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Chapter 1: Amyloidosis: definition and mechanisms 
 

The word amyloid, meaning cellulose-like, was firstly introduced by Virchow in 1851. The 

pathologist detected a positive iodine-staining reaction during the histopathological 

examination of some human livers, which actually appeared very similar to that displayed by 

the extracellular material of wood and starch. The positive iodine-staining in the deposits 

detected was likely due to the presence of sulphate proteoglycans, now recognized as a 

common constituent of amyloid deposits. The term amyloid was hence conserved, though a 

few years later it was demonstrated that amyloid had a protein nature (Friedreich and Kekule, 

1859). Amyloid is constituted by insoluble fibrils with a β- pleated sheet conformation, 

mostly deriving from the proteolysis of a normally soluble protein precursor (Sipe, 1994). 

Following cleavage of such precursor, the proteolytic fragments produced undergo 

pathological conformational changes into a β-sheet structure, which reduces their solubility, 

inducing their polymerization and subsequent aggregation. Fibrils are rigid, fine, non-

branching, 8-10 nm wide and indeterminate in length, with the β-sheet conformation 

presenting a green birefringence under polarized light when stained with Congo Red or green 

fluorescence when stained with thioflavin T (Forloni et al., 1996). Amyloidoses can therefore 

be considered pathologic conditions caused by protein conformation disorders, i.e. 

“misfolding” diseases.  The deposits of amyloid substance differ in protein composition 

depending upon the type of amyloidosis and the different clinical forms which may be 

encountered. This indicates that amyloid is a biochemically heterogeneous substance, 

although displaying similarities in properties and staining characteristics. At present 20-25 

different types of proteins with the ability to aggregate, insolubilize, and deposit in tissue as 

amyloid have been identified (Murphy et al., 2001; Gruys, 2004; Woldemeskel, 2012) (Table 

1).  

Although amyloidosis is heterogeneous with regard to the biochemical composition and 

anatomical distribution of amyloid fibrils there are some common factors at the basis of the 

process of amyloid formation. Firstly, as formerly introduced, the involvement of a precursor 

protein that encompasses an amyloidogenic motif. Precursor proteins may undergo 

conformational changes following prior proteolysis, as happens in most cases, or even 

avoiding such cleavage. Secondly, the elevation of serum/tissue levels of the amyloid 

precursor protein, reflecting its overproduction, or impaired clearance, or both. Thirdly, the 

abnormal processing of precursor proteins, which is probably the most complex and not yet 
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fully disclosed issue in amyloidogenesis, in which genetic predisposition and disfunctions of 

the immune system seem to be involved.  In some cases, the aberrant processing might be 

determined by mutant genetic variants of the precursor itself; in others, the precursors are 

normal wild type proteins, but impaired cellular functions or post-translational modifications 

may cause their incomplete degradation. Normally, misfolded proteins are degraded 

intracellularly in proteasomes or extracellularly by macrophages, which in amyloidosis fail to 

occur. The concept of processing also involves a group of amyloid associated proteins 

(chaperones) such as amyloid P component, glycosaminoglycans, apolipoprotein E and J 

(Castano et al., 1991). Further, the importance of tissue-related enzymes and their inhibitors 

may account for some of the regional selectivity of amyloid deposition, for example in vessel 

walls, brain parenchyma or peripheral nerves. Regarding humans, amyloidosis appears to be 

associated with a range of medical disorders including cancer, rheumatoid arthritis, chronic 

renal dialysis, familial amyloid polyneuropathy and diabetes. Thus, amyloid is supposed to be 

involved in ageing, lipid metabolism, acute phase response, peripheral nerve function, 

neuronal degeneration and infection with non-classical agents.  

The clinical presentation of amyloidosis is also quite variable depending on the protein types 

and tissues involved and on the extent of functional disruption of the affected organs in the 

different species.  

 

1.1 Amyloid nature and its distribution: the basis for the classification of 

amyloidosis 

 

According to the WHO-IUIS Nomenclature Subcommittee (WHO-IUIS, 1993) on the 

nomenclature of amyloid and amyloidosis, amyloidosis is classified based on the amyloid 

fibril protein, followed by a designation of the fibril protein precursor. Therefore the capital 

letter A for amyloid is followed by the protein designation in abbreviated form (Table 1).  

For example AL-amyloid refers to the amyloid derived from an immunoglobulin light chain 

or immunoglobulin heavy chain fragment (Gertz, 2004). In AL-amyloidosis unstable 

monoclonal immunoglobulin light chains, produced by a plasma cell discrasia, lead to the 

formation and deposition of fibrils. AL-amyloidosis is very rare in domestic animals, with 

few reports available describing systemic forms and few more cases reporting localized 

deposits. On the contrary, in humans the AL-amyloid type is the most common form of 

systemic amyloidosis. 
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The amyloid fibril protein in the immunoglobulin heavy chain has been given the designation 

AH.  

AA-amyloid refers to the amyloid derived from serum A-amyloid protein (SAA), a high 

density lipoprotein with apoSAA as its precursor protein. AA-amyloidosis, besides being 

characterized by an increased level of SAA, which is common in inflammatory states, might 

be due to defects in the degrading monocyte-derived enzymes or to a genetically determined 

structural abnormality in the SAA molecule. AA amyloidosis is the most common form of 

amyloidosis in domestic animals. It is associated with chronic inflammatory or neoplastic 

diseases, or it may even be idiopathic, where no underlying disease is found. In AA 

amyloidosis the deposition in most species is in the central organs and tissues such as spleen 

liver, kidney and the arterial walls. 

Some species of animals appear to have genetic predisposition to AA amyloidosis. Familial 

amyloidosis is reported in Siamese and Abyssinian cats (Boyce J.T. et al., 1984) and Shar Pei 

dogs (DiBartola S.P. et al., 1990) with AA-proteins differing in primary sequences and 

deposition patterns. The kidney is the main target organ for the deposition of amyloid in the 

Abyssinian cat and Shar Pei dogs, while the amyloid protein is mainly deposited in the liver 

in Siamese cats. 

To give further insights into the classification, islet amyloid polypeptide is a precursor for 

AIAPP amyloid protein deposited in pancreatic amyloidosis. The deposition of islet amyloid 

polypeptide, a normal protein secreted by the β cells of the pancreas, is reported in pancreas 

of cats and macaques.  

Eventually, another commonly recurring form of amyloidosis is due to the beta-amyloid (Aβ), 

which characterizes a variety of diseases such as Alzheimer’s disease (AD), Down Syndrome 

(DS) and Dutch forms of hereditary cerebral hemorrhage with amyloidosis.  

According to the extent of deposition in bodily tissues of man and animals, amyloidosis is 

classified as systemic or localized. Both the aforementioned types include inherited and non-

inherited forms. 

Amyloidosis involving several tissues and organs throughout the body is referred to as 

systemic amyloidosis, which can be due to AL-amyloidosis, AA-amyloidosis or familial 

forms of amyloidosis. Familial amyloidosis in humans could be due to mutations in 

fibrinogen, lysozyme, apolipoprotein AI, and transthyretin (with ATTR as amyloid protein). 

Conversely, amyloid substance may also be confined at a given area in the body in the form 

of localized amyloidosis. 
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Various forms of local amyloid deposits are known in animals and humans. They include 

deposition of Aβ protein in AD, AIAPP in pancreatic islets and AANF in atrial amyloid 

deposit.  

Regarding systemic amyloidosis, the affected organs may be enlarged and exhibit variable 

pallor grossly, or the amyloid deposit may be detected only after microscopic examination of 

the affected tissues without distinct grossly discernible lesions. In systemic amyloidosis 

amyloid appears as a pale eosinophilic homogenous extracellular deposit in tissues.  

In localized forms of amyloidosis the amyloid fibrillar protein is deposited at a given site in 

an organ or tissue either as a grossly visible mass or as a microscopic deposit. For instance, 

localized AL-amyloidosis is characterized by limited growth of monoclonal plasma cells and 

restriction of amyloid deposits to the adjacent sites to those of the synthesis of the precursor 

(Merlini and Stone, 2006).  
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Amyloid protein 
a,b 

 

Protein precursor Protein type Clinical diagnosis 

AA apoSAA  

Reactive (secondary) amyloidosis, 

familial mediterranean 

fever, familial amyloid nephropathy 
with urticarial and 

deafness (Muckie-Wells’ syndrome) 

 

AL κλ, for example, κIII 

 

Aκ, Aλ, for example, 

AκIII 
 

Idiopathic (primary) amyloidosis 

associated with 

myeloma/macroglobulinaemia 

AH IgG1 (γ1) Aγ1  

ATTR Transthyretin 
For example, Met 30c 
For example, Met III 

TTR or IIe 122 

Familial amyloid polyneuropathy, 

Portuguese 
Familial amyloid cardiomyopathy, 

Danish 

Systemic senile amyloidosis 

AApoAI apoAI Arg 26 
Familial amyloid polyneuropathy, 

Iowa 

AGel Gelsolin Asn 187d (15) Familial amyloidosis, Finish 

ACys Cystatin C Gin 68 
Hereditary cerebral hemorrhage with 

amyloidosis, Icelandic 

Aβ 
β protein precursor for 

example, βPP 695e 
Gin 618 (22) 

Alzheimer’s disease, Down 

syndrome, and hereditary 

cerebral hemorrhage with 

amyloidosis, Dutch 

Aβ 2M β2-microglobulin  Associated with chronic dialysis 

AScr 

Scrapie protein precursor Scrapie protein 27–30 
Creutzfeldt-Jakob disease, and so 

forth 

33–35f cellular form For example, Leu 102 
Gerstmann-Straüssler-Scheinker 

syndrome 

ACal (Pro)calcitonin (Pro)calcitonin 
In medullary carcinomas of the 

thyroid 

AANF Atrial natriuretic factor  Isolated atrial amyloid 

AIAPP 
Islet amyloid 

polypeptide 
 

In islets of Langerhans, 

 diabetes type II, insulinoma 

AInsg Insulin  Islet amyloid in the degu (a rodent) 

AApoAIIg apoAII (murine) Gin5 
Amyloidosis in senescence,  

accelerated mice 

  

   Table 1: Nomenclature and classification of amyloid and amyloidosis. Source: WHO/IUIS Nomenclature 

subcommittee. 

aNonfibrillar proteins, for example, protein AP (amyloid P-component) excluded. 
bAA: amyloid A protein; SAA: serum amyloid A protein; apo: apolipoprotein; L: immunoglobulin light chain; H: 
immunoglobulin heavy chain. 
cATTR Met 30 when used in text. 
dAmino acid position in the mature precursor protein. The position in the amyloid fibril protein is given in parentheses. 
eNumber of amino acid residues; fMolecular mass (kilodaltons); gNot found in humans. 
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1.2 Cerebral amyloidosis and related neurodegenerative disorders 

 

Within the framework of localized forms of amyloidosis several neurodegenerative disorders 

are encountered.  

In the human population Aβ-amyloid is involved in various neuropathological affections, the 

most common of which is AD. This disorder, which will be further described more in details, 

can present as a sporadic or familial form, with a presenile or senile esordium. Familial forms 

with a presenile esordium may be due to mutations in the gene encoding the precursor of Aβ 

protein, defined as amyloid precursor protein (APP), or in the genes encoding for presenilins, 

enzymes involved in the processing of APP. Furthermore, a risk factor for the senile esordium 

of the disease is represented by the presence of at least one allele encoding for the ε4 isoform 

of apolipoprotein E. 

In AD deposition of Aβ fibrils occurs mainly extracellularly in the form of plaques but also 

intracellularly within neurons (LaFerla et al., 2007), and, in variable proportions, inside the 

blood vessels of the cerebral cortex and leptomeninges, where it gives origin to a 

neuropathological trait designated as congophilic angiopathy. 

Neuropathological features similar to those aforementioned characterize nearly all the patients 

affected by DS reaching the adulthood. This finding is likely to be ascribed to an increase of 

Aβ protein amount in Down patients, due to hyperdosage of the gene encoding for APP, given 

the presence of a supernumerary chromosome 21. 

Massive deposition of Aβ in the vessels of the cerebral cortex and leptomeninges, and, to a 

lesser extent, of cerebellum, basal ganglia and brainstem is the morphological substrate of a 

disease known as “Hereditary cerebral hemorrhage with amyloidosis, Dutch type”, which is a 

dominant autosomal disease due to a point mutation responsible for the substitution of the 

amino acid at position 22 of Aβ. The disease, identified in several Dutch families, is 

characterized by recurrent and often lethal phenomena of ictus, caused by hemorrhages and 

strokes, occurring between 45 and 60 years of age. 

In Iceland a familial form of cerebral amyloidosis due to the deposition of cystatin C in the 

small arteries has been identified. This severe congophilic angiopathy causes often lethal 

cerebral hemorrhages usually appearing between 20 and 40 years of age. The disease 

transmits by an autosomal dominant mechanism and is caused by a mutation at codon 68 of 

the gene encoding for cystatin C, determining a substitution of the amino acid leucine with 

glutamine. Unlike cerebral vascular amyloidosis due to deposition of Aβ, in the “Hereditary 

cerebral hemorrhage with amyloidosis, Icelandic” the amyloid deposition is systemic, 
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involving also blood vessel of extra cerebral tissues, such as salivary glands, spleen, testicles 

and skin. 

Amyloid deposits in the central nervous system have been described in patients affected by 

familial amyloid polyneuropathy, a disorder due to mutations in the gene encoding for 

transthyretin. This disease is characterized by lacking of clinical neurological symptoms, 

though amyloid deposits of transthyretin occur inside leptomeninges and leptomeningeal 

vessels, in the subependymal cerebral tissue and inside choroid plexi, and eventually in the 

superficial layers of brain and spinal cord. 

Another various group of neurological disorders categorized as cerebral amyloidosis is 

represented by prion diseases. Prion diseases are degenerative encephalopathies caused by 

protein misfolding disorders in which misfolding of the host-encoded prion protein (PrP) 

occurs. PrP may exist as a normal cellular prion protein, defined as PrP
C
 , and a pathogenic 

misfolded conformer, designated as PrP
Sc

. Unlike PrP
C
, PrP

Sc 
is insoluble and forms 

extracellular aggregates which can be amorphous or be structured as amyloid fibrils.  

PrP
Sc

 are infectious, naturally transmissible misfolded proteins with neurotoxic properties and 

cause fatal neurological diseases in humans and a wide range of animal species (Savistchenko 

et al., 2011). Sixteen different variants of prion disease have been identified in humans and 

animals (Imran and Mahmood, 2011). Animal prion diseases include scrapie of sheep and 

goats, bovine spongiform encephalopathy (BSE), transmissible mink encephalopathy (TME), 

chronic wasting disease of cervids (CWD) and feline spongiform encephalopathy of felids 

(FSE). 

In humans, prion diseases are traditionally classified into Creutzfeldt-Jacob disease (CJD), its 

variant form (vCJD) resulting from human infection by BSE prions, Gerstmann-Sträussler-

Scheinker disease (GSS) and fatal familial insomnia (FFI) (Savistchenko et al., 2011).  

Prion diseases can arise without any apparent cause as in sporadic Creutzfeldt-Jacob disease 

(sCJD) or due to genetic disorders linked to mutations in the endogenous PrP protein. The 

diseases can also be acquired by infection, through ingestion of contaminated products or 

through iatrogenic procedures and are in most cases experimentally transmissible (Imran and 

Mahmood, 2011). Infectivity and transmissibility of prion diseases has been much of a 

concern particularly since the outbreak of BSE in cattle. Cattle are infected with BSE when 

they ingest prion-contaminated meat and bone meal of ruminant origin contaminated with 

prions. Consumption of BSE-contaminated bovine tissues is associated with a fatal variant 

form of Creutzfeldt-Jacob disease (vCJD) in humans (Hill et al., 1997). 
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Amorphous deposits are the most common neuropathological feature of sCJD, which is 

mainly characterized by spongiosis of the cerebral and cerebellar cortices and of some 

subcortical nuclei. Only 10% of the patients affected by sCJD display deposits of PrP
Sc

-

amyloid, while the structured form of PrP
Sc

 fibrils as amyloid plaques is a neuropathological 

hallmark of vCJD, caused by transmission of the agent of BSE to man.  

In sCJD affected patients PrP
Sc

 amyloid plaques are mainly confined to the cerebellar cortex; 

in vCJD patients, instead, PrP
Sc

 plaques are detected both in the cerebral and cerebellar 

cortices and in the adjacent neuropil they present a peculiar surrounding rim of spongiosis, on 

the basis of which the term “florid plaque” has been coined. 

Cerebral PrP
Sc

- amyloid plaques have been detected in 80% of the patients affected by Kuru, 

a prion disease nearly disappeared, which has been described in some tribes of New Guinea 

devoted to ritual cannibalism. 

Eventually, PrP
Sc

–amyloid is the neuropathological hallmark of another neurological disorder 

of man, the Gerstmann-Straüssler-Scheinker syndrome (GSS). It is an autosomic dominant 

familial disease which can be due to mutations at codons 102, 105, 117, 198, 212 and 217 of 

the PrP encoding gene (PRNP). In GSS PrP
Sc

 –amyloid accumulates in form of unicentric or 

multicentric deposits in the neuropil of cerebellum, cerebral cortex and in subcortical nuclei. 

It can be associated to spongiosis (as in case of mutation occurring at codon 102), or to 

alterations of the neuronal cytoskeleton (e.g. in case codon 198 and 217 are mutated). 

In a rare GSS variant due to mutation at codon 145 of PRNP amyloid is mainly deposited in 

the vessels of cerebral and cerebellar cortices, thus displaying in the form of “PrP
Sc

 vascular 

cerebral amyloidosis”. 
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Chapter 2: Aβ-amyloid in the brain: pathway of formation 
 

2.1 Basic knowledge of the amyloid precursor protein (APP) 

 

It was in the mid-1980s when brain amyloid plaques associated with AD were first purified 

and were found to consist of multimeric aggregates of Aβ polypeptide containing about 40 

amino acid residues (Glenner and Wong, 1984). Subsequent cloning of the complementary 

DNA (cDNA) of Aβ revealed that Aβ is derived from a larger precursor protein (Tanzi et al., 

1987). The full length DNA of the amyloid precursor protein (APP) was later isolated and 

sequenced and APP was predicted to be a glycosylated integral membrane cell surface 

receptor protein with 695 amino acids (Kang et al., 1987). The APP gene is located on 

chromosome 21 and contains 18 exons. Although alternative splicing of transcripts from the 

single APP gene results in several isoforms of the gene product, APP695, whose encoding 

cDNA lacks the gene sequence from exons 7 and 8, is preferentially expressed in neurons 

(Sandbrink et al., 1994). Two homologues of APP were also identified and named APP-like 

protein 1 and 2 (APLP1 and APLP2) (Coulson et al., 2000). APLP2, similarly to APP, is 

expressed ubiquitously while APLP1 is only expressed in the brain and is only found in 

mammals.  

The APP protein is a type I integral membrane protein with a large extracellular portion, a 

hydrophobic transmembrane domain, and a short C-terminus designated the APP intracellular 

domain (AICD) (Fig. 2a). The extracellular portion of APP contains two domains, E1 and E2. 

The precise physiological function of APP is not known and remains one of the vexing issues 

in the field.  

Because of its highly similar structure to the developmental signaling molecule Notch, APP 

has been proposed to function as a cell surface receptor (Zheng and Koo, 2011). Several 

studies have reported that certain ligands, including F-spondin, Nogo-66, netrin-1 and BRI2, 

bind to the extracellular domain of APP, resulting in modulated APP processing and 

sequential downstream signals (Matsuda et al. 2009; Zheng and Koo 2011). However, the 

physiological functions of these interactions remain to be determined. Nevertheless, APP is 

more widely accepted as a protein contributing to cell adhesion via its extracellular domain. 

Studies have demonstrated that the E1 and E2 regions of APP can interact with extracellular 

matrix proteins (Small et al. 1999). Furthermore, the E1 and E2 regions of APP were found to 

interact with themselves, in parallel or anti-parallel, forming homo- (with APP) or hetero-
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dimers (with APLPs) (Dahms et al., 2010). Recent studies also suggest APP/APLPs as 

synaptic adhesion molecules as silencing of APP led to defects in neuronal migration (Wang 

et al. 2009). 

In most studies, APP overexpression shows a positive effect on cell health and growth. This 

effect is epitomized in transgenic mice that overexpress wild-type APP and have enlarged 

neurons (Oh et al. 2009). In transiently transfected cell lines, APP modulates cell growth, 

motility, neurite outgrowth, and cell survival. In adult animals, intracerebral injections of the 

APP ectodomain can improve cognitive function and synaptic density (Meziane et al., 1998). 

 

2.2 APP processing 

 

APP is produced in large quantities in neurons and it is metabolized very rapidly (Lee et al., 

2008). After sorting in the endoplasmatic reticulum (ER) and Golgi, APP is delivered to the 

axon, where it is transported by fast axonal transport to synaptic terminals (Koo et al., 1990).  

Crucial steps in APP processing occur at the cell surface and in the Trans-Golgi network 

(TGN) (Fig. 1). From the TGN, some of the newly synthesized APP can be transported down 

the axon to the cell surface, where it takes insertion. There one of the two ascertained post – 

translational APP processings, the so called “non-amyloidogenic pathway”, may occur. 

According to this pathway APP is sequentially cleaved by α-secretase and γ-secretase (Fig. 

2b). Although most APP must pass through the cell surface as part of its processing, this step 

is very rapid, as a small amount of APP is on the surface at any point in time. The cleavage by 

α-secretase releases the sAPP-α fragment, which diffuses away extracellularly, and a 

membrane-associated C-terminal fragment consisting of 83 amino acids (APP C83). APP C83 

is further clived by γ-secretase to release P3 peptide and the AICD, both of which are 

degraded rapidly.  

Cleavage of APP by α-secretase is attributed to the ADAM (a disintegrin and 

metalloproteinase) family of proteases (Asai et al., 2003; Jorissen et al., 2010) and takes 

place, to a large extent, on the cell surface. However, there is some α-secretase activity in the 

TGN.  

The constitutively secreted sAPP-α has been found to be neuro-protective (Han et al. 2005; 

Ma et al., 2009). sAPP-α is thought to promote neurite outgrowth and synaptogenesis as well 

as cell adhesion (Mattson, 1997; Gakhar Koppole et al., 2008). Studies have found that sAPP-

α is a growth factor (Herzog et al., 2004) that regulates the proliferation of embryonic and 
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adult neural stem cells (Ohsawa et al.,1999; Caille et al., 2004). sAPP-α alone is able to 

rescue most of the abnormalities of APP deficient mice (Ring et al., 2007), implying that most 

of the physiological functions of APP are conducted by its extracellular domain. 

No biologically relevant roles are currently established for the carboxyterminal fragments 

APP C83 and P3 generated by α- and γ-secretase, respectively. Regarding AICD, as the 

molecule is quickly degraded after γ-cleavage, the biochemical features and physiological 

functions of AICD in vivo are difficult to study. 

Some of the APP directly sorted from the Golgi apparatus, as well as some of the APP present 

on the cell surface, can be further transported into clathrin-coated pits to endosomal 

compartments, containing the enzymes β-secretase and γ-secretase. There the “amyloidogenic 

pathway” of APP processing occurs. Firstly, β-cleavage at the ectodomain of APP generates 

an sAPP-β domain and the membrane associated APP C-terminal fragment C99 (APP C99). 

Subsequently, APP C99 is cleaved by γ-secretase to release Aβ which has neurotoxic 

properties (Fig. 2c). β-site APP cleaving enzyme 1 (BACE1) is the major β-secretase in the 

brain (Vassar et al., 1999). BACE 1 can also cleave APP at a more carboxy-terminal position, 

resulting in CTF89 (and Aβ 11-40 after γ-secretase cleavage). A related protein, BACE2, also 

can exert β-secretase activity (Hussain et al., 2000), but it is expressed at very low levels in 

the brain and is mostly confined to glial cells (Laird et al., 2005). BACE 1 was first identified 

and characterized in 1999 (Sinha et al., 1999), as a type 1 transmembrane aspartyl protease 

with its active site on the luminal side of the membrane. The originally identified full-length 

BACE1 has 501 amino-acids (BACE1-501) and is predominantly expressed in the perinuclear 

post-Golgi membranes, vescicular structures throughout the cytoplasm (Huse et al., 2002), as 

well as on the cell surface (Ehehalt et al., 2002). Although BACE1 reaches the plasma 

membrane due to vescicle traffic, it is recycled quickly, and very little BACE1-mediated APP 

cleavage occurs at the plasma membrane; instead APP is cleaved by BACE primarily in 

endocytic vescicles. 

The proteolytic fragment sAPP-β generated by β-secretase reportedly lacks most of the 

neuroprotective effects of sAPP-α (Furukawa et al., 1996). A recent study suggested that 

sAPP-β can be cleaved to generate an N-terminal fragment that is a ligand for death receptor 

6, activating caspase 6 which further stimulates axonal pruning and neuronal cell death 

(Nikolaev et al., 2009). Regarding the carboxy-terminal fragments CTF99 and CTF89 a 

biological role still has to be disclosed.  

The APP CTFs generated by both α-cleavage and β-cleavage are further processed by γ-

secretase. Distinct from α-/β-secretases, γ-activity involves a large proteinase complex 
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consisting of at least four major components (Presenilin1 or Presenilin2, Presenilin enhancer 

2 (PEN2), Anterior pharynx-defective 1 (APH1) and Nicastrin) (Vetrivel et al., 2006). 

Presenilins (PSs) were identified and cloned in the mid-1990s (Levy-Lahad et al., 1995). PSs 

are multi-transmembrane proteins and can be cleaved at the cytoplasmic loop between the 

six
th

 and seven
th

 transmembrane regions to generate an N-terminal and a C-terminal fragment 

during post-translational maturation (Thinakaran et al., 1996). The two fragments interact 

with each other and they are both necessary for γ-secretase activity.  

Nicastrin, identified as a protein that interacts with PS in 2000, is a type I membrane 

glycoprotein with a large ectodomain (Fagan et al., 2001). Nicastrin undergoes a 

glycosylation/maturation process that causes a conformation change in its ectodomain, which 

is crucial for the assembly and maturation of the γ-secretase complex and γ-activity (Chavez-

Gutierrez et al. 2008). Mature nicastrin can bind to the ectodomain of APP C-terminal 

fragments derived through α-/β-secretase cleavage and may act as a substrate receptor of γ-

secretase (Shah et al., 2005). 

PEN2 and APH1 are another two γ-secretase complex components that were originally 

identified as the enhancers of PSs (Francis et al., 2002). APH1 is a multiple transmembrane 

protein with seven transmembrane domains and a cytosolic C-terminus (Fortna et al., 2004). 

APH1 interacts with immature nicastrin and PS to form a relatively stable pre-complex which 

is then translocated to the trans-Golgi from the ER/cis-Golgi for further maturation (Niimura 

et al., 2005). PEN2 is a hairpin-like protein with two transmembrane domains and with both 

ends in the lumen (Crystal et al., 2003). PEN2 is found to mediate the endoproteolysis of PS 

(Luo et al., 2003). 

The γ-secretase complex is assembled in sequential steps. Nicastrin and APH1 initially form a 

subcomplex and then PS binds to the Nicastrin-APH1 subcomplex. The joining of PEN2 

results in a conformation-dependent activation of γ-secretase (Niimura et al., 2005). Nicastrin, 

PEN2, APH1 and PS interact with each other and also mutually modulate each other (Kaether 

et al., 2004). 

γ-Secretase cleaves APP at multiple sites and in sequential steps to generate Aβ peptides of 

different lengths. 

The majority of Aβ peptides produced are 40 amino acids long (Aβ 40), however, peptides 

ranging from 38 to 43 amino acids are found in vivo. A small proportion (approximately 

10%) of Aβ forms is the 42 residue variant (Aβ42). Some Aβ forms (e.g. Aβ 1-42, Aβ 3-40) 

are considered more hydrophobic and more prone to fibril formation than others (e.g. Aβ 1-40 
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or 1-38) (Jarrett et al., 1993). Aβ42, the more amyloidogenic species, is also the predominant 

isoform found in cerebral plaques (Perl D. P., 2010).  

Besides the dominant γ-cleavage site at 40 and 42 residues, ζ-cleavage at 46 and ε-cleavage at 

49 residues are also thought to be mediated by γ-secretase (Weidemann et al., 2002; Zhao et 

al., 2004). Accordingly, various AICDs (C50, C53, C57 and C59) can be generated during 

these multi-site cleavages by γ-secretase. Interestingly, as the substrate of γ-secretase, APP 

itself can regulate the intracellular trafficking and cell surface delivery of PS1 (Liu et al., 

2009). In addition, APP has been found to possess a domain that negatively modulates γ-

secretase activity in Aβ production by binding to an allosteric site within the γ-secretase 

complex (Zhang and Xu 2010). These results reveal a novel mutual regulation between γ-

secretase and its substrate. 

 

2.3 Aβ accumulation process 

 

2.3.1 Intraneuronal Aβ accumulation process 

Not long after the discovery of Aβ peptide as a component of extracellular amyloid plaques in 

the mid-1980s, descriptions of the presence of Aβ inside neurons began to appear in the 

literature. In the first study reporting the presence of intraneuronal Aβ, Aβ immunoreactive 

material was observed in neurons in the cerebellum, cerebrum and spinal cord of individuals 

either affected or not by AD. As the age of the partecipants in the study ranged from 38 to 83 

years, these findings suggested that the occurrence of intracellular Aβ might not be an age-

dependent event (Grunke-Iqbal et al., 1989). Since the original report, there have been a large 

number of studies on post-mortem AD, DS and transgenic mouse brains which have provided 

evidence for the presence of intracellular Aβ within neurons. Careful studies using C-terminal 

specific antibodies against Aβ40 and Aβ42 have established that most of the intraneuronal Aβ 

ends at residue 42, and not at residue 40 (Gouras et al., 2000). Furthermore, immunogold 

electron microscopy has been carried out to demonstrate that Aβ42 is localized to the outer 

membrane of multivescicular bodies (MVBs) of neurons in the human brain, where it is 

associated with synaptic pathology (Takahashi et al., 2002). MVBs are considered late 

endosomes and are formed from the early endosome system. 

Recent studies suggest that the buildup of intracellular Aβ may be an early event in the 

pathogenesis of AD and DS. In patients with mild cognitive impairment (MCI), intraneuronal 

Aβ immunoreactivity has been reported in brain regions that are more prone to the 
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development of early AD pathology, such as the hippocampus and the entorhinal cortex 

(Gouras et al., 2000). Similarly, it has been shown that the accumulation of intracellular Aβ 

precedes extracellular plaque formation in patients with DS (Gyure et al., 2001). These results 

suggest that the accumulation of intraneuronal Aβ is an early event in the progression of AD, 

preceding the formation of extracellular Aβ deposits. Indeed, it has been demonstrated that 

intraneuronal Aβ levels decrease as extracellular plaques accumulate (Mori et al., 2002). 

These conclusions are also consistent with results from transgenic mouse models, in which 

intracellular Aβ accumulation appears as an early event in the progression of the 

neuropathological phenotype, preceding the accumulation of extracellular Aβ plaques (Wirths 

et al., 2001). According to further studies on patients with AD and DS and controls it would 

seem that intraneuronal Aβ immunoreactivity appears in the first year of life, increases in 

childhood and stabilizes in the second decade of life, remaining high through adulthood even 

in healthy brains.  

Although intracellular Aβ accumulation is now ascertained, how intracellular Aβ builds up is 

still being addressed. To investigate this issue, it is pivotal to focus on APP cleavage and 

releasing from its parent protein, APP. As mentioned before, APP localizes to the plasma 

membrane, but also to the TGN, ER and endosomal, lysosomal (Kinoshita et al., 2003) and 

mitochondrial membranes (Mizuguchi et al., 1992). As Aβ generation may potentially occur 

wherever APP and β- and γ- secretase are localized, it is likely that this occurs in several 

cellular compartments. In case Aβ cleavage occurs inside the cell, then Aβ would be 

intracellular; if liberation of Aβ occurs at the plasma membrane or in the secretory pathway, 

then it would be released into the extracellular fluid. Both the pathways are likely to occur, 

but the majority of Aβ is secreted out of the cell, suggesting that Aβ is predominantly 

produced as part of the secretory pathway, or, to a lesser extent, at the plasma membrane. 

Actually APP which is not cleaved at the plasma membrane could be re-internalized into the 

early/late endosome system by endocytosis (Golde et al., 1992). The endosomes are a likely 

site of intraneuronal Aβ generation owing to their acidic nature – BACE1 has optimal activity 

at acidic pH, and APP and BACE1 interactions have been observed by fluorescence 

resonance energy transfer (FRET) microscopy within the endosomes (Kinoshita et al., 2003). 

BACE1 cleavage of APP inside endosomes results in the 99 amino-acid fragment C99, which 

can be re-directed to different compartments. It can be shuttled back to the ER to be processed 

into Aβ by ER γ-secretase, shuttled back to the plasma membrane where the γ-secretase 

complex is also found, or processed to Aβ within the endosome/lysosome system. Therefore 
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the internalization of APP by endocytosis is one of the important pathway for the generation 

of Aβ. 

Furthermore, besides the endosome system, strong evidence suggests that Aβ is also 

generated intracellularly along the secretory pathway (Busciglio et al., 1993). Actually it has 

been ascertained that Aβ42 and Aβ40 are produced in the ER (Wild-Bode et al., 1997) and in 

the TGN (Hartmann et al., 1997) respectively. Interestingly, these sites of Aβ  production were 

limited to neurons, as in non-neuronal cells both Aβ42 and Aβ40 were produced at the cell 

surface rather than intracellularly. 

In addition to Aβ being produced intracellularly, it is also possible that previously secreted 

Aβ, which forms the extracellular Aβ pool, may be taken up by cells and internalized into 

intracellular pools. Aβ can bind to various biomolecules of the plasma membrane, including 

lipids, proteins and proteoglycans. Consequently, it is likely that some intracellular Aβ is 

derived from extracellular Aβ pools, taken up into the cells through receptors or transporters. 

A number of putative Aβ transporters have been identified. 

Aβ binds to the α7 nicotinic acetylcholine receptor (α7nAChR) with high affinity, and it has 

been shown that this binding results in receptor internalization and accumulation of Aβ 

intracellularly (Nagele et al., 2002).  

Recent studies have also shown that apolipoprotein E (APOE) receptors, members of the low-

density lipoprotein receptor (LDLR) family, modulate Aβ production and Aβ cellular uptake 

(Bu et al., 2006). Another member of this family, the LDL receptor related protein (LRP), 

binds to Aβ directly, or through ligands such as APOE, and undergoes rapid endocytosis, 

facilitating Aβ cellular uptake (Bu et al., 2006). 

APOE*ε4 is the major genetic risk factor for AD, and it is notable that one of its functions 

appears to be to directly mediate the accumulation of intracellular Aβ. 

In addition to LRP and nicotinic receptors, Aβ internalization has been reported through the 

scavenger receptor for advanced glycation end products (RAGE), in neurons and microglia 

(Deane et al., 2003). In addition to these downstream effects, it has been demonstrated that 

RAGE–Aβ complexes are internalized and that they co-localize with the lysosomal pathway 

in astrocytes in the brain of patients with AD (Sasaki et al., 2001). 

The formyl peptide receptor-like 1 (FPRL1) is a G-protein-coupled receptor associated with 

inflammatory cells, including astrocytes and microglia, that binds to Aβ and mediates the 

chemotactic response to Aβ42. Internalization of Aβ is rapid and results in cytoplasmic Aβ 

aggregates that stain with Congo red in macrophages (Yazawa et al., 2001). 
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Neuronal Aβ uptake has also been shown to be mediated through NMDA (Nmethyl-d-

aspartate) receptors. Blocking this NMDA receptor–Aβ internalization prevents 

pathogenicity, including increased microglial activation and cathepsin D levels (Bi et al., 

2002). 

It is plausible that intracellular Aβ has different roles in different cell types and that 

internalization in glial cells may be part of the regulatory system that seeks to control rising 

extracellular Aβ levels by taking the peptides up and degrading them. In neurons, the effects 

of intracellular Aβ are likely to be different.  

 

2.3.2 Pathological role of intracellular Aβ in vivo 

A recent study characterizing intracellular accumulation of Aβ in humans, including patients 

with AD, concluded that intracellular Aβ was abundantly present, and apparently 

independently of plaque load or formation of neurofibrillary tangles (NFT) (Wegiel et al., 

2007). The investigation of the functional consequences of intracellular Aβ in the human 

brain is limited to correlational studies in post-mortem brains. To better address the 

consequences of intracellular Aβ, animal models provide significant advantages that extend 

beyond mere correlations. 

Within neurons, Aβ42 appears to be predominantly localized to MVBs and lysosomes (Fig. 

3). In mouse experimental models (Langui et al., 2004) Aβ-containing MVBs were most often 

located in the perinuclear region.  

It has recently been shown that Aβ accumulation within MVBs is pathological, leading to 

disrupted MVB sorting via inhibition of the ubiquitin–proteasome system (Almeida et al., 

2006). As the proteasome is primarily located within the cytosol, and as Aβ has been shown 

to inhibit the proteasome directly (Gregori et al., 1995), this observation suggests that 

intracellular Aβ within the MVBs is mechanistically linked to cytosolic proteasome 

inhibition. The proteasome inhibition has been demonstrated to lead to higher Aβ levels, both 

in vivo and in vitro (Oddo et al., 2006a; Tseng et al., 2005), suggesting that the proteasome 

degrades Aβ, and that Aβ must be within the cytosolic compartment for this degradation to 

occur. MVBs are also viewed as major transport organelles within neuronal processes (Weible 

and Hendry, 2004), and Aβ accumulation in their outer membranes may disrupt vital cargo 

transport. Endosomal vescicles such as MVBs are an ideal location for Aβ aggregation, since 

the lipid membranes and low pH within these vescicles favor Aβ aggregation. Actually Aβ 
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oligomerization was observed within endosomal vescicles with AD pathogenesis using 

oligomer specific antibodies (Takahashi et al., 2004). 

In Tg2576 mice, accumulation of Aβ has also been observed in mitochondria (Manczak et al., 

2006), organelles in which all subunits of the γ-secretase have been located. Progressive 

accumulation of intracellular Aβ in mitochondria is associated with diminished enzymatic 

activity of respiratory chain complexes III and IV, and a reduced rate of oxygen consumption 

(Caspersen et al., 2005). These observations may help to explain the multitude of 

mitochondrial defects described in AD and mouse models of the disease (Keil et al., 2006). 

There is evidence for a role for intraneuronal Aβ in synaptic dysfunction, which could 

underlie cognitive deficits. The 3xTg-AD mouse model of AD develops intraneuronal 

accumulation of Aβ at 4 months of age, which is when cognitive deficits are first detected 

(Billings et al., 2005). Furthermore, the electrophysiological responses were recorded, and it 

was found that the appearance of intraneuronal Aβ led to a profound deficit in long-term 

potentiation (LTP) (Oddo et al., 2003), a form of synaptic transmission thought to underlie 

memory.  

Aβ is produced as a monomer, but readily aggregates to form multimeric complexes. These 

complexes range from low molecular weight dimers and trimers to higher molecular weight 

protofibrils and fibrils. The oligomeric species of Aβ have been found to be the most 

pathological, from dimers disrupting learning and memory, synaptic function and long term 

potentiation (LTP) (Cleary et al., 2005; Walsh et al., 2002), to dodecamers affecting cognition 

and memory in transgenic mouse models (Lesne et al., 2006). It has been shown that in tissue 

derived from human brain, Aβ oligomerization initiates within cells rather than in the 

extracellular space (Walsh et al., 2000).  

Aβ oligomerization has also been shown to occur during interactions with lipid bilayers, in 

particular cholesterol- and glycosphingolipid-rich microdomains known as lipid rafts (Kim et 

al., 2006) : it was found that Aβ fibrillogenesis was accelerated in the presence of plasma and 

endosomal and lysosomal membranes (Waschuk et al., 2001). 

 

2.3.3 Accumulation process and role of extracellular Aβ 

The intraneuronal Aβ deposition process does not counter the established evidence for a 

pathogenic role also for Aβ secreted extracellularly as part of the constitutive secretory 

pathway (Walsh and Selkoe, 2004). Furthermore, Aβ accumulating and aggregating in 

dystrophic and degenerating neuronal processes and synapses eventually leads to their 

dissolution and the subsequent extracellular localization of Aβ. 
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Aβ is thought to gradually increase in the extracellular space until it begins aggregating to 

form insoluble β-pleated amyloid plaques, which in turn may propagate Aβ toxicity to 

surrounding neurons and their processes. The fact that extracellular Aβ can influence 

intracellular Aβ suggests that Aβ may have prion-like properties.  

It remains to be established whether plaque formation depends on extracellular- or previously 

released intracellular- Aβ propagation to surrounding neuronal processes by a mechanism of 

permissive templating (self-seeding), or on the damage inflicted to Aβ surrounding neuronal 

processes secondary to the occurrence of inflammatory mechanisms. Inflammation, including 

the recruitment and activation of microglia, could lead to digestion of most of the degenerated 

neuronal remnants, while leaving indigestible Aβ behind as plaques. 

Extracellular Aβ oligomers have been shown to impair physiological processes involved in 

learning and memory, and injection of Aβ oligomers in rodent brains induced learning 

impairment (Cleary et al., 2005). 

The currently predominant hypothesis states that Aβ forms soluble oligomers in the 

extracellular space and that these oligomers inhibit NMDA-mediated synaptic transmission 

and ultimately cause spine and synapse loss through mechanisms not yet fully understood 

(Selkoe, 2000). 

 

2.3.4 Potential normal function of Aβ 

The constitutive generation and normal presence of Aβ in the brain supports the hypothesis 

that Aβ may have a normal physiological function, rather than merely being a toxic by-

product of APP processing. Neuronal excitation increases secretion of Aβ, which, in turn, 

depresses synaptic function decreasing neuronal activity. In this context, the Aβ peptide could 

have a negative feedback function preventing excitotoxicity (Kamenetz et al., 2003). 

Although excessive Aβ causes neurotoxicity, some studies have shown that Aβ 40 protects 

neurons against Aβ 42- induced neuronal damage and is required for the viability of central 

neurons (Plant et al., 2003; Zou et al., 2003). Moreover, two groups recently reported that low 

doses (picomolar) of Aβ  can positively modulate synaptic plasticity and memory by 

increasing hippocampal LTP (Morley et al., 2008; Puzzo et al., 2008), revealing a novel 

positive physiological function of Aβ under normal conditions. Picomolar levels of Aβ can 

also rescue neuronal cell death induced by inhibition of Aβ generation (by exposure to 

inhibitors of β - or γ-scretases) (Plant et al., 2003), possibly through regulating the potassium 

ion channel expression, hence affecting neuronal excitability (Plant et al., 2006). 
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Interestingly, according to other studies, Aβ has been shown to possess a number of trophic 

properties that emanate from the protein’s ability to bind Cu, Fe and Zn (Atwood et al., 2003). 

Actually Aβ belongs to a group of proteins that capture redox metal ions, thereby preventing 

them from participating in redox cycling with other ligands. The coordination of Cu appears 

to be crucial for Aβ’s own antioxidant activity that has been demonstrated both in vitro as 

well as in the brain, cerebrospinal fluid and plasma. Given that oxidative stress is one of the 

earliest pathological events in AD pathogenesis (Smith et al., 2000), as well as an increasing 

phenomenon during normal brain aging, in both cases promoting Aβ generation, the 

formation of Aβ diffuse amyloid plaques in the brain is likely to be seen as a compensatory 

response to remove reactive oxygen species. Within this perspective it has been proposed that 

Aβ deposition may act as a “sink” for trapping potentially harmful transition metal ions 

(particularly redox active metal ions) that can be released from metal-binding proteins by 

oxidative and mildly acidotic conditions, such as those accompanying acute brain trauma and 

AD, and that would otherwise catalyze adverse oxidation of biomolecules (Atwood et al., 

1998; Kontush et al., 2001). Therefore Aβ generation would be aimed at reducing oxidative 

damage, thereby preventing ROS-mediated neuronal apoptosis, sealing vessels and promoting 

neurite outgrowth. The capture of metal ions in turn would promote the aggregation of Aβ 

that deposits as diffuse amyloid. 

It has been postulated that, rather than Aβ itself, it may be the product of Aβ’s antioxidant 

activity, that is hydrogen peroxide (H2O2), to mediate toxicity as the levels of this oxidant rise 

with the accumulation of Aβ in the AD brain.  

 

2.3.5 Linking intracellular and extracellular Aβ 

A number of factors have been shown to modulate intraneuronal Aβ in animal models of AD, 

subsequently affecting also the extracellular Aβ pool. One of the most interesting 

observations is the effect of aging. For example, young 3xTg-AD mice accumulate both 

soluble and oligomeric Aβ within neuronal cell bodies, but the intraneuronal pool decreases at 

ages in which extracellular plaques manifest (Oddo et al., 2006b). This finding also parallels 

studies in human brain tissue, including that from patients with AD and DS (Mori et al., 2002; 

Wegiel et al., 2007). These studies suggest that the brain of patients with early stage AD 

might have more abundant intraneuronal Aβ, which then becomes extracellular as the disease 

progresses and neuronal death and lysis occur. Actually it has been demonstrated that 

intraneuronal Aβ levels in AD decrease as extracellular plaques accumulate. It may be that the 



23 
 

relatively low levels of intracellular Aβ in AD (compared with relatively high extracellular 

Aβ levels) are vital at first for the seeding of toxic oligomers giving rise to pathological 

events and further for extracellular plaque formation by secretion of these oligomeric species 

into the extracellular space. Secreted oligomers may also facilitate other pathological events, 

such as disruption of synaptic transmission. 

It is likely that both the intra- and extra- cellular Aβ pools contribute to cognitive decline in 

AD, and there is a complex relationship between these two pools and the various Aβ 

aggregation states. For example, 3xTg-AD mice that repeatedly learned to locate a hidden 

platform in the Morris water maze show improved cognition compared to animals that were 

not trained (Billings et al., 2007 ). More significantly, this learning alters the dynamics 

between intraneuronal Aβ, extracellular plaques and Aβ oligomerization. Learning increased 

intraneuronal and soluble Aβ, but decreased extracellular and oligomeric Aβ, with the net 

effect being improved cognition. Thus, the reduction in extracellular and oligomeric Aβ was 

highly beneficial, despite increases in intraneuronal Aβ in aged mice with established 

extracellular Aβ pathology. 

Other studies turned to Aβ immunotherapy to determine whether the intracellular and 

extracellular Aβ pools are related. Aβ immunotherapy has been used in various mouse models 

and quickly and effectively leads to clearance of the extracellular plaque load and improved 

cognition (Janus et al., 2000). In the 3xTg-AD model, removal of extracellular Aβ plaques is 

shortly followed by the clearance of intraneuronal Aβ (Oddo et al., 2004). Notably, as the 

pathology re-emerges, intraneuronal Aβ appears first, followed by the extracellular plaques. 

These observations show that clearance of extracellular Aβ with immunotherapy also leads to 

the indirect reduction of intraneuronal stores. This finding indicates that extracellular Aβ may 

originate from intraneuronal pools and that a dynamic equilibrium exists between the two 

pools, such that when extracellular pools are removed, intraneuronal pools are sequestered out 

of the cell. 
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Fig. 1 : APP trafficking in neurons (from O’Brian et al., 2011). Newly synthesized APP (purple) is transported 

from the Golgi down the axon (1) or into a cell body endosomal compartment (2). After insertion into the cell 

surface, some APP is cleaved by α-secretase (6) generating the sAPPα fragment, which diffuses away (green), 

and some is reinternalized into endosomes (3), where Aβ is generated (blue). Following proteolysis, the 

endosome recycles to the cell surface (4), releasing Aβ (blue) and sAPPβ. Transport from the endosomes to the 

Golgi prior to APP cleavage can also occur, mediated by retromers (5). 
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Fig. 2: Sequential cleavage of the amyloid precursor protein (APP) occurs by two pathways (from 

Thinakaran et al., 2008)  

(a) The APP family of proteins has large, biologically active, N-terminal ectodomains as well as a shorter C-

terminus that contains a crucial Tyrosine–Glutamic Acid-Asparagine-Proline-Threonine-Tyrosine (YENPTY) 

protein-sorting domain to which the adaptor proteins X11 and Fe65 bind. The Aβ peptide starts within the 

ectodomain and continues into the transmembrane region (red ). (b) Nonamyloidogenic processing of APP 

involving α-secretase followed by γ-secretase is shown. (c) Amyloidogenic processing of APP involving BACE1 

followed by γ-secretase is shown. Both processes generate soluble ectodomains (sAPPα and sAPPβ) and 

identical intracellular C-terminal fragments (AICD).  



26 
 

 

 

 

 

 

 

 

Fig. 3: Schematic diagram of APP and Aβ trafficking within a neuron (from Gouras et al., 2005).  

APP is trafficked from the ER, where some Aβ  may be generated, to the Golgi apparatus and then the plasma 

membrane (PM) where additional Aβ appears to be generated. Significant Aβ is produced in the trans-Golgi 

network (TGN). An important site of Aβ generation is in the endocytic pathway after APP internalization from 

the PM. Although APP localizes especially to the TGN, both APP and Aβ localize to vesicles within neuronal 

processes. In Alzheimer’s disease Aβ42 accumulates within MVBs of vulnerable neurons, especially within 

distal neuronal processes and pre- and post-synaptic compartments. 
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Chapter 3: Aβ in human cerebral amyloidosis 

3.1 Insights into Alzheimer’s disease (AD) 

3.1.1 Neuropathology of AD 

It was over a century ago that Alois Alzheimer admitted a 51-year-old patient, Auguste D., for 

progressive cognitive decline. Alzheimer’s histopathological observations of her brain 

following her death a few years later led to his realization that he was observing a unique 

clinical-pathological process, with a distinct and recognizable neuropathological substrate, 

that no long after was named Alzheimer’s disease (AD). 

Investigators at the beginning of the last century were intrigued by the origin of the deposition 

of a “peculiar substance” (also called “miliary necrosis”), eventually termed “plaques”, that 

along with neurofibrillary tangles (NFTs) appeared to characterize presenile and senile 

dementia. Alzheimer’s summary of his presentation in 1906 on the case of Auguste D. was 

published in 1907 and for the first time linked plaques and tangles with dementia. 

It is now widely recognized that the two primary cardinal lesions associated with AD are the 

NFTs and the senile plaque. 

NFTs are very difficult to be detected with the traditional morphological stain used by 

pathologists, hematoxylin and eosin. By and large, one of a variety of silver impregnation 

staining techniques, such as the modified Bielschowski or Gallyas technique, or the 

fluorochrome dye thioflavin S is typically employed to visualize neurofibrillary tangles. 

Additionally, there are a number of immunohistochemical approaches used to visualize 

neurofibrillary tangles. These have mostly employed antibodies directed against abnormally 

phosphorylated tau. 

With these special stains, within neurons with a pyramidal shape to the perikaryon, such as 

those of the cornu ammonis 1 (CA1) sector of the hippocampus and the layer V neurons in 

areas of the association cortex, the neurofibrillary tangles appear as parallel, thickened fibrils 

that surround the nucleus and extend toward the apical dendrite. When the neurofibrillary 

tangle occurs within a neuron with a more rounded configuration (e.g., neurons within the 

substantia nigra and locus ceruleus), the inclusion appears as interweaving swirls of fibers, 

and here it is called a globoid neurofibrillary tangle. 

Ultrastructurally, the neurofibrillary tangle is composed of abnormal fibrils measuring 10 nm 

in diameter that occur in pairs and are wound in a helical fashion with a regular periodicity of 

80 nm (Wisniewski et al., 1976). On the basis of these observations, such structures are 

generally called paired helical filaments. The primary constituent of the neurofibrillary tangle 



28 
 

is the microtubule-associated protein tau. The tau within neurofibrillary tangles is abnormally 

phosphorylated with phosphate groups attached to very specific sites on the molecule. The 

best established functions of tau are thought to be the stabilization of microtubules and the 

regulation of motor-driven axonal transport (Götz et al., 2006). It is known that the 

phosphorylation of tau causes its detachment from microtubules (Ballatore et al., 2007) and 

that soluble hyperphosphorylated tau contributes to neuronal disfunction before its deposition, 

negatively interfering with mitochondrial respiration and axonal transport (Götz et al., 2006). 

There are a number of other protein constituents associated with the neurofibrillary tangle, 

such as ubiquitin, cholinesterases and Aβ (Hyman et al., 1989) but tau is considered to be the 

critical constituent of most of these structures. 

The pattern of distribution of neurofibrillary tangles present in cases of AD is, for the most 

part, rather stereotyped and predictable. Severe involvement is seen in the layer II neurons of 

the entorhinal cortex, the CA1 and subicular regions of the hippocampus, the amygdala, and 

the deeper layers (layers III, V, and superficial VI) of the neocortex (Morrison and Hof, 

1997). Studies have shown that the extent and distribution of neurofibrillary tangles in AD 

cases correlate with both the degree of dementia and the duration of illness (Bierer et al., 

1995). However, it is also clear that other factors contribute to the production of the clinical 

features of the disease. Although the neurofibrillary tangle is considered a cardinal 

histopathological feature of AD, this neuropathological lesion may also be encountered in 

association with many other disease states (Wisniewski et al., 1979), such as postencephalitic 

parkinsonism, dementia pugilistica, type C Niemann-Pick disease, and amyotrophic lateral 

sclerosis/parkinsonism dementia complex of Guam. 

The other cardinal pathological lesion encountered in patients suffering from AD is the senile 

or neuritic plaque. Senile plaques are complex structures defined by the presence of a central 

core accumulation of a 4-kD protein with a β-pleated sheet configuration called Aβ. The 

predominant β-pleated sheet configuration of this protein confers its ability to bind the planar 

dye Congo red and produce birefringence when illuminated by polarized light; it thus 

conforms to the physical definition of an amyloid. 

The brains of aged individuals and cases of AD may also contain several forms of Aβ-

containing plaques. The senile or neuritic plaque has a central core of Aβ protein arranged in 

a radial fashion and is surrounded by a corona of abnormally formed neurites (or neuronal 

processes, either dendrites or axons). These abnormal or dystrophic neurites stain strongly 

with the same silver impregnation stains used to identify the NFTs, and ultrastructurally these 

structures contain dense bodies, membranous profiles, and packets of paired helical filaments. 
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In the periphery of the neuritic plaque, one commonly encounters reactive astrocytes of the 

macroglia, and, more frequently, one to several microglial cells. 

Microglial cells, which derive from mesoderm and comprise 5-10% of the glial population in 

the nervous system, have the potential to develop into macrophages and in fact they represent 

the first line of defense against invading pathogens or other types of brain tissue injury.  

Under pathological situations, these cells become activated, migrate, and surround damaged 

or dead cells, and subsequently clear cellular debris from the area.  In AD, microglia have a 

central role in the inflammation process. Actually inflammation in the AD brain is mediated 

by proinflammatory cytokines and would create a chronic and self-sustaining inflammatory 

interaction between activated microglia and astrocytes, stressed neurons, and Aβ plaques, as 

amyloid peptides and APP are potent glial activators. In some situations, the role of microglia 

has been found to be beneficial, since activated microglia can reduce Aβ accumulation by 

increasing its phagocytosis, clearance, and degradation (Frautschy et al., 1998; Qiu et al., 

1998).  Microglia can also secrete a number of soluble factors, such as the glia-derived 

neurotrophic factor (GDNF), which are potentially beneficial to the survival of neurons (Liu 

and Hong, 2003). 

Astrocytes, besides maintaining extracellular and neuronal environment, and stabilizing cell-

cell communications, also appear to be involved in the induction of neuroinflammmation. In 

AD they are known to be important for Aβ clearance and degradation, for providing trophic 

support to neurons, and for forming a protective barrier between Aβ deposits and neurons 

(Rossner et al., 2005). The presence of large numbers of astrocytes associated with Aβ 

deposits in AD suggests that these lesions generate chemotactic molecules that mediate 

astrocyte recruitment. Astrocytes are capable of accumulating substantial amounts of neuron-

derived Aβ42 positive material and other neuron specific proteins as a consequence of their 

debris-clearing role in response to local neurodegeneration. Astrocytes overburdened with 

these internalized materials can eventually undergo lysis, and radial dispersal of their 

cytoplasmatic contents can lead to the deposition of a persistent residue in the form of small, 

GFAP-rich, astrocytic amyloid plaques (Nagele et al., 2004). 

Under certain conditions related to chronic stress, however, the role of astrocytes may not be 

beneficial. A report suggests that astrocytes could also be a source for Aβ, because they 

overexpress β-secretase of APP (BACE1) in response to chronic stress (Rossner et al., 2005). 

On the basis of such a state-of-the-art it appears evident that the role of macroglia and 

microglia in AD still remains a matter of intense debate. 
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Through the use of immunohistochemical techniques with antibodies raised against portions 

of the Aβ molecule, it has been recognized that focal diffuse deposits of this amyloid protein 

may occur in the cerebral cortex in the absence of accompanying dystrophic neuritis 

(Yamaguchi et al., 1989). Such Aβ deposits  will also stain with the aforementioned silver-

based stains and are called diffuse plaques. Such plaques are very commonly encountered in 

the brains of elderly individuals and can be seen in relatively large numbers in the absence of 

any associated evidence of cognitive impairment (Morris et al., 1996). 

A third form of plaque, consisting of a dense core of Aβ not showing any accompanying 

dystrophic neurites, has also been identified. Such plaques have been called burned-out 

plaques and end-stage plaques and are considered to be the remnants of what were once 

neuritic plaques (Wisniewski et al., 1982). 

Senile plaques contain longer Aβ forms (having a total of 42 or 43 amino acids), while shorter 

Aβ forms (containing 40 amino acids) tend to accumulate within the leptomeningeal and 

cerebral cortical and cerebellar blood vessels, giving origin to a phenomenon of vascular 

amyloid deposition called congophilic angiopathy (Prelli et al., 1988). In this alteration Aβ 

accumulates in the walls of small arteries and arterioles of the leptomeninges and within the 

gray matter of the cerebral cortex. The accumulations of Aβ within the vessel walls do not 

appear to clog the vascular lumina or otherwise interfere with the vascular functions. 

However, when the degree of vascular involvement is severe, spontaneous vascular rupture 

may arise leading to focal accumulation of blood in the brain tissue. Hemorrhages tend to 

occur in the white matter of the frontal and/or occipital poles, are often small and multiple, 

and may be microscopic in size. If large (a relatively rare situation), they may be multiple and 

are commonly called lobar hemorrhages. Although rare, such lobar hemorrhages represent 

one of the few fatal intracerebral complications of AD. 

Furthermore, in the cerebral cortex of AD and DS affected patients, as well as in non-

demented individuals, Aβ extracellular deposits that were neither birefringent nor fluorescent 

nor associated with degenerating neurites, tangle-bearing neurons or congophilic vessels have 

been detected (Tagliavini et al., 1988). These deposits conceivably consisted of Aβ precursors 

lacking the molecular conformations of amyloid fibrils. Accordingly, they have been named 

preamyloid deposits, and they are likely supposed to be made up of APP itself or some of its 

early cleavage fragments (Giaccone et al., 1989). Preamyloid deposits have been reported to 

be ubiquitous in the brain grey substance (Ogomori et al., 1989), and are likely to give origin 

to senile plaques in the presence of vulnerable neurons (particularly at the level of the cortex 

and neostriatum) or to diffuse plaques in the brain regions where no permissive neurites are 
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available (Bugiani et al., 1989). In literature it has been reported that Aβ fibrillation 

intermediates, more than Aβ fibrils, seem to be involved in AD onset. Actually the number of 

plaques and the levels of insoluble Aβ in AD poorly correlate with the local extent of 

neuronal death and synaptic loss, or with cognitive impairment (McLean et al., 1999). On the 

other hand, the levels of soluble Aβ oligomers appear to strongly correlate with disease 

progression in animal models and AD subjects  (Haass et al., 2007). 

The major morphological counterpart to cognitive loss in AD is represented by a substantial 

loss in cerebral synaptic profiles. This aspect has been investigated by the quantification of 

immunohistochemical markers directed against synaptic proteins and by quantitative electron 

microscopy. A study reported a 45% loss of the extent of staining of presynaptic boutons in 

cases of AD in comparison with normal controls, finding that strongly correlates with the 

degree of functional impairment (Terry et al., 1991). 

It is clear that AD is a slowly progressive disorder whose lesions accumulate in the brain over 

a period of many years. 

It is not known long it may take before a sufficient extent of neuropathological damage occurs 

to produce a degree of functional impairment that might be clinically diagnosed, but it is 

likely to take many years for this to occur. Additional years are likely needed for the further 

progression from the early stages to the middle stages of the disorder. Within this perspective, 

researchers began to investigate the progressive stages of involvement of the brain in the 

course of AD and to speculate on what the earliest phases of the disease might look like. In 

1991, neuroanatomists Eva and Heiko Braak published a proposed sequence of progression of 

the neuropathology of AD, breaking the disorder down into 6 stages with increasing 

involvement of the brain (the so-called Braak and Braak stages). Braak and Braak stages 1 

and 2 show selective involvement by neurofibrillary tangles in the transentorhinal cortex. 

Stages I-II in the neuropathology of AD are considered preclinical and silent. They are 

followed by stages 3 and 4 with increasing limbic lobe involvement, with the final 2 stages 

(stages 5 and 6) showing the more typical widespread pattern of involvement in the neocortex. 

In stage VI, the process extends into the motor and sensory field. It is during stages III and IV 

that the first clinical symptoms of AD are frequently manifested. These Braak and Braak 

stages were initially developed by the evaluation of the pattern of neurodegenerative changes 

(predominantly neurofibrillary tangles) present in a series of 83 brain specimens derived from 

elderly individuals. They devised the stages by mapping out the extent and distribution of 

lesions in these brain specimens, but no associated clinical data were available from the 

patients from whom the samples were obtained. 
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Although it is clear that not all AD patients progress precisely along the stages they described, 

the Braak and Braak stages do represent a useful concept and have provided a format for 

neuropathologists to use in evaluating the relative stage of development of the disease. 

 

3.1.2 Neuropathological changes in the normal human brain aging: blurring 

the divide with AD 

The histological alterations upon which the neuropathological diagnosis of AD is made may 

also be seen, to some degree, in the brains of elderly individuals who during life had shown 

normal cognitive function. These changes are generally much fewer than in AD, and occur in 

restricted regions of the cerebral cortex, in the absence of significant cognitive decline. It is 

now well established that NFTs, senile plaques and synaptic loss, the main pathological 

hallmarks of AD, can often be found in the brains of non-demented elderly individuals 

(Tomlinson et al., 1968; Ulrich J., 1985). Actually it has been reported that the majority of 

elderly people display NFT formation in the hippocampal formation even in absence of 

cognitive impairment or with very mild memory impairment (West et al., 1994; Bierer et al., 

1995). Furthermore, senile plaques may appear early in the neocortex of intellectually 

preserved individuals, whereas the hippocampus is relatively spared by senile plaque 

formation and by the onset of the degenerative process (Hof et al., 1990, 1992). Synaptic 

alterations and neuronal loss have been found in the neocortex of elderly non-demented 

individuals, suggesting an age-dipendent mechanism for the loss of synapses in the neocortex 

(Masliah et al., 1993). 

The examination of a large sample of 1144 non-demented autopsy cases, reported by Hof et 

al. (1996), always evidenced the involvement of layer II of the entorhinal cortex with NFT 

formation, whereas the CA1 field of the hippocampus and the subiculum were less 

consistently affected. Moreover the inferior temporal cortex (Brodmann’s area 20) appeared 

particularly prone to develop NFTs in intellectually preserved elders, and such a finding was 

supposed to prelude the emergence of the neuropsychological deficits characteristic of AD. 

Regarding the detection of senile plaques, Hof et al. (1996) described its occurrence with an 

increasing prevalence concurrently with increasing age in non-demented people. A positive 

correlation between age and SP prevalence was highlighted in the inferior temporal, superior 

frontal and occipital cortices. It has been shown that at least 20% of cognitively normal 

elderly evidence Aβ neuropathology upon autopsy (Price and Morris, 1999; Bennett et al., 

2006).  
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With respect to senile plaque counts, several studies have indicated that there is no 

relationship between their amount, time of appearance and distribution and the phenomena of 

neurodegeneration or cognitive impairment, as is the case in younger populations (Delaère et 

al., 1993; Giannakopoulos et al., 1993). Actually, as fibrillary plaques seem to correlate 

poorly with neurodegeneration, investigators began to turn their focus to the importance of 

soluble oligomers and the role of preamyloid and cerebrovascular deposits. Extensive 

numbers of preamyloid lesions can be found in aged individuals, even with no reported 

clinical symptoms (Delaere et al., 1990; Crystal et al., 1993), in the form of scattered deposits 

of amyloid fibril precursor occurring in both cerebral cortex and subcortical grey structures 

(Bugiani et al., 1990). It has been demonstrated that the deposition of amyloid fibril 

precursors in the neuropil is closely related to presynaptic terminals, although whether the 

former precedes or follows the development of presynaptic terminal changes is still 

undetermined (Bugiani et al., 1990). 

Preamyloid deposits are amorphous, roughly spherical areas immunoreactive with anti-Aβ 

antibodies, having irregular borders, and are associated with few or no dystrophic neurites. 

Preamyloid deposits, unlike amyloid, are not stained by Congo red or thioflavine S 

(Wisniewski et al., 1989; Yamaguchi et al., 1991). Ultrastructurally, these deposits are mainly 

nonfibrillar. 

The apparent lack of associated cerebral dysfunction from preamyloid lesions can be 

correlated with in vitro studies using Aβ synthetic peptides, where it has been suggested that 

toxicity is dependent on the presence of a fibrillar, predominantly β-sheet conformation (Pike 

et al., 1993; Lorenzo et al., 1994). The Aβ 17-42 isoform has been reported to be a major 

component of preamyloid deposits in AD (Gowing et al., 1994) and DS (Lalowski et al., 

1996). 

Often the recognition of the extent of involvement in certain brain areas by AD characteristic 

lesions is required for the neuropathologist to declare that AD was the cause of a patient’s 

cognitive impairment. At times, this may involve subtle distinctions that require considerable 

experience and expertise, and at other times, the honest neuropathologist may be required to 

state that this diagnosis can be rendered with only a degree of probability and not certainty. 

This is particularly true when one is examining the brains of subjects dying within the oldest-

old age range. In individuals dying at an extremely old age, the overlap of neuropathological 

changes between those found with severe dementia and those with intact cognitive function is 

extensive, and the distinction may be very difficult. 
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Indeed, correlations between the extent and distribution of senile plaques and neurofibrillary 

tangles are currently undergoing detailed scientific study using brain specimens derived from 

individuals in large cohorts of advanced elderly subjects who underwent rigorous 

neuropsychological studies (Haroutunian et al., 2008). 

 

3.1.3 Genetic aspects underlying AD 

AD is the most common irreversible, progressive cause of dementia. It is characterized by a 

gradual loss of memory and cognitive skills. 

AD accounts for over 50% of all dementia cases, and it presently affects more than 24 million 

people worldwide. The incidence increases from 1% between the ages of 60 and 70 to 6% to 

8% at the age of 85 years or older and is likely to increase as a greater proportion of the 

population ages. So the prevalence and incidence of AD suggest that age is the most known 

risk factor. The disease is divided into 2 subtypes based on the age of onset: early-onset AD 

(EOAD) and late-onset AD (LOAD). 

Early-onset AD accounts for approximately 1% to 6% of all cases and ranges roughly from 30  

to 60 or 65 years. However, LOAD, which is the most common form of AD, is defined as AD 

with an age at onset later than 60 or 65 years. Both EOAD and LOAD may occur in people 

with a positive family history of AD. Approximately 60% of EOAD cases have multiple cases 

of AD within their families, and 13% of these familial EOAD are inherited in an autosomal 

dominant manner with at least 3 generations affected. With the exception of a few autosomal 

dominant families that are single-gene disorders, most AD cases appear to be a complex 

disorder that is likely to involve multiple susceptibility genes and environmental factors. 

Overall, more than 90% of patients with AD appear to be sporadic and to have a later age at 

onset of 60 to 65 years of age (LOAD). Although some studies support the existence of a 

genetic component in LOAD, no causative gene has been yet identified, except the 

apolipoprotein E (APOE) gene. The risk allele is the isoform ԑ4, but many carriers live into 

their 90s suggesting that there many others genetics and environmental risk factors associated. 

Around 1980s, three principal genes were identified in association with early onset  AD, APP, 

presenilin 1 (PSEN1), and presenilin 2 (PSEN2). Identification of the APP gene was made 

possible by the seminal work of Glenner and Wong  who, in 1984, determined a partial amino 

acid sequence of a peptide isolated from AD brain cerebrovascular amyloid.   
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3.1.3.1 EOAD and genes involved 

 

The APP gene was then mapped to chromosome 21q. The predicted protein, designated APP, 

is an ubiquitously expressed, single-pass transmembrane protein that contains an internal 39–

43 amino acid sequence. Aβ peptides are generated from APP by two endoproteolytic 

cleavages catalyzed by β- and γ-secretases; α-secretase catalyzes endoproteolysis of APP 

within the Aβ sequence. 

Aβ peptides are the primary component of amyloid deposits that form in the brain 

parenchyma (called ‘‘plaques’’) and in the walls of cerebral vessels, in the latter case giving 

origin to the pathological condition called ‘‘cerebral amyloid angiopathy’’(CAA); both Aβ 

plaques and vascular deposits are key features of AD neuropathological changes. To date, 24 

APP single nucleotide mutations are known to cause AD. 

APP can encode multiple isoforms, the longest of 750 amino acids and all AD mutations are 

clustered within a 54 amino acids sequence near or within the segment that encode Aβ 

peptide. One of this is the Swedish mutation, a double sostitution changing the two amino 

acids immediately before the Aβ sequence (lysine-methionine is replaced by asparagine-

leucine). The Swedish mutation is outside the Aβ sequence, so the peptide produced is 

normal, even if its quantity is two to threefold higher than that produced by non mutated APP, 

presumably because the efficiency of the β-secretase cleavage is affected. The implication is 

that an excess of Aβ production is sufficient to cause AD. This conclusion is supported by the 

longstanding observation that individuals with trisomy 21 (DS affected) develop extensive 

AD neuropathologic changes that can occur very early in life, until their 40s. 

Other APP mutations are located near the C-terminal Aβ peptide, and the most common is 

p.Val717Ile. These mutation affects the activity of γ-secretase, the cleavage of which 

normally reduces APP to a 40 amino acid peptide (Aβ40), with smaller amounts of Aβ that is 

42 amino acids long (Aβ42). APP mutations at the C-terminal end of Aβ shift proteolysis to 

produce more Aβ42 at the expense of Aβ40, resulting in an increased Aβ 42/ Aβ 40 ratio but 

not necessarily changing the total amount of Aβ peptides formed. Αβ42 is more 

amyloidogenic and more prone to aggregate than shorter Aβ forms. These data were the first  

to suggest that Aβ aggregation is a key event to AD pathogenesis. 

Another mutation of note is p.Glu693Gly, also known as the Arctic mutation. This amino acid 

change within Aβ does increase the aggregation rate of the mutant peptide, adding to the 

evidence that APP mutations can result in Aβ peptides with altered aggregation properties and 

that this process is critical to AD pathogenesis. 
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Several studies have demonstrated variation in the most characteristic AD neuropathological 

features among patients with APP mutations. At the time of autopsy, patients with APP 

mutations tend to have greater amounts of neocortical senile plaques than patients affected by 

‘‘sporadic’’AD. The ratio of accumulated Aβ42/Aβ40 may be higher in cases of autosomal 

dominant AD in respect to APP mutated cases, but there is a limited number of examples and 

a wide variation in the results. In addition to variation in the amount of the peculiar 

neuropathological traits of AD, APP mutations are also associated with morphologic variants. 

Several APP mutations have been associated with variation in the structure of Aβ deposits. 

These include the p.Ala692Gly (Flemish) APP mutation that is associated with large, dense 

plaques and the p.Glu693Gly (Arctic) APP mutation with ring-like plaques. CAA is a 

common feature of AD caused by mutations in APP. The p.Asp694Asn (Iowa) and 

p.Ala713Thr mutations are associated with exceptionally severe CAA in the context of the 

core neuropathological features of AD. The p.Glu693Gln (Dutch) APP mutation produces 

CAA without significant accumulation of the core features of AD; in the affected individuals, 

progressive cognitive impairment is linked to vascular brain injury. Several cases of AD 

caused by mutations in APP also have Lewy bodies dementia (LBD), which is detectable by 

histochemical stains of pigmented brainstem neurons and can be assessed also in other brain 

regions, including the limbic structures and the neocortex, by α-synuclein immunoreactive 

Lewy bodies and Lewy neuritis. 

The other two genes involved in EOAD are presenilin 1 (PSEN1) and presenilin 2 (PSEN2), 

located on the chromosome 14q. 

Over 180 mutations in PSEN1 are known to cause autosomal dominant AD. Penetrance of 

PSEN1 mutations is complete by 60–65 years of age, meaning that all mutation carriers 

develop early-onset AD. Fewer than 15 known mutations in PSEN2 can also cause early-

onset autosomal dominant AD, but penetrance is more variable than PSEN1. 

PSEN1 and PSEN2 encode closely related proteins that are part of the γ-secretase complex. 

Either PSEN1 or 2, together with nicastrin, APH1, and PEN2, form a complex that catalyze 

the cleavage of a number of different membrane proteins at sites embedded in the lipid 

bilayer. In the case of APP, the presenilin-containing γ-secretase catalyzes endoproteolysis at 

the C-terminal end of the Aβ-peptide sequence. This proteolytic event, along with a second 

cleavage at the N-terminal end of this sequence, is required for production of Aβ-peptide from 

APP. 

The γ-Secretase containing mutation-altered presenilin still catalyzes cleavage of APP, but the 

proteolytic site is altered. Normal γ-secretase yields predominantly Aβ40 with smaller 
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amounts of Aβ42. Mutant γ-secretase produces more Aβ42, a result consistently obtained 

across multiple studies. As noted previously, Aβ42 is more amyloidogenic and more prone to 

aggregate than Aβ40. While the mutated genes that cause early-onset AD inform about 

molecular mechanisms, they account for only a fraction of AD cases. As with APP mutations, 

individuals who died from AD caused by mutations in PSEN1 or PSEN2 tend to have a 

greater amount of neocortical senile plaques and a shift toward a higher Aβ42/Aβ40 ratio  

than patients who had ‘‘sporadic’’ AD, although again these data derive from relatively few 

examples with wide variation even within the same family. 

The relationship between PSEN1 or PSEN2 mutations and neurofibrillary degeneration is 

more complex. Actually there is no difference between the amount of neurofibrillary tangles 

present in AD resulting from PSEN1 or PSEN2 mutations and in ‘‘sporadic’’AD. A PSEN1 

mutation, given by a substitution in exon 8 (leucine271valine) that results in transcripts 

lacking exon 8, has been associated with lack of neuritic change in senile plaques. In contrast, 

increased accumulation of tau species other than neurofibrillary tangles has been reported in 

some cases caused by a PSEN1 mutation. 

PSEN1 mutations also are associated with a morphologic variant in Aβ plaques: the so-called 

cotton wool plaque. Cotton wool plaques occur in the same regions of brain as senile plaques 

and have been associated with multiple PSEN1 mutations. Cotton wool plaques typically have 

limited fluorescence following staining with thioflavin S and tend to be more immunoreactive 

for Aβ42 than for Aβ40. It is important to stress that although highly characteristic of PSEN1 

mutation, cotton wool plaques also have been reported in apparently sporadic AD. 
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3.1.3.2 LOAD and genes involved 

 

The majority of AD patients are late-onset AD (LOAD) cases with risk approximately 

doubling every 5 years after age 65. Except for a handful of PSEN2 mutation carriers, LOAD 

very often  results from  multiple genes contributing to susceptibility or risk. 

To identify these multiple interacting genes, new technologies have been very important, 

especially  a method called genome-wide association studies (GWAS). This method has led to 

an explosion in the discovery of genetic susceptibility for a large number of diseases, disease-

related traits, and associated phenotypes. For neuropathological affections, successful GWAS 

results have been reported for AD, Parkinson’s disease, amyotrophic lateral sclerosis and 

multiple sclerosis. 

Late generation genotyping platforms permit interrogation of most of the genome for disease-

associated variation in a single experiment, thanks to arrays containing assays to screen from 

600,000 to 2.5 million single nucleotide polymorphisms (SNPs). Thus genotyping platforms 

provide key informations on linkage disequilibrium or correlation between neighboring SNPs, 

and are very useful in comparing the different genetic profile of case and controls. Thanks to 

this new technique the ApoE and later Sorl1 genes have been identified as key genes in 

LOAD.  

The apolipoprotein E (ApoE), the gene of which is located on chromosome 19q, is a protein 

originally extensively studied for its crucial role in lipid metabolism, but then recognized as a 

pleiotropic molecule with important functions in lipid transport, Aβ trafficking, synaptic 

function, immune regulation, and intracellular signaling. ApoE, like other apolipoproteins, is 

a protein component of lipoprotein particles that binds to the cell surface receptors. In humans 

ApoE is present in three isoforms, given by the ԑ2, ԑ3, and ԑ4 alleles encoding 299 amino 

acid-long protein isoforms. This polymorphism is unique to man and it has been proposed to 

have evolved as a result of adaptive changes to diet. In 1991, Pericak-Vance and colleagues, 

using family-based methods, identified a genetic linkage between AD and a region of 

chromosome 19 that harbors ApoE. 

The key polymorphism associated to AD is in the three allele isoforms ԑ2, ԑ3, and ԑ4. These 

alleles represent haplotypes of two SNPs in the coding region of ApoE. The ԑ2 allele encodes 

a cysteine (Cys) both at amino acid position 112 and at position 158. Allele ԑ3 encodes a Cys 

at 112 and an arginine (Arg) at 158, while the ԑ4 allele encodes an Arg both at 112 and at 158. 

The ԑ4 allele is the ancestral and high-risk form, the ԑ3 allele is the most common in humans 

and the neutral allele, and the ԑ2 allele is associated with decreased risk of AD. 
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On a population level, people with an ԑ4 allele have lower average onset age and those with 

an ԑ2 allele have a higher average onset age for AD. The AD risk associated with these alleles 

is additive. A person with a genotype of ԑ4/ ԑ4 is at higher risk than someone with an ԑ3/ ԑ4or 

ԑ2/ ԑ4 genotype. Likewise, ԑ2/ԑ2 genotype is more protective than genotypes where only one 

ԑ2 allele is inherited. Many publications reported the risk associated with this pattern, 

associated with all ethnic groups and observed that amyloid plaques had ApoE 

immunoreactivity  and that ApoE expression is up-regulated in activated astrocytes in AD 

brain; it was the genetic discovery that clearly linked ApoE isoforms to AD pathogenesis. 

Although the risk associated with the isoform ԑ4 is clear, the pathogenetic mechanism still is 

not well determined. As the major apolipoprotein of the chylomicron in the brain, ApoE binds 

to a specific receptor and works through receptor mediated endocytosis to rapidly remove 

chylomicron and VLDL remnants from circulation; this process is essential for the normal 

catabolism of triglyceride-rich lipoprotein constituents. In the brain, lipidated ApoE binds 

aggregated Aβ in an ApoE isoform-specific manner, with Apoԑ4 being much more effective 

than the Apoԑ3 isoform. 

Researchers have also proposed that the more efficient binding process of Apoԑ4 enhances the 

deposition of the Aβ peptide. ApoE genotypes also influence onset ages in carriers of PSEN1 

or PSEN2 mutations. Less compelling evidence suggests that ApoE genotypes also affect age 

of onset in subjects carrying APP mutations. Alternatively, ApoE might also bind Aβ and act 

as a chaperone to influence the rate of Aβ fibrillogenesis.  

Another hypothesis is that ApoE lipid particles bind Aβ and clear the extracellular peptide by 

endocytosis and subsequent degradation. In each of these proposed mechanisms, the 

functional difference between the ԑ2-, ԑ3-, and ԑ4-encoded isoforms is the basis of risk 

associated with ApoE. Early work suggested that polymorphisms within the promoter of 

ApoE influence risk, though these findings were not replicated in large data sets. A recent 

publication, using a modest sample size, suggests that a poly-T track in TOMM40, the gene 

adjacent to ApoE affects AD onset age. The poly-T track in TOMM40 is variable in length; 

long poly-T length alleles associated with the ԑ3 ApoE allele were reported to have an earlier 

onset age than short poly-T track alleles. In subsequent work using substantially larger 

samples, this relationship between poly-T track length and onset age was not replicated, and 

when ApoE genotypes were accounted for, there was no significant association to TOMM40 

(Schellenberg et al., 2012). 

Studies in knock-out mice also confirm the importance of ApoE in AD pathogenesis. Brain 

cells from APOE knockout (APOE_/_) mice are more sensitive to excitotoxic and age-related 
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synaptic loss, and Aβ-induced synaptosomal dysfunction in these mice is also enhanced 

compared to control animals. When human ApoE isoforms (Apoԑ3 and Apoԑ4) are expressed 

in APOE_/_ mice, the expression of Apoԑ3, but not Apoԑ4, is protective against age-related 

neurodegeneration and Aβ toxicity. In addition, astrocytes from APOE _/_ mice that express 

human Apoԑ3 release more cholesterol than those expressing Apoԑ4 (Buttini et al., 1999); this 

suggests that ApoE isoforms may modulate the amount of lipid available for neurons. 

There are also clinical evidences of the correlation between Apoԑ4 genotype and Aβ 

accumulation, as showed  in many clinical trials where this correlation was identified; in one 

of these (Christensen et al., 2010) 20 patients with AD and 10 controls were examined to 

correlate age, sex and ApoE genotype with accumulation of Aβ peptides; the clear result was 

that Apoԑ4 genotype was highly correlated with the intensity of the Aβ stainings. 
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Chapter 4: Evidence of β-amyloid and NFTs accumulation in 

the brain of animal species 
 

A wide range of changes has been described in the ageing brain of many species with the 

most detailed investigations reported about dogs, cats and monkeys. Among the age-

associated changes in animal brains, the detection of senile plaques and β-amyloid deposits 

has frequently been reported in the framework of retrospective neuropathological studies. 

Regarding dogs, canines have always represented a good model in neurological research, as 

the detection of their age-related behavioural changes is rather easy for both pet owners and 

veterinarians, they are very easy to handle and their  life span is moderate, from about 12 to 

20 years. Furthermore, canines share both the same environment and often the same food as 

man, therefore they may provide a unique model for studies of human aging. There are many 

evidences in the canine brain that support the hypothesis that β-amyloid plays a central role in 

age-related cognitive dysfunction and neuropathology. Amyloid appears to build up initially 

in and around neurons and is present within apical and basal dendrites. Furthermore β- 

amyloid is deposited uniformly in some synaptic terminal fields that show a predilection for 

extensive plaque formation in AD. Probably in the dog β-amyloid accumulation precedes 

plaque formation. With time, early diffuse plaques form within these terminal fields and 

around β-amyloid laden neurons. At this early stage, glial cells do not appear to be associated 

with the developing plaque. Thus in the canine model neurons appear to be the initial source 

of β-amyloid deposition (Cummings et al, 1995). 

More recent studies have clarified the role of β-amyloid in the neurodegenerative phenomena 

of dog brains. In this species three major types of plaques have been identified, depending on 

their stage progress: diffuse (non-β-sheet), primitive (β-sheet lacking a central core of 

amyloid) and neuritic (β-sheet containing a central core of amyloid and extensive reactive 

astroglia). It is believed that the progression of plaque formation proceeds through specific 

identifiable stages, from diffuse to the neuritic subtype, that is characteristic of the end-stage 

AD in humans. Extensive immunohistochemical and fluorescence staining analyses 

demonstrate that the plaque most consistently observed in the canine brain is of the diffuse 

subtype, although occasional occurrence of mature (primitive or neuritic) plaques have been 

shown in some studies (Aristotelis et al, 2002). 

As in humans, the different plaque subtypes have a different location in the dog brain areas, 

giving rise to an uneven distribution. The distribution is uneven both at the immediate cellular 

level and the cerebrocortical surface level. In the former instance, at a cellular level a site that 
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has been known to selectively accumulate Aβ deposits is the axonal synaptic field of neurons, 

whereas at a neuroanatomical level the first site of Aβ accumulation in the dog brain is the 

prefrontal cortex, followed by the parietal, the entorhinal and the occipital. The observed 

cognitive decline in the aged dog might be probably ascribed to the phenomena of Aβ 

accumulation in these regions. The forms of Aβ detected in the plaques are of different 

lengths, depending on the cleavage of APP. The most common form found in the dog brain 

seems to be Aβ1–42, that is constitutive of the diffuse plaques, whereas mature (primitive or 

neuritic plaques) are predominantly formed by the Aβ1–40. This hypothesis is supported by 

another work (Borras et al, 1999) reporting a fewer amounts of amyloid plaques detected in 

aged dogs brains compared to other studies, as the anti-Aβ antibody employed recognized the 

Aβ40 peptide but not the Aβ42 isoform. This finding likely undirectly confirms that the 

diffuse plaques are the predominant type in canines. 

Another notable feature of diffuse plaque deposition in the dog brain in comparison to man 

relates to their spread and number: interestingly, in those cases where the canine cognitive 

decline can only be regarded as pre-AD stage, the amount of cerebral plaques detectable 

equals or might even exceed that characterizing the most severe cases of AD in humans. 

An additional difference between dogs and human beings regards glial reactivity within brain 

plaques: unlike AD affected patients, canines are devoid of any infiltrating hyperactive glia 

within diffuse plaques; instead, astrocytic reactivity in close relation to plaques has been 

reported (Aristotelis et al, 2002). 

A surprising characteristic is the integrity of the intra-plaque neurons in the canine brain. This 

is probably due to the fact that Aβ exerts its neurotoxic effects only when found in its 

aggregated β-pleated-sheet form, whereas it is neurotrophic when not aggregated. 

Regarding the presence of NFTs in the dog brain, they have not been reported in literature 

even using several antibodies against abnormally phosphorylated tau. This could be an 

interesting point for understanding the association between the accumulation of β-amyloid 

with selective behavioral dysfunction in the absence of NFTs. 

Cats have been proposed  as another candidate animal model of AD. A comparison of the β-

amyloid deposition processes between dogs and cats of different ages has been reported by 

Takeuchi et al. (2008). Cerebral Aβ deposition was first detected at an age of 7 years and 9 

months in the dog and at 10 years in the cat; quantity and frequency of Aβ deposits seemed to 

increase with age in both species. Whereas Aβ deposits were observed in the cerebral cortex, 

hippocampus, and meningeal vessel walls in dogs, in the cats examined Aβ deposits affected 

the cerebral cortex and the hippocampus, but not the meningeal vessel walls. In both dogs and 
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cats Aβ deposition in the brain parenchyma occurred as diffuse plaques, unlike the well 

developed and circumscribed plaques that are typical of humans. 

β-amyloid accumulation in cats has been reported also in a study by Head et al. (2005) which 

demonstrated that Aβ1–40 isoform was not present in any of the cat brains examined 

immunohistochemically. In contrast, 4G8 revealed the presence of plaques of  the diffuse 

type. Aβ deposits in the cat brain were large and even more diffuse than those described in 

dogs. Interestingly two of the five aged cats examined in that study showed 

hyperphosphorylated tau. The tau isoform detected did not present the phosphorylation at 

residue Thr181 and Thr205 as in humans, suggesting the presence of a different tau isoform 

compared to man. However NFTs have not been described in those cat brains, however the 

aforementioned report could be an example of a possible pre-tangle formation process 

occurring in older cats. 

Other animal models that have been particularly studied because of their great genetic 

similarities with man are the non-primate species. Senile plaques and vascular amyloid have 

been mainly described in chimpanzees and macaques (Gearing et al., 1994), in the gorilla 

(Kimura et al., 2001), in baboons (Ndung’u et al., 2011) and squirrel monkeys (Walker et al., 

1990). 

In a study by Gearing et al. (1994) comparing the neuropathological findings of aged 

chimpanzees and rhesus monkeys both the species displayed amyloid deposition in meningeal 

and cortical vessels walls and amyloid plaques in the brain parenchyma. Whereas in 

chimpanzees amyloid plaques were mainly of the diffuse type and neuritic plaques were 

seldom discovered, neuritic plaques were the predominant subtype in the two oldest rhesus 

monkeys examined. 

Cerebral amyloid deposits were reported by Kimura et al. (2001) also in a male middle-aged 

(44-year-old) Western Lowland gorilla. The senile Aβ-42 positive plaques found in the 

cerebral neocortex were of the diffuse type, showing filamentous and amorphous structures 

with an irregular margin. NTFs were investigated by immunostaining for tau2, but were not 

detected. It might be hypothesized that the diffuse plaques described in such middle-aged case 

would have evolved into senile plaques with time, as happens in man. 

Aβ peptides deposition has been investigated also in the brain of different subspecies of 

baboons ranging from 18 to 28 years (Ndung’u et al., 2011). Similarly to the aforementioned 

species, brain plaques detected were of the diffuse non-fibrillar type. Neocortical plaques 

were distributed in layers 3-5 frequently involving a microvessel. In the hippocampus they 

were distributed largely in the pyramidal cell layers. Amyloid plaques in baboons were of 
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similar size and regional distribution as in the rhesus monkey. In addition to amyloid deposits, 

a faint immunolabelling of hyperphosphorylated tau in the oldest baboons was found. This 

finding reflects the situation in humans, where NFTs develop in the last stages of the diffuse 

plaque formation process. 

Squirrel monkeys represent a peculiar species as in their brain amyloid is associated primarily 

with both intracerebral and meningeal capillaries, and it occurs to a lesser degree than the 

other non-primates as parenchymal deposits. The latter consist mainly of diffuse plaques, but 

also senile plaques have been reported to occur in squirrel monkeys (Walker et al., 1990). 

In literature few but interesting case reports about β-amyloid and NFTs brain deposition are 

available also regarding some wild animal species, among which even bears and the 

wolverine are encountered. Diffuse and senile plaques were detected in the cerebral cortex of 

an American black bear (Uchida et al., 1995). Senile plaques were mainly localized in the 

molecular layer of the cortex, while diffuse plaques were also described in the caudatum, 

hippocampus and olfactory bulbs. Additionally, a supposed specific neuropathological feature 

of AD, i.e. the presence of diffuse plaques in the cerebellar molecular layer, was described in 

the case examined. Despite the severity of amyloidosis, NFTs were not detected. 

In a study on the brain of a wild old aged carnivore, the wolverine (Gulo gulo), phenomena of 

β-amyloid deposition in the form of vascular deposits as well as both diffuse and neuritic 

cerebral plaques were described. NFTs appeared in large amounts at the cerebral cortex and 

hippocampal level (Roertgen et al., 1996). 

The findings of Aβ and NFTs cerebral deposition reported in literature to date are mainly 

related to domestic carnivores and wild omnivores, and few data are available at present about 

domestic and wild large herbivores. Within this latter category of animals limited descriptions 

have been published regarding the horse (Capucchio et al., 2009), the sheep (Nelson et al., 

1994), the elephant (Cole et al., 1990) and the camel (Nakamura et al., 1995). Among these 

species the presence of NFTs has been reported in sheep, whereas it was not shown in the 

brain of the elephant and the camel. In the horse, clear evidences of Tau accumulation were 

detected, but Tau-positive hippocampal neurons observed in the study by Capucchio et al. 

(2009) did not express hyperphosphorylated Tau (AT8), indicating that the accumulated Tau 

was not hyperphosphorylated at position S202. However, phosphorylation at other amino acid 

residues could not be ruled out. So the conclusion was that non-phosphoryled-S202 Tau 

accumulates in some hippocampal neurons in a non-neurofibrillary tangle manner, perhaps 

due to axonal transport deficiencies occurring in ageing. 
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The sheep and the elephant appeared to be spare of cerebral β-amyloid deposition; instead, 

diffuse β-amyloid plaques were found in the brain of horses (Capucchio et al., 2009), even if 

sporadically, characterized by the accumulation of the N-truncated Aβ42 isoform and no 

Aβ40, similarly to the dog. 

On the histopatological examination of the brain of an aged 20-year-old camel (Nakamura et 

al., 1995) senile plaques were detected. They were mostly of the diffuse type, but with a more 

clearly demarcated border than those seen in aged dogs. Only a few primitive plaques were 

detected using an Aβ-40 antibody. Plaques were mainly distributed throughout the cerebral 

cortex, whereas they were not detected in the hippocampus and in the cerebellar cortex. 

The camel case represents a very interesting case as it is the first herbivorous animal in which 

the presence of β-amyloid plaques has been detected on the basis of proper histopathological 

and immunohistochemical examinations. 

Hence dietary habits were supposed to be important factors in plaques formation. However, 

evidence had already been provided that herbivorous species, such as cows and sheep, could 

develop senile plaques, since the amino acid sequence of their β-protein is identical to that of 

animals usually affected by senile plaques, although their nucleotide sequence is different 

(Nakamura et al., 1995). 
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Chapter 5: Materials and Methods 
 

5.1 Animal and tissue collection 

 

Brain sections of frontal cortex, hippocampus, cerebellum and brainstem samples obtained at 

necroscopy from 102 cattle of various breeds (Piemontese, Podolica, Friesian and mixed 

breed), ranging from fetuses to cattle 240 months of age, were investigated (see Table 2 for 

details). Fifty cattle were healthy at death while fifty-two had shown neurological signs in vita 

and they had undergone neuropathological examination at Istituto Zooprofilattico of Turin 

(CEA): in 23 of these animals no abnormalities had been detected on neuropathological 

examination while 29 of them presented a neuropathological framework attributable to 

different categories of diseases: the majority belonged to the group of inflammatory diseases, 

the remaining to the groups of toxic-metabolic or others diseases, like food poisoning. 

Because of their age at death, some of them were tested with screening routine test for PrP
Sc

, 

but resulted negative. 

At necropsy, the brain was removed and then a paramedian cut was done. 

The small part was frozen at - 80°C until biochemical studies were performed, and the other 

was fixed in 10% buffered formaldehyde solution for histological and immunohistochemical 

analysis. 

 

ID animal age (months) Breed Health status Neuropathological 

        alterations 

101685/09 8 m  Frisona healthy absent  

102648/09 8 m  Frisona  healthy absent  

bov 13 8 m  Frisona  healthy absent  

bov 14 8 m  Frisona  healthy absent  

bov 15 8 m  Frisona  healthy absent  

bov 17 8 m  Frisona  healthy absent  

bov 18  8 m  Frisona  healthy absent  

bov 19 8 m  Frisona  healthy absent  

bov 20 8 m  Frisona  healthy absent  

bov 12 8 m  Frisona  healthy absent  

bov 22 8 m  Frisona  healthy absent  

bov 16 8 m  Frisona  healthy absent  

101609/09 8 m  Frisona  healthy absent  

101670/09 8 m  Frisona healthy absent  
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102487/09 8 m  Frisona  healthy absent  

102639/09 8 m  Frisona  healthy absent  

102448/09 8 m  Frisona  healthy absent  

16685 180 m  Podolica  healthy absent  

16686 192 m  Podolica  healthy absent  

16560 180 m  Podolica  healthy absent  

16476 156 m  Podolica  healthy absent  

16609 120 m  Podolica  healthy absent  

16561 132 m  Podolica  healthy absent  

16513 156 m  Podolica  healthy absent  

16674 120 m  Podolica  healthy absent  

16530 132 m  Podolica  healthy absent  

16713 120 m  Podolica  healthy absent  

16532 144 m  Podolica  healthy absent  

16559 180 m  Podolica  healthy absent  

16531 168 m  Podolica  healthy absent  

16489 156 m  Podolica  healthy absent  

16474 156 m  Podolica  healthy absent  

16687 132 m  Podolica  healthy absent  

15795 240 m Podolica  healthy absent  

15745 180 m  Podolica  healthy absent  

16047 180 m  Podolica  healthy absent  

15903 120 m  Podolica  healthy absent  

15747 180 m  Podolica  healthy absent  

16475 192 m  Podolica  healthy absent  

16610 168 m  Podolica  healthy absent  

16048 180 m  Podolica  healthy absent  

16050 36 m  Podolica  healthy absent  

15851 180 m  Podolica  healthy absent  

16673 13 m  Podolica  healthy absent  

16991 199 m  Podolica  healthy absent  

17013 112 m  Podolica  healthy absent  

17014 194 m  Podolica  healthy absent  

17407 184 m  Podolica  healthy absent  

17408 89 m  Podolica  healthy absent  

17463 123 m  Podolica  healthy absent  

113516/04 84 m  Pezzata Rossa diseased present  

16602/10 84,5 m  Piemontese  diseased present  

110308/07 60 m  Piemontese diseased present  
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142364/04 72 m  cross-breed  diseased present  

116461/08 foetus  Piemontese  diseased present  

685/03 36 m  Valdostana diseased present  

121982/1/04 7 m  Pezzata Rossa diseased present  

147096/05 48 m  Frisona  diseased present  

6323/05 22 m  cross-breed diseased present  

106425/06 3 m  Piemontese  diseased present  

34986/09 49 m  cross-breed diseased present  

35120/09 12 m cross-breed diseased present  

78122/10 44 m cross-breed diseased present  

12894/10 24 m Piemontese  diseased present  

42432/10  3,5 m  cross-breed diseased present  

93342/09 36m  Piemontese diseased present  

56472/10 18 m  Piemontese diseased present  

61201/10 32 m  Piemontese diseased present  

124791/09 8 m  cross-breed diseased present  

66095/6/10 3m Piemontese diseased present  

84580/10 84 m  Pezzata Rossa diseased present  

83090/10 48 m  Piemontese diseased present  

49557/1/2/09 foetus cross-breed diseased present  

13145/11 132 m  Piemontese  diseased present  

40973/09 1 m  Frisona  diseased present  

116716/02 132 m  cross-breed diseased present  

66741/09 26 m  Pezzata Rossa diseased present  

36700/09 4 m  cross-breed diseased present  

105805/02  108 m  Piemontese  diseased present  

59587/2/04 120 m  Piemontese  diseased absent  

49164/10 108 m  Piemontese  diseased absent  

20561/10 72,5 m  Frisona diseased absent  

30132/08 84 m cross-breed diseased absent  

25001/10 3,5 m  frisona diseased absent  

139943/07 75 m  Frisona  diseased absent  

126354/07 6 m  Piemontese  diseased absent  

58389/09 15 m  Piemontese diseased absent  

109298/07 23 m  cross-breed diseased absent  

112142/09 10 m  Piemontese  diseased absent  

102290/09 42 m  Pezzata Rossa diseased absent  

79272/09  36 m  Frisona  diseased absent  

5966/08 65 m  Piemontese diseased absent  
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2196/08 68 m  Frisona diseased absent  

131662/07 80 m  Piemontese diseased absent  

54528/07 foetus Piemontese diseased absent  

49560/09 5 gg cross-breed diseased absent  

34593/10 120,5 m cross-breed diseased absent  

72163/04 120 m  cross-breed diseased absent  

90201/04 29 m Piemontese diseased absent  

125883/09 2 m  Piemontese  diseased absent  

64541/09 45 m  Frisona  diseased absent  

45143/2/10 8 m  Frisona  diseased absent  

Table. 2: Animals considered in the study 

 

5.2 Single-labelling immunohistochemistry (IHC) 

 

Following formaldehyde fixation, brain sections (5 mm thick) from each animal were 

coronally cut. Slices of the frontal cortex, hippocampus, cerebellum and brainstem were 

sampled, embedded in paraffin wax, sectioned coronally at a thickness of 5 μm and mounted 

on a glass slide. The tissues were then immunostained to detect Aβ. The slides were dewaxed 

and rehydrated by routine methods and then immersed in 98% formic acid for 10 min. To 

enhance Aβ immunoreactivity, after washing in distilled water, the sections were then boiled 

in citrate buffer (pH 6.1) for 10 min. Endogenous peroxidase activity was blocked in 3% 

hydrogen peroxide for 20 min at room temperature (RT). To block nonspecific tissue 

antigens, the sections were incubated with 5% normal goat serum for 20 min at RT. The 

primary monoclonal antibodies were incubated with the tissue overnight at 4°C. Two 

antibodies were used as primary antibodies: polyclonal APP (Abnova, Taipei City, Taiwan; 

1:100 dilution) directed against APP, and monoclonal antibody 4G8 (Signet - Covance, 

Emeryville, California; 1:500 dilution) directed to the epitope in residues 17–24 of Aβ. After 

rinsing, a biotinylated secondary antibody (1:200 dilution; Vector Laboratories, Burlingame, 

CA) was applied to the tissue sections for 30 min at RT, followed by the avidin-

biotinperoxidase complex (Vectastain ABC kit; Vector Laboratories, Burlingame, CA), 

according to the manufacturer’s protocol. The immunoreactivity was visualized using 3,3’-

diaminobenzidine (Dakocytomation, Carpinteria, CA) as a chromogen; the sections were then 

counterstained with Meyer’s hematoxylin. For controls, the primary and secondary antibodies 

were omitted. A human brain tissue affected with AD and provided by Institute Carlo Besta 

(Milan, Italy) was used as positive control. 



50 
 

All four neuroanatomical areas (frontal cortex, hippocampus, cerebellum and brainstem) of 

each animal were observed under a light microscopy and evaluations for APP, and 4G8 

immunoreactivity were done. The classification for APP positivity was assessed only by 

presence or absence of the signal while for 4G8 positive-deposits two different morphological 

types were evaluated: those types included intracellular (intraneuronal) and extracellular (glia-

associated) accumulations of Aβ and they was scored quantitatively at all sites examined. The 

scoring system assessed the “amount and/or intensity” of 4G8 positive-deposits on the 

following scale: 0, absent; 1, slight; 2, moderate; 3 marked. 

 

5.3 Lipofuscin staining 

 

Some of the brain areas with the major Aβ deposition belonging to cattle older than 108 

months were selected for a double immunohistochemistry, to highlight lipofuscin deposition. 

Tissue sections were dewaxed, rehydrated, formic acid treated, and boiled as in the IHC 

protocol described above. After unmasking, the sections were washed in distilled water and 

processed according to a dual-immunohistochemistry protocol. Endogenous peroxidase 

activity was blocked in 3% hydrogen peroxide for 20 min at RT. To block nonspecific tissue 

antigens, the sections were incubated with 5% normal goat serum for 20 min at RT. Primary 

monoclonal antibody 4G8 (SIGNET-Covance, Emeryville, California; 1:500 dilution), was 

applied overnight at 4°C. After rinsing, a biotinylated secondary antibody (1:200 dilution; 

Vector Laboratories, Burlingame, CA) was applied to the tissue sections for 30 min at RT, 

followed by the avidin-biotinperoxidase complex (Vectastain ABC peroxidase kit; Vector 

Laboratories, Burlingame, CA), according to the manufacturer’s protocol. Aβ 

immunoreactivity was visualized using Vector VIP ( Peroxidase Substrate kit, Vector 

Laboratories, Burlingame, CA) as a chromogen; the sections were then incubated with 

primary monoclonal anti-Dityrosine antibody (JaICA, Japan; diluted 1:100 in 5% normal goat 

serum), a specific marker for protein oxidation,  for 1h at RT. After rinsing, a biotinylated 

secondary antibody (1:200 dilution; Vector Laboratories, Burlingame, CA) was applied to the 

tissue sections for 30 min at RT, followed by the avidin-biotin phosphatase complex 

(Vectastain ABC-AP kit; Vector Laboratories, Burlingame, CA), according to the 

manufacturer’s protocol. Lipofuscin immunoreactivity was visualized under light microscopy 

using Blue AP (Alkaline phosphatase substrate kit III, Vector Laboratories, Burlingame, CA) 

as a chromogen. 
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5.4 Immunofluorescence (IF) 

 

Brain sections that stained positive for Aβ by immunohistochemistry, were selected for 

immunofluorescence studies. 

Immunofluorescence staining was performed according to the protocol described below. 

 

  ß-amyloid and glia detection. Double labelling to evaluate the relationship between 

astrocytes and microglia cells with Aβ deposits was performed, according to the 

protocol here described: tissue sections were dewaxed, rehydrated, formic acid treated, 

and boiled in citrate buffer (pH 6.1) as in the IHC protocol described above. After 

unmasking, the sections were washed in distilled water and processed according to a 

dual-immunofluorescence protocol. To block nonspecific tissue antigens, the sections 

were incubated with 5% TBST-diluted normal goat serum for 20 min at RT. Primary 

antibodies 4G8 (Signet - Covance, Emeryville, California; 1:100 dilution) and 

monoclonal Iba-1 (Wako Chemicals, Richmond, VA, USA; 1:100 dilution) to 

visualize microglial cells or polyclonal GFAP (Dako Cytomation, Glostrup, Denmark; 

1:100 dilution) were applied at RT for 1 h. Tissue sections were then incubated at RT 

with a Alexa fluor 555 anti-mouse or Alexa fluor 488 anti-rabbit secondary antibodies 

(Invitrogen, Life technologies, diluted 1:200) respectively, for 15 min. After rinsing in 

distillate water, the sections were mounted with Mounting Medium with DAPI 

(Vectashield, Vector Laboratories, Burlingame, CA) and examined under a Nikon 

Video Confocal fluorescence microscope (ViCO, Nikon Instruments, Florence, Italy). 

Dark-field fluorescence digital images were collected with a DS-U1 camera (Nikon 

Instruments, Florence, Italy) using fluorescein isothiocyanate and tetramethyl 

rhodamine isocyanate filters. The specificity of the secondary antibodies was tested by 

applying these antisera without the primary antibodies. No Aβ or glia immunolabeling 

signals were seen after omitting the primary antisera. 

 

 X34 Some of the brain areas with the major Aβ deposition were selected for X34 

staining. Fixed brain tissues were first washed three times with PBS 10 mM for two 

minutes each. Sections were then stained with methoxy-X34 diluted 1:250 in 40% 

ethanol in a humid chamber for 10 min at RT and subsequently washed five times 

with distilled water. Therefore, after one passage in 0,2% NaOH in 80% ethanol for 

two minutes, sections were washed ten minutes in distilled water and then  mounted 
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on a slide glass and cover-slipped with glycerol. Fluorescent staining was visualized 

using Nikon Video Confocal fluorescence microscope (ViCO, Nikon Instruments, 

Florence, Italy) and analyzed using NIS Elements imaging software (Nikon 

Instruments, Florence, Italy). 

  

5.5 Western blot (WB) 

 

Twenty seven frozen brains (from which 25 cortex, 8 cerebella and 7 brainstems were 

analysed) were weighed and homogenized in brain tissue lysis buffer containing 0,5% 

deoxycholic acid, 0,5% NP-40 and 10 mM EDTA diluted in Phosphate buffered saline (PBS) 

at a ratio of 1:10 (w/v) for 1 minute. Homogenates were centrifuged at 5000 x g for 3 minutes 

(Optima TLX ultracentrifuge, rotor TLA 110; Beckman Coulter, Fullerton, CA), and 

supernatants were collected. Sample buffer 3X containing 0.36 M Bistris, 0.16 M Bicine,1,5% 

wlv SDS, 15% w/v sucrose, 2.5% vlv 2-mercaptoethanol, 0.004% w/v bromophenol blue, was 

added to samples, after which samples were sonicated and then placed in boiling water for 5 

min and then immediately chilled on ice. Aliquots (10 μL) of each sample and 5 μL of 

markers (β-amyloid proteins 1-38, 1-40 and 1-42) were loaded into urea gels and subjected to 

electrophoresis. The gels were run at room temperature at 12mA/gel for 10 minutes followed 

by 24 mA/gel for 1 h. Proteins were then transferred into polyvinylidine difluoride 

membranes (Immobilion P; Millipore, Billerica, MA) using a Trans-Blot Semi Dry transfer at 

90 mA for 45 minutes. Membranes were washed with Tris Buffered Saline (TBS), unmasked 

with microwave for 3 minutes in TBS and then blocked with 5% Bovine serum albumin 

(BSA) in TBS with 0,1% Tween at 37°C for 1 hour, and then incubated with primary 

antibody (6E10 antibody, diluted 1:500, Covance) at 4°C overnight. After four washes with 

TBS containing 10% Tween 20, membranes were incubated at room temperature for 1 h with 

anti-mouse biotinylated secondary antibody (diluted 1:3000, GE Health care). After four 

washes with TBS, they were incubated at room temperature for 45 minutes with ABC Elite 

Kit, then blots were developed using ECL Plus (Pierce Biotechnology, USA). 
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5.6 Genetic analysis 

 

DNA was isolated from frozen brain tissue of 30 animals. A genomic region of ~1.8 Kb, 

encompassing exon 2 to exon 4 of the bovine apolipoprotein E (APOE), was amplified. The 

selected region included the entire APOE open reading frame (ORF) (Fig. 4). PCR primers 

were designed using the Primer3 application and their sequences were: APOE_Bt_Ex2_F (5’ 

CCAATCGCAAGCCAGAAG3’) and APOE_Bt_Ex4a_R (5’ 

GAGACTCGGGGTGGGAGTA 3’). 

PCR reactions were carried out with the following conditions: 5 μl of buffer 10x, 2 μl of 

genomic DNA, 30 pmol of each primer, 1 μl of dNTPs, 1 U of Taq polymerase (Roche), 10 μl 

of CG solution (Roche) and 2 μl MgCl2 50 mM, in a final volume of 50 μl (Table 3). 

Thermocycling parameters consisted of an initial denaturation step (95 °C, 10 min) followed 

by 40 cycles of denaturation (94 °C, 1 min), annealing (57 °C, 1 min) and extension (72 °C, 2 

min). ApoE sequence was determined by direct DNA sequencing of the PCR products on ABI 

3130 Genetic Analyser (Life Technologies) by Big Dye terminator v. 3.1 cycle-sequencing 

using the amplification primers pairs and two internal  primers, APOE_Bt_Ex3_F (F (5’ 

GAGGAGCCCCTGACTACCC3’) and APOE_Bt_Ex4b_R (5’ 

ACACCCAGGTCATTCAGGAA 3’). The sequence reactions were prepared as follows: 2 μl 

Sequencing Buffer 10x, 2 μl of Big Dye Terminator v3.1, 3,2 pmol of the sequencing primer, 

50-100 ng of template DNA in a final volume of 20 μl. 

All the ApoE sequences were assembled using the program SeqMan II (Lasergene package, 

DNASTAR Inc.) in order to obtain a consensus sequence for each sample. Polymorphic 

nucleotides were annotated and the final consensus sequences were assembled into a single 

data set. Each variable site was enumerated based on the corresponding position in the bovine 

ApoE sequence. Eventually, allele frequencies of the detected polymorphisms were 

calculated.  

 

 

 

 
Fig. 4: Genomic regions of the bovine APOE gene. 

(Light green = mRNA; dark green = ORF; red arrows = PCR primers).   

  

exon 1 exon 2 exon 3 exon 4 
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Table 3: PCR mix. 

 

5.7 Statistical analysis 

  

Statistical analysis on IHC and WB results was performed employing Chi-square test, carried 

out using the SISA online tool 

(http://www.quantitativeskills.com/sisa/statistics/twoby2.htm), which, in case of small 

number of data, suggests to apply Fisher test. When more than two classes were tested for 

association, the Epitools website was used 

(http://epitools.ausvet.com.au/content.php?page=chi_sq). In genetics, the same websites 

were used to look for association between each polymorphism detected and WB and IHC 

profiles. The analysis were performed by categorizing the animals according to the following 

criteria: 

 

1) Positive or negative cases at the WB analysis; 

2) Cases with intracellular or extracellular Aβ accumulation  in the cortex or its absence at 

IHC analysis; 

3) Cases with a strong or weak  intensity of the signal or its absence in the cortex at IHC 

analysis;  

4) Cases with the intracellular or extracellular Aβ accumulation  in the hippocampus or its 

absence at IHC analysis; 

5) Cases with a strong or weak  intensity of the signal or its absence in the hippocampus at 

IHC analysis. 

  

REAGENTS AMOUNT  (μl) 

Buffer 10x  5 

Primer F  1,5 

Primer R  

MgCl2 50 mM 

 1,5 

 2 

dNTPs  1 

Roche Taq polimerase  0,2 

H2O  26,8 

CG solution  10 

DNA  2 

http://www.quantitativeskills.com/sisa/statistics/twoby2.htm
http://epitools.ausvet.com.au/content.php?page=chi_sq
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Chapter 6: Results 
 

6.1 Single-labelling immunohistochemistry (IHC) and statistical 

analysis 

 

In this study the immunoreactivity to 4G8 was detected by IHC analysis in 59 out of the 102 

cattle examined. The 4G8 antibody is directed against a central epitope of the APP protein 

(17-24), and a cross reaction with APP cannot be completely ruled out. However, Aβ 

immunopositive deposits occurred in two different patterns which were detectable after acid 

formic pretreatment: the intracellular and the extracellular pattern. The intracellular pattern is 

characterized by fine and randomly dispersed Aβ-immunoreactive granules in the cytoplasm 

of neurons, located close to the nucleus (Fig. 5-6) while the extracellular pattern is 

characterized by aggregates frequently associated to glia or randomly dispersed in each brain 

area (Fig. 7-8).  

In general 16 out of 59 IHC positive cases presented exclusively Aβ extracellular pattern 

(mean age at death: 84 months); 2 cattle out of 59 IHC positive cases presented exclusively 

Aβ intracellular pattern (mean age at death: 48 months); 41 presented the coexistence of the 

extracellular and intracellular patterns (mean age at death: 128,4 months) and the remaining 

43 animals were completely negative (mean age at death: 17,1 months). Considering the four 

neuroanatomical areas, cattle with exclusively extracellular pattern presented marked Aβ 

deposits (score 3) localized in cerebral cortex (2/16) principally restricted to the gray matter 

and hippocampus (1/16), where fine and randomly dispersed Aβ immunoreactive granules 

were frequently present in almost all neurons of the dentate gyrus. Cattle with exclusively 

intracellular pattern presented slight Aβ deposits principally localized in cerebral cortex (2/2) 

and cattle with the coexistence of intra and extracellular patterns presented marked Aβ 

deposits principally localized in cerebral cortex (17/41), hippocampus (4/41) and cerebellum 

(4/41) with granular deposits localized at the level of Purkinje cells and in the molecular 

layer. Aβ deposition was never observed in brainstems. 

No Aβ immunoreactive plaques and cerebral vessels were found in all samples. 

It was then investigated the relationship between age of animals and the presence or absence 

of Aβ at IHC: out of 59 IHC positive cases, we have found that 33 animals were older than 

108,5 months, whereas 38 animals, out of 43 IHC negative cases, were younger than 36,5 

months (Table 4). Chi square test disclosed the statistical significance of these data (Table 5). 
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The association between the intracellular or extracellular Aβ localization related to the same 

age ranges was also considered: the majority of animals between 36,5-60 months presented a 

prevalent extracellular Aβ localization (58%), although with aging a coexistence of 

intracellular and extracellular colocalization was mainly present (52% animals between 108,5-

180 months) (Table 6). 

We have then tried to correlate 4G8 immunoreactivity to the health status of the animals and 

interestingly it appeared that in diseased animals Aβ accumulation occurred earlier (from 12,5 

months) than in healthy animals (Table 7). Chi square test highlighted the statistical 

significance of the data regarding healthy and diseased animals (Table 8-9). 

All the brain tissue slices tested for Aβ presence at IHC were also processed for APP and the 

results were similar to those described for 4G8 immunostaining: each section positive to 4G8 

immunostaining resulted positive for the presence of APP. Fine granules of APP 

immunopositivity were mainly localized in the cytoplasm and at the level of the membranes 

of neurons (Fig. 9). 

 

 

IHC 

Age 

(months) 

0-12 12,5-36 36,5-60 60,5-84 84,5-108 108,5-180 >180 

+ 2/59 7/59 6/59 7/59 4/59 27/59 6/59 

- 32/43 6/43 1/43 2/43 0/43 2/43 0/43 

Table 4 : 4G8 positive or negative cattle (considering all brain areas) subdivided by age (months). 
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Table 5: Test chi square: 4G8 positive or negative cattle. 

Chi-square statistic 63.5011; Degrees of freedom 6; P-value <0.0001. 

 

 

 

Table 6: Frequencies of intracellular and extracellular amyloid localization. 
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Table 7: 4G8 positive or negative cattle (considering all brain areas) subdivided by age (months) and 

health status. 

 

 

Table 8: Test chi square: healthy animals on 4G8 positive or negative cattle. 

Chi-square statistic 43.7965; Degrees of freedom:  4; P-value < 0.0001. 

  

IHC 

Health status IHC results Age (months) 

  0-12 12,5-36 36,5-60 60,5-84 84,5- 108 108,5-180 >180 

Healthy + 0/31 1/31 0/31 0/31 1/31 25/31 4/31 

- 17/19 1/19 0/19 0/19 0/19 1/19 0/19 

Diseased + 2/28 6/28 6/28 7/28 3/28 4/28 0/28 

- 15/24 5/24 1/24 2/24 0/24 1/24 0/24 
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Table 9: Test chi square: diseased animals on 4G8 positive or negative cattle. 

Chi-square statistic 20.9978; Degrees of freedom:  5; P-value < 0.0008 

 

 

 

Fig. 5: 4G8 - Intracellular deposits at the level of frontal cortex (20X).  
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Fig.  6: 4G8 – Intracellular deposits at the level of hippocampus (20X).  

 

Fig.  7: 4G8 – Extracellular deposits at the level of frontal cortex (40X). 
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Fig. 8:  Glia-associated Aβ deposits in frontal cortex (100 X). 

 

Fig. 9: APP - magnification of an hippocampal neuron (40X). 
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6.2 Lipofuscin staining 

 

To evaluate intracellular distribution patterns of lipofuscin and 4G8 immunopositive deposits, 

a dual IHC was performed to simultaneously visualize the two stainings in the same brain 

section. Lipofuscin was stained in blue and β-amyloid in red. Results showed that lipofuscin 

is predominantly present in cytoplasmic regions of neurons exhibiting prominent β-amyloid 

immunolabelling; the labeling patterns of the blue-stained lipofuscin showed that most of this 

material is not co-localized with red-stained β-amyloid in the neurons: most lipofuscin and β- 

amyloid occupy distinct cellular compartments in the same neurons. This separate and distinct 

localization is clearly shown in Fig. 10. 

 

Fig. 10: Dual IHC to detect 4G8 immunoreactive deposits (arrowhead) and lipofuscin (arrow) in cortical 

brain tissue. 
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6.3 Immunofluorescence (IF)  

 

 ß-amyloid, astrocytes and microglia detection. Glial fibrillary acidic protein (GFAP) 

immunofluorescence was used for the specific identification of reactive astrocytes. A 

generalized increase in GFAP signalling and in number of astrocytes was observed in 

brains with a major accumulation of Aβ deposits, but a different localization of 

astrocytes and Aβ deposits was often present in these immunopositive sections, in 

particular at the level of cerebral cortex (Fig. 11-12). In brain areas where coexistence of 

astrocytes and Aβ deposits was present, cell bodies of reactive astrocytes can be seen 

located around the Aβ deposits and their fine processes penetrate them (Fig. 13). The 

majority of compact deposits, with the exception of the small punctuate ones, were 

accompanied by such peripheral reactive astrocytes. GFAP-positive cells were found 

also within the white matter in the areas free of amyloid. To understand the exact 

localization of extracellular amyloid deposits, we performed a double 

immunofluorescence using 4G8 and Iba-1, an antibody against activated microglia. A 

strictly relationship between Aβ extracellular deposits and microglia was observed:  

almost all Aβ extracellular deposits were surrounded and penetrated by immunoreactive 

microglia cells and the most intense Iba-1 immunoreactivity was distributed principally 

in the frontal cortex of all the animals tested. (Fig. 14). 

 

 X34. No positive staining was observed on sections treated with X34 staining. 
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f 

 

Fig. 11: 4G8 (Alexa fluor 555, red) and GFAP (Alexa fluor 488, green) - frontal cortex. Different 

localization of astrocytes and Aβ in cattle brain (20X). 

 

 

 

 

 

 

 

 

 

 

Fig. 12: 4G8 (Alexa fluor 555, red), GFAP (Alexa fluor 488, green) - frontal cortex. Astrocytosis (20X). 
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Fig. 13: 4G8 (Alexa fluor 555, red), GFAP (Alexa fluor 488, green) and Dapi for nuclei – frontal cortex. 

Strictly relationship between astrocytes and Aβ (100X). 

 

Fig. 14: 4G8 (Alexa fluor 555, red) and Iba-1(Alexa fluor 488, green) – frontal cortex. A) 60X ; B1-B2) 3D 

reconstruction of image A); C-D) 60X. Extracellular Aβ aggregates are strictly correlated to activated microglia. 

 

A B1 B2 

C D 
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6.4 Western Blot (WB) and statistical analysis 

 

A total of 27 cattle brains were examined by WB analysis, including the following areas: 25 

cortex, 8 cerebella and 7 brainstems (Fig. 15). Peptides of Aβ (1-38, 1-40, 1-42 and 3-42) was 

detected in 10 animals out of the 27 examined. Specifically peptide 1-38 was found in 4 

cortex out of 10 positive animals;  peptide 1-40 was found in 7 cortex out of 10 positive 

animals; peptide 1-42 was found in 7 cortex out of 10 positive animals and peptide 3-42 was 

found  only in one cortex out of 10 positive animals; 3 cerebella out of 8 examined were 

positive for amyloid peptides: in particular peptide 1-42 was found in 2 cerebella out of 3 

positive cases and peptide 1-40 only in 1 cerebellum out of 3 examined; no Aβ peptides was 

detected by WB analysis in all 7 brainstems examined. 

However, the intensity of the signal in all the cases analized was weaker than the signal 

detected in humans brain with AD. 

Considering the correlation between the age of the animals and their positivity or negativity at 

WB analysis, although the tested animals were only 27, it appeared that the majority of 

negative cases belonged to the age range under 12,5 months (Table 10); chi square test 

performed was not statistically significant (p<0,8931) (Table 11). 

Relating 27 cases tested to WB analysis with the corresponding IHC positivity or negativity, 

it appeared that 17 cases have been confirmed in both analysis: 8 animals were positive and 7 

were negative to WB and IHC (Table 12). 

Fisher test was performed to highlight the statistical significance of the comparison between 

the two analysis: the obtained p-value (p=0,08931), although not properly statistically 

significant, could indicate a possible trend (Table 13). 
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Fig. 15 : Western Blot analysis performed on brain sections of some animals of the study (CTX = cortex)  

 

BLOT 

Age 

(months) 

0-12 12,5-36 36,5-60 60,5-84 84,5-108 108,5-180 >180 

+ 3/10 1/10 1/10 0/10 1/10 4/10 0/10 

- 7/17 1/17 2/17 1/17 1/17 4/17 1/17 

Table 10 : Western Blot positive or negative cattle (considering all tested areas) subdivided by age 

(months) 

 

 

Table 11: Test chi square: Western Blot positive or negative cattle 

Chi-square statistic 2.2712; Degrees of freedom 6; P-value < 0.8931 (not statistically significant) 

A-Beta 

Syntetic peptides 1-42 1-40  

3-42 

 

LBD 

49164 

CTX 

HUMAN 

BRAIN 

 

101670 

CTX 

34593 

CTX 

34593 

BRAINSTEM 

 

101670 

8 M urea version of Bicine/Tris SDS-PAGE 

1-40 

1-42 
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 WB POSITIVE CASES WB NEGATIVE CASES 

IHC POSITIVE CASES 8 8 

IHC NEGATIVE CASES 2 9 
 

Table 12: Testing for correlations between IHC and Western Blot analysis 

 

 

Table 13:  Fisher test: comparison between WB and IHC results  

P-value = 0,08931. 

 

6.5 Genetic and statistical analysis 

 

PCR products of the expected molecular size (approximately 1750 bp) were obtained using 

primers and optimized protocols described in the Methods section. 

Sequence analysis of the ApoE gene of the 30 cattle resulted in the identification of nine 

SNPs. A list of the identified polymorphisms with the indication of their position in the 

sequence and relative allele frequencies is shown in Table 14. 

Three polymorphisms were not reported in the GenBank reference database and they included 

one non-synonymous mutation in exon 2 (841 G/T, codon 8, Val→Leu) and two SNPs in 

intron 2  (873 G/A) and intron 3 (1544 G/T). The other polymorphisms have all been reported 

previously. 

There is not a reported relationship between these mutations and evident phenotypic changes: 

the two located in the exon determine two synonymous mutations (exon 3, 1394 C/G, codon 

32, Thr ⇒ Thr and in exon 4, 2034 T/C, codon 146, Ser  ⇒ Ser) and the function of those 

already reported in introns is not known. Interestingly, SNPs at positions 1643 (intron 3) and 

2034 (exon 4) were in complete linkage disequilibrium (Table 14).  

0

2

4

6

8

10

pos WB neg WB

pos IHC

neg IHC
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Chi-square tests performed to look for association between each found polymorphism and 

Western blot and IHC profiles did not detect any statistically significant associations (Table 

15; A,B,C,D,E). In Table 15A was performed Fisher test as suggested by  SISA online tool. 

However, there was an interesting results for the position 876 when association was tested for 

strong or weak intensity of the signal or its absence in the cortex by IHC analysis (Table 16) . 

This result was obtained excluding the category without available cases (intracellular pattern 

in cortex). The obtained p-value (p<0,08931), although not properly statistically significant, 

could indicate a possible trend: the variant “G” (guanine) would seem in close relationship 

with the extracellular Aβ deposits in cerebral cortex, as almost all the “G” were found in cases 

where the Aβ accumulated mainly extracellular in the cortex (7/8), while only one “G” was 

present in cases with both intra- and extra-cortex localization. Finally, no “G” was detected in 

control cattle. 

 

SNP location 

(Ref.Seq. NC_007316.5) 
APOE region Allele frequency 

841 G/T  

(codon 8, Val→Leu) 

exon 2 

 
0.08 

873 G/A intron 2 0.06 

876 C/G intron 2 0.24 

894 T/C intron 2 0.26 

952 C/G intron 2 0.37 

1394 C/G 

(codon 32, Thr) 
exon 3 0.61 

1544 G/T intron 3 0.09 

1643 A/G intron 3 0.38 

2034 T/C 

(codon 146, Ser) 
exon 4 0.38 

Table 14: Identified polymorphisms with their position in the sequence and relative allele frequencies 
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A. Positive or negative cases at the Western blot analysis 

 

 

pos
a
: positive cases at WB. 

neg
b
: negative cases at WB 

 

B. Cases with intracellular or extracellular Aβ accumulation  in the cortex or its absence at IHC 

analysis 

 

 

 

extra
c
:  extracellular Aβ accumulation in the cortex at IHC analysis. 

intra
d
:   intracellular Aβ accumulation in the cortex at IHC analysis.  

int-ext
e
:  intracellular and extracellular Aβ accumulation in the cortex at IHC analysis. 

negative
f
:  negative cases at IHC analysis. 

  

876 894 952

pos/neg blot C G T C C G

posa 8 4 posa 8 4 posa 6 6

negb 11 5 negb 12 4 negb 9 7

p< 0.31304 p<0.28986 p<0.74726

1394 1544 1643 2034

C G G T A G T C

posa 7 5 posa 11 1 posa 8 4 posa 7 5

negb 8 10 negb 15 1 negb 9 7 negb 9 9

p<0.45524 p<0.50794 p<0.2637 p<0.26479

876 894 952

cortex intra extra C G T C C G

extrac 9 7 extrac 11 5 extrac 9 7

intrad 0 0 intrad 0 0 intrad 0 0

int-exte 5 1 int-exte 5 1 int-exte 4 2

negativef 6 0 negativef 4 2 negativef 2 4

p <0.091 p <0.7635 p<0.4848

1394 1544 1643 2034

C G G T A G T C

extrac 8 8 extrac 15 1 extrac 10 6 extrac 10 6

intrad 2 0 intrad 2 0 intrad 0 2 intrad 0 2

int-exte 2 4 int-exte 5 1 int-exte 4 2 int-exte 4 2

negativef 4 2 negativef 6 0 negativef 2 4 negativef 2 4

p<0.3598 p <0.673 p<0,238 p<0,238
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C. Cases with a strong or weak  intensity of the signal or its absence in the cortex at IHC analysis 

 

 

strong
g
: strong intensity of the signal at IHC analysis. 

weak
h
: strong intensity of the signal at IHC analysis. 

no signal
i
: absence of the signal at IHC analysis. 

 

D. Cases with the intracellular or extracellular Aβ accumulation in the hippocampus or its absence 

 

 

 

ext
j
: extracellular Aβ accumulation  in the hippocampus. 

int
k
: intracellular Aβ accumulation  in the hippocampus. 

ext-int
l
:  extracellular and intracellular Aβ accumulation  in the hippocampus. 

negative
m

:  absence of Aβ accumulation in the hippocampus. 

  

876 894 952

IHC cortex signal C G T C C G

strongg 5 1 strongg 5 1 strongg 5 1

weakh 5 3 weakh 7 1 weakh 5 3

no signali 6 0 no signali 4 2 no signali 2 4

p<0.2151 p<0.6097 p<0,206

1394 1544 1643 2034

C G G T A G T C

strongg 4 4 strongg 7 1 strongg 6 2 strongg 6 2

weakh 3 5 weakh 8 0 weakh 5 3 weakh 5 3

no signali 4 2 no signali 6 0 no signali 2 4 no signali 2 4

p<0,558 p<0.3998 p<0,3998 p <0,3998

876 894 952

Hippocampus C G T C C G

extj 3 3 extj 4 2 extj 3 3

intk 3 1 intk 3 1 intk 3 1

ext- intl 2 0 ext- intl 2 0 ext- intl 2 0

negativem 10 4 negativem 11 3 negativem 7 7

p<0,5763 p<0,8048 p<0,4858

1394 1544 1643 2034

C G G T A G T C

extj 4 2 extj 5 1 extj 3 3 extj 3 3

intk 1 3 intk 4 0 intk 3 1 intk 3 1

ext- intl 2 0 ext- intl 2 0 ext- intl 2 0 ext- intl 2 0

negativem 7 7 negativem 13 1 negativem 8 6 negativem 8 6

p<0,3164 p<0,7562 p<0,5707 p <0,5707
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E. Cases with a strong or weak  intensity of the signal or its absence in the hippocampus at IHC 

analysis 

 

 

strong
n
: strong signal in the hippocampus at IHC analysis. 

weak
o
: weak signal in the hippocampus at IHC analysis. 

no signal
p
: absence of the signal in the hippocampus at IHC analysis. 

 

Table 15 (A, B, C, D, E): Chi-square test.  A= adenine; C= citosine; G= guanine; T= timine. 

 

 

  876  

  C G 

extra 9 7 

intra 0 0 

int-ext 5 1 

negative 6 0 

 

Table 16: Chi-square statistics. 4.6229; Degrees of freedom:  2; P-value < 0.091. 

 

  

876 894 952

Hippocampus signal C G T C C G

strongn 2 0 strongn 2 0 strongn 2 0

weako 5 3 weako 6 2 weako 5 3

no signalp 10 4 no signalp 11 3 no signalp 7 7

p<0,5784 p<0,7358 p<0,3895

1394 1544 1643 2034

C G G T A G T C

strongn 2 2 strongn 4 0 strongn 2 2 strongn 2 2

weako 4 4 weako 7 1 weako 5 3 weako 5 3

no signalp 7 7 no signalp 13 1 no signalp 8 6 no signalp 8 6

p<1 p<0,7409 p<0,9165 p<0.9165
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Chapter 7:  Discussion 

 

Aβ deposition in the brain has been widely investigated to date in many animal species in an 

attempt to discover a suitable animal model to provide insights into the pathology of human 

cerebral Aβ amyloidosis. Even if a large amount of data about Aβ deposition in the brain is 

available for numerous species, both domestic and wild, but mainly belonging to the category 

of carnivores (i.e. dog and cats), little is still known about the features of Aβ deposition 

process in the large herbivores. Aim of the present study was at first to characterize the 

features of Aβ deposition in cattle brain in relation to age and health status, in order to shed 

light on a possible formation process of Aβ in such species, which had never been 

investigated earlier. Second aim of our investigations was to compare the obtained findings 

with the knowledges acquainted to date about the neuropathological and genetic aspects of Aβ 

deposition process in human brains. Eventually, the third aim was to assess if cattle could 

represent a suitable animal model to disclose the mechanisms underlying cerebral Aβ 

accumulation in man.  

Regarding immunohistochemical investigations, out of the 102 cattle brains examined in the 

present study, 59 tested positive for the presence of Aβ whereas 43 resulted negative. About 

56% of the cases which tested positive for Aβ presence were older than 109 months, whereas 

nearly 88% of the cases testing negative for Aβ were younger than 36 months. Another 

interesting emerging finding was that on the 102 samples tested, 37 out of the 39 cases older 

than 85,5 months (95%) were positive for Aβ deposition (Table 4 ). 

Chi square test performed confirmed the statistically significance of this result (p < 0,0001, 

Table 5). The aforementioned data would allow the supposition that Aβ deposition in the 

brain is an age-related process mainly involving cases older than 108 months (9 years). Our 

findings are similar to what described in humans, where it has been reported that the number 

of non-demented individuals presenting with cerebral Aβ deposits in the form of senile 

plaques was higher in older age groups (Hof et al., 1996). In a recent study by Rodrigue et al. 

(2012) on cognitively normal adults who underwent Aβ PET imaging it was demonstrated 

that cerebral Aβ deposition increases with age and is particularly elevated in about 20% of 

adults aged 60 and over. 

Several studies regarding other animal species would support the aforementioned hypothesis. 

In a study on the cat brain (Gunn-Moore et al., 2006), Aβ deposits were 

immunohistochemically detected inside neurons as well as extracellularly, and the staining 

intensity appeared to be age-dependent. 
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Aβ deposition was shown to be closely age-dependent also in the brain of rhesus monkeys 

(Cork et al., 1990) and of dogs (Cummings et al., 1995); in the latter species such a finding 

was particularly evident in the cortex area, similarly to what displayed by the cattle examined 

in the present study.         

By examining the classification of the same data according to the health status of the cases 

considered, it appeared that, in the healthy subjects, β-amyloid deposition was most 

frequently detected in cases older than 108 months (29/31 = 94%), whereas the 89 % (17/19) 

of the cases free of β-amyloid deposition belonged to the age range below 12 months. 

Considering diseased animals, we evidenced that the presence of a neuropathological 

affection induces an early accumulation of β-amyloid in an uniform way among all the age 

ranges considered starting from 13 months. In the category of diseased cases, cattle devoid of 

cerebral β-amyloid accumulations (15/24 = 62%) were mainly younger than 12 months. On 

the basis of the findings obtained it is conceivable that β-amyloid accumulation process 

seemingly increases concurrently with age, as reported in humans (Hof et al., 1996), and, in 

case of concomitant diseases, it could be hypothesized that an underlying neuropathological 

process may speed up cerebral Aβ accumulation. 

By examining the frequencies of Aβ localization (Table 6), it was confirmed that the youngest 

cases were mainly negative; moreover, Aβ deposition started to increase with age, at first 

mainly displaying an extracellular pattern (38% between 12,5-36 months, 58%  between 36.5-

60 months), and then evolving in the older cattle to a prevalent coexistence of intracellular 

and extracellular deposits (52% between 108.5-180 months, 66%  over  180 months).  

These findings could be explained the theory reported by LaFerla et al., where it has been 

proposed that previously secreted Aβ, which forms the extracellular Aβ pool, could be taken 

up by cells and internalized into intracellular pools. So it is likely that the intracellular Aβ is 

derived from extracellular Aβ pools and is taken up into the cells through receptors or 

transporters (LaFerla et al., 2007). 

A prevalent extracellular localization of Aβ deposits has been frequently described also in the 

brain of other animals, particularly cats (Brellou et al., 2005; Head et al., 2005) and dogs 

(Cummings et al., 1996; Aristotelis et al., 2002): the main extracellular deposition pattern  is 

the diffuse (non-β-sheet) plaque, which can bona fide be assimilated to a form of preamyloid 

deposit, similarly to our findings in cattle. Actually the extracellular Aβ deposits observed in 

the cattle brains examined in our study were not in the form of plaques, but appeared more 

similar to preamyloid lesions, which are also frequently detectable in some form of human 

dementias (Rostagno et al., 2008) as well as in non-demented elderly (Delaere et al., 1990). In 
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human AD brain the extracellular localization of Aβ deposits in the form of senile plaques has 

long been reported, but recently the scientific attention has also been direct to better describe 

the features and investigate the role of Aβ intraneuronal accumulation in AD pathogenesis 

(Gouras et al., 2010). A supposition which has been put forward is that intraneuronal Aβ 

accumulation likely decreases with advancing plaque pathology: such a view would suggest 

that intraneuronal Aβ accumulation should be seen as an early event in the pathology of AD. 

In AD patients diffuse plaques characterize the first stages of the disease and may act as the 

precursor of the neuritic plaques arising afterwards. 

In view of such findings, it could therefore be argued that the preamyloid deposits observed in 

the cattle brains examined could represent an even earlier stage of the Aβ deposition process 

than the diffuse plaques described in domestic carnivores and man. 

The fact that no staining of the tissue sections examined was obtained by employing X34, a 

highly fluorescent derivative of Congo red, is very likely to be ascribed to a lack of the β-

sheet secondary protein structure in the Aβ deposits detected, i.e. a  fibrillar organization. 

APP staining results appeared alike to those obtained by staining the brain sections under 

examination with 4G8 antibody, even if, on APP stained tissues, the staining evaluation has 

been less careful because a quantitative scoring of the signal was not performed. The 

similarity of APP and 4G8 staining results is likely due to the fact that 4G8 antibody 

recognizes the same amino acid sequence (17-24 aa) which also APP antibody is directed 

against to, so a crossreaction between APP and 4G8 can not be rouled out. 

A set of the immunohistochemical investigations performed was carried out on the brain 

sections displaying a more prominent intraneuronal Aβ, in order to exclude an aspecific 

staining of lipofuscin by 4G8 antibody. Lipofuscin is a lipopigment which physiologically 

accumulates in certain cell types during aging. Its gradual intracellular accumulation is 

probably the most characteristic cytological change associated with the process of ageing in 

the brain. Cytochemically, it is considered to be an inert end product of lysosomal breakdown. 

It is known that lipofuscin may be aspecifically stained by anti-Aβ antibodies (Bancher et al., 

1989). Our attempt to discriminate by double immunohistochemical labelling between Aβ and 

lipofuscin deposits revealed that most lipofuscin and Aβ occupy distinct cellular 

compartments in neurons, although there may be some detectable co-localization. Our results 

seem to correlate with findings previously reported by D’Andrea et al. (2002), which assessed 

that the bulk of Aβ 42 immunolabelling is present in areas of the cells not occupied by 

lipofuscin pigments in normal, aged-matched control and AD neurons. This is likely evidence 

for the possibility that Aβ42 containing endosomes may not make a major contribution to 
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lipofuscin formation in neurons. However, since lipofuscin progressively accumulates 

throughout the life of neurons, it is conceivable that the bulk of existing lipofuscin may have 

been deposited within these neurons prior to the onset of Aβ42 accumulation.  

The relationship of glial cells to deposits of Aβ protein has long been studied in the brain of 

both humans and animals. 

Regarding microglia, a study reported in literature on AD brains revealed that about 50% of 

diffuse plaque deposits appeared to be associated with reactive microglia, compared to nearly 

100% of senile plaques (Itagaki et al., 1989). The finding that the intensity of the microglial 

reaction increased with the density of the surrounding amyloid deposits has been disclosed 

also by other studies (D’Andrea et al., 2004), leading to the supposition that the main 

association of microglia with dense core plaques is due to the presence of injured or dying 

neurons as plaque constituents. Such neurons would release lysosomal enzymes, cellular 

DNA and other factors capable of inducing the microglial activation. 

In the cattle brains examined in our study almost all the extracellular β-amyloid deposits 

detected, even if they were not well consolidated in the form of plaques but just displaying as 

preamyloid aggregates, appeared surrounded by activated microglial cells. The involvement 

of microglia cells in the process of preamyloid deposition has not been much investigated to 

date; however, keeping in mind such limitations, we have found an association of preamyloid 

deposits with microglial cells in the brain. Conversely, a previous investigation in the AD 

human brain by El Hachimi and Foncin (1994) reported a lack of involvement of microglial 

cells with preamyloid deposits. Our findings would let us suppose that in preamyloid 

aggregates the amyloid substance itself or some other yet unknown co-factors, probably 

unrelated to neurons, might act as potent microglial-activating materials. 

Regarding astrocytes involvement in the Aβ deposition process it is known from literature 

that these cells appear associated with both neuritic and diffuse plaques. Some studies have 

indicated that astrocytes activate subsequently to microglia suggesting a cause and effect 

relationship (Gatan and Overmier, 1999). Microglia activation can activate astrocytes, which 

in turn act to temper and regulate, sometimes even to inactivate, the phagocytic microglial 

activity.  

In the majority of brain areas analyzed in our study, there was not a real colocalization 

between astrocytes and Aβ; however, when present, we have detected the involvement of 

astrocytes in the process of preamyloid deposition. The finding we obtained confirmed what 

previously described by other authors about astrocyte morphology in AD brains (Itagaki et al., 
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1989): cell bodies of reactive astrocytes labelled with GFAP were located around preamyloid 

deposits, with some of them sending fine processes penetrating the aggregates. 

Regarding immunobiochemical analysis for the detection of the different Aβ isoforms in 

cattle brains, a limitation of the present study was that frozen samples were available for a 

fewer cases (n = 27) than all those tested by IHC. In fact, the Chi square test was not 

statistically significant (p < 0,8931, Table 11). 

Although at WB analysis a small amount of data was obtained, it appeared that the largest part 

(7/17 =41%) of the cases testing negative was younger than 12 months of age, whereas no 

overt association can be drawn between age-range and detection of positivity. Regarding the 

neuroanatomical distribution, the immunobiochemical analysis disclosed the presence of Aβ 

peptides mainly at the level of the cerebral cortex, with 76% of the cortices examined testing 

positive (19/25), whereas 37,5 % (3/8) of the examined cerebella displayed Aβ peptides. Aβ 

was never detected immunobiochemically at the brainstem level (0/7), thus confirming the 

related immunohistochemical results. Regarding the types of Aβ peptides detected, the same 

Aβ isoforms characterizing AD brains were disclosed in the cattle brain, i.e. Aβ 1-38, 1-40, 1-

42 and 3-42, but, given the paucity of the samples tested, no correlations can be drawn among 

Aβ types and age ranges. 

WB results were then compared with IHC analysis to disclose possible correlations. 

Fisher test analysis, although the p-value was not completely statistically significant (p = 

0,08931), likely suggests a trend in the comparison of IHC and WB results. Eight out of the 

10 cases positive at WB analysis were also positive at IHC, while 2 out of 10 resulted 

negative. This is most likely due to the fact that WB is much more sensitive than IHC and 

could have unmasked IHC false negative cases. 

Among the cases detected positive at IHC, 8 out of 16 were also positive at WB analysis, 

while the remaining amount resulted WB negative. Further analysis by mass spectrometry 

(SELDI-TOF), that is going to be performed in our study, could clarify if some of the cases 

testing negative at WB but positive at IHC were false positive because of an aspecific staining 

of the ageing pigment lipofuscin. Moreover, the fewer amount of positive cases detected at 

WB analysis in comparison to IHC could be ascribed to the antibody used to 

immunohistochemically detect Aβ, i.e. 4G8, which can cross react also with APP (Aho et al., 

2010). Therefore it can not be excluded that 4G8 antibody immunoprecipitated not only Aβ 

but also the full-length APP, thus producing some false positive cases at IHC.  

Interestingly, in 6 out of the 8 cases positive at both IHC and WB analysis, the presence of 

Aβ-42 isoform was detected at the immunobiochemical analysis. In other animal species such 
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as dogs (Aristotelis et al., 2002), cats (Head et al., 2005) and monkeys (Kimura et al., 2001), 

the diffuse plaques detected were mainly Aβ-42 positive. It would seem that also in cattle 

amyloid deposits are mainly characterized by the presence of the Aβ-42 peptide and an 

extension of the present study by investigating at WB analysis a larger number of the animals 

considered could confirm this hypothesis. 

The genetic analysis was focused on the ApoE gene because it is known that APOE ε4 is a 

major risk factor for AD in humans (Bekris et al., 2010); specifically two SNPs in exon 4 (at 

codons 112 and 158) of the APOE gene that define three polymorphic alleles (ε2, ε3 and ε4) 

are known. The results from our study show that codons 112 and 158 of the bovine gene are 

not polymorphic. However we found 9 SNPs, among which 3 are novel. 

An interesting result was detected for the position 876 for which statistical analysis suggested 

an association between a SNP at this position and cases with a strong or weak intensity of the 

signal or its absence in the cortex at IHC analysis. Actually, the frequence of the allelic 

variant “G” seemed  to be in relationship with the extracellular cortical accumulation of Aβ. 

The position of the polymorphism, located in one of the first introns near the 5’ UTR, could 

lead to the hypothesis that the 876 polymorphism has a regulatory role in gene expression, as 

reported in many studies (Chorev et al., 2012). 

There are some studies in humans focused on the role of ApoE genotype in the Aβ 

intracellular or extracellular depositions  in the brain. In a study analizing 20 patients with AD 

and 10 controls (Christensen et al., 2010),  the analysis revealed a strong association between 

the ApoE4 genotype and the presence of intraneuronal Aβ. 

Given that ApoE  is involved in neuronal cholesterol transport, it could not be excluded that 

perturbed intracellular trafficking might influence the intraneuronal or extraneuronal Aβ 

aggregation, in human as well as in cattle brains. 

Further studies with the involvement of a larger number of animals could shed light on the 

role of this polymorphism. The next aim of our research will be the study of the role of other 

genes involved in the Aβ deposition process in humans, starting from presenilin 1 (PSEN-1) 

and presenilin 2 (PSEN-2). 
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