm of MLT secretion 

is disrupted in ICU patients by studying the pharmackinetics of basal secretion in the 2
nd

 day after ICU 

admission. The results show a very high variability among MLT basal secretion in patients enrolled in 

this study, with some subjects characterized by MLT levels well below the control values, and some 

others with values in the normal range, if not even higher than normal. It can be conceivable that all 

patients could take advantage from exogenous administration of MLT.  

The second aim of this study was to test to which extent MLT administration by different routes and 

different drug formulations (MLT as a tablet administered orally, MLT encapsulated in SLN administered 

orally as a suspension, MLT encapsulated in SLN applied transdermally as a suspension with the aid of 

a patch) is feasible in terms of efficiency of absorption and adequacy in achieving and maintaining 

nocturnal peak plasma hormone even in the early phase of hospitalization in the ICU.  

All patients enrolled in the study presented very serious medical conditions requiring invasive treatment 

and intensive high during hospitalization, the Simplified Acute Physiology Score II (SAPS II) indicates 

that the expected mortality for the study population is 50% and the Sequential Organ Failure 

Assaesment (SOFA) shows the need for a high level of intensive care (mean score ≥ 6), all patients 

required ventilatory support. 

From the analysis of the different pharmacokinetics profile (absorption peak, plasma half-life, mean 

concentration) obtained as a function of MLT administration by different routes and drug formulations 

emerged that: 
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 the time in which the two oral formulations reach the maximum concentration is similar despite of the 

different vehicle used to delivery the drug. In some patients it was significantly delayed because of the 

presence of  gastric stagnation or shock  requiring the use of vasoconstrictors 

 The AUC of SLN-MLT administered enterally was significantly higher than when MLT was 

administered by saline solution. This figure is probably determined by the intrinsic properties of the 

formulation that avoids the hepatic first-pass effect 

 Administration of SLN-MLT by transdermal route, although showed a lower bioavailability compared 

to the enteral administration, however, ensured the restoration of suitable MLT plasma levels that should 

be suitable enough to restore the pleiotropic function of this hormone: facilitate the resolution of sleep-

wake cycle disorders, improve the quality of sleep, reduce the number of episodes of anxiety, confusion 

and agitation, and reduce the amount of sedatives used, especially at night. 

 The peak plasma concentration, maximum in the case of administration by SLN, was increased in 

disease states where there are higher levels of bilirubin; 

 The peak plasma level was decreased, only for the transdermal formulation, in conditions of 

peripheral hypoperfusion, condition that may affect the adsorption of drugs by this administration route. 

 The plasma half-lives of MLT elimination were not different in the three administration routes, 

indicating that the clearance of the active principle follows the same pathway. 

 Patients with impairment of the excretory organs, such as those with high bilirubin levels, presented 

a higher MLT bioavailability. 

 The outcome of patients do not vary with the formulation used. 

 

Patients characterized by serious medical conditions have reduced levels of endogenous MLT. It is well 

known that supplementation of the hormone in these patients armies favorable effects. The objective for this 

study was to evaluate the existence of differences in the pharmacokinetic profiles of melatonin, depending 

on the formulation and route of administration used in a group of patients treated in intensive care. MLT in 

SLN showed the best bioavailability. Transdermal administration guaranteed the achievement of drug levels 

and constitute a valuable alternative in cases of impracticability of the gastrointestinal tract. 

Additionally studies are required to understand the underlying mechanism of the observed clinical activity, for 

instance by evaluating the total antioxidant defenses of the patients after the different MLT administration 
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9.0. CONCLUSIONS AND PERSPECTIVES 

The main object of this  PhD thesis, has been successfully reached. The pleiotropy of MLT molecule 

was demonstrated by getting positive results in two of the most promising clinical applications: the cure of 

prostate cancer and the regulation of the sleep/wake rhythm as adjuvant in the sedative therapy in critically ill 

patients. In addition, during this PhD program a comprehensive study to assess the capability of alternative 

and novel strategies to deliver the drug (both in animal and in humans) has been performed demonstrating 

that the transdermal way of administration for MLT is safe and feasible and is able to provide systemic 

concentrations of the drug adequate to sustain the pharmacological activity. During this PhD program the 

cryoRX system for drug delivery was used on animals displaying an excellent performance. In future this 

system merits more attention especially for its use in humans, both as an adjuvant for prostate cancer 

managing and for the treatment of other kind of tumors i.e. melanoma and/or other skin disease. The results 

obtained with MLT in an animal model of prostate tumor provide a rational basis for possible future use in 

humans of a non-toxic substance of natural origin and for treatment in cases of suspected prostate cancer 

(PSA borderline). The cryoRX system may also be shifted to treatment with other drugs which have high 

toxicity and low therapeutic ranges, with the aim of obtaining advanced mode of administration, specifically 

"targetted" to the area of interest and characterized by lower dosages and reduced adverse reactions.  

Providing that MLT appeared active in fighting prostate cancer and/or in ameliorating critically ill 

patients hospitalization, an initial approach to elucidate the molecular mechanisms underlying the observed 

activities has been done, with particular attention to the hypoxia signaling pathway and the immunological 

response.  

This part which gave some interesting preliminary evidence on the molecular mechanism 

underpinning MLT cellular activity (MLT seems to increase HIF-1α), deserves to be more deeply 

investigated. MLT oncostatic activity has been recently related in addition to hypoxia, also to sphingolipids 

intracellular signalling pathways. However, the underlying mechanisms of MT antiproliferative activity remain 

unclear, the interplay between HIF and SPHK1 in “in vivo” experiments is lacking and whether HIF is tumor 

promoting or inhibitory is still under debate, being, in  some tumor types, the pro- or antitumorigeneic effects 

of HIF-α, isoforms specific. It is pivotal to plan effective strategies for further experiments in this field. Finally, 

recent literature give a lot of attention to the MLT metabolite N-acetyl-N-formyl-5-methoxykynuramine 

(AFMK) rather than its commonly measured urinary excretory product 6-hydroxymelatonin sulfate. Via the 

AFMK pathway, a single MLT molecule is reported to scavenge up to 10 ROS/RNS. That the free radical 

scavenging capacity of MLT extends to its secondary, tertiary and quaternary metabolites and explains how 

it differs from other conventional antioxidants. It has been proposed that the ratio of AFMK to another SLN 

metabolite, cyclic 3-hydroxymelatonin, may serve as an indicator of the level of oxidative stress in organisms.  

From all the above considerations, appears that a method for MLT quantification characterized by high 

precision and specificity so as to be regarded as the definitive method for the measurement of different 

molecules in biological matrices (MLT and its metabolites as well) (i.e. liquid chromatography mass 

spectrometry, LC-MS-MS), is pivotal to explain and confirm the results till now obtained. 



 102 

10.0. REFERENCES 

Abrial, C., Kwiatkowski, F., Chevrier, R., Gachon, F., Cure, H., and Chollet, P. (2005). [Therapeutic 
potential of melatonin in cancer treatment]. Pathol Biol (Paris) 53, 265-268. 

Abulencia, A., Adelman, J., Affolder, T., Akimoto, T., Albrow, M. G., Ambrose, D., Amerio, S., Amidei, 
D., Anastassov, A., Anikeev, K., et al. (2006). Observation of Bs(0)-Bs(0) oscillations. Phys Rev Lett 97, 
242003. 

Acuna-Castroviejo, D., Escames, G., Leon, J., Carazo, A., and Khaldy, H. (2003). Mitochondrial 
regulation by melatonin and its metabolites. Advances in experimental medicine and biology 527, 549-557. 

Aeschbach, D., Lockyer, B. J., Dijk, D. J., Lockley, S. W., Nuwayser, E. S., Nichols, L. D., and 
Czeisler, C. A. (2009). Use of transdermal melatonin delivery to improve sleep maintenance during daytime. 
Clin Pharmacol Ther 86, 378-382. 

Altun, A., and Ugur-Altun, B. (2007). Melatonin: therapeutic and clinical utilization. Int J Clin Pract 61, 
835-845. 

Altun, A., Yaprak, M., Aktoz, M., Vardar, A., Betul, U. A., and Ozbay, G. (2002). Impaired nocturnal 
synthesis of melatonin in patients with cardiac syndrome X. Neurosci Lett 327, 143-145. 

Andrabi, S. A., Sayeed, I., Siemen, D., Wolf, G., and Horn, T. F. (2004). Direct inhibition of the 
mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of 
melatonin. FASEB J 18, 869-871. 

Anisimov, V. N., Popovich, I. G., Zabezhinski, M. A., Anisimov, S. V., Vesnushkin, G. M., and 
Vinogradova, I. A. (2006). Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta 
1757, 573-589. 

Antolin, I., Rodriguez, C., Sainz, R. M., Mayo, J. C., Uria, H., Kotler, M. L., Rodriguez-Colunga, M. J., 
Tolivia, D., and Menendez-Pelaez, A. (1996). Neurohormone melatonin prevents cell damage: effect on 
gene expression for antioxidant enzymes. FASEB J 10, 882-890. 

Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, 
A., Bartsch, I., Berta, A., et al. (2012). The magnitude of global marine species diversity. Curr Biol 22, 2189-
2202. 

Arendt, J. (2006). Melatonin and human rhythms. Chronobiol Int 23, 21-37. 

Arendt, J., and Skene, D. J. (2005). Melatonin as a chronobiotic. Sleep Med Rev 9, 25-39. 

Atwell, T. D., Farrell, M. A., Callstrom, M. R., Charboneau, J. W., Leibovich, B. C., Frank, I., and 
Patterson, D. E. (2007). Percutaneous cryoablation of large renal masses: technical feasibility and short-term 
outcome. AJR Am J Roentgenol 188, 1195-1200. 

Axelrod, J. (1974). The pineal gland: a neurochemical transducer. Science 184, 1341-1348. 

Bahn, D., de Castro Abreu, A. L., Gill, I. S., Hung, A. J., Silverman, P., Gross, M. E., Lieskovsky, G., 
and Ukimura, O. (2012). Focal cryotherapy for clinically unilateral, low-intermediate risk prostate cancer in 73 
men with a median follow-up of 3.7 years. Eur Urol 62, 55-63. 

Balan, S., Leibovitz, A., Zila, S. O., Ruth, M., Chana, W., Yassica, B., Rahel, B., Richard, G., 
Neumann, E., Blagman, B., and Habot, B. (2003). The relation between the clinical subtypes of delirium and 
the urinary level of 6-SMT. J Neuropsychiatry Clin Neurosci 15, 363-366. 

Bargoni, A., Cavalli, R., Caputo, O., Fundaro, A., Gasco, M. R., and Zara, G. P. (1998). Solid lipid 
nanoparticles in lymph and plasma after duodenal administration to rats. Pharm Res 15, 745-750. 

Barni, S., Lissoni, P., Cazzaniga, M., Ardizzoia, A., Meregalli, S., Fossati, V., Fumagalli, L., Brivio, F., 
and Tancini, G. (1995). A randomized study of low-dose subcutaneous interleukin-2 plus melatonin versus 
supportive care alone in metastatic colorectal cancer patients progressing under 5-fluorouracil and folates. 
Oncology 52, 243-245. 

Barni, S., Lissoni, P., Cazzaniga, M., Ardizzoia, A., Paolorossi, F., Brivio, F., Perego, M., Tancini, G., 
Conti, A., and Maestroni, G. (1992). Neuroimmunotherapy with subcutaneous low-dose interleukin-2 and the 
pineal hormone melatonin as a second-line treatment in metastatic colorectal carcinoma. Tumori 78, 383-
387. 



 103 

Bartsch, H., Buchberger, A., Franz, H., Bartsch, C., Maidonis, I., Mecke, D., and Bayer, E. (2000). 
Effect of melatonin and pineal extracts on human ovarian and mammary tumor cells in a chemosensitivity 
assay. Life sciences 67, 2953-2960. 

Benitez-King, G. (2006). Melatonin as a cytoskeletal modulator: implications for cell physiology and 
disease. J Pineal Res 40, 1-9. 

Berson, D. M., Dunn, F. A., and Takao, M. (2002). Phototransduction by retinal ganglion cells that 
set the circadian clock. Science 295, 1070-1073. 

Besseau, L., Benyassi, A., Moller, M., Coon, S. L., Weller, J. L., Boeuf, G., Klein, D. C., and Falcon, 
J. (2006). Melatonin pathway: breaking the 'high-at-night' rule in trout retina. Exp Eye Res 82, 620-627. 

Blask, D. E. (2009). Melatonin, sleep disturbance and cancer risk. Sleep medicine reviews 13, 257-
264. 

Blask, D. E., Brainard, G. C., Dauchy, R. T., Hanifin, J. P., Davidson, L. K., Krause, J. A., Sauer, L. 
A., Rivera-Bermudez, M. A., Dubocovich, M. L., Jasser, S. A., et al. (2005). Melatonin-depleted blood from 
premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in 
nude rats. Cancer Res 65, 11174-11184. 

Blask, D. E., Dauchy, R. T., Brainard, G. C., and Hanifin, J. P. (2009). Circadian stage-dependent 
inhibition of human breast cancer metabolism and growth by the nocturnal melatonin signal: consequences 
of its disruption by light at night in rats and women. Integr Cancer Ther 8, 347-353. 

Blask, D. E., Sauer, L. A., and Dauchy, R. T. (2002). Melatonin as a chronobiotic/anticancer agent: 
cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer 
therapy. Curr Top Med Chem 2, 113-132. 

Bonde, J. P., Hansen, J., Kolstad, H. A., Mikkelsen, S., Olsen, J. H., Blask, D. E., Harma, M., Kjuus, 
H., de Koning, H. J., Olsen, J., et al. (2012). Work at night and breast cancer - report on evidence-based 
options for preventive actions. Scand J Work Environ Health 38, 380-390. 

Bourne, R. S., and Mills, G. H. (2004). Sleep disruption in critically ill patients--pharmacological 
considerations. Anaesthesia 59, 374-384. 

Bourne, R. S., and Mills, G. H. (2006). Melatonin: possible implications for the postoperative and 
critically ill patient. Intensive Care Med 32, 371-379. 

Brainard, G. C., Hanifin, J. P., Greeson, J. M., Byrne, B., Glickman, G., Gerner, E., and Rollag, M. D. 
(2001). Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J 
Neurosci 21, 6405-6412. 

Brivio, F., Fumagalli, L., Fumagalli, G., Pescia, S., Brivio, R., Di Fede, G., Rovelli, F., and Lissoni, P. 
(2010). Synchronization of cortisol circadian rhythm by the pineal hormone melatonin in untreatable 
metastatic solid tumor patients and its possible prognostic significance on tumor progression. In Vivo 24, 
239-241. 

Brzezinski, A. (1997). Melatonin in humans. N Engl J Med 336, 186-195. 

Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., and Ford, 
I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 9, 41-50. 

Bubenik, G. A. (2002). Gastrointestinal melatonin: localization, function, and clinical relevance. Dig 
Dis Sci 47, 2336-2348. 

Burchardt, T., Burchardt, M., Chen, M. W., Cao, Y., de la Taille, A., Shabsigh, A., Hayek, O., Dorai, 
T., and Buttyan, R. (1999). Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in 
vitro and in vivo. J Urol 162, 1800-1805. 

Burns, L. J., Weisdorf, D. J., DeFor, T. E., Vesole, D. H., Repka, T. L., Blazar, B. R., Burger, S. R., 
Panoskaltsis-Mortari, A., Keever-Taylor, C. A., Zhang, M. J., and Miller, J. S. (2003). IL-2-based 
immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation 
and cytokine release: a phase I/II trial. Bone marrow transplantation 32, 177-186. 

Cabrera, J., Negrin, G., Estevez, F., Loro, J., Reiter, R. J., and Quintana, J. (2010). Melatonin 
decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. J Pineal Res 
49, 45-54. 

Calvo, J. R., Guerrero, J. M., Osuna, C., Molinero, P., and Carrillo-Vico, A. (2002). Melatonin triggers 
Crohn's disease symptoms. J Pineal Res 32, 277-278. 



 104 

Campos, F. L., da Silva-Junior, F. P., de Bruin, V. M., and de Bruin, P. F. (2004). Melatonin improves 
sleep in asthma: a randomized, double-blind, placebo-controlled study. Am J Respir Crit Care Med 170, 947-
951. 

Cardinali, D. P., Esquifino, A. I., Srinivasan, V., and Pandi-Perumal, S. R. (2008). Melatonin and the 
immune system in aging. Neuroimmunomodulation 15, 272-278. 

Cardinali, D. P., Lynch, H. J., and Wurtman, R. J. (1972). Binding of melatonin to human and rat 
plasma proteins. Endocrinology 91, 1213-1218. 

Cardinali, D. P., and Pevet, P. (1998). Basic aspects of melatonin action. Sleep Med Rev 2, 175-190. 

Carlberg, C. (2000). Gene regulation by melatonin. Ann N Y Acad Sci 917, 387-396. 

Carpentieri, A., Diaz de Barboza, G., Areco, V., Peralta Lopez, M., and Tolosa de Talamoni, N. 
(2012). New perspectives in melatonin uses. Pharmacol Res 65, 437-444. 

Carrillo-Vico, A., Calvo, J. R., Abreu, P., Lardone, P. J., Garcia-Maurino, S., Reiter, R. J., and 
Guerrero, J. M. (2004). Evidence of melatonin synthesis by human lymphocytes and its physiological 
significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J 18, 537-539. 

Castrillon, P. O., Esquifino, A. I., Varas, A., Zapata, A., Cutrera, R. A., and Cardinali, D. P. (2000). 
Effect of melatonin treatment on 24-h variations in responses to mitogens and lymphocyte subset 
populations in rat submaxillary lymph nodes. J Neuroendocrinol 12, 758-765. 

Cavalli, R., Bargoni, A., Podio, V., Muntoni, E., Zara, G. P., and Gasco, M. R. (2003). Duodenal 
administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J Pharm Sci 92, 
1085-1094. 

Chang, H. M., Wu, U. I., and Lan, C. T. (2009). Melatonin preserves longevity protein (sirtuin 1) 
expression in the hippocampus of total sleep-deprived rats. J Pineal Res 47, 211-220. 

Chaplin, D. D. (2010). Overview of the immune response. J Allergy Clin Immunol 125, S3-23. 

Chen, G., Cheng, J., and Ye, J. (2001). Application of a novel micro-injector in the determination of 
indole derivatives in the rat pineal gland by capillary electrophoresis with electrochemical detection. 
Fresenius J Anal Chem 370, 930-934. 

Claustrat, B., Brun, J., and Chazot, G. (2005). The basic physiology and pathophysiology of 
melatonin. Sleep Med Rev 9, 11-24. 

Claustrat, B., Brun, J., Chiquet, C., Chazot, G., and Borson-Chazot, F. (2004). Melatonin secretion is 
supersensitive to light in migraine. Cephalalgia 24, 128-133. 

Cole, R. J., Kripke, D. F., Gruen, W., Mullaney, D. J., and Gillin, J. C. (1992). Automatic sleep/wake 
identification from wrist activity. Sleep 15, 461-469. 

Cooper, A. B., Thornley, K. S., Young, G. B., Slutsky, A. S., Stewart, T. E., and Hanly, P. J. (2000). 
Sleep in critically ill patients requiring mechanical ventilation. Chest 117, 809-818. 

Cos, S., Garcia-Bolado, A., and Sanchez-Barcelo, E. J. (2001). Direct antiproliferative effects of 
melatonin on two metastatic cell sublines of mouse melanoma (B16BL6 and PG19). Melanoma Res 11, 197-
201. 

Cos, S., Mediavilla, M. D., Fernandez, R., Gonzalez-Lamuno, D., and Sanchez-Barcelo, E. J. (2002). 
Does melatonin induce apoptosis in MCF-7 human breast cancer cells in vitro? J Pineal Res 32, 90-96. 

Covaci, A., Doneanu, C., Aboul-Enein, H. Y., and Schepens, P. (1999). Determination of melatonin 
in pharmaceutical formulations and human plasma by gas chromatography-electron impact mass 
spectrometry. Biomed Chromatogr 13, 431-436. 

Crasson, M., Kjiri, S., Colin, A., Kjiri, K., L'Hermite-Baleriaux, M., Ansseau, M., and Legros, J. J. 
(2004). Serum melatonin and urinary 6-sulfatoxymelatonin in major depression. Psychoneuroendocrinology 
29, 1-12. 

Currier, N. L., Sun, L. Z., and Miller, S. C. (2000). Exogenous melatonin: quantitative enhancement 
in vivo of cells mediating non-specific immunity. Journal of neuroimmunology 104, 101-108. 

Czeisler, C. A., Shanahan, T. L., Klerman, E. B., Martens, H., Brotman, D. J., Emens, J. S., Klein, T., 
and Rizzo, J. F., 3rd (1995). Suppression of melatonin secretion in some blind patients by exposure to bright 
light. N Engl J Med 332, 6-11. 



 105 

Danielczyk, K., and Dziegiel, P. (2009). The expression of MT1 melatonin receptor and Ki-67 antigen 
in melanoma malignum. Anticancer Res 29, 3887-3895. 

Daulat, A. M., Maurice, P., Froment, C., Guillaume, J. L., Broussard, C., Monsarrat, B., Delagrange, 
P., and Jockers, R. (2007). Purification and identification of G protein-coupled receptor protein complexes 
under native conditions. Mol Cell Proteomics 6, 835-844. 

Davis, S., Mirick, D. K., Chen, C., and Stanczyk, F. Z. (2012). Night shift work and hormone levels in 
women. Cancer Epidemiol Biomarkers Prev 21, 609-618. 

de Almeida, E. A., Di Mascio, P., Harumi, T., Spence, D. W., Moscovitch, A., Hardeland, R., 
Cardinali, D. P., Brown, G. M., and Pandi-Perumal, S. R. (2011). Measurement of melatonin in body fluids: 
standards, protocols and procedures. Childs Nerv Syst 27, 879-891. 

del Rio, B., Garcia Pedrero, J. M., Martinez-Campa, C., Zuazua, P., Lazo, P. S., and Ramos, S. 
(2004). Melatonin, an endogenous-specific inhibitor of estrogen receptor alpha via calmodulin. J Biol Chem 
279, 38294-38302. 

Deng, W. G., Tang, S. T., Tseng, H. P., and Wu, K. K. (2006). Melatonin suppresses macrophage 
cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. 
Blood 108, 518-524. 

Diederichsen, A. C., Hjelmborg, J., Christensen, P. B., Zeuthen, J., and Fenger, C. (2003). 
Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR 
expression on tumour cells. Cancer immunology, immunotherapy : CII 52, 423-428. 

Dietrich, B. (1997). Polysomnography in drug development. J Clin Pharmacol 37, 70S-78S. 

Dietz, B. M., Kang, Y. H., Liu, G., Eggler, A. L., Yao, P., Chadwick, L. R., Pauli, G. F., Farnsworth, N. 
R., Mesecar, A. D., van Breemen, R. B., and Bolton, J. L. (2005). Xanthohumol isolated from Humulus 
lupulus Inhibits menadione-induced DNA damage through induction of quinone reductase. Chem Res 
Toxicol 18, 1296-1305. 

Dubocovich, M. L., Delagrange, P., Krause, D. N., Sugden, D., Cardinali, D. P., and Olcese, J. 
(2010). International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and 
pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62, 343-380. 

Dubocovich, M. L., and Markowska, M. (2005). Functional MT1 and MT2 melatonin receptors in 
mammals. Endocrine 27, 101-110. 

Dumont, M., Lanctot, V., Cadieux-Viau, R., and Paquet, J. (2012). Melatonin production and light 
exposure of rotating night workers. Chronobiol Int 29, 203-210. 

Eddleston, J. M., White, P., and Guthrie, E. (2000). Survival, morbidity, and quality of life after 
discharge from intensive care. Critical care medicine 28, 2293-2299. 

Ely, E. W., Inouye, S. K., Bernard, G. R., Gordon, S., Francis, J., May, L., Truman, B., Speroff, T., 
Gautam, S., Margolin, R., et al. (2001). Delirium in mechanically ventilated patients: validity and reliability of 
the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 286, 2703-2710. 

Eriksson, K., Ostin, A., and Levin, J. O. (2003). Quantification of melatonin in human saliva by liquid 
chromatography-tandem mass spectrometry using stable isotope dilution. J Chromatogr B Analyt Technol 
Biomed Life Sci 794, 115-123. 

Escames, G., Acuna-Castroviejo, D., Lopez, L. C., Tan, D. X., Maldonado, M. D., Sanchez-Hidalgo, 
M., Leon, J., and Reiter, R. J. (2006). Pharmacological utility of melatonin in the treatment of septic shock: 
experimental and clinical evidence. J Pharm Pharmacol 58, 1153-1165. 

Escames, G., Khaldy, H., Leon, J., Gonzalez, L., and Acuna-Castroviejo, D. (2004). Changes in 
iNOS activity, oxidative stress and melatonin levels in hypertensive patients treated with lacidipine. Journal 
of Hypertension 22, 629-635. 

Farriol, M., Venereo, Y., Orta, X., Castellanos, J. M., and Segovia-Silvestre, T. (2000). In vitro effects 
of melatonin on cell proliferation in a colon adenocarcinoma line. J Appl Toxicol 20, 21-24. 

Fernandes, P. A., Cecon, E., Markus, R. P., and Ferreira, Z. S. (2006). Effect of TNF-alpha on the 
melatonin synthetic pathway in the rat pineal gland: basis for a 'feedback' of the immune response on 
circadian timing. J Pineal Res 41, 344-350. 

Ferry, G., Ubeaud, C., Lambert, P. H., Bertin, S., Coge, F., Chomarat, P., Delagrange, P., Serkiz, B., 
Bouchet, J. P., Truscott, R. J., and Boutin, J. A. (2005). Molecular evidence that melatonin is enzymatically 



 106 

oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and 
myeloperoxidase. Biochem J 388, 205-215. 

Fideleff, H. L., Boquete, H., Fideleff, G., Albornoz, L., Perez Lloret, S., Suarez, M., Esquifino, A. I., 
Honfi, M., and Cardinali, D. P. (2006). Gender-related differences in urinary 6-sulfatoxymelatonin levels in 
obese pubertal individuals. J Pineal Res 40, 214-218. 

Finley, D. J., Dycoco, J., Sarkar, S., Krimsky, W. S., Sherwood, J. T., Dekeratry, D., Downie, G., 
Atwood, J., Fernando, H. C., and Rusch, V. W. (2012). Airway spray cryotherapy: initial outcomes from a 
multiinstitutional registry. Ann Thorac Surg 94, 199-203; discussion 203-194. 

Fischer, T. W., Sweatman, T. W., Semak, I., Sayre, R. M., Wortsman, J., and Slominski, A. (2006). 
Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J 20, 
1564-1566. 

Flynn-Evans, E. E., Stevens, R. G., Tabandeh, H., Schernhammer, E. S., and Lockley, S. W. (2009). 
Total visual blindness is protective against breast cancer. Cancer Causes Control 20, 1753-1756. 

Ford, J., Woolfe, J., and Florence, A. T. (1999). Nanospheres of cyclosporin A: poor oral absorption 
in dogs. Int J Pharm 183, 3-6. 

Fraser, S., Cowen, P., Franklin, M., Franey, C., and Arendt, J. (1983). Direct radioimmunoassay for 
melatonin in plasma. Clin Chem 29, 396-397. 

Freedman, N. S., Gazendam, J., Levan, L., Pack, A. I., and Schwab, R. J. (2001). Abnormal 
sleep/wake cycles and the effect of environmental noise on sleep disruption in the intensive care unit. Am J 
Respir Crit Care Med 163, 451-457. 

Futagami, M., Sato, S., Sakamoto, T., Yokoyama, Y., and Saito, Y. (2001). Effects of melatonin on 
the proliferation and cis-diamminedichloroplatinum (CDDP) sensitivity of cultured human ovarian cancer 
cells. Gynecol Oncol 82, 544-549. 

Gabor, J. Y., Cooper, A. B., Crombach, S. A., Lee, B., Kadikar, N., Bettger, H. E., and Hanly, P. J. 
(2003). Contribution of the intensive care unit environment to sleep disruption in mechanically ventilated 
patients and healthy subjects. Am J Respir Crit Care Med 167, 708-715. 

Gabor, J. Y., Cooper, A. B., and Hanly, P. J. (2001). Sleep disruption in the intensive care unit. Curr 
Opin Crit Care 7, 21-27. 

Garcia-Maurino, S., Pozo, D., Calvo, J. R., and Guerrero, J. M. (2000). Correlation between nuclear 
melatonin receptor expression and enhanced cytokine production in human lymphocytic and monocytic cell 
lines. J Pineal Res 29, 129-137. 

Garcia-Navarro, A., Gonzalez-Puga, C., Escames, G., Lopez, L. C., Lopez, A., Lopez-Cantarero, M., 
Camacho, E., Espinosa, A., Gallo, M. A., and Acuna-Castroviejo, D. (2007). Cellular mechanisms involved in 
the melatonin inhibition of HT-29 human colon cancer cell proliferation in culture. J Pineal Res 43, 195-205. 

Gasco, M. R. (2007). Lipid nanoparticles: perspectives and challenges. Adv Drug Deliv Rev 59, 377-
378. 

Gasco, M. R., and Gasco, P. (2007). Nanovector. Nanomedicine (Lond) 2, 955-960. 

Gayed, B. A., O'Malley, K. J., Pilch, J., and Wang, Z. (2012). Digoxin inhibits blood vessel density 
and HIF-1a expression in castration-resistant C4-2 xenograft prostate tumors. Clin Transl Sci 5, 39-42. 

Gazi, S., Altun, A., and Erdogan, O. (2006). Contrast-induced nephropathy: preventive and 
protective effects of melatonin. J Pineal Res 41, 53-57. 

Genova, M. L., Pich, M. M., Bernacchia, A., Bianchi, C., Biondi, A., Bovina, C., Falasca, A. I., 
Formiggini, G., Castelli, G. P., and Lenaz, G. (2004). The mitochondrial production of reactive oxygen 
species in relation to aging and pathology. Ann N Y Acad Sci 1011, 86-100. 

Gilad, E., Laufer, M., Matzkin, H., and Zisapel, N. (1999). Melatonin receptors in PC3 human 
prostate tumor cells. J Pineal Res 26, 211-220. 

Gilad, E., Shanas, U., Terkel, J., and Zisapel, N. (1997). Putative melatonin receptors in the blind 
mole rat harderian gland. The Journal of experimental zoology 277, 435-441. 

Gomez-Moreno, G., Guardia, J., Ferrera, M. J., Cutando, A., and Reiter, R. J. (2010). Melatonin in 
diseases of the oral cavity. Oral Dis 16, 242-247. 

Gonzalez-Haba, M. G., Garcia-Maurino, S., Calvo, J. R., Goberna, R., and Guerrero, J. M. (1995). 
High-affinity binding of melatonin by human circulating T lymphocytes (CD4+). FASEB J 9, 1331-1335. 



 107 

Gonzalez, A., Alvarez-Garcia, V., Martinez-Campa, C., Mediavilla, M. D., Alonso-Gonzalez, C., 
Sanchez-Barcelo, E. J., and Cos, S. (2010). In vivo inhibition of the estrogen sulfatase enzyme and growth of 
DMBA-induced mammary tumors by melatonin. Curr Cancer Drug Targets 10, 279-286. 

Grace, M. S., Cahill, G. M., and Besharse, J. C. (1991). Melatonin deacetylation: retinal vertebrate 
class distribution and Xenopus laevis tissue distribution. Brain Res 559, 56-63. 

Grande, C., Firvida, J. L., Navas, V., and Casal, J. (2006). Interleukin-2 for the treatment of solid 
tumors other than melanoma and renal cell carcinoma. Anti-cancer drugs 17, 1-12. 

Gregory, A. P., Dendrou, C. A., Attfield, K. E., Haghikia, A., Xifara, D. K., Butter, F., Poschmann, G., 
Kaur, G., Lambert, L., Leach, O. A., et al. (2012). TNF receptor 1 genetic risk mirrors outcome of anti-TNF 
therapy in multiple sclerosis. Nature 488, 508-511. 

Griefahn, B., Brode, P., Remer, T., and Blaszkewicz, M. (2003). Excretion of 6-hydroxymelatonin 
sulfate (6-OHMS) in siblings during childhood and adolescence. Neuroendocrinology 78, 241-243. 

Guenther, A. L., Schmidt, S. I., Laatsch, H., Fotso, S., Ness, H., Ressmeyer, A. R., Poeggeler, B., 
and Hardeland, R. (2005). Reactions of the melatonin metabolite AMK (N1-acetyl-5-methoxykynuramine) 
with reactive nitrogen species: formation of novel compounds, 3-acetamidomethyl-6-methoxycinnolinone and 
3-nitro-AMK. J Pineal Res 39, 251-260. 

Guerrero, J. M., and Reiter, R. J. (2002). Melatonin-immune system relationships. Curr Top Med 
Chem 2, 167-179. 

Guerrero, J. M., Reiter, R. J., Ortiz, G. G., Pablos, M. I., Sewerynek, E., and Chuang, J. I. (1997). 
Melatonin prevents increases in neural nitric oxide and cyclic GMP production after transient brain ischemia 
and reperfusion in the Mongolian gerbil (Meriones unguiculatus). J Pineal Res 23, 24-31. 

Gupta, A., Allaf, M. E., Kavoussi, L. R., Jarrett, T. W., Chan, D. Y., Su, L. M., and Solomon, S. B. 
(2006). Computerized tomography guided percutaneous renal cryoablation with the patient under conscious 
sedation: initial clinical experience. J Urol 175, 447-452; discussion 452-443. 

Gupta, M., Aneja, S., and Kohli, K. (2004). Add-on melatonin improves quality of life in epileptic 
children on valproate monotherapy: a randomized, double-blind, placebo-controlled trial. Epilepsy Behav 5, 
316-321. 

Gutierrez-Cuesta, J., Tajes, M., Jimenez, A., Coto-Montes, A., Camins, A., and Pallas, M. (2008). 
Evaluation of potential pro-survival pathways regulated by melatonin in a murine senescence model. J Pineal 
Res 45, 497-505. 

Hardeland, R. (2005). Antioxidative protection by melatonin: multiplicity of mechanisms from radical 
detoxification to radical avoidance. Endocrine 27, 119-130. 

Hardeland, R. (2009). Neuroprotection by radical avoidance: search for suitable agents. Molecules 
14, 5054-5102. 

Hardeland, R., Coto-Montes, A., and Poeggeler, B. (2003a). Circadian rhythms, oxidative stress, and 
antioxidative defense mechanisms. Chronobiol Int 20, 921-962. 

Hardeland, R., and Pandi-Perumal, S. R. (2005). Melatonin, a potent agent in antioxidative defense: 
actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond) 2, 22. 

Hardeland, R., Poeggeler, B., Niebergall, R., and Zelosko, V. (2003b). Oxidation of melatonin by 
carbonate radicals and chemiluminescence emitted during pyrrole ring cleavage. J Pineal Res 34, 17-25. 

Hardeland, R., Reiter, R. J., Poeggeler, B., and Tan, D. X. (1993). The significance of the 
metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. 
Neurosci Biobehav Rev 17, 347-357. 

Hardeland, R., Tan, D. X., and Reiter, R. J. (2009). Kynuramines, metabolites of melatonin and other 
indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47, 109-126. 

Harumi, T., Akutsu, H., and Matsushima, S. (1996). Simultaneous determination of serotonin, N-
acetylserotonin and melatonin in the pineal gland of the juvenile golden hamster by high-performance liquid 
chromatography with electrochemical detection. J Chromatogr B Biomed Appl 675, 152-156. 

Hegde, U. P., Chakraborty, N., Kerr, P., and Grant-Kels, J. M. (2009). Melanoma in the elderly 
patient: relevance of the aging immune system. Clinics in dermatology 27, 537-544. 

Hevia, D., Botas, C., Sainz, R. M., Quiros, I., Blanco, D., Tan, D. X., Gomez-Cordoves, C., and 
Mayo, J. C. (2010). Development and validation of new methods for the determination of melatonin and its 



 108 

oxidative metabolites by high performance liquid chromatography and capillary electrophoresis, using 
multivariate optimization. Journal of chromatography A 1217, 1368-1374. 

Hill, S. M., and Blask, D. E. (1988). Effects of the pineal hormone melatonin on the proliferation and 
morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer research 48, 6121-
6126. 

Hill, S. M., Frasch, T., Xiang, S., Yuan, L., Duplessis, T., and Mao, L. (2009). Molecular mechanisms 
of melatonin anticancer effects. Integr Cancer Ther 8, 337-346. 

Hirata, F., Hayaishi, O., Tokuyama, T., and Seno, S. (1974). In vitro and in vivo formation of two new 
metabolites of melatonin. J Biol Chem 249, 1311-1313. 

Hum, J. M., Siegel, A. P., Pavalko, F. M., and Day, R. N. (2012). Monitoring biosensor activity in 
living cells with fluorescence lifetime imaging microscopy. Int J Mol Sci 13, 14385-14400. 

Hunt, A. E., Al-Ghoul, W. M., Gillette, M. U., and Dubocovich, M. L. (2001). Activation of MT(2) 
melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell 
Physiol 280, C110-118. 

Iigo, M., Furukawa, K., Nishi, G., Tabata, M., and Aida, K. (2007). Ocular melatonin rhythms in 
teleost fish. Brain Behav Evol 69, 114-121. 

Janson, C., Gislason, T., Boman, G., Hetta, J., and Roos, B. E. (1990). Sleep disturbances in 
patients with asthma. Respir Med 84, 37-42. 

Jaworek, J., Brzozowski, T., and Konturek, S. J. (2005). Melatonin as an organoprotector in the 
stomach and the pancreas. J Pineal Res 38, 73-83. 

Jin, X., von Gall, C., Pieschl, R. L., Gribkoff, V. K., Stehle, J. H., Reppert, S. M., and Weaver, D. R. 
(2003). Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 23, 1054-1060. 

Jones, C., Griffiths, R. D., Humphris, G., and Skirrow, P. M. (2001). Memory, delusions, and the 
development of acute posttraumatic stress disorder-related symptoms after intensive care. Critical care 
medicine 29, 573-580. 

Jung-Hynes, B., and Ahmad, N. (2009). SIRT1 controls circadian clock circuitry and promotes cell 
survival: a connection with age-related neoplasms. FASEB J 23, 2803-2809. 

Jung-Hynes, B., Schmit, T. L., Reagan-Shaw, S. R., Siddiqui, I. A., Mukhtar, H., and Ahmad, N. 
(2011). Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in 
culture and in vivo in TRAMP model. J Pineal Res 50, 140-149. 

Kadekaro, A. L., Andrade, L. N., Floeter-Winter, L. M., Rollag, M. D., Virador, V., Vieira, W., and 
Castrucci, A. M. (2004). MT-1 melatonin receptor expression increases the antiproliferative effect of 
melatonin on S-91 murine melanoma cells. J Pineal Res 36, 204-211. 

Karadottir, R., and Axelsson, J. (2001). Melatonin secretion in SAD patients and healthy subjects 
matched with respect to age and sex. Int J Circumpolar Health 60, 548-551. 

Kim, B. C., Shon, B. S., Ryoo, Y. W., Kim, S. P., and Lee, K. S. (2001). Melatonin reduces X-ray 
irradiation-induced oxidative damages in cultured human skin fibroblasts. J Dermatol Sci 26, 194-200. 

Kimata, H. (2007). Laughter elevates the levels of breast-milk melatonin. J Psychosom Res 62, 699-
702. 

Klein, D. C. (2004). The 2004 Aschoff/Pittendrigh lecture: Theory of the origin of the pineal gland--a 
tale of conflict and resolution. J Biol Rhythms 19, 264-279. 

Knutson, K. L., and Disis, M. L. (2005). Tumor antigen-specific T helper cells in cancer immunity and 
immunotherapy. Cancer immunology, immunotherapy : CII 54, 721-728. 

Krachman, S. L., D'Alonzo, G. E., and Criner, G. J. (1995). Sleep in the intensive care unit. Chest 
107, 1713-1720. 

Krauchi, K., Cajochen, C., and Wirz-Justice, A. (1997). A relationship between heat loss and 
sleepiness: effects of postural change and melatonin administration. J Appl Physiol 83, 134-139. 

Kubo, T., Ozasa, K., Mikami, K., Wakai, K., Fujino, Y., Watanabe, Y., Miki, T., Nakao, M., Hayashi, 
K., Suzuki, K., et al. (2006). Prospective cohort study of the risk of prostate cancer among rotating-shift 
workers: findings from the Japan collaborative cohort study. Am J Epidemiol 164, 549-555. 



 109 

la Fleur, S. E., Kalsbeek, A., Wortel, J., van der Vliet, J., and Buijs, R. M. (2001). Role for the pineal 
and melatonin in glucose homeostasis: pinealectomy increases night-time glucose concentrations. J 
Neuroendocrinol 13, 1025-1032. 

Lagana, A., Pardo-Martinez, B., Marino, A., Fago, G., and Bizzarri, M. (1995). Determination of 
serum total lipid and free N-acetylneuraminic acid in genitourinary malignancies by fluorimetric high 
performance liquid chromatography. Relevance of free N-acetylneuraminic acid as tumour marker. Clin Chim 
Acta 243, 165-179. 

Lee, K., Zhang, H., Qian, D. Z., Rey, S., Liu, J. O., and Semenza, G. L. (2009). Acriflavine inhibits 
HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci U S A 106, 17910-17915. 

Leja-Szpak, A., Jaworek, J., Nawrot-Porabka, K., Palonek, M., Mitis-Musiol, M., Dembinski, A., 
Konturek, S. J., and Pawlik, W. W. (2004). Modulation of pancreatic enzyme secretion by melatonin and its 
precursor; L-tryptophan. Role of CCK and afferent nerves. J Physiol Pharmacol 55 Suppl 2, 33-46. 

Leon-Blanco, M. M., Guerrero, J. M., Reiter, R. J., Calvo, J. R., and Pozo, D. (2003). Melatonin 
inhibits telomerase activity in the MCF-7 tumor cell line both in vivo and in vitro. J Pineal Res 35, 204-211. 

Leon, J., Acuna-Castroviejo, D., Escames, G., Tan, D. X., and Reiter, R. J. (2005). Melatonin 
mitigates mitochondrial malfunction. J Pineal Res 38, 1-9. 

Li, L., Wong, J. T., Pang, S. F., and Shiu, S. Y. (1999). Melatonin-induced stimulation of rat corpus 
epididymal epithelial cell proliferation. Life sciences 65, 1067-1076. 

Lissoni, P. (2007). Biochemotherapy with standard chemotherapies plus the pineal hormone 
melatonin in the treatment of advanced solid neoplasms. Pathol Biol (Paris) 55, 201-204. 

Lissoni, P., Barni, S., Ardizzoia, A., Olivini, G., Brivio, F., Tisi, E., Tancini, G., Characiejus, D., and 
Kothari, L. (1993a). Cancer immunotherapy with low-dose interleukin-2 subcutaneous administration: 
potential efficacy in most solid tumor histotypes by a concomitant treatment with the pineal hormone 
melatonin. J Biol Regul Homeost Agents 7, 121-125. 

Lissoni, P., Barni, S., Tancini, G., Ardizzoia, A., Rovelli, F., Cazzaniga, M., Brivio, F., Piperno, A., 
Aldeghi, R., Fossati, D., and et al. (1993b). Immunotherapy with subcutaneous low-dose interleukin-2 and 
the pineal indole melatonin as a new effective therapy in advanced cancers of the digestive tract. Br J 
Cancer 67, 1404-1407. 

Lissoni, P., Brivio, F., Fumagalli, L., Messina, G., Vigore, L., Parolini, D., Colciago, M., and Rovelli, F. 
(2008). Neuroimmunomodulation in medical oncology: application of psychoneuroimmunology with 
subcutaneous low-dose IL-2 and the pineal hormone melatonin in patients with untreatable metastatic solid 
tumors. Anticancer Res 28, 1377-1381. 

Lissoni, P., Brivio, O., Brivio, F., Barni, S., Tancini, G., Crippa, D., and Meregalli, S. (1996). Adjuvant 
therapy with the pineal hormone melatonin in patients with lymph node relapse due to malignant melanoma. 
J Pineal Res 21, 239-242. 

Liu, F., Ng, T. B., and Fung, M. C. (2001). Pineal indoles stimulate the gene expression of 
immunomodulating cytokines. J Neural Transm 108, 397-405. 

Liu, X., Uchiyama, M., Shibui, K., Kim, K., Kudo, Y., Tagaya, H., Suzuki, H., and Okawa, M. (2000). 
Diurnal preference, sleep habits, circadian sleep propensity and melatonin rhythm in healthy human 
subjects. Neurosci Lett 280, 199-202. 

Lusardi, P., Piazza, E., and Fogari, R. (2000). Cardiovascular effects of melatonin in hypertensive 
patients well controlled by nifedipine: a 24-hour study. Br J Clin Pharmacol 49, 423-427. 

Ma, X., Chen, C., Krausz, K. W., Idle, J. R., and Gonzalez, F. J. (2008). A metabolomic perspective 
of melatonin metabolism in the mouse. Endocrinology 149, 1869-1879. 

Macchi, M. M., and Bruce, J. N. (2004). Human pineal physiology and functional significance of 
melatonin. Front Neuroendocrinol 25, 177-195. 

Macleod, M. R., O'Collins, T., Horky, L. L., Howells, D. W., and Donnan, G. A. (2005). Systematic 
review and meta-analysis of the efficacy of melatonin in experimental stroke. J Pineal Res 38, 35-41. 

Maestroni, G. J. (2001). The immunotherapeutic potential of melatonin. Expert Opin Investig Drugs 
10, 467-476. 

Maestroni, G. J., Cardinali, D. P., Esquifino, A. I., and Pandi-Perumal, S. R. (2005). Does melatonin 
play a disease-promoting role in rheumatoid arthritis? Journal of neuroimmunology 158, 106-111. 



 110 

Maestroni, G. J., and Conti, A. (1990). The pineal neurohormone melatonin stimulates activated 
CD4+, Thy-1+ cells to release opioid agonist(s) with immunoenhancing and anti-stress properties. Journal of 
neuroimmunology 28, 167-176. 

Maestroni, G. J., Conti, A., and Pierpaoli, W. (1987). Role of the pineal gland in immunity: II. 
Melatonin enhances the antibody response via an opiatergic mechanism. Clinical and experimental 
immunology 68, 384-391. 

Maestroni, G. J., Conti, A., and Pierpaoli, W. (1988). Pineal melatonin, its fundamental 
immunoregulatory role in aging and cancer. Ann N Y Acad Sci 521, 140-148. 

Magnusson, A., and Boivin, D. (2003). Seasonal affective disorder: an overview. Chronobiol Int 20, 
189-207. 

Marignol, L., Coffey, M., Lawler, M., and Hollywood, D. (2008). Hypoxia in prostate cancer: A 
powerful shield against tumour destruction? Cancer Treat Rev. 

Markus, R. P., Ferreira, Z. S., Fernandes, P. A., and Cecon, E. (2007). The immune-pineal axis: a 
shuttle between endocrine and paracrine melatonin sources. Neuroimmunomodulation 14, 126-133. 

Martins, E., Jr., Fernandes, L. C., Bartol, I., Cipolla-Neto, J., and Costa Rosa, L. F. (1998). The effect 
of melatonin chronic treatment upon macrophage and lymphocyte metabolism and function in Walker-256 
tumour-bearing rats. Journal of neuroimmunology 82, 81-89. 

Martins, E., Jr., Ligeiro de Oliveira, A. P., Fialho de Araujo, A. M., Tavares de Lima, W., Cipolla-Neto, 
J., and Costa Rosa, L. F. (2001). Melatonin modulates allergic lung inflammation. J Pineal Res 31, 363-369. 

Masana, M. I., Doolen, S., Ersahin, C., Al-Ghoul, W. M., Duckles, S. P., Dubocovich, M. L., and 
Krause, D. N. (2002). MT(2) melatonin receptors are present and functional in rat caudal artery. The Journal 
of pharmacology and experimental therapeutics 302, 1295-1302. 

Mates, J. M. (2000). Effects of antioxidant enzymes in the molecular control of reactive oxygen 
species toxicology. Toxicology 153, 83-104. 

Mayo, J. C., Sainz, R. M., Tan, D. X., Hardeland, R., Leon, J., Rodriguez, C., and Reiter, R. J. 
(2005). Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-
methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. Journal of 
neuroimmunology 165, 139-149. 

McDougal, W. S., Gervais, D. A., McGovern, F. J., and Mueller, P. R. (2005). Long-term followup of 
patients with renal cell carcinoma treated with radio frequency ablation with curative intent. J Urol 174, 61-
63. 

Mehnert, W., and Mader, K. (2001). Solid lipid nanoparticles: production, characterization and 
applications. Adv Drug Deliv Rev 47, 165-196. 

Meja, K. K., Barnes, P. J., and Giembycz, M. A. (1997). Characterization of the prostanoid 
receptor(s) on human blood monocytes at which prostaglandin E2 inhibits lipopolysaccharide-induced 
tumour necrosis factor-alpha generation. British journal of pharmacology 122, 149-157. 

Miller, S. C., Pandi-Perumal, S. R., Esquifino, A. I., Cardinali, D. P., and Maestroni, G. J. (2006). The 
role of melatonin in immuno-enhancement: potential application in cancer. Int J Exp Pathol 87, 81-87. 

Mistraletti, G., Sabbatini, G., Taverna, M., Figini, M. A., Umbrello, M., Magni, P., Ruscica, M., Dozio, 
E., Esposti, R., DeMartini, G., et al. (2010). Pharmacokinetics of orally administered melatonin in critically ill 
patients. J Pineal Res 48, 142-147. 

Miyaji, C., Watanabe, H., Toma, H., Akisaka, M., Tomiyama, K., Sato, Y., and Abo, T. (2000). 
Functional alteration of granulocytes, NK cells, and natural killer T cells in centenarians. Hum Immunol 61, 
908-916. 

Molina-Carballo, A., Munoz-Hoyos, A., Reiter, R. J., Sanchez-Forte, M., Moreno-Madrid, F., Rufo-
Campos, M., Molina-Font, J. A., and Acuna-Castroviejo, D. (1997). Utility of high doses of melatonin as 
adjunctive anticonvulsant therapy in a child with severe myoclonic epilepsy: two years' experience. J Pineal 
Res 23, 97-105. 

Moore, R. Y. (1997). Circadian rhythms: basic neurobiology and clinical applications. Annu Rev Med 
48, 253-266. 

Moretti, R. M., Marelli, M. M., Maggi, R., Dondi, D., Motta, M., and Limonta, P. (2000). 
Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncology reports 7, 347-351. 



 111 

Motoyama, A., Kanda, T., and Namba, R. (2004). Direct determination of endogenous melatonin in 
human saliva by column-switching semi-microcolumn liquid chromatography/mass spectrometry with on-line 
analyte enrichment. Rapid communications in mass spectrometry : RCM 18, 1250-1258. 

Mouraviev, V., Spiess, P. E., and Jones, J. S. (2012). Salvage cryoablation for locally recurrent 
prostate cancer following primary radiotherapy. Eur Urol 61, 1204-1211. 

Muc-Wierzgon, M., Nowakowska-Zajdel, E., Zubelewicz, B., Wierzgon, J., Kokot, T., Klakla, K., 
Szkilnik, R., and Wiczkowski, A. (2003). Circadian fluctuations of melatonin, tumor necrosis factor-alpha and 
its soluble receptors in the circulation of patients with advanced gastrointestinal cancer. J Exp Clin Cancer 
Res 22, 171-178. 

Muller, B. G., Leuenberger, H., and Kissel, T. (1996). Albumin nanospheres as carriers for passive 
drug targeting: an optimized manufacturing technique. Pharm Res 13, 32-37. 

Mundigler, G., Delle-Karth, G., Koreny, M., Zehetgruber, M., Steindl-Munda, P., Marktl, W., Ferti, L., 
and Siostrzonek, P. (2002). Impaired circadian rhythm of melatonin secretion in sedated critically ill patients 
with severe sepsis. Critical care medicine 30, 536-540. 

Murakami, Y., Machino, M., and Fujisawa, S. (2012). Porphyromonas gingivalis Fimbria-Induced 
Expression of Inflammatory Cytokines and Cyclooxygenase-2 in Mouse Macrophages and Its Inhibition by 
the Bioactive Compounds Fibronectin and Melatonin. ISRN Dent 2012, 350859. 

Musijowski, J., Pobozy, E., and Trojanowicz, M. (2006). On-line preconcentration techniques in 
determination of melatonin and its precursors/metabolites using micellar electrokinetic chromatography. 
Journal of chromatography A 1104, 337-345. 

Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M., and Sassone-Corsi, P. (2009). Circadian control 
of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654-657. 

Naranjo, M. C., Guerrero, J. M., Rubio, A., Lardone, P. J., Carrillo-Vico, A., Carrascosa-Salmoral, M. 
P., Jimenez-Jorge, S., Arellano, M. V., Leal-Noval, S. R., Leal, M., et al. (2007). Melatonin biosynthesis in the 
thymus of humans and rats. Cell Mol Life Sci 64, 781-790. 

Nelson, J. E., Meier, D. E., Oei, E. J., Nierman, D. M., Senzel, R. S., Manfredi, P. L., Davis, S. M., 
and Morrison, R. S. (2001). Self-reported symptom experience of critically ill cancer patients receiving 
intensive care. Critical care medicine 29, 277-282. 

Nelson, R. J. (2004). Seasonal immune function and sickness responses. Trends Immunol 25, 187-
192. 

Nelson, R. J., and Drazen, D. L. (2000). Melatonin mediates seasonal changes in immune function. 
Ann N Y Acad Sci 917, 404-415. 

Noguchi, K., Ruwanpura, S. M., Yan, M., Yoshida, N., and Ishikawa, I. (2005). Down-regulation of 
interleukin-1alpha-induced matrix metalloproteinase-13 expression via EP1 receptors by prostaglandin E2 in 
human periodontal ligament cells. Oral Microbiol Immunol 20, 56-59. 

Nosal'ova, V., Zeman, M., Cerna, S., Navarova, J., and Zakalova, M. (2007). Protective effect of 
melatonin in acetic acid induced colitis in rats. J Pineal Res 42, 364-370. 

Nosjean, O., Ferro, M., Coge, F., Beauverger, P., Henlin, J. M., Lefoulon, F., Fauchere, J. L., 
Delagrange, P., Canet, E., and Boutin, J. A. (2000). Identification of the melatonin-binding site MT3 as the 
quinone reductase 2. J Biol Chem 275, 31311-31317. 

O'Rourke, S. T., Hammad, H., Delagrange, P., Scalbert, E., and Vanhoutte, P. M. (2003). Melatonin 
inhibits nitrate tolerance in isolated coronary arteries. British journal of pharmacology 139, 1326-1332. 

Oh, H. J., Oh, Y. K., and Kim, C. K. (2001). Effects of vehicles and enhancers on transdermal 
delivery of melatonin. Int J Pharm 212, 63-71. 

Onnis, B., Rapisarda, A., and Melillo, G. (2009). Development of HIF-1 inhibitors for cancer therapy. 
J Cell Mol Med 13, 2780-2786. 

Otalora, B. B., Madrid, J. A., Alvarez, N., Vicente, V., and Rol, M. A. (2008). Effects of exogenous 
melatonin and circadian synchronization on tumor progression in melanoma-bearing C57BL6 mice. J Pineal 
Res 44, 307-315. 

Ozdemir, F., Deniz, O., Kaynar, K., Arslan, M., Kavgaci, H., Yildiz, B., and Aydin, F. (2009). The 
effects of melatonin on human hepatoma (Hep G2) cell line. Bratisl Lek Listy 110, 276-279. 



 112 

Pacchierotti, C., Iapichino, S., Bossini, L., Pieraccini, F., and Castrogiovanni, P. (2001). Melatonin in 
psychiatric disorders: a review on the melatonin involvement in psychiatry. Front Neuroendocrinol 22, 18-32. 

Pandi-Perumal, S. R., Smits, M., Spence, W., Srinivasan, V., Cardinali, D. P., Lowe, A. D., and 
Kayumov, L. (2007). Dim light melatonin onset (DLMO): a tool for the analysis of circadian phase in human 
sleep and chronobiological disorders. Prog Neuropsychopharmacol Biol Psychiatry 31, 1-11. 

Pandi-Perumal, S. R., Srinivasan, V., Maestroni, G. J., Cardinali, D. P., Poeggeler, B., and 
Hardeland, R. (2006). Melatonin: Nature's most versatile biological signal? FEBS J 273, 2813-2838. 

Pandi-Perumal, S. R., Zisapel, N., Srinivasan, V., and Cardinali, D. P. (2005). Melatonin and sleep in 
aging population. Exp Gerontol 40, 911-925. 

Papazisis, K. T., Kouretas, D., Geromichalos, G. D., Sivridis, E., Tsekreli, O. K., Dimitriadis, K. A., 
and Kortsaris, A. H. (1998). Effects of melatonin on proliferation of cancer cell lines. J Pineal Res 25, 211-
218. 

Paredes, S. D., Korkmaz, A., Manchester, L. C., Tan, D. X., and Reiter, R. J. (2009). 
Phytomelatonin: a review. J Exp Bot 60, 57-69. 

Park, J. W., Hwang, M. S., Suh, S. I., and Baek, W. K. (2009). Melatonin down-regulates HIF-1 alpha 
expression through inhibition of protein translation in prostate cancer cells. J Pineal Res 46, 415-421. 

Park, S. Y., Jang, W. J., Yi, E. Y., Jang, J. Y., Jung, Y., Jeong, J. W., and Kim, Y. J. (2010). 
Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia. J Pineal Res 
48, 178-184. 

Paskaloglu, K., Sener, G., and Ayangolu-Dulger, G. (2004). Melatonin treatment protects against 
diabetes-induced functional and biochemical changes in rat aorta and corpus cavernosum. European journal 
of pharmacology 499, 345-354. 

Patel, A., Zhu, Y., Kuzhikandathil, E. V., Banks, W. A., Siegel, A., and Zalcman, S. S. (2012). Soluble 
interleukin-6 receptor induces motor stereotypies and co-localizes with gp130 in regions linked to cortico-
striato-thalamo-cortical circuits. PLoS One 7, e41623. 

Pawelec, G., Akbar, A., Caruso, C., Effros, R., Grubeck-Loebenstein, B., and Wikby, A. (2004). Is 
immunosenescence infectious? Trends Immunol 25, 406-410. 

Pawelec, G., Ouyang, Q., Colonna-Romano, G., Candore, G., Lio, D., and Caruso, C. (2002). Is 
human immunosenescence clinically relevant? Looking for 'immunological risk phenotypes'. Trends Immunol 
23, 330-332. 

Peres, M. F. (2005). Melatonin, the pineal gland and their implications for headache disorders. 
Cephalalgia 25, 403-411. 

Pobozy, E., Michalski, A., Sotowska-Brochocka, J., and Trojanowicz, M. (2005). Determination of 
melatonin and its precursors and metabolites using capillary electrophoresis with UV and fluorometric 
detection. J Sep Sci 28, 2165-2172. 

Poeggeler, B., Thuermann, S., Dose, A., Schoenke, M., Burkhardt, S., and Hardeland, R. (2002). 
Melatonin's unique radical scavenging properties - roles of its functional substituents as revealed by a 
comparison with its structural analogs. J Pineal Res 33, 20-30. 

Pontes, G. N., Cardoso, E. C., Carneiro-Sampaio, M. M., and Markus, R. P. (2006). Injury switches 
melatonin production source from endocrine (pineal) to paracrine (phagocytes) - melatonin in human 
colostrum and colostrum phagocytes. J Pineal Res 41, 136-141. 

Pontes, G. N., Cardoso, E. C., Carneiro-Sampaio, M. M., and Markus, R. P. (2007). Pineal melatonin 
and the innate immune response: the TNF-alpha increase after cesarean section suppresses nocturnal 
melatonin production. J Pineal Res 43, 365-371. 

Porkka-Heiskanen, T., Alanko, L., Kalinchuk, A., and Stenberg, D. (2002). Adenosine and sleep. 
Sleep Med Rev 6, 321-332. 

Pozo, D., Reiter, R. J., Calvo, J. R., and Guerrero, J. M. (1997). Inhibition of cerebellar nitric oxide 
synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 65, 
430-442. 

Priano, L., Esposti, D., Esposti, R., Castagna, G., De Medici, C., Fraschini, F., Gasco, M. R., and 
Mauro, A. (2007). Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and 
transdermal delivery systems. J Nanosci Nanotechnol 7, 3596-3601. 



 113 

Pukkala, E., Ojamo, M., Rudanko, S. L., Stevens, R. G., and Verkasalo, P. K. (2006). Does 
incidence of breast cancer and prostate cancer decrease with increasing degree of visual impairment. 
Cancer Causes Control 17, 573-576. 

Quaranta, A. J., D'Alonzo, G. E., and Krachman, S. L. (1997). Cheyne-Stokes respiration during 
sleep in congestive heart failure. Chest 111, 467-473. 

Raghavendra, V., Singh, V., Kulkarni, S. K., and Agrewala, J. N. (2001). Melatonin enhances Th2 
cell mediated immune responses: lack of sensitivity to reversal by naltrexone or benzodiazepine receptor 
antagonists. Mol Cell Biochem 221, 57-62. 

Ram, P. T., Dai, J., Yuan, L., Dong, C., Kiefer, T. L., Lai, L., and Hill, S. M. (2002). Involvement of the 
mt1 melatonin receptor in human breast cancer. Cancer Lett 179, 141-150. 

Ramos, A., Laguna, I., de Lucia, M. L., Martin-Palomino, P., Regodon, S., and Miguez, M. P. (2010). 
Evolution of oxidative/nitrosative stress biomarkers during an open-field vaccination procedure in sheep: 
effect of melatonin. Vet Immunol Immunopathol 133, 16-24. 

Regodon, S., Martin-Palomino, P., Fernandez-Montesinos, R., Herrera, J. L., Carrascosa-Salmoral, 
M. P., Piriz, S., Vadillo, S., Guerrero, J. M., and Pozo, D. (2005). The use of melatonin as a vaccine agent. 
Vaccine 23, 5321-5327. 

Reinisch, W., Holub, M., Katz, A., Herneth, A., Lichtenberger, C., Schoniger-Hekele, M., Waldhoer, 
T., Oberhuber, G., Ferenci, P., Gangl, A., and Mueller, C. (2002). Prospective pilot study of recombinant 
granulocyte-macrophage colony-stimulating factor and interferon-gamma in patients with inoperable 
hepatocellular carcinoma. J Immunother 25, 489-499. 

Reiter, R. J., Tan, D. X., and Burkhardt, S. (2002). Reactive oxygen and nitrogen species and 
cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev 123, 1007-1019. 

Reiter, R. J., Tan, D. X., Leon, J., Kilic, U., and Kilic, E. (2005). When melatonin gets on your nerves: 
its beneficial actions in experimental models of stroke. Exp Biol Med (Maywood) 230, 104-117. 

Ressmeyer, A. R., Mayo, J. C., Zelosko, V., Sainz, R. M., Tan, D. X., Poeggeler, B., Antolin, I., 
Zsizsik, B. K., Reiter, R. J., and Hardeland, R. (2003). Antioxidant properties of the melatonin metabolite N1-
acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction. 
Redox Rep 8, 205-213. 

Rezzani, R., Rodella, L. F., Fraschini, F., Gasco, M. R., Demartini, G., Musicanti, C., and Reiter, R. 
J. (2009). Melatonin delivery in solid lipid nanoparticles: prevention of cyclosporine A induced cardiac 
damage. J Pineal Res 46, 255-261. 

Rizzo, V., Porta, C., Moroni, M., Scoglio, E., and Moratti, R. (2002). Determination of free and total 
(free plus protein-bound) melatonin in plasma and cerebrospinal fluid by high-performance liquid 
chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 774, 17-24. 

Roberts, J. E., Wiechmann, A. F., and Hu, D. N. (2000). Melatonin receptors in human uveal 
melanocytes and melanoma cells. J Pineal Res 28, 165-171. 

Rodriguez, C., Mayo, J. C., Sainz, R. M., Antolin, I., Herrera, F., Martin, V., and Reiter, R. J. (2004). 
Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36, 1-9. 

Rolcik, J., Lenobel, R., Siglerova, V., and Strnad, M. (2002). Isolation of melatonin by immunoaffinity 
chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 775, 9-15. 

Rundshagen, I., Schnabel, K., Wegner, C., and am Esch, S. (2002). Incidence of recall, nightmares, 
and hallucinations during analgosedation in intensive care. Intensive Care Med 28, 38-43. 

Sack, R. L., Hughes, R. J., Edgar, D. M., and Lewy, A. J. (1997). Sleep-promoting effects of 
melatonin: at what dose, in whom, under what conditions, and by what mechanisms? Sleep 20, 908-915. 

Sahna, E., Olmez, E., and Acet, A. (2002). Effects of physiological and pharmacological 
concentrations of melatonin on ischemia-reperfusion arrhythmias in rats: can the incidence of sudden 
cardiac death be reduced? J Pineal Res 32, 194-198. 

Sahna, E., Parlakpinar, H., Turkoz, Y., and Acet, A. (2005). Protective effects of melatonin on 
myocardial ischemia/reperfusion induced infarct size and oxidative changes. Physiol Res 54, 491-495. 

Sainz, R. M., Mayo, J. C., Tan, D. X., Leon, J., Manchester, L., and Reiter, R. J. (2005). Melatonin 
reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA 
independent mechanism. Prostate 63, 29-43. 



 114 

Sanchez-Hidalgo, M., de la Lastra, C. A., Carrascosa-Salmoral, M. P., Naranjo, M. C., Gomez-
Corvera, A., Caballero, B., and Guerrero, J. M. (2009). Age-related changes in melatonin synthesis in rat 
extrapineal tissues. Exp Gerontol 44, 328-334. 

Sandow, J., Stoeckemann, K., and Jerabek-Sandow, G. (1990). Pharmacokinetics and endocrine 
effects of slow release formulations of LHRH analogues. J Steroid Biochem Mol Biol 37, 925-931. 

Sangro, B., Mazzolini, G., Ruiz, J., Herraiz, M., Quiroga, J., Herrero, I., Benito, A., Larrache, J., 
Pueyo, J., Subtil, J. C., et al. (2004). Phase I trial of intratumoral injection of an adenovirus encoding 
interleukin-12 for advanced digestive tumors. J Clin Oncol 22, 1389-1397. 

Scheer, F. A., and Czeisler, C. A. (2005). Melatonin, sleep, and circadian rhythms. Sleep Med Rev 9, 
5-9. 

Scheer, F. A., Van Montfrans, G. A., van Someren, E. J., Mairuhu, G., and Buijs, R. M. (2004). Daily 
nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension 43, 
192-197. 

Schernhammer, E. S., Berrino, F., Krogh, V., Secreto, G., Micheli, A., Venturelli, E., Grioni, S., 
Sempos, C. T., Cavalleri, A., Schunemann, H. J., et al. (2010). Urinary 6-Sulphatoxymelatonin levels and risk 
of breast cancer in premenopausal women: the ORDET cohort. Cancer Epidemiol Biomarkers Prev 19, 729-
737. 

Schernhammer, E. S., Laden, F., Speizer, F. E., Willett, W. C., Hunter, D. J., Kawachi, I., Fuchs, C. 
S., and Colditz, G. A. (2003). Night-shift work and risk of colorectal cancer in the nurses' health study. J Natl 
Cancer Inst 95, 825-828. 

Segerstrom, S. C. (2005). Optimism and immunity: do positive thoughts always lead to positive 
effects? Brain Behav Immun 19, 195-200. 

Shaji, A. V., Kulkarni, S. K., and Agrewala, J. N. (1998). Regulation of secretion of IL-4 and IgG1 
isotype by melatonin-stimulated ovalbumin-specific T cells. Clinical and experimental immunology 111, 181-
185. 

Sharkey, K. M., and Eastman, C. I. (2002). Melatonin phase shifts human circadian rhythms in a 
placebo-controlled simulated night-work study. Am J Physiol Regul Integr Comp Physiol 282, R454-463. 

Sheldon, S. H. (1998). Pro-convulsant effects of oral melatonin in neurologically disabled children. 
Lancet 351, 1254. 

Shilo, L., Dagan, Y., Smorjik, Y., Weinberg, U., Dolev, S., Komptel, B., Balaum, H., and Shenkman, 
L. (1999). Patients in the intensive care unit suffer from severe lack of sleep associated with loss of normal 
melatonin secretion pattern. Am J Med Sci 317, 278-281. 

Shingleton, W. B., and Sewell, P. E., Jr. (2001). Percutaneous renal tumor cryoablation with 
magnetic resonance imaging guidance. J Urol 165, 773-776. 

Shiu, S. Y. (2007). Towards rational and evidence-based use of melatonin in prostate cancer 
prevention and treatment. J Pineal Res 43, 1-9. 

Shiu, S. Y., Li, L., Xu, J. N., Pang, C. S., Wong, J. T., and Pang, S. F. (1999). Melatonin-induced 
inhibition of proliferation and G1/S cell cycle transition delay of human choriocarcinoma JAr cells: possible 
involvement of MT2 (MEL1B) receptor. J Pineal Res 27, 183-192. 

Siegel, R., Naishadham, D., and Jemal, A. (2013). Cancer statistics, 2013. CA Cancer J Clin. 

Sieghart, W., Ronca, E., Drexler, G., and Karall, S. (1987). Improved radioimmunoassay of 
melatonin in serum. Clin Chem 33, 604-605. 

Silverman, S. G., Tuncali, K., and Morrison, P. R. (2005). MR Imaging-guided percutaneous tumor 
ablation. Acad Radiol 12, 1100-1109. 

Sipos, E. P., Tyler, B., Piantadosi, S., Burger, P. C., and Brem, H. (1997). Optimizing interstitial 
delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother 
Pharmacol 39, 383-389. 

Siu, S. W., Lau, K. W., Tam, P. C., and Shiu, S. Y. (2002). Melatonin and prostate cancer cell 
proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. Prostate 52, 106-
122. 

Sjogren, P., Basta, G., de Caterina, R., Rosell, M., Basu, S., Silveira, A., de Faire, U., Vessby, B., 
Hamsten, A., Hellenius, M. L., and Fisher, R. M. (2007). Markers of endothelial activity are related to 



 115 

components of the metabolic syndrome, but not to circulating concentrations of the advanced glycation end-
product N epsilon-carboxymethyl-lysine in healthy Swedish men. Atherosclerosis 195, e168-175. 

Skene, D. J., Timbers, S. E., Middleton, B., English, J., Kopp, C., Tobler, I., and Ioannides, C. 
(2006). Mice convert melatonin to 6-sulphatoxymelatonin. Gen Comp Endocrinol 147, 371-376. 

Skwarlo-Sonta, K. (2002). Melatonin in immunity: comparative aspects. Neuro Endocrinol Lett 23 
Suppl 1, 61-66. 

Slominski, A., Fischer, T. W., Zmijewski, M. A., Wortsman, J., Semak, I., Zbytek, B., Slominski, R. 
M., and Tobin, D. J. (2005). On the role of melatonin in skin physiology and pathology. Endocrine 27, 137-
148. 

Soukhtanloo, M., Ansari, M., Paknejad, M., Parizadeh, M. R., and Rasaee, M. J. (2008). Preparation 
and characterization of monoclonal antibody against melatonin. Hybridoma (Larchmt) 27, 205-209. 

Srinivasan, V., Maestroni, G. J., Cardinali, D. P., Esquifino, A. I., Perumal, S. R., and Miller, S. C. 
(2005). Melatonin, immune function and aging. Immun Ageing 2, 17. 

Srinivasan, V., Spence, D. W., Trakht, I., Pandi-Perumal, S. R., Cardinali, D. P., and Maestroni, G. J. 
(2008). Immunomodulation by melatonin: its significance for seasonally occurring diseases. 
Neuroimmunomodulation 15, 93-101. 

Stanta, G., Campagner, L., Cavallieri, F., and Giarelli, L. (1997). Cancer of the oldest old. What we 
have learned from autopsy studies. Clin Geriatr Med 13, 55-68. 

Stoschitzky, K., Sakotnik, A., Lercher, P., Zweiker, R., Maier, R., Liebmann, P., and Lindner, W. 
(1999). Influence of beta-blockers on melatonin release. European journal of clinical pharmacology 55, 111-
115. 

Straif, K., Baan, R., Grosse, Y., Secretan, B., El Ghissassi, F., Bouvard, V., Altieri, A., Benbrahim-
Tallaa, L., and Cogliano, V. (2007). Carcinogenicity of shift-work, painting, and fire-fighting. The lancet 
oncology 8, 1065-1066. 

Street, S. E., Trapani, J. A., MacGregor, D., and Smyth, M. J. (2002). Suppression of lymphoma and 
epithelial malignancies effected by interferon gamma. J Exp Med 196, 129-134. 

Sulli, A., Maestroni, G. J., Villaggio, B., Hertens, E., Craviotto, C., Pizzorni, C., Briata, M., Seriolo, B., 
and Cutolo, M. (2002). Melatonin serum levels in rheumatoid arthritis. Ann N Y Acad Sci 966, 276-283. 

Sutherland, E. R., Ellison, M. C., Kraft, M., and Martin, R. J. (2003). Elevated serum melatonin is 
associated with the nocturnal worsening of asthma. J Allergy Clin Immunol 112, 513-517. 

Tajes, M., Gutierrez-Cuesta, J., Ortuno-Sahagun, D., Camins, A., and Pallas, M. (2009). Anti-aging 
properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway. J 
Pineal Res 47, 228-237. 

Takayama, T., Sekine, T., Makuuchi, M., Yamasaki, S., Kosuge, T., Yamamoto, J., Shimada, K., 
Sakamoto, M., Hirohashi, S., Ohashi, Y., and Kakizoe, T. (2000). Adoptive immunotherapy to lower 
postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356, 802-807. 

Tam, C. W., Mo, C. W., Yao, K. M., and Shiu, S. Y. (2007). Signaling mechanisms of melatonin in 
antiproliferation of hormone-refractory 22Rv1 human prostate cancer cells: implications for prostate cancer 
chemoprevention. J Pineal Res 42, 191-202. 

Tam, C. W., and Shiu, S. Y. (2011). Functional interplay between melatonin receptor-mediated 
antiproliferative signaling and androgen receptor signaling in human prostate epithelial cells: potential 
implications for therapeutic strategies against prostate cancer. J Pineal Res 51, 297-312. 

Tan, D. X., Hardeland, R., Manchester, L. C., Poeggeler, B., Lopez-Burillo, S., Mayo, J. C., Sainz, R. 
M., and Reiter, R. J. (2003). Mechanistic and comparative studies of melatonin and classic antioxidants in 
terms of their interactions with the ABTS cation radical. J Pineal Res 34, 249-259. 

Tanaka, T., Yasui, Y., Tanaka, M., Oyama, T., and Rahman, K. M. (2009). Melatonin suppresses 
AOM/DSS-induced large bowel oncogenesis in rats. Chem Biol Interact 177, 128-136. 

Terraneo, L., Bianciardi, P., Caretti, A., Ronchi, R., and Samaja, M. (2010). Chronic systemic 
hypoxia promotes LNCaP prostate cancer growth in vivo. Prostate 70, 1243-1254. 

Than, N. N., Heer, C., Laatsch, H., and Hardeland, R. (2006). Reactions of the melatonin metabolite 
N1-acetyl-5-methoxykynuramine (AMK) with the ABTS cation radical: identification of new oxidation 
products. Redox Rep 11, 15-24. 



 116 

Tomita, T., Hamase, K., Hayashi, H., Fukuda, H., Hirano, J., and Zaitsu, K. (2003). Determination of 
endogenous melatonin in the individual pineal glands of inbred mice using precolumn oxidation reversed-
phase micro-high-performance liquid chromatography. Anal Biochem 316, 154-161. 

Tricoire, H., Moller, M., Chemineau, P., and Malpaux, B. (2003). Origin of cerebrospinal fluid 
melatonin and possible function in the integration of photoperiod. Reprod Suppl 61, 311-321. 

Ueno-Towatari, T., Norimatsu, K., Blazejczyk, K., Tokura, H., and Morita, T. (2007). Seasonal 
variations of melatonin secretion in young females under natural and artificial light conditions in Fukuoka, 
Japan. J Physiol Anthropol 26, 209-215. 

Uz, T., and Manev, H. (1998). Circadian expression of pineal 5-lipoxygenase mRNA. Neuroreport 9, 
783-786. 

van den Top, M., Buijs, R. M., Ruijter, J. M., Delagrange, P., Spanswick, D., and Hermes, M. L. 
(2001). Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro 
independent of their circadian rhythm. Neuroscience 107, 99-108. 

Vaupel, P. (2004). Tumor microenvironmental physiology and its implications for radiation oncology. 
Semin Radiat Oncol 14, 198-206. 

Vermeulen, M., Palermo, M., and Giordano, M. (1993). Neonatal pinealectomy impairs murine 
antibody-dependent cellular cytotoxicity. Journal of neuroimmunology 43, 97-101. 

Vician, M., Zeman, M., Herichova, I., Jurani, M., Blazicek, P., and Matis, P. (1999). Melatonin content 
in plasma and large intestine of patients with colorectal carcinoma before and after surgery. J Pineal Res 27, 
164-169. 

Vijayalaxmi, Thomas, C. R., Jr., Reiter, R. J., and Herman, T. S. (2002). Melatonin: from basic 
research to cancer treatment clinics. J Clin Oncol 20, 2575-2601. 

Viswanathan, A. N., Hankinson, S. E., and Schernhammer, E. S. (2007). Night shift work and the risk 
of endometrial cancer. Cancer Res 67, 10618-10622. 

Viswanathan, A. N., and Schernhammer, E. S. (2009). Circulating melatonin and the risk of breast 
and endometrial cancer in women. Cancer Lett 281, 1-7. 

Wenzel, U., Nickel, A., and Daniel, H. (2005). Melatonin potentiates flavone-induced apoptosis in 
human colon cancer cells by increasing the level of glycolytic end products. Int J Cancer 116, 236-242. 

Wiechmann, A. F. (2002). Regulation of gene expression by melatonin: a microarray survey of the 
rat retina. J Pineal Res 33, 178-185. 

Wiesenberg, I., Missbach, M., and Carlberg, C. (1998). The potential role of the transcription factor 
RZR/ROR as a mediator of nuclear melatonin signaling. Restor Neurol Neurosci 12, 143-150. 

Williams, S. A., Merchant, R. F., Garrett-Mayer, E., Isaacs, J. T., Buckley, J. T., and Denmeade, S. 
R. (2007). A prostate-specific antigen-activated channel-forming toxin as therapy for prostatic disease. J Natl 
Cancer Inst 99, 376-385. 

Wu, X., Wu, W., Zhang, L., Xie, Z., Qiu, B., and Chen, G. (2006). Micellar electrokinetic capillary 
chromatography for fast separation and sensitive determination of melatonin and related indoleamines using 
end-column amperometric detection. Electrophoresis 27, 4230-4239. 

Xi, S. C., Siu, S. W., Fong, S. W., and Shiu, S. Y. (2001). Inhibition of androgen-sensitive LNCaP 
prostate cancer growth in vivo by melatonin: association of antiproliferative action of the pineal hormone with 
mt1 receptor protein expression. Prostate 46, 52-61. 

Yamada, H., Chiba, H., Amano, M., Iigo, M., and Iwata, M. (2002). Rainbow trout eyed-stage 
embryos demonstrate melatonin rhythms under light-dark conditions as measured by a newly developed 
time-resolved fluoroimmunoassay. Gen Comp Endocrinol 125, 41-46. 

Yang, S. C., Lu, L. F., Cai, Y., Zhu, J. B., Liang, B. W., and Yang, C. Z. (1999). Body distribution in 
mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control 
Release 59, 299-307. 

Yang, T., Wang, J., Qu, L., Zhong, P., and Yuan, Y. (2006). Preparation and identification of anti-
melatonin monoclonal antibodies. J Pineal Res 40, 350-354. 

Yang, Y., Lu, Y., Wang, C., Bai, W., Qu, J., Chen, Y., Chang, X., An, L., Zhou, L., Zeng, Z., et al. 
(2012). Cryotherapy is associated with improved clinical outcomes of sorafenib for the treatment of advanced 
hepatocellular carcinoma. Exp Ther Med 3, 171-180. 



 117 

Yeleswaram, K., McLaughlin, L. G., Knipe, J. O., and Schabdach, D. (1997). Pharmacokinetics and 
oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal 
Res 22, 45-51. 

Yerneni, L. K., and Jayaraman, S. (2003). Pharmacological action of high doses of melatonin on B16 
murine melanoma cells depends on cell number at time of exposure. Melanoma Res 13, 113-117. 

Yu, Q., Miller, S. C., and Osmond, D. G. (2000). Melatonin inhibits apoptosis during early B-cell 
development in mouse bone marrow. J Pineal Res 29, 86-93. 

Zara, G. P., Cavalli, R., Bargoni, A., Fundaro, A., Vighetto, D., and Gasco, M. R. (2002). Intravenous 
administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing 
concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J 
Drug Target 10, 327-335. 

Zaslavskaia, R. M., Komarov, F. I., Goncharov, L. F., Goncharova, Z. F., and Makarova, L. A. (1998). 
[Comparative study of the effectiveness of Cozaar monotherapy and Cozaar and melatonin combined 
therapy in aged patients with hypertension]. Klinicheskaia meditsina 76, 49-51. 

Zaslavskaya, R. M., Lilitsa, G. V., Dilmagambetova, G. S., Halberg, F., Cornelissen, G., Otsuka, K., 
Singh, R. B., Stoynev, A., Ikonomov, O., Tarquini, R., et al. (2004). Melatonin, refractory hypertension, 
myocardial ischemia and other challenges in nightly blood pressure lowering. Biomed Pharmacother 58 
Suppl 1, S129-134. 

Zerbini, A., Pilli, M., Ferrari, C., and Missale, G. (2006). Is there a role for immunotherapy in 
hepatocellular carcinoma? Digestive and liver disease : official journal of the Italian Society of 
Gastroenterology and the Italian Association for the Study of the Liver 38, 221-225. 

Zhang, H., Akbar, M., and Kim, H. Y. (1999). Melatonin: an endogenous negative modulator of 12-
lipoxygenation in the rat pineal gland. Biochem J 344 Pt 2, 487-493. 

Zwirner, N. W., Croci, D. O., Domaica, C. I., and Rabinovich, G. A. (2010). Overcoming the hurdles 
of tumor immunity by targeting regulatory pathways in innate and adaptive immune cells. Current 
pharmaceutical design 16, 255-267. 

 


