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Chapter 1 

 

Melanoma and MC1R gene 

 
Starting from the ‘60s, a sharp increase in the incidence rate of cutaneous malignant melanoma has 

been observed in Caucasian people worldwide, both in men and women and in all age groups. 

Despite a recent flattening of the trend, cutaneous malignant melanoma has come to be one of the 

most frequent cancers in fair-skinned populations: as an example, it ranks fourth and third 

respectively in men and women in Australia [Lens et al. 2004], where the incidence rate values are 

among the highest in the world. During the same period, the trend in mortality rates followed, albeit 

in a less dramatic fashion, that of incidence rates: an initial increase in mortality rates involving, 

although unevenly, both sexes and most age groups, has been followed since the mid '90s by a 

slowdown or even a reversal of the trend [Lens et al. 2004; Karim-Kos et al. 2008]. The early 

detection owing to screening may be a reason, but does not appear as the only explanation for this 

fact [de Vries et al. 2003]. Worldwide, most elevated mortality rates are observed in Australia, 

Northern Europe and South Africa, and, although there is a wide geographic variability, both 

incidence and mortality rates for cutaneous malignant melanoma are everywhere higher in males 

than in females [Lens et al. 2004]. Among all the skin cancers, melanoma certainly represents the 

most lethal form and metastatic melanoma has a five-year survival rate of only 11% [Thompson et 

al. 2005].  

As for all cancers, the occurrence of cutaneous malignant melanoma is the result of the interaction 

between host and environmental factors. Known risk factors include environmental UV radiation 

exposure, fair skin, family history of melanoma, high number of melanocytic naevi, light eye and 

hair pigmentation [Gandini S et al. 2005a; Gandini S et al. 2005b; Gandini S et al. 2005c].  
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Melanocortin-1-receptor gene (MC1R, MIM#155555) is responsible for constitutive pigment 

variation in humans and has been shown to be a risk factor for melanoma. It is located on 

chromosome 16q24.3 and encodes for a seven pass transmembrane G-protein coupled-receptor of 

317 amino acids, which has a high affinity for α-melanocyte-stimulating hormone (α-MSH) and 

adrenocorticotropin [Mountjoy et al. 1992; Busca et al. 2000]. The binding of α-MSH to the 

functional MC1R on melanocytes stimulates the synthesis of eumelanin [Burchill et al. 1993], 

which determines black/brown pigment. MC1R therefore contributes to determine pigmentation by 

regulating the relative proportion of eumelanin and phaeomelanin (red/yellow pigment). Eumelanin 

has been shown to reduce the accumulation of DNA photoproducts, while phaeomelanin may 

contribute to cancer risk because it generates free radicals following UV exposure [Ranadive et al. 

1986; Kollias et al. 1991; Rouzaud et al. 2005]. MC1R is highly polymorphic in the Caucasian 

population: more than 80 variants have been recently described [Gerstenblith et al. 2007]. Some of 

these variants result in partial loss of the receptor’s signaling ability, since they are unable to 

stimulate cyclic adenosine monophosphate (cAMP) production as strongly as the wild-type receptor 

in response to α-MSH stimulation [Schioth et al. 1999; Beaumont et al. 2007]. It results in a 

quantitative shift of melanine synthesis from eumelanin to phaeomelanin, which is associated with 

the “red hair color” (RHC) phenotype, characterized by fair pigmentation (fair skin, red hair, and 

freckles), and by sun sensitivity (poor tanning response and solar lentigines).  

Genetic association studies have found that the MC1R variants D84E, R151C, R160W, and D294H, 

defined as ‘R’ alleles [Gerstenblith et al. 2007; Beaumont et al. 2007], were strongly associated with 

the RHC phenotype [Box et al. 1997; Smith et al. 1998; Palmer et al. 2000; Flanagan et al. 2000; 

Bastiaens et al. 2001a; Kennedy et al. 2001; Branicki et al. 2007]. Other two less frequent variants 

(R142H and I155T) have also been classified as R alleles [Beaumont et al. 2007] basing on findings 

of strong familial association with RHC phenotype [Flanagan et al. 2000; Duffy et al. 2004]. The 

V60L, V92M, and R163Q variants seem to have a relatively weak association with RHC phenotype 
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and are designated as ‘r’ alleles [Duffy et al. 2004; Beaumont et al. 2007]. Several studies in 

different populations have reported that the risk of melanoma is higher among individuals who 

carry MC1R variant alleles than among individuals who are wild type for MC1R [Valverde et al. 

1996; Ichii-Jones et al. 1998; Palmer et al. 2000; Kennedy et al. 2001; van der Velden et al. 2001; 

Matichard et al. 2004; Landi et al. 2005; Stratigos et al. 2006; Fernandez et al. 2007]. Melanoma 

risk attributable to MC1R may arise through the determination of the tanning response of skin to 

UV light, which can then either ameliorate or exacerbate the genotoxic effects of sunlight [Bliss et 

al. 1995]. However, the relationship between some MC1R variants and melanoma also in darkly-

pigmented Caucasian populations suggests that MC1R signaling pathway may have an additional 

role in skin carcinogenesis beyond the UV-filtering differences between dark and fair skin 

[Gerstenblith et al. 2007].  

 

1.1. Previous meta-analysis on MC1R variants and melanoma 

We previously investigated the association of the nine main variants in MC1R gene (V60L, D84E, 

V92M, R142H, R151C, I155T, R160W, R163Q, and D294H) with melanoma and RHC phenotype 

by a meta-analysis of 20 published studies [Raimondi S et al. 2008]. Eleven studies on MC1R and 

melanoma, and 9 on MC1R and phenotype were included in the analysis. The 7 variants D84E, 

R142H, R151C, I155T, R160W, R163Q, and D294H were significantly associated with melanoma 

development, with Odds Ratios (OR) (95% Confidence Intervals-CI-) ranging from 1.42 (1.09-

1.85) for R163Q to 2.45 (1.32-4.55) for I155T. The MC1R variants R160W and D294H were 

associated both with red hair and fair skin, while D84E, R142H, and R151C were strongly 

associated with red hair only- ORs (95%CI) ranged from 2.99 (1.51-5.91) for D84E to 8.10 (5.82-

11.28) for R151C. The association of D84E, R142H, R151C, R160W, and D294H with melanoma 

could be at least partly explained by pigmentary pathways: red hair and fair skin individuals are 
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unable to increase melanin levels in the skin in response to high exposure to UV light and therefore 

increase the levels of phaeomelanin, which is mutagenic and cytotoxic [Rouzaud et al. 2005]. The 

two variants I155T and R163Q were found to be positively associated with melanoma risk but not 

with red hair nor with fair skin. These results suggest that, for these variants, melanoma risk could 

be mainly increased via non-pigmentary pathways. It is well documented that α-MSH has 

immunomodulatory and anti-inflammatory functions [Luger et al. 2003; Rogers et al. 2006], 

therefore the association between MC1R and skin cancer could be a result of inflammatory or 

immune mechanisms influencing tumorigenesis. Modulation of melanocyte growth, development 

and differentiation, and increased DNA damage possibly associated with production of reactive 

oxygen species are other hypothesized mechanisms contributing to MC1R carcinogenesis [Suzuki et 

al. 1996; Rouzaud  et al. 20057. No association with melanoma or phenotype was found for V60L 

and V92M variants.  

Although the results of our previous meta-analysis were informative, firm conclusions on the 

specific contribution of each MC1R variant in melanoma development due to pigmentary and non-

pigmentary pathways could not be reached using only published data. The main limitations were the 

lack of genotyping information in some allele-based studies that were therefore excluded from the 

analysis; and the lack of presentation of the number of individuals who carried no MC1R variant, 

which did not allow us to compare subjects carrying each MC1R variant with subjects carrying no 

variant. Furthermore, using only published data, we could not take into account possible 

confounding factors and interaction of MC1R with other genes and environmental exposures, and 

we could not study the independent effect of MC1R variants on melanoma stratifying by RHC 

phenotype.  
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1.2. Pooled-analysis of genetic epidemiology data 

In order to overcome the problems above described, I decided to perform a pooled-analysis of 

individual data on MC1R gene, SKin cancer and Phenotypic characteristics (M-SKIP project).  

Pooled-analyses has several advantages over other study types, especially in the genetic 

epidemiology field. Since millions of Single Nucleotide Polymorphisms (SNPs) were identified by 

the SNP Consortium [Sachidanandam et al. 2001], a growing number of studies have reported the 

association of SNPs in candidate genes with several diseases. However individual studies of typical 

size usually have low statistical power to find true associations given the polygenic nature of most 

common diseases, leaving alone the various forms of potential interactions between genetic, 

phenotypic and environmental factors. The advent of genome-wide association studies allowed 

genotyping of hundreds of thousands of SNPs across the genome on a usually large number of 

subjects, but information on a wide spectrum of epidemiological and lifestyle factors were seldom 

collected, although the role of these factors in complex diseases is undoubtedly crucial.  

Meta-analysis of genetic epidemiological studies has been adopted to increase the power of smaller 

candidate gene studies by summarizing results from multiple studies. However the lack of access to 

individual data precludes in-depth investigations, including analyses of gene-gene and gene-

environment interaction, and appropriate stratified analyses. This may potentially lead to false-

positive or false-negative results, or biased magnitudes of associations, as previously pointed out 

[Chatzinasiou et al. 2011]. 

Pooled-analysis of the primary data has been shown to have critical methodological advantages 

over meta-analysis [Ioannidis et al. 2002; Seminara et al. 2007] and has been applied successfully in 

the genetic epidemiology field [Ioannidis et al. 2001; Ioannidis et al. 2002; Raimondi et al. 2006; 

Paracchini et al. 2007; Klug et al. 2009; Bracci et al. 2010; Truong et al. 2010; Lurie et al. 2011]. 

Pooled-analysis uses standardized definitions of cases, outcomes and covariates, as well as the same 
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analytical methods, thus limiting potential sources of heterogeneity across different studies. It also 

allows investigators to better control for confounding factors, evaluate alternative genetic models 

and estimate the joint effect of multiple genes. Finally, population-specific effect and gene-gene and 

gene-environment interactions may be better assessed using pooled-analysis [Boffetta et al. 2007]. 

The pooling of data from observational studies has become more common recently, and different 

approaches of data analysis have been applied [Smith-Warner et al. 2006]. Methodological 

guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of 

such methods, thus providing a better summary of the actual findings on specific fields. Moreover, 

the awareness of the potential problems connected with the establishment of international 

collaborations and data pooling might help investigators to avoid or overcome them. For these 

reasons, before presenting the results from the M-SKIP project, I will describe the project itself, by 

explaining the procedures that were used to identify studies, contact investigators, collect and 

standardize data.  
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Chapter 2 

 

The M-SKIP Project 

 
The M-SKIP (Melanocortin-1 receptor gene, SKin cancer and Phenotypic characteristics) project is 

an international pooled-analysis, which aims to investigate the role of MC1R variants in skin 

carcinogenesis, by pooling individual patient data on sporadic skin cancer cases and controls with 

genetic information on MC1R variants. The project was founded by the Italian Association of 

Cancer Research (AIRC) in 2011 as a My First AIRC Grant (MFAG 11831). The specific aims of 

the pooled-analysis are: 

1) to assess the association between MC1R variants and skin cancer overall, and by skin cancer 

type; 

2) to assess the association between MC1R variants and phenotypic characteristics, including hair 

and eye color, skin color, skin type, common and atypical naevi, and freckles.  

3) to evaluate the complex interplay between MC1R variants and phenotypic characteristics in skin 

cancer development. 

Beyond these investigations, other studies on the M-SKIP data could be proposed by each member 

of the M-SKIP study group, following the project guidelines (Appendix 1). The database will 

therefore be the start point for future investigation on the genetic and molecular epidemiology of 

melanoma and non-melanoma skin cancer (NMSC) and will represent a reference and guide for all 

investigators working in this research field. Collaboration within investigators will significantly 

improve the knowledge and accelerate our understanding of the association between MC1R 

variants, skin cancer and phenotype. 
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The M-SKIP study will have an important impact on the genetic melanoma research. First of all, 

this pooled-analysis will help elucidating the dual pathway hypothesis by investigation into a 

molecular distinction between those individuals whose melanomas arise on chronic sun-exposed 

skin from those in whom tumors will develop on sun-protected skin or from melanocytic nevi. If a 

dual pathway for melanoma is supported, public-health messages can be tailored to the population 

at risk. Moreover, the identification of MC1R variants associated with melanoma in darkly-

pigmented subjects would be a start point for further molecular studies investigating the non-

pigmentary mechanisms leading to cancer development, in order to identify and block them. 

Finally, if specific MC1R variants are associated with a higher melanoma risk in certain sub-

populations, genetic-based innovative techniques for early detection may be developed and applied 

to these populations.  

 

2.1. Innovation of the project 

Melanoma is a complex and heterogeneous disease with genetic, phenotypic and environmental 

factors contributing to its development. As the incidence of melanoma continues to increase, there 

is a great deal of interest in determining DNA variants at “melanoma gene(s)” to identify at-risk 

patients before disease develops and also to solicit targets for potential therapies. Until now, the 

genetic studies have typically focused on families, and identified two high-penetrance melanoma 

susceptibility genes: CDKN2A and CDK4. However, only approximately 5-12% of melanoma cases 

occur in a familial setting, while the vast majority of melanoma cases are sporadic; therefore there 

is a need to identify also low-risk, low-penetrance alleles quite prevalent in the general population, 

which may be responsible for sporadic melanoma development.  

Very well-structured collaborative groups studying the genetics of melanoma already exist. The 

most important were GenoMEL, coordinated by Julia Newton-Bishop, who investigates the 
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genetics of familial melanoma, and GEM, coordinated by Marianne Berwich, who explores the 

genetic and environmental epidemiology of melanoma by comparing single- with multiple-primary 

melanoma cases. Both these consortia selected patients with higher risk of melanoma compared to 

the general population. The innovation of M-SKIP project is to create a new collaborative group 

with the aim of studying the still not deeply investigated area of the genetics of sporadic melanoma, 

which represent up to 95% of melanoma cases. Although reducing the probability to found rare 

genetic variants, our data are particularly suitable to find associations between low-penetrance 

alleles and skin cancer development at a population level. MC1R is up to now the main important 

gene found to play a role in sporadic melanoma, and a large amount of data on MC1R variants has 

been already collected by investigators all over the world. The still ongoing collaboration with 

GenoMEL and GEM will let integrate information, data and results among the three groups, and 

give a complete picture of the genetics of melanoma.  

With respect to Genome Wide Association Studies (GWAS), that have been recently conducted to 

find gene loci predisposing to melanoma development, the M-SKIP project integrates also 

epidemiological information and takes into account relationships and interactions between lifestyle, 

epidemiological and genetic factors.  

 

2.2. The identification of data sets and data collection 

An Advisory Committee of 10 international investigators with great expertise in skin cancer and 

genetic research was established. Members of the Advisory Committee are listed in the project 

guidelines (Appendix 1). The invitation letters for the identified investigators, the datasheet 

including all the variables to be collect and the guidelines, rules, and general conditions applicable 

to the M-SKIP project had been prepared and firstly approved by the Advisory Committee 

members. 



16 

 

Published epidemiological studies on MC1R variants, melanoma, non-melanoma skin cancer 

(NMSC) and phenotypic characteristics associated with melanoma [Gandini et al. 2005a; Gandini et 

al. 2005c] were searched until April 2010 in the following databases: PubMed, ISI Web of Science 

(Science Citation Index Expanded) and Embase, using the keywords “MC1R” and “melanocortin 1 

receptor” alone and in combination with the terms “melanoma”, “basalioma”, “basal cell 

carcinoma”, “squamous cell carcinoma”, “skin cancer”, “hair color”, “skin color”, “skin type”, “eye 

color”, “nevi”, “freckles”, and “solar lentigines”, with no search restriction. The computer search 

was supplemented by consulting the bibliographies of the articles and reviews. We also tried to 

identify unpublished datasets by personal communication with participant investigators, members 

of the Advisory Committee, and with attendees of scientific meetings.  

We selected papers according to the following inclusion criteria: 1) observational studies on single-

primary sporadic skin cancer cases with information on any MC1R variant or 2) control series with 

information on any MC1R variant and at least one phenotypic characteristic under study. Permanent 

exclusion criteria were: 1) populations selected for MC1R status or for other genetic factors, 2) 

studies including only familial and/or multiple-primary melanoma cases, because we wanted to 

study MC1R-melanoma association at a population level, therefore excluding cases for whom the 

role of genetics is probably stronger. In the first step of the project, we also excluded GWAS, 

because their different study design and genotyping methodology would significantly increase the 

heterogeneity of our data; however GWAS with epidemiological data would be included in a next 

step of the project and their results would be compared with those of classical genetic 

epidemiological studies. 

The original search provided 748 papers, among them 111 were considered potentially interesting 

and full-text articles were retrieved and evaluated. We excluded 49 articles for the following 

reasons: duplicate populations (N = 20), no data on outcome (case/control status or any of the 
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studied phenotypic characteristics) or on MC1R variants (N = 12), case reports, commentaries or 

reviews (N = 6), GWAS (N = 6), populations selected for genetic factors (N = 4) and multiple 

primary melanoma cases only (N = 1). The remaining 62 independent studies were considered 

eligible for inclusion in the pooled analysis. 

For each independent study, we identified the corresponding investigator and retrieved his/her 

contact information. Each investigator was invited to join the M-SKIP project: this required them to 

sign a participation form and a document attesting to approval of the study guidelines (Appendix 1), 

and then to provide their data in electronic form without restrictions on format. A detailed list of 

variables relevant for skin cancer was provided and, for each available variable in the list, the 

authors were required to compile a form with a clear and complete description on how it was 

collected and coded. Investigators did not send any personal identifier with data, but only 

identification codes. Finally, investigators were asked to send a signed statement declaring that the 

original study was approved by an Ethic Committee and/or that study subjects provided a written 

consent to participate in the original study. 

Data collection started in May 2009 and was closed in December 2010. During this period, 43 

investigators were contacted and invited to share data. Thirty-one (72%) agreed to participate and 

provided data on 28,998 subjects, including 13,511 skin cancer cases (10,182 melanomas) and 

15,477 controls from 37 independent published [Bastiaens et al. 2001a; Bastiaens et al. 2001b; 

Kennedy et al. 2001; Fargnoli et al. 2003; Dwyer et al. 2004; Kanetsky et al. 2004; Pastorino et al. 

2004; Landi et al. 2005; Debniak et al 2006; Fargnoli et al. 2006a; Fargnoli et al. 2006b; Han et al. 

2006; Kanetsky et al 2006; Stratigos et al. 2006; Anno et al. 2007; Branicki et al. 2007; Fernandez 

et al. 2007; Motokawa et al. 2007; Stefanaki et al. 2007; Anno et al. 2008; Fargnoli et al. 2008; 

Fernandez-de-Misa et al. 2008a; Fernandez-de-Misa et al. 2008b; Mengel-From et al. 2008; 

Motokawa et al. 2008; Nan et al. 2008; Pastorino et al. 2008; Scherer et al. 2008; Branicki et al. 
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2009; Brudnik et al. 2009; Casula et al. 2009; Council et al. 2009; Dimisianos et al. 2009; Gapska et 

al. 2009; Ghiorzo et al. 2009; Höiom et al. 2009; Liu et al. 2009; Nan et al. 2009; Scherer et al. 

2009; Kanetsky et al. 2010; Wong et al. 2010] and 2 unpublished studies. Both the unpublished 

datasets came from investigators who were originally contacted for their published data and who 

had further data of (still) unpublished studies. Among the 12 non-participant investigators, seven 

did not reply to our invitation letter, three were not able to retrieve the original dataset and two were 

not interested in the project. The total number of skin cancer cases and controls from the 25 

independent studies [Valverde et al. 1995; Valverde et al. 1996; Box et al. 1997; Ichii-Jones et al. 

1998; Smith et al. 1998; Clairmont et al. 1999; Jones et al. 1999; Rana et al. 1999; Strange et al. 

1999; Flanagan et al. 2000; Healy et al. 2000; Palmer et al. 2000; Akey et al. 2001; Box et al. 2001; 

Jiménez-Cervantes et al. 2001; Ramachandran et al. 2001; Voisey et al. 2001; Shriver  et al. 2003; 

Duffy et al. 2004; Matichard et al. 2004; Naysmith  et al. 2004; Jannot et al. 2005; Liboutet et al. 

2006; Beaumont et al. 2007; Mossner et al 2007; Guedj et al. 2008; Shekar et al. 2008; Binkley et 

al. 2009; Galore-Haskel et al. 2009; Latreille et al. 2009; Duffy et al. 2010; Elfakir et al. 2010; 

Hacker et al. 2010] of non-participant investigators was 5,135 and 8,262, respectively. The study 

design of non-participant studies was case–control for 13 studies, control-only for 11 studies, and 

case-only for one study. 

 

2.3. Quality control, data coding and creation of the standardized dataset  

We inspected the data for completeness and resolved inconsistencies with the investigator of each 

study. Unpublished data submitted to the M-SKIP project were evaluated by an internal peer-review 

process: the principal investigator and one Advisory Committee member randomly selected  

evaluated the sent information and data, assessed their quality, and decided whether the unpublished 

data could be included in the M-SKIP data base or not.  
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Among all the collected datasets, a number of subjects were excluded due to the following reasons: 

multiple-primary melanoma cases (N = 1596), missing data on MC1R variants (N = 1081), non-skin 

melanoma cases (N = 150), subjects with atypical mole syndrome and no skin cancer (N = 58), non 

first-primary melanoma cases (N = 24), familial melanoma cases, defined as subjects with two first-

degree relatives or three or more any-degree relatives with melanoma (N = 25), other reasons 

including: unknown case/control status, duplicate subjects, or inappropriate controls (N = 232). 

The following study-related variables were recoded uniformly: study country, study design, source 

of controls, application of case–control matching, methods to define phenotypic characteristics, 

genotyping methodology, whether genotyping was done in the same center for cases and controls 

and was blinded for case/control status, and DNA source. In addition, the variables listed in Table 

2.1 were retrieved from each study if available, checked for quality, recoded in a standardized 

manner and entered in the main database. Finally, data on MC1R variants were entered for each 

subject. Quality controls and data coding were performed independently by two investigators, and 

inconsistencies were solved via consensus. A complete and clear description of all the rules we 

applied to code data was compiled. 

Each final, recoded dataset was sent to the owner investigator in order to be checked and approved. 

When a final agreement on a code could not be made with the corresponding author of each study, 

the data was considered missing. No missing imputation was performed for any of the considered 

variables. 
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Table 2.1. List of the main variables, number of original studies and related subjects per variable 
Variable Studies (%) 

N=39 
Melanoma cases (%) 

n=7806 
NMSC cases (%) 

n=3151 
Controls (%) 

n=14875 
Age 37 (95%) 7761 (99%) 3150 (100%) 14550 (98%) 

Gender 39 (100%) 7801 (100%) 3151 (100%) 14853 (100%) 
Ethnicity 38 (97%) 6770 (87%) 3142 (100%) 13833 (93%) 

Body mass index 8 (21%) 557 (7%) 1380 (44%) 2226 (15%) 
Smoking status 6 (15%) 2266 (29%) 419 (13%) 2286 (15%) 

Intermittent sun exposure 21 (54%) 4493 (58%) 1266 (40%) 2286 (15%) 
Continuous sun exposure 21 (54%) 4909 (62%) 741 (24%) 1938 (13%) 

Sunburns 25 (64%) 4210 (54%) 1288 (41%) 2968 (20%) 
Artificial UV exposure 16 (41%) 3842 (49%) 298 (9%) 1058 (7%) 

Family history of skin cancer 27 (69%) 6660 (85%) 1289 (41%) 3318 (22%) 
Family history of cancer other than skin 19 (49%) 4445 (57%) 371 (12%) 1630 (11%) 

Melanoma body site 24 (62%) 6271 (80%) NA NA 
Melanoma histology 19 (49%) 4868 (62%) NA NA 
Breslow thickness 24 (62%) 5907 (76%) NA NA 

Hair color 34 (87%) 6841 (88%) 2590 (82%) 11889 (80%) 
Eye color 31 (79%) 5990 (77%) 2456 (78%) 10720 (72%) 
Skin color 23 (59%) 3517 (45%) 826 (26%) 2963 (20%) 
Skin type 31 (79%) 6590 (84%) 1992 (63%) 4540 (31%) 

Common nevi 19 (49%) 3817 (49%) 442 (14%) 1181 (8%) 
Atypical nevi 11 (28%) 2681 (34%) 642 (20%) 1447 (10%) 

Freckles 21 (54%) 4028 (52%) 737 (23%) 2333 (16%) 
Solar lentigines 6 (15%) 1419 (18%) 442 (14%) 1088 (7%) 

NA=not applicable; NMSC=non melanoma skin cancer 
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2.4. Brief description of the collected data 

The final dataset was created in June 2011 and included data on 7,806 melanoma cases, 3,151 

NMSC cases (2,211 BCC, 788 SCC and 152 with both), and 14,875 controls. 

Distribution of data according to study country in which the study was performed is presented in 

Table 2.2. The majority of data came from Europe, especially from southern European populations. 

There was no significant difference in participation rate according to study area (Fisher exact test p-

value: 0.25). 

The main characteristics of the studies included in the M-SKIP database are described in Table 2.3. 

The majority are case–control studies (54%) with population or healthy controls and case–control 

matching. Phenotypic characteristics were frequently assessed by self-administered questionnaire 

(41%) or examination by a dermatologist or research nurse (36%). The majority of studies 

sequenced the entire coding region of the MC1R (67%) and used blood as DNA source (62%). 

 

Table 2.2. Summary of data included in the M-SKIP project by geographical location 
Study area Invited 

investigators 
Participant 

investigators 
(studies) 

Melanoma 
cases 

NMSC 
cases 

Controls 

Africa 1 0 (0) 0 0 0 
Asia 3 2 (2) 0 0 345 

Australia 4 2 (3) 744 298 290 
Northern Europea 8 6 (6) 858 1629 8095 
Central Europeb 6 3 (4) 977 639 2398 

Southern Europec 9 8 (12) 2,747 0 2263 
North America 13 11 (12) 2,480 585 1484 

TOTAL 43 d 31d (39) 7808 3151 14875 
NMSC=non melanoma skin cancer 
a includes Denmark, Norway, Sweden, The Netherlands, UK  
b includes France, Germany, Poland 
c includes Greece, Italy, Spain 
d one  investigator collected data for two different areas (North America and Asia) 
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Table 2.3. Main characteristics of the included studies 
 Studies (%) 

N=39 
Melanoma cases (%) 

n=7806 
NMSC cases (%) 

n=3151 
Controls (%) 

n=14875 
Study design     

Case-control 21 (54%) 5092 (65%) 2052 (65%) 6852 (46%) 
Case only 11 (28%) 2646 (34%) 0 0 

Control only 6 (15%) 0 0 1464 (10%) 
Cohort 1 (3%) 68 (1%) 1099 (35%) 6559 (44%) 

Source of controls     
Hospital 6 (21%) 509 (10%) 1169 (37%) 1847 (12%) 

Population or healthya 21 (75%) 4651 (90%) 1982 (63%) 12872 (87%) 
Mixed 1 (4%) 0 0 156 (1%) 

Case-control matching b     
No 10 (45%) 3151 (61%) 1739 (55%) 9578 (71%) 

Yes 12 (55%) 2009 (39%) 1412 (45%) 3833 (29%) 
Phenotype assessment     

Self-administered questionnaire 16 (41%) 2768 (35%) 672 (21%) 1875 (13%) 
Examination by an expert 14 (36%) 3970 (51%) 1380 (44%) 4392 (30%) 

Instrumental measure 2 (5%) 0 0 222 (1%) 
Mixed 5 (13%) 297 (4%) 1099 (35%) 7247 (49%) 

No measure 2 (5%) 771 (10%) 0 1139 (8%) 
Genotype assessment     

Sequencing analysis 26 (67%) 5942 (76%) 1059 (34%) 4813 (32%) 
Othersc 13 (33%) 1864 (24%) 2092 (66%) 10062 (68%) 

DNA source     
Blood 24 (62%) 4645 (60%) 2743 (87%) 13304 (89%) 

Buccal cells 14 (36%) 3161 (40%) 408 (13%) 1326 (9%) 
Tissue 1 (3%) 0 0 245 (2%) 

NMSC=non melanoma skin cancer 
a healthy subjects are blood donors, friends or relatives of cases 
b individual or frequency 
c includes RFLP, SNaPshot, allele discrimination assay 



23 

 

2.4.1. Statistical power 

We calculated that the minimum required sample size to find a statistically significant association 

between a MC1R variant and melanoma assuming a similar association to that observed in our 

previous meta-analysis [Raimondi et al. 2008] (Odds Ratio (OR) = 1.5) is around 7,500 cases and 

7,500 controls for rare variants (1-2% allele frequency in controls), and 1,400 cases and 1,400 

controls for common variants (8-10% allele frequency in controls), with 90% statistical power. 

Sample size for gene-environment interaction analysis was also calculated with the program 

POWER, version 3.0 [García-Closas et al. 1999]. Considering the study of a simple two-way 

interaction between an environmental factor and a rare MC1R variant, around 5,000 cases and 5,000 

controls would be needed to observe a multiplicative interaction effect of 2.0, arising to 16,000 

cases and 16,000 controls to observe a smaller multiplicative effect of 1.5, both with 90% statistical 

power. For common MC1R variants, the same gene-environment interaction effects of 2.0 and 1.5 

could be observed with around 1,200 cases and 1,200 controls, and with around 3,500 cases and 

3,500 controls, respectively. Our sample size therefore is appropriate for the purpose of the analysis, 

and large enough to allow stratified and interaction analyses, especially to find even small 

interaction effects with the most frequent variants, and larger interaction effects for less common 

variants. 

 

2.5. Possible difficulties of the study and proposed solutions 

While conducting a pooled-analysis of genetic epidemiology data, several problems and difficulties 

may occur. I listed here some problems we faced in the M-SKIP project and advise on possible 

strategies to avoid or reduce their impact on the pooled analysis. 
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2.5.1. Participation bias 

Some identified investigators may decide not to join the project. In the M-SKIP project we tried to 

prevent this situation by involving the Advisory Committee in all the decisional aspects of the 

project, as well as in establishing personal contacts with the investigators who were undecided 

about participation. After the first letter of invitation, new letters were sent to the potential 

participants who had not answered yet, in order to remind on the project. Advantages of being part 

of this project were highlighted: data are available for all participants, who can decide to analyze 

them for their specific interests, upon approval of the Advisory Committee; each investigator is co-

author of publications arising from the project.  

Although the previous strategy let to obtain a high participation rate, not all the identified 

investigators agreed to join the project. In order to investigate any possible participation bias, I 

compared the main characteristics of the studies included in the pooled-analysis with the published 

characteristics of the studies not included in the pooled-analysis, as study design, source of controls, 

study country, distribution of age and gender, MC1R genotyping methodology. 

 

2.5.2. Data quality 

The quality of collected data, and especially of unpublished data, may be poor. I tried to solve this 

problem with different strategies within the M-SKIP project. First, unpublished data submitted to 

the M-SKIP project were evaluated by an internal peer-review process, as described in section 2.3. 

Second, if there were discordances among the collected data or between sent data and published 

ones, or if I had any doubt on the quality of data, I contacted the participant investigator to asked 

clarification, additional material, and further information. After that, I decided whether the data 

could be included in the main data base or not.  
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2.5.3. Data standardization 

 Collected data may be not completely comparable: different studies may indeed collect data in 

different ways and may provide different variables categories. This may especially occur for 

phenotypic characteristics, sun exposure, sunburns, and naevi count. In order to standardize these 

variables, we wrote a complete and clear list of rules. I report here as an example the rules we used 

to standardize sun exposure variables, in order to provide suggestions on how to recode variables 

with highly heterogeneous assessment among studies. 

Intermittent and continuous sun exposure was coded as hours of exposure per day if the information 

was structured in this way. If not, we converted it to hours/day on a scale of 0 as no exposure and 6 

as the maximum hours of exposure per day. For example, for datasets with four classes of exposure 

(never, seldom, often, always), we recoded the classes as 0, 2, 4, 6 hours/day. If individual sun 

exposure was collected over different time periods, we calculated the average exposure weighting 

for years of exposure in each time period. Other continuous variables (i.e. days of exposure per 

year, average hours of exposure per year) were converted to hours/day using the following 

algorithm: 

1) calculate the variable mean on all the study subjects as: 

nx
n

i
i /

1
∑

=

=µ        (2.1)  

where xi is the measure of the continuous variable on subject i, and n is the study sample size; 

2) calculate the average hours of exposure/day (ν) over all the datasets with the variable coded (or 

recoded) in this way as in 1); 

3) recode each observation basing on the proportion νµ :ˆ: ii xx = as: 

µν /ˆ ii xx =       (2.2) 

4) set as 6 (maximum hours of exposure per day) the value of all calculated values greater than 6. 
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The assumption underlying this coding was that the average sun exposure pattern for study subjects 

was similar for different studies (and countries). Since we will use this variable only for 

confounding adjustment and/or effect modifier analyses, the purpose was to regroup subjects with a 

similar pattern of sun exposure, although the precise individual amount of sun exposure could not 

be estimated. 

As a general rule, when a variable (i.e. common nevi count) was collected into classes, we recoded 

each class by using its median. The maximum numbers for open categories were chosen according 

to the available M-SKIP data. 

 

2.5.4. Different outcomes and confounders 

It is possible that not all the datasets collected the same confounding variables and investigated the 

same outcomes. For this latter problem, before starting the statistical analysis, I pooled together all 

the studies with the same outcomes and calculate the corresponding statistical power.  

In order to deal with the problem of different sets of variables collected by different studies, I 

applied a two stage approach and a method previously proposed [Jackson et al. 2009] and better 

discussed in the next Chapter. 

 

2.5.5. MC1R genotyping  

It is possible that not all the investigators sequenced the full gene. When the MC1R gene was 

sequenced, all the variants of the gene could be identified and patients with no MC1R variants 

(wild-type) could be clearly defined. However, some studies  searched just for the main variants 

using genotyping methodologies like Restriction Fragment Length Polymorphism (RFLP) or SNP-

shot. This way, only some MC1R variants could be identified and “wild-type” subjects in these 
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studies were those with none of the searched MC1R variants (they could carry, however, other not 

searched MC1R variants). I created different variables to code MC1R gene. First, I coded each of 

the nine main variants (V60L, D84E, V92M, R142H, R151C, I155T, R160W, R163Q, D284H), so 

that it was 0 if the subject had no that variant, 1 if they had 1 allele of that variant, 2 if they had 2 

alleles of that variant,....Second, I coded MC1R just for the studies which sequenced the entire gene, 

as 0 if no variant was found (“wild-type” subjects), 1 if just one variant was found, 2 if two variants 

were found,.... The analyses on the most studied variants were carried out on the largest number of 

datasets, while the analyses of variants combined were carried out just on the subgroup of studies 

which sequenced the gene. I evaluated the impact of genotyping methodology on the summary 

estimate of the studied association by meta-regression analysis. 
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Chapter 3 

 

Association between MC1R variants and melanoma 

 
The first aim of the M-SKIP project is to investigate the association between MC1R variants and 

skin cancer, with particular focus on melanoma. For this latter investigation, I selected from the M-

SKIP database 17 independent melanoma case-control studies, that overall included data on 5,160 

melanoma cases and 12,119 controls. According with the participant investigator in the M-SKIP 

project, the 17 studies were: Gruis [Bastiaens et al. 2001a; Bastiaens et al. 2001b; Kennedy et al. 

2001], Dwyer [Dwyer et al. 2004], Ghiorzo [Pastorino et al. 2004; Pastorino et al. 2008; Ghiorzo et 

al. 2009], Landi [Landi et al. 2005], Debniak [Debniak et al 2006; Gapska et al. 2009], Fargnoli 

[Fargnoli et al. 2003, Fargnoli et al. 2006a; Fargnoli et al. 2006b; Fargnoli et al. 2008], Han [Han et 

al. 2006; Nan et al. 2008; Nan et al. 2009], Stratigos [Stratigos et al. 2006; Stefanaki et al. 2007; 

Dimisianos et al. 2009], Ribas [Fernandez et al. 2007], Branicki [Branicki et al. 2007; Branicki et 

al. 2009; Brudnik et al. 2009], Cornelius [Council et al. 2009], Hansson [Höiom et al. 2009], Kayser 

[Liu et al. 2009], Kumar [Scherer et al. 2009], Nagore [Scherer et al. 2009], Palmieri [Casula et al. 

2009], Kanetsky [Kanetsky et al. 2004; Kanetsky et al. 2010]. A description of the main 

characteristics of the studies is reported on Table 3.1. The majority of studies come from Europe 

(N=13, 76%), particularly from South Europe (N=7, 54%). Thirteen studies (76%) included healthy 

controls (population controls, blood donors, friends or relatives of cases), while the remaining four 

(24%) recruited hospital controls. Overall, the average age of controls was higher than that of cases 

(62 versus 53 years), while the proportion of males was the same for both cases and controls (44%). 

All the studies collected information on the following potential confounders: age, gender and family 

history of melanoma. The assessment of further confounders varied among different studies.  
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Table 3.1. Description of the main characteristics of the 17 case-control studies included in the pooled-analysis 
First author, 

year 
Country Controls 

type 
N Cases/ 
controls 

Age (SD) % of males Possible confounders assessed beyond age, 
gender and family history of melanoma Cases Controls Cases Controls 

Gruis, 2001 The 
Netherlands 

Hospital 115/378 49 (12) 58  (11) 37 42 Sun exposure (chronic, intermittent), sunburns 
(lifetime), naevi (common, atypical) 

Dwyer, 2004 Australia Healthy 159/290 44 (10) 44 (10) 41 46 Sun exposure (chronic, intermittent), sunburns 
(lifetime, childhood) 

Ghiorzo, 2004 Italy Healthy 254/507 52 (16) 51 (17) 50 47 Sun exposure (chronic, intermittent), sunburns 
(lifetime, childhood), naevi (common, atypical) 

Landi, 2005 Italy Healthy 165/171 49 (15) 46 (13) 49 49 Sun exposure (chronic, intermittent), sunburns 
(lifetime) 

Debniak, 
2006 

Poland Healthy 349/313 53 (14) 53 (13) 32 24 sunburns (lifetime, childhood) 

Fargnoli, 
2006 

Italy Hospital 155/163 49 (14) 49 (14) 40 50 Sun exposure (chronic, intermittent), sunburns 
(childhood), naevi (common, atypical) 

Han, 2006 USA Healthy 219/241 64 (8) 58 (7) 0 0 Sunburns (lifetime) 
Stratigos, 

2006 
Greece Hospital 123/155 52 (16) 44 (15) 51 54 Sun exposure (chronic, intermittent), sunburns 

(lifetime, childhood),  naevi (common, atypical) 
Ribas, 2007 Spain Healthy 108/188 51 (15) 53 (14) 46 39 Sunburns (childhood), naevi (common) 

Branicki, 
2009 

Poland Hospital 116/489 62 (14) 43 (19) 35 40 - 

Cornelius, 
2009 

USA Healthy 83/166 51 (15) 77 (7) 45 50 - 

Hansson, 
2009 

Sweden Healthy 675/477 53 (19) 42 (12) 47 64 - 
 

Kayser, 2009 The 
Netherlands 

Healthy 68/6559 70 (8) 72 (9) 47 41 - 

Kumar, 2009 Germany Healthy 512/1064 58 (15) 54 (12) 56 56 - 
Nagore, 2009 Spain Healthy 1031/558 52 (16) 37 (12) 46 62 - 

Palmieri, 
2009 

Italy Healthy 259/75 49 (14) 61 (15) 48 27 - 

Kanetsky, 
2010 

USA Healthy 769/325 49 (14) 48 (13) 49 43 Sun exposure (chronic, intermittent), sunburns 
(lifetime, childhood),  naevi (atypical) 

Total   5,160/12,119 53 (16) 62 (16) 44 44  
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The main studied MC1R variants, that I considered in my analyses, were nine: V60L, D84E, V92M, 

R142H, R151C, I155T, R160W, R163Q, D294H.  

 

3.1. Preliminary analyses  

3.1.1. Hardy-Weinberg equilibrium 

The Hardy-Weinberg (HW) equilibrium is the simplest model of equilibrium in population genetics. 

It implies that: 1) given a locus with two alleles A and a and frequencies p and q respectively, the 

expected genotype frequencies for AA, Aa and aa are p2, 2pq and q2 and 2) that these allele and 

genotypes frequencies do not change in time. Deviation from HW equilibrium is taken as an 

indication that the alleles are not segregating independently; there are ‘genetic’ reasons for this, 

including non-random mating (which encompasses admixture), or that the alleles reflect recent 

mutations that have not reached equilibrium, as well as methodological reasons, e.g. that selection 

of subjects from the population is biased, that there is genotyping error, or that population 

stratification exists.  

I assessed the departure of frequencies of each MC1R variant from expectation under HW 

equilibrium by Chi Square test in controls for each study. All the studies were in HW equilibrium 

for the following variants: V60L, D84E, V92M, I155T, and R163Q. For the remaining four variants 

departure from HW equilibrium was observed at least for one study, and in particular: one study 

(Kayser) for R142H variant, four studies (Dwyer, Fargnoli, Hannson, Stratigos) for R151C variant, 

two studies (Branicki, Kayser) for R160W variant, and one study (Branicki) for D294H variant. I 

took into account the deviation of these studies from HW  equilibrium, and the consequent possible 

impact on the studied associations, by meta-regression analysis. The results are presented in the 

following section 3.4. 
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3.1.2. Choice of the inheritance model 

Different inheritance models are possible and should be evaluated in order to choose the one that 

better fits the data. The main possible inheritance models are recessive or dominant. In the 

autosomal dominant mode of inheritance, heterozygous individuals are affected as well as variant 

homozygous individuals. Therefore, given a gene with the two possible alleles A and a (wild-type 

allele), with ORAa and ORAA indicating the risk to develop the study disease for subjects with Aa 

and aa genotypes, respectively, the dominant model of inheritance may be expressed as follows: 

ORAA=ORAa≠1 and ORaa=1. In the autosomal recessive model of inheritance, variant homozygous 

individuals are affected, while heterozygous individuals are normal. This model may be expressed 

as follows: ORAA≠1 and ORAa=ORaa=1. Another inheritance model often observed is the 

multiplicative model, that implies a “dose” effect because it assumes a linear increase in OR with 

increasing the number of variant alleles. Therefore, according with this latter model of inheritance, 

ORAA>ORAa≠1 and ORaa=1.  

I tested these different possible inheritance models in each of the 17 studies included in the analysis 

and found that the dominant model was the one with the lowest Akaike's Information Criterion 

(AIC) for almost all the studies and variants, therefore I assumed this model of inheritance in all the 

following analyses.  

AIC is a criterion for selecting an optimum model in a class of nested and non-nested models or 

models fitted on different samples. It takes into account both the binomial deviance and the degrees 

of freedom of each model and was defined as: 

)(2)(2)( mkmLmAIC +−=                           (3.1) 

where L(m) is the maximum log-likelihood for the m-th model and k(m) is the number of predictors 

for the m-th model. Better models have smaller AIC. 
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3.1.3. Combining data into a single dataset with random effects models 

A first analysis using data combined into one dataset, is to fit them with logistic regression models 

with random slope. Considering a dominant model, let πik/X be the probability of melanoma for 

subject i (i=1,…,nk) of study k (k=1,…,K) conditional on the presence of a certain MC1R variant 

(X). I accounted for the fixed MC1R effect and the random selection of studies, assuming a model 

that relates MC1R and study effects linearly to the logit of the probabilities: 

ikkikik XbXX ++= βαπ )/ (logit                  (3.2) 

In this model the transformed regression coefficient exp(β) is the odds of melanoma for a subject 

with the MC1R variant compared with a subject without the MC1R variant, and the bk are the study-

specific coefficients accounting for the random selection of studies, with bk ~ N(0, σ2
b), where σ2

b 

represents the between study variance of the MC1R effect.  

The logistic regression model above described could be applied to different inheritance models and 

could include covariates, in order to adjust the studied associations by possible confounding factors. 

In order to include the available information from all the studies, missing values could be estimated 

in the model with multiple imputation and/or the creation of a missing-data indicator variable. 

However, when the majority of missing data are the results of non-availability of certain variables 

in some studies, as for the M-SKIP project, the use of both multiple imputation and the missing-

data indicator would be likely to introduce a bias in comparison with the complete case method 

[Miettinen et al. 1985; Huberman et al. 1999] and a two-stage approach would be preferred. 

I performed a preliminary analysis by combining data into a single dataset to estimate the crude 

effect of each MC1R variant on melanoma development, therefore I did not consider at this step all 

the possible confounders collected by each study. Otherwise, confounders were taken into account 

in the following analyses described in the next sections 3.2 and 3.3.  
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The results of this preliminary analysis are reported in Table 3.2. We found significant associations 

with melanoma for all variants except V92M and R163Q, with ORs ranging from 1.11 (95%CI: 

1.01-1.22) for V60L to 2.46 (95%CI: 1.69-3.60) for D84E.  

 

Table 3.2. Crude association between MC1R variants and melanoma 
MC1R variant N cases/N controls OR (95%CI) 

V60L 5048/5523 1.11 (1.01-1.22) 
D84E 4261/4735 2.46 (1.69-3.60) 
V92M 4577/4948 1.11 (0.98-1.26) 
R142H 4365/4712 1.76 (1.31-2.38) 
R151C 5081/5523 1.72 (1.52-1.95) 
I1551T 4575/4947 1.43 (1.06-1.93) 
R160W 5078/5538 1.87 (1.65-2.12) 
R163Q 4925/5255 1.09 (0.93-1.28) 
D294H 4609/5079 1.91 (1.53-2.38) 

OR=Odds Ratio; CI=Confidence Intervals 

 

3.2. Two-stage analysis 

The two-stage analysis method [Stukel et al. 2001] allows to overcome the problem of the 

availability of different study covariates. The pooled-estimates of the association of MC1R variants 

with melanoma were calculated as follows.  

First, study-specific ORs were calculated by applying logistic regression to the data from each study 

to estimate the odds of melanoma conditional on the presence of a MC1R variant (X), controlling 

for confounders Zk. For study k (k=1,…,K), assuming just one confounder, the model is written as: 

 ikkikkkik ZXX γβαπ ++=)/(logit  (3.3) 

where πik is the conditional probability of melanoma for subject i (i=1,…,nk) of study k. Although 

MC1R variants were uniformly defined across studies, the confounders Zk were specific to a 

particular study. The exposure log-odds ratio for study k is denoted βk, the confounding log-odds 
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ratio is denoted γk, and the αk are the study-specific intercepts. The βk are assumed to vary across 

studies according to the second-stage model:  

 kkk eb ++= ββ  (3.4) 

where β is the pooled-exposure log-odds ratio, bk are random effects with bk ~ N(0, σ2
b), where σ2

b 

represents the variability of the study-specific exposure effects βk about the population mean β, and 

ek are independent errors with ek ~ N(0, σ2
k), where σ2

k describes the within-study variation of the 

βk. In the first stage kβ̂ and its variance 2ˆ kσ  are estimated from equation 3.3, separately for each 

study.  

The two-stage estimator of the pooled exposure effect β is a weighted average of the kβ̂ , weighted 

by the inverse marginal variances of the kβ̂ , denoted 122 )ˆ( −+= bkkw σσ . Thus: 

 ∑∑=
k kk kk ww /)ˆ(ˆ ββ  (3.5) 

 1)()ˆvar( −∑=
k kwβ  (3.6) 

Two methods [Stukel et al. 2001] are frequently used to estimate the random effects variance σ2
b in 

equations 3.5 and 3.6. These methods are pseudo-maximum likelihood and moment estimation.  

 

3.2.1. Results 

I pooled adjusted study-specific estimates with the two-stage approach previously described. 

Missing data were imputed with multiple imputation models for variables with less than 20% of 

missing data, by using the iterative Markov chain Monte Carlo method [Horton et al. 2007]. Forest 

plots for each of the nine main MC1R variants are presented in Figure 3.1-3.9. A significant 

association with melanoma was observed for the six MC1R variants D84E (OR; 95%CI: 2.13; 1.44-

3.17), V92M (1.15; 1.00-1.31), R142H (1.77; 1.14-2.75), R151C (1.62; 1.34-1.96), R160W (1.74; 

1.43-2.13), and D294H (1.78; 1.40-2.28). No association was observed between melanoma and the 
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three MC1R variants V60L (OR; 95%CI: 1.14; 0.99-1.31), I155T (1.36; 0.97-1.90), and R163Q 

(1.10; 0.94-1.30).    

 

Figure 3.1. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between MC1R V60L variant and melanoma 

Overall  (I-squared = 42.5%, p = 0.033)
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Figure 3.2. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between MC1R D84E variant and melanoma 

Overall  (I-squared = 0.0%, p = 0.626)
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Figure 3.3. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between MC1R V92M variant and melanoma 

Overall  (I-squared = 0.0%, p = 0.527)
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Figure 3.4. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between MC1R R142H variant and melanoma 

Overall  (I-squared = 39.8%, p = 0.062)
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Figure 3.5. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between MC1R R151C variant and melanoma 

Overall  (I-squared = 39.8%, p = 0.046)
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Figure 3.6. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between MC1R I155T variant and melanoma 

Overall  (I-squared = 4.4%, p = 0.402)
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Figure 3.7. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between MC1R R160W variant and melanoma 

Overall  (I-squared = 39.9%, p = 0.046)
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Figure 3.8. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between MC1R R163Q variant and melanoma 

Overall  (I-squared = 0.0%, p = 0.752)
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Figure 3.9. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between MC1R D294H variant and melanoma 

Overall  (I-squared = 0.0%, p = 0.632)
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3.3. Heterogeneous assessment of confounders 

While performing pooled- and meta-analyses, one of the most common problems is to deal with 

heterogeneity among studies. The availability of individual data in pooled-analyses gives the 

opportunity to study in details the variability of the study estimates according with several possible 

stratification variables, and to take into account confounders of the studied association. However, 

the availability of confounders generally vary between studies, so that each study provides a 

different set of variables that may be used to obtain adjusted risk estimates. This way the risk 
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estimates obtained by different studies may not be comparable. In order to overcome this problem, I 

studied, validated and applied a method recently proposed [Jackson et al. 2009] to use information 

from all the available studies while adjusting for all the potential confounders. The method is based 

on a bivariate random-effects meta-analysis model previously described [van Houwelingen et al. 

2002; Riley et al. 2007a; Riley et al. 2007b].  

The present sub-chapter is set out as follows. In section 3.3.1 I will present the rationale of the 

proposed method, I will introduce the basics of a standard bivariate random effects meta-analysis, 

and I will describe the Jackson’s method along with the procedure used to estimate the within-study 

correlations. In section 3.3.2 I will apply the proposed method to a simplified M-SKIP dataset. In 

section 3.3.3 I will compare the results obtained in section 3.3.2 with those obtained with the two-

stage analysis above described and with two alternative and commonly used approaches: the 

application of a univariate meta-analysis to (1) a subset of studies with full confounder information 

and (2) all the studies but excluding some main confounders. In section 3.3.4 I will extend the 

application of the proposed method to the more complex case of the original M-SKIP data. Finally, 

I will discuss in section 3.3.5 strengths and possible pitfalls of the presented method, and I will 

comment the most important results for the M-SKIP Project.   

 

3.3.1. Bivariate meta-analysis approach to overcome the problem of missing confounders in 

pooled-analysis of observational studies  

Results from observational studies are susceptible to the distorting influence of confounding 

variables that, unless they are properly adjusted for, can result in biasing the study association of 

interest. Although pooled-analyses of individual data avoids many typical difficulties of meta-

analyses, one problem generally remains: it is unlikely that all studies provide information on the 

same set of potential confounders. In such situations, two simple approaches are commonly used: 
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either include in the analysis only those studies that provide full details of a set of potential 

confounders, or use all the available studies but omit some potentially important confounders. The 

first approach discards information and results in an inevitable loss of precision, while the second 

one may omit important confounders and therefore be misleading.  

In 2009, Jackson et al. [Jackson et al. 2009] proposed a method to use the relationship between fully 

and partially adjusted estimates to make inferences about the fully adjusted effect, by including all 

the available studies in the analysis. Studies that provided full details of all potential confounders 

were used to obtain both fully and partially adjusted estimates, and hence were used to ascertain the 

nature of the association between the two, while those that provided only a subset of confounders 

were used to provide partially adjusted estimates alone. The authors proposed to perform a joint 

model for the fully and partially adjusted estimates by using a standard bivariate random effects 

model for meta-analysis [van Houwelingen et al. 2002; Riley et al. 2007a; Riley et al. 2007b].  

 

Bivariate random effects approach for meta-analyses 

 A bivariate meta-analitic approach may be used when the parameter of interest is bivariate, for 

instance when there are two outcome variables. In this situation it is common to perform two 

separate univariate meta-analyses, one for each outcome. However, when there are two outcomes 

likely to be correlated (i.e. disease-free and overall survival), performing a separate meta-analysis 

for each outcome ignores such correlation. In contrast a bivariate meta-analysis model utilizes the 

correlation and jointly synthesizes the outcomes to estimate the two pooled effects simultaneously. 

It was previously demonstrated and discussed that a bivariate random effects meta-analysis is 

preferable to two normal univariate random effects meta-analyses, especially when some outcome 

data are missing at random [Riley et al. 2007a; Riley et al. 2007b]. A simple bivariate model for any 
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observed pair of outcome measures )ˆ,ˆ( ,, iBiAi ωωω =  with standard errors (SA,i , SB,i ) and covariance 

SAB,i in study i is: 
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where ),( ,, iBiAi ωωω =  is the pair of the true outcomes for study i. The mixed model approach 

assumes the pair ),( ,, iBiA ωω  to follow a bivariate normal distribution, where the true outcome 

measures in the studies are normally distributed around some common mean study outcomes with a 

between-study covariance matrix Σ: 
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ΣAA and ΣBB describe the variability among studies in the true outcome estimates, while ΣAB is the 

covariance between the two true outcome estimates. 

The resulting marginal model is:  
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with Ci the covariance matrix. 

Maximum likelihood estimation for this model can be then carried out, for example by using the 

SAS procedure Proc Mixed [van Houwelingen et al. 2002].     

 

Bivariate model for missing confounders in pooled-analysis of observational studies 

A model was developed for the simple scenario where all the studies included in a pooled-analysis 

provided the same set of confounders and only some studies provided all of the confounders. In the 
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study by Jackson et al. [Jackson et al. 2009], the assumed response was the time until event, and the 

proportional hazard model was used. I hereby extend the description of the method to a binary 

response variable with the use of the logistic regression model.  

In a particular study, let X1 denote the vector of covariates that are observed by all studies 

(including the covariate of particular interest) and let X2 denote the column vector of covariates that 

are only observed by some studies. For each study where X2 is observed the full logistic regression 

model for a binary outcome Y may be expressed as follows: 

logit 21021 ),1( XXXXY 2
f

1 ββ ++== β             (3.10) 

For the partial model, i.e. without the covariates X2, the model may be written as: 

logit 101 )1( XXY p
1β+== β               (3.11) 

In the full model, the superscript f of the vector β1 indicates that the coefficients β1 are calculated by 

taking into account all the covariates X1 and X2, while in the partial model the superscript p denotes 

quantities that are only partially adjusted, as they do not take into account the covariates X2. Bold 

font is used for row vectors of parameters in these models. It is possible to obtain estimates 2
f

1 β,β ˆˆ  

(from the full model (3.10)) and p
1β̂  (from the partial model (3.11)) for each study that provides 

details of X2. For those studies that do not provide details of X2, it is only possible to obtain the 

corresponding estimate from model (3.11). 

Let the first entry in X1 denote the covariate of particular interest. We are therefore interested only 

in inference regarding the first parameter in the vectors f
1β̂  and p

1β̂ , denoted as f
1β̂  and p

1β̂ , while 

the others represent potential confounders.  

For any given study it is assumed that:  
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where 2
1σ , 2

2σ  and ρ are assumed to be fixed and known, a conventional assumption when using 

bivariate models in meta-analysis and a generalization of assuming that the within-study variances 

are fixed and known in more usual univariate analyses. In practice, while the within-study variances 

are easily estimable, the difficulty lies in estimating ρ. The underlying f
1β  and p

1β  may vary from 

study to study. This variation can be modeled as: 
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providing the marginal bivariate normal distribution for the study in question as: 
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                (3.14) 

Equation (3.14) is simply the standard bivariate model for meta-analysis, where the two outcomes 

are the partially and fully adjusted effects. This is an innovative use of the standard model, as more 

usually the outcomes are not defined so similarly.  

Although the studies that fail to report X2 do not provide direct evidence relating to fβ , they 

provide indirect information via their partially adjusted estimates and their assumed association 

with the fully adjusted estimates. The bivariate random-effects model therefore allows inferences 

concerning the fully adjusted effect to borrow strength from studies where fully adjusted estimates 

are unavailable. Missing estimates are not imputed in this procedure, but the relationship between 

the fully and partially adjusted estimates, for the studies where both estimates are available, is 

assumed to apply to those where only partially adjusted estimates can be obtained.  
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Once the fully and partially adjusted estimates have been obtained, the methodology becomes a 

fairly standard application of the bivariate random-effects model for meta-analysis, but with one 

difficulty: the within-study correlations are assumed known but need to be estimated. A 

nonparametric bootstrap estimate seems the best choice for situations where it is computationally 

feasible [Jackson et al. 2009] and it is here described. 

 

A nonparametric bootstrap estimate of ρ 

Nonparametric bootstrapping [Efron et al. 1994] is probably the simplest, but slowest, procedure for 

obtaining an estimate of ρ. For each study that provides details of X2, participants can be sampled 

with replacement providing a bootstrap sample, where for each sampled individual all the collected 

variables are recorded. For each bootstrap sample, the ordered pair of estimates *f
1β̂  and *p

1β̂  

provide the required bootstrap replication. The estimate ρ is obtained as their sample correlation. 

The algorithm used to obtain ρ may be summarized in three simple steps as follows: 

1) for each study, create a number (i.e. 500) of bootstrap samples with replacement, with the same 

sample size of the original study; 

2) for each bootstrap sample k, obtain the fully adjusted coefficient f
k 1,β̂  and the partially adjusted 

coefficient p
k 1,β̂  for the covariate of interest, by fitting two different logistic regression models 

including the full and the partial set of confounders, respectively; 

3) merge the two vectors f
1β̂  and p

1β̂  in a single dataset and calculate their Pearson correlation 

coefficient ρ .      

Two analytic methods to estimate ρ where proposed and described elsewhere [Jackson et al. 2009].      
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3.3.2. Simple analysis of the M-SKIP data 

The Jackson’s method described above [Jackson et al. 2009] was proposed and applied to a pooled-

analysis of cohort studies with time-to-event as response variable, and Cox proportional hazard 

models were therefore used in the analysis. In order to validate the proposed methodology to my 

pooled-analysis with a binary response variable and logistic regression models, I first applied an 

adaptation of the proposed method to a simplified dataset, including only age as possible 

confounding variable. The role of other possible confounders will be assessed and taken into 

account in section 3.3.4. 

I assumed I was interested in age-adjusted estimate of the association between each of the nine 

MC1R variants with melanoma: this represented the “fully adjusted estimate” in the model 

described in section 3.3.2. Using the same notation as above, here X1 was the MC1R variant of 

interest and X2 was the variable age. Since all the 17 studies reported information on age, it was 

possible to calculate for each MC1R variant the “true” age-adjusted estimate, which represented the 

“gold standard” (GS). I calculated it by using a two-stage analysis as described in the sub-chapter 

3.2 [Stukel et al. 2001]: first, I calculated study-specific age-adjusted estimates, and then I pooled 

them by using a standard univariate random effects meta-analysis approach with maximum 

likelihood estimate [van Houwelingen et al. 2002]. Study-specific estimates and their corresponding 

standard errors were calculated by unconditional logistic regression models. Starting values for the 

estimates of the between-study variance were searched into the range 0.01 to 2.00, by 0.01, as 

previously suggested [van Houwelingen et al. 2002].  

In order to validate the proposed Jackson’s method, I then assumed, for each MC1R variant, that 

some randomly selected studies did not include information on age. Therefore, for each MC1R 

variant, I had m studies for which only crude estimates could be calculated, and N-m studies for 

which both age-adjusted and crude estimates could be obtained, where N is the overall number of 
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studies included in the analysis for each MC1R variant, with Nmax=17. The pooled age-adjusted 

estimates were calculated by using the Jackson’s bivariate random-effects meta-analysis above 

described, and were then compared with the GS estimates previously calculated. The within-study 

correlations between age-adjusted and crude estimates were calculated with the nonparametric 

bootstrap estimate described in section 3.3.1, with 500 bootstrap samples. For computationally 

reasons, the range of starting values for the estimate of the between-study variances and covariance 

was restricted from 0.01 to 0.06, by 0.01. This range was chosen in order to be consistent with the 

between-study variances estimated in the corresponding univariate model, and assuming a 

covariance k=1.00, as suggested [Riley et al. 2007b, Jackson et al. 2009] .  

For the analysis of MC1R variants I assumed a dominant model, as previously discussed (section 

3.1.2). Therefore, for each MC1R variant, subjects with at least one variant allele were compared to 

subjects with no variant alleles.  

 

Results    

The allele frequency calculated on the all the controls in the M-SKIP database was: 10.6% for 

V60L, 0.4% for D84E, 7.6% for V92M, 0.6% for R142H, 5.6% for R151C, 0.9% for I155T, 6.8% 

for R160W, 4.8% for R163Q, and 1.4% for D294H.   

Table 3.3 reports the study-specific age-adjusted coefficients with their corresponding within-study 

standard errors for the association between each MC1R variant and melanoma development, and the 

pooled age-adjusted estimates, which represents the GS for the following analyses. Moreover, for 

each variant, the calculated pooled age-adjusted OR with its 95%CI is reported in Table 3.4. All the 

calculated ORs were higher than 1.00; a significant increase in melanoma risk was observed for 

carriers of the four MC1R variants D84E (OR; 95%CI: 2.21; 1.40-3.51), R151C (OR; 95%CI: 1.72; 

1.44-2.04), R160W (OR; 95%CI: 1.71; 1.48-1.98), and D294H (OR; 95%CI: 1.90; 1.46-2.48). 
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Pooled estimates with the lowest standard errors were those obtained for V92M (σ=0.066), R160W 

(σ=0.068), V60L (σ=0.074), R151C (σ=0.082), and R163Q (σ=0.082), while higher standard errors 

was observed for the four rare variants (allele frequency<2%) R142H (σ=0.296), D84E (σ=0.207), 

I155T (σ=0.164), and D294H (σ=0.122). 
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Table 3.3. Estimated study-specific age-adjusted coefficients βi for the association between each MC1R variant and melanoma development, 
with their corresponding standard errors σi, and pooled age-adjusted estimates. This analysis represents the Gold Standard because pooled 
estimates were calculated by using all the available study-specific age-adjusted estimates 

Author MC1R variants 
V60L D84E V92M R142H R151C I155T R160W R163Q D294H 

β σ β σ β σ β σ β σ β σ β σ β σ β σ 
Gruis 0.235 0.290 2.028 0.646 0.353 0.300 0.356 0.865 0.354 0.335 0.928 1.466 0.324 0.265 0.498 0.350 -0.051 0.934 

Dwyer -0.457 0.275 0.714 0.641 - - - - -0.304 0.283 - - 0.535 0.268 - - -0.846 0.508 
Ghiorzo -0.110 0.169 0.401 0.676 0.375 0.245 1.549 0.597 0.714 0.246 0.105 0.523 0.801 0.293 -0.366 0.381 0.770 0.353 
Landi 0.218 0.238 - - -0.339 0.395 1.095 0.827 1.165 0.320 - - 0.125 0.489 0.979 0.604 0.705 0.523 

Debniak 0.128 0.224 - - - - - - 0.328 0.255 - - 4.118 1.012 0.431 0.332 - - 
Fargnoli -0.357 0.232 1.149 1.160 0.253 0.369 0.171 0.500 1.057 0.436 0.331 0.773 0.388 0.480 -0.309 0.597 0.970 0.545 

Han 0.236 0.239 - - 0.201 0.251 - - 0.907 0.298 1.072 0.640 0.492 0.282 0.264 0.390 0.525 0.447 
Stratigos 0.955 0.293 - - 0.149 0.482 1.542 0.838 1.050 0.579 - - 1.012 0.781 0.183 1.051 - - 

Ribas 0.621 0.263 1.251 1.233 0.804 0.415 -0.407 0.690 0.114 0.546 1.978 0.803 1.655 0.830 0.792 0.619 1.430 0.511 
Branicki 0.024 0.298 2.088 1.324 0.005 0.291 0.092 0.653 0.813 0.335 -0.404 0.691 0.547 0.281 0.038 0.474 1.102 1.171 
Cornelius 0.197 0.550 -0.042 1.194 0.234 0.598 0.581 1.086 -0.561 0.773 -0.743 1.170 0.770 0.673 0.676 0.715 1.136 1.338 
Hansson 0.403 0.185 0.431 0.436 0.288 0.181 1.524 1.113 0.438 0.164 0.575 0.556 0.513 0.152 -0.055 0.177 0.860 0.840 
Kayser 0.263 0.304 - - 0.217 0.194 1.250 0.731 0.031 0.379 - - 0.031 0.379 0.510 0.332 - - 
Kumar -0.080 0.135 1.173 0.441 -0.003 0.136 1.186 0.347 0.636 0.149 0.591 0.425 0.550 0.147 -0.037 0.176 0.523 0.323 
Nagore 0.287 0.129 1.044 0.779 - - 0.779 0.398 0.405 0.239 0.031 0.323 0.833 0.310 0.105 0.285 0.710 0.267 
Palmieri 0.006 0.294 - - -0.561 0.635 -0.302 0.726 1.187 1.059 0.282 1.118 1.452 1.068 - - 0.484 0.529 
Kanetsky -0.102 0.150 0.002 0.493 -0.071 0.172 -0.673 0.455 0.669 0.202 -0.178 0.438 0.424 0.190 0.054 0.257 0.850 0.351 
POOLED 0.122 0.074 0.795 0.207 0.129 0.066 0.366 0.296 0.540 0.082 0.281 0.164 0.539 0.068 0.112 0.082 0.643 0.122 
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Table 3.4. Pooled age-adjusted Odds Ratio (OR) with 95% Confidence Intervals (CI) for the 
studied MC1R variants. This analysis represents the Gold Standard because pooled ORs were 
calculated by using all the available study-specific age-adjusted estimates 

MC1R variant N studies OR (95%CI) 
V60L 17 1.13 (0.97-1.32) 
D84E 11 2.21 (1.40-3.51) 
V92M 14 1.14 (0.99-1.31) 
R142H 14 1.44 (0.76-2.73) 
R151C 17 1.72 (1.44-2.04) 
I155T 12 1.32 (0.92-1.90) 

R160W 17 1.71 (1.48-1.98) 
R163Q 15 1.12 (0.94-1.34) 
D294H 14 1.90 (1.46-2.48) 

Note: significant results are in bold. 

 

Tables 3.5 to 3.13 respectively report for each MC1R variant: the study-specific age-adjusted 

coefficients with their corresponding within-study standard errors for a number of N-m studies 

which I assumed to provide information on age, the study-specific crude coefficients with their 

corresponding within-study standard errors for all the N studies, and the bootstrap correlation 

coefficient ρ for the correlation between age-adjusted and crude estimates for the N-m studies where 

both estimates could be calculated. Moreover the same tables present the pooled age-adjusted and 

crude estimates obtained by applying the Jackson’s approach previously described in section 3.3.1. 

For each variant, the calculated pooled age-adjusted OR with its 95%CI is reported in Table 13. For 

an immediate comparison, Table 3.14 also contains again the results obtained with the GS analysis. 

As for the GS analysis, all the calculated ORs were higher than 1.00; a significant increase in 

melanoma risk was again observed for carriers of the four MC1R variants D84E (OR; 95%CI: 2.20; 

1.24-3.90), R151C (OR; 95%CI: 1.66; 1.38-1.99), R160W (OR; 95%CI: 1.73; 1.49-1.99), and 

D294H (OR; 95%CI: 1.69; 1.22-2.36), with similar ORs than the GS analysis, but wider 95%CI. 

Moreover, a significant increase in melanoma risk was also observed for the two MC1R variants 

I155T (OR; 95%CI: 1.58; 1.09-2.28) and R163Q (OR; 95%CI: 1.19; 1.00-1.42), which on the 

contrary were not found to be significantly associated with melanoma in the GS analysis. Pooled 
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estimates with the lowest standard errors were those obtained for V92M (σ=0.071), R160W 

(σ=0.074), R163Q (σ=0.089), and R151C (σ=0.092), while higher standard errors was observed for 

the rare variants R142H (σ=0.394), D84E (σ=0.291), I155T (σ=0.188), and D294H (σ=0.169), but 

also for the common V60L variant (σ=0.161). All the standard errors obtained with the Jackson’s 

method were larger than the corresponding ones obtained with the GS analysis.  

 

Table 3.5. Estimated study-specific age-adjusted and crude coefficients βi(adj)  and βi(crude) for 
the association between V60L variant and melanoma development, with their corresponding 
standard errors σi(adj) and σi(crude), estimated bootstrap correlation coefficients ρi, and pooled 
estimates calculated with the Jackson’s method 

Author βi(adj) σi(adj) βi(crude) σi(crude) ρi 
Gruis 0.235 0.290 0.262 0.272 0.935 

Dwyer -0.457 0.275 -0.457 0.275 0.999 
Ghiorzo -0.110 0.169 -0.112 0.166 0.983 
Landi   0.219 0.236  

Debniak 0.128 0.224 0.082 0.217 0.964 
Fargnoli -0.357 0.232 -0.346 0.232 0.997 

Han 0.236 0.239 0.239 0.222 0.930 
Stratigos   0.836 0.275  

Ribas   0.568 0.261  
Branicki 0.024 0.298 0.247 0.273 0.926 
Cornelius 0.197 0.550 0.307 0.288 0.489 
Hansson 0.403 0.185 0.445 0.174 0.938 
Kayser   0.266 0.304  
Kumar   -0.069 0.133  
Nagore   0.184 0.116  
Palmieri   -0.006 0.278  
Kanetsky -0.102 0.150 -0.098 0.149 0.999 
POOLED 0.148 0.161 0.149 0.159  
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Table 3.6. Estimated study-specific age-adjusted and crude coefficients βi(adj)  and βi(crude) for 
the association between D84E variant and melanoma development, with their corresponding 
standard errors σi(adj) and σi(crude), estimated bootstrap correlation coefficients ρi, and pooled 
estimates calculated with the Jackson’s method 

Author βi(adj) σi(adj) βi(crude) σi(crude) ρi 
Gruis 2.028 0.646 1.576 0.596 0.989 

Dwyer 0.714 0.641 0.712 0.641 1.000 
Ghiorzo 0.401 0.676 0.474 0.675 1.000 
Fargnoli 1.149 1.160 1.157 1.160 1.000 

Ribas   1.260 1.231  
Branicki 2.088 1.324 2.147 1.229 0.999 
Cornelius -0.042 1.194 0.718 0.720 0.887 
Hansson   0.582 0.423  
Kumar   1.113 0.437  
Nagore   1.267 0.761  

Kanetsky   -0.014 0.493  
POOLED 0.789 0.291 0.801 0.182  

 

Table 3.7. Estimated study-specific age-adjusted and crude coefficients βi(adj)  and βi(crude) for 
the association between V92M variant and melanoma development, with their corresponding 
standard errors σi(adj) and σi(crude), estimated bootstrap correlation coefficients ρi, and pooled 
estimates calculated with the Jackson’s method 

Author βi(adj) σi(adj) βi(crude) σi(crude) ρi 
Gruis 0.353 0.300 0.394 0.280 0.932 

Ghiorzo 0.375 0.245 0.427 0.243 0.991 
Landi   -0.342 0.394  

Fargnoli 0.253 0.369 0.259 0.369 0.997 
Han 0.201 0.251 0.082 0.232 0.936 

Stratigos   0.053 0.446  
Ribas   0.781 0.414  

Branicki 0.005 0.291 0.007 0.268 0.927 
Cornelius 0.234 0.598 -0.349 0.397 0.661 
Hansson 0.288 0.181 0.232 0.169 0.936 
Kayser   0.109 0.175  
Kumar   0.025 0.135  

Palmieri   -0.239 0.599  
Kanetsky -0.071 0.172 -0.070 0.172 0.999 
POOLED 0.105 0.071 0.107 0.071  
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Table 3.8. Estimated study-specific age-adjusted and crude coefficients βi(adj)  and βi(crude) for 
the association between R142H variant and melanoma development, with their corresponding 
standard errors σi(adj) and σi(crude), estimated bootstrap correlation coefficients ρi, and pooled 
estimates calculated with the Jackson’s method 

Author βi(adj) σi(adj) βi(crude) σi(crude) ρi 
Gruis 0.356 0.865 0.093 0.824 0.999 

Ghiorzo 1.549 0.597 1.230 0.522 0.998 
Landi   1.160 0.824  

Fargnoli 0.171 0.500 0.178 0.499 0.999 
Stratigos   1.530 0.811  

Ribas   -0.442 0.688  
Branicki 0.092 0.653 0.268 0.581 0.988 
Cornelius 0.581 1.086 0.294 0.923 0.982 
Hansson 1.524 1.113 1.451 1.082 0.999 
Kayser   1.227 0.730  
Kumar 1.186 0.347 1.092 0.343 0.990 
Nagore   0.875 0.374  
Palmieri   -0.406 0.703  
Kanetsky -0.673 0.455 -0.675 0.454 0.999 
POOLED 0.097 0.394 0.571 0.241  

 
 
Table 3.9. Estimated study-specific age-adjusted and crude coefficients βi(adj)  and βi(crude) for 
the association between R151C variant and melanoma development, with their corresponding 
standard errors σi(adj) and σi(crude), estimated bootstrap correlation coefficients ρi, and pooled 
estimates calculated with the Jackson’s method 

Author βi(adj) σi(adj) βi(crude) σi(crude) ρi 
Gruis 0.354 0.335 0.500 0.316 0.939 

Dwyer -0.304 0.283 -0.304 0.283 0.998 
Ghiorzo 0.714 0.246 0.720 0.241 0.939 
Landi   1.164 0.318  

Debniak 0.328 0.255 0.334 0.250 0.978 
Fargnoli 1.057 0.436 1.054 0.435 0.996 

Han 0.907 0.298 0.974 0.278 0.934 
Stratigos   1.081 0.554  

Ribas   0.321 0.519  
Branicki 0.813 0.335 0.411 0.302 0.911 
Cornelius -0.561 0.773 -0.326 0.383 0.946 
Hansson 0.438 0.164 0.527 0.154 0.927 
Kayser   0.031 0.379  
Kumar   0.561 0.146  
Nagore   0.532 0.217  
Palmieri   1.584 1.039  
Kanetsky 0.669 0.202 0.655 0.201 0.997 
POOLED 0.506 0.092 0.503 0.092  
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Table 3.10. Estimated study-specific age-adjusted and crude coefficients βi(adj)  and βi(crude) for 
the association between I155T variant and melanoma development, with their corresponding 
standard errors σi(adj) and σi(crude), estimated bootstrap correlation coefficients ρi, and pooled 
estimates calculated with the Jackson’s method 

Author βi(adj) σi(adj) βi(crude) σi(crude) ρi 
Gruis 0.928 1.466 1.196 1.418 1.000 

Ghiorzo 0.105 0.523 0.087 0.513 1.000 
Fargnoli 0.331 0.773 0.340 0.772 1.000 

Han 1.072 0.640 0.830 0.620 0.998 
Ribas   2.250 0.785  

Branicki -0.404 0.691 -0.176 0.641 0.996 
Cornelius -0.743 1.170 0.536 0.621 0.992 
Hansson 0.575 0.556 0.692 0.524 0.990 
Kumar   0.651 0.421  
Nagore   0.109 0.285  
Palmieri   0.376 1.103  
Kanetsky   -0.172 0.438  
POOLED 0.456 0.188 0.556 0.192  

 
 
Table 3.11. Estimated study-specific age-adjusted and crude coefficients βi(adj)  and βi(crude) for 
the association between R160W variant and melanoma development, with their 
corresponding standard errors σi(adj) and σi(crude), estimated bootstrap correlation coefficients 
ρi, and pooled estimates calculated with the Jackson’s method 

Author βi(adj) σi(adj) βi(crude) σi(crude) ρi 
Gruis 0.324 0.265 0.355 0.249 0.931 

Dwyer 0.535 0.268 0.533 0.268 0.998 
Ghiorzo 0.801 0.293 0.830 0.289 0.937 
Landi   0.038 0.485  

Debniak 4.117 1.012 3.495 0.723 0.508 
Fargnoli 0.387 0.480 0.392 0.479 0.996 
Stratigos   0.764 0.741  

Ribas   1.699 0.826  
Branicki 0.546 0.281 0.451 0.255 0.898 

Han 0.492 0.282 0.508 0.260 0.925 
Cornelius 0.770 0.673 1.024 1.170 0.841 
Hansson 0.513 0.152 0.485 0.142 0.939 
Kayser   0.031 0.379  
Kumar   0.556 0.145  
Nagore   0.791 0.285  
Palmieri   1.278 1.049  
Kanetsky 0.424 0.190 0.423 0.190 0.999 
POOLED 0.546 0.074 0.544 0.074  
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Table 3.12. Estimated study-specific age-adjusted and crude coefficients βi(adj)  and βi(crude) for 
the association between R163Q variant and melanoma development, with their corresponding 
standard errors σi(adj) and σi(crude), estimated bootstrap correlation coefficients ρi, and pooled 
estimates calculated with the Jackson’s method 

Author βi(adj) σi(adj) βi(crude) σi(crude) ρi 
Gruis 0.498 0.350 0.354 0.328 0.932 

Ghiorzo -0.366 0.381 -0.317 0.378 0.934 
Landi   0.990 0.602  

Debniak 0.431 0.332 0.510 0.332 0.998 
Fargnoli -0.309 0.597 -0.303 0.597 1.000 

Han 0.264 0.390 0.537 0.359 0.932 
Stratigos   0.235 1.007  

Ribas   0.931 0.599  
Branicki 0.038 0.474 0.056 0.436 0.935 
Cornelius 0.676 0.715 0.431 0.422 0.872 
Hansson -0.055 0.177 -0.165 0.166 0.937 
Kayser   0.492 0.332  
Kumar   -0.032 0.175  
Nagore   -0.032 0.260  

Kanetsky 0.054 0.257 0.050 0.256 0.999 
POOLED 0.175 0.089 0.201 0.115  

 
 
Table 3.13. Estimated study-specific age-adjusted and crude coefficients βi(adj)  and βi(crude) for 
the association between D294H variant and melanoma development, with their corresponding 
standard errors σi(adj) and σi(crude), estimated bootstrap correlation coefficients ρi, and pooled 
estimates calculated with the Jackson’s method 

Author βi(adj) σi(adj) βi(crude) σi(crude) ρi 
Gruis -0.051 0.934 0.278 0.844 0.995 

Dwyer -0.846 0.508 -0.484 0.508 1.000 
Ghiorzo 0.770 0.353 0.729 0.343 0.996 
Landi   0.675 0.520  

Fargnoli 0.970 0.545 0.975 0.545 1.000 
Han 0.525 0.447 0.588 0.415 0.931 

Ribas   1.423 0.510  
Branicki 1.102 1.171 1.045 0.919 0.988 
Cornelius 1.136 1.338 1.855 0.828 1.000 
Hansson 0.860 0.840 1.047 0.793 0.998 
Kumar   0.502 0.319  
Nagore   0.685 0.242  
Palmieri   0.529 0.504  
Kanetsky   0.847 0.351  
POOLED 0.527 0.169 0.771 0.139  
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Table 3.14. Pooled age-adjusted Odds Ratio (OR) with 95% Confidence Intervals (CI) for the 
studied MC1R variants calculated with the Jackson’s method, and corresponding results for 
the GS analysis 

MC1R variant N studies Jackson’s OR (95%CI) GS OR (95%CI) 
V60L 17 1.16 (0.85-1.59) 1.13 (0.97-1.32) 
D84E 11 2.20 (1.24-3.90) 2.21 (1.40-3.51) 
V92M 14 1.11 (0.97-1.28) 1.14 (0.99-1.31) 
R142H 14 1.10 (0.51-2.39) 1.44 (0.76-2.73) 
R151C 17 1.66 (1.38-1.99) 1.72 (1.44-2.04) 
I155T* 12 1.58 (1.09-2.28) 1.32 (0.92-1.90) 
R160W 17 1.73 (1.49-1.99) 1.71 (1.48-1.98) 
R163Q* 15 1.19 (1.00-1.42) 1.12 (0.94-1.34) 
D294H 14 1.69 (1.22-2.36) 1.90 (1.46-2.48) 

Note: significant results are in bold. 
* The significance of results for this variant is different according with the two methods.  
 

3.3.3. Standard univariate meta-analyses on the M-SKIP simplified dataset 

As previously pointed out, two possible and commonly used alternatives of the Jackson’s method 

are to perform univariate random effects meta-analysis either to a subset of studies with information 

on the full set of confounders or to all the available studies but including only a subset of 

confounders. In the case of the simplified dataset previously described in section 3.3.2, this means 

that the two considered alternatives were: 

1) to perform a univariate random effects meta-analysis on the subset of N-m studies with 

information on age; 

2) to perform a univariate random-effects meta-analysis on the all the N studies by using only the 

crude estimates. 

For both the analyses, study-specific estimates were calculated by unconditional logistic regression 

models and then pooled together, following the two-stage analysis approach [Stukel et al. 2001]. As 

for the GS analysis, starting values for the estimates of the between-study variance were searched in 

the range 0.01 to 2.00, by 0.01. 
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Results    

Table 3.15 presents the pooled coefficients with their corresponding within-study standard errors 

for the association between each MC1R variant and melanoma development. Table 3.16 and Figure 

3.1 presents, for each variant, the pooled age-adjusted OR with its 95%CI calculated on a subset of 

N-m studies, and the pooled crude OR with its 95%CI calculated on the N studies. For an immediate 

comparison, Table 3.16 and Figure 3.10 also contains again the results obtained with the GS 

analysis and with the Jackson’s analysis. Moreover, Table 3.16 also includes results from a standard 

two-stage analysis as described in sub-chapter 3.2. This analysis pooled N crude study-specific 

estimates and N-m age-adjusted estimates.   

 

Table 3.15. Estimated pooled age-adjusted and crude coefficients βi(adj)  and βi(crude) for the 
association between the nine MC1R variants and melanoma development, with their 
corresponding standard errors σi(adj) and σi(crude), by using two separate univariate random-
effects meta-analysis. The age-adjusted estimate was obtained for the subset of studies with 
information on age, the crude estimate was obtained by discarding information on age from 
all the studies 

Variant N (N-m) studies βi(adj) σi(adj) βi(crude) σi(crude) 
V60L 17 (10) 0.008 0.084 0.127 0.067 
D84E 11 (6) 1.051 0.334 0.815 0.189 
V92M 14 (8) 0.171 0.088 0.104 0.063 
R142H 14 (8) 0.111 0.510 0.531 0.201 
R151C 17 (10) 0.499 0.110 0.524 0.081 
I155T 12 (7) 0.312 0.264 0.355 0.153 

R160W 17 (10) 0.528 0.083 0.535 0.066 
R163Q 15 (9) 0.079 0.107 0.107 0.083 
D294H 14 (8) 0.460 0.254 0.686 0.117 

N= number of studies included in the calculation of crude estimate. 
N-m= number of studies included in the calculation of age-adjusted estimate. 
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Table 3.16. Pooled age-adjusted and crude Odds Ratio (OR) with 95% Confidence Intervals (CI) for the studied MC1R variants calculated 
by three separate univariate random-effects meta-analysis, and corresponding results for the Jackson’s method and for the GS analysis 
MC1R variant Univariate age-adjusted OR 

(95%CI) 
Univariate crude OR 

(95%CI) 
Standard two-stage 

OR (95%CI) 
Jackson’s OR (95%CI) GS OR (95%CI) 

V60L 1.01 (0.83-1.22) 1.14 (0.98-1.31) 1.11 (0.96-1.28) 1.16 (0.85-1.59) 1.13 (0.97-1.32) 
D84E 2.86 (1.21-6.75) 2.26 (1.48-3.44) 2.27 (1.46-3.51) 2.20 (1.24-3.90) 2.21 (1.40-3.51) 
V92M 1.19 (0.96-1.46) 1.11 (0.97-1.27) 1.13 (0.98-1.30) 1.11 (0.97-1.28) 1.14 (0.99-1.31) 

R142H^ 1.12 (0.33-3.73) 1.70 (1.10-2.63) 1.44 (0.76-2.76) 1.10 (0.51-2.39) 1.44 (0.76-2.73) 
R151C 1.65 (1.29-2.11) 1.69 (1.42-2.01) 1.72 (1.46-2.01) 1.66 (1.38-1.99) 1.72 (1.44-2.04) 

I155T*^† 1.37 (0.72-2.61) 1.43 (1.02-2.00) 1.45 (1.04-2.00) 1.58 (1.09-2.28) 1.32 (0.92-1.90) 
R160W 1.70 (1.40-2.05) 1.71 (1.49-1.96) 1.71 (1.48-1.97) 1.73 (1.49-1.99) 1.71 (1.48-1.98) 
R163Q* 1.08 (0.84-1.38) 1.11 (0.93-1.33) 1.11 (0.93-1.32) 1.19 (1.00-1.42) 1.12 (0.94-1.34) 
D294H& 1.58 (0.87-1.89) 1.99 (1.54-2.56) 1.89 (1.46-2.44) 1.69 (1.22-2.36) 1.90 (1.46-2.48) 

Significant results are in bold. 
^The significance of results for this variant is different according with univariate crude and GS analysis.  
*The significance of results for this variant is different according with Jackson’s and GS analysis.  
&The significance of results for this variant is different according with univariate age-adjusted and GS analysis.  
†The significance of results for this variant is different according with standard two-stage and GS analysis. 
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Figure 3.10. Pooled age-adjusted and crude Odds Ratio (OR) with 95% Confidence Intervals (CI) for the studied MC1R variants calculated 
by two separate univariate random-effects meta-analysis, and corresponding results for the Jackson’s method and for the GS analysis 
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As for the GS analysis, all the calculated ORs were higher than 1.00. 

Pooled age-adjusted OR indicated a significant increase in melanoma risk for carriers of the three 

MC1R variants D84E (OR; 95%CI: 2.86; 1.21-6.75), R151C (OR; 95%CI: 1.65; 1.29-2.11), 

R160W (OR; 95%CI: 1.70; 1.40-2.05), but not for the D294H variant, that was otherwise 

significantly associated with melanoma with the GS analysis. 

Pooled crude OR indicated a significant increase in melanoma risk for carriers of the four MC1R 

variants D84E (OR; 95%CI: 2.26; 1.48-3.44), R151C (OR; 95%CI: 1.69; 1.42-2.01), R160W (OR; 

95%CI: 1.71; 1.49-1.96), and D294H (OR; 95%CI: 1.99; 1.54-2.56). Moreover, a significant 

increase in melanoma risk was also observed for the two rare MC1R variants R142H (OR; 95%CI: 

1.70, 1.10-2.63) and I155T (OR; 95%CI: 1.43; 1.02-2.00), which on the contrary were not found to 

be significantly associated with melanoma in the GS analysis. 

Standard pooled age-adjusted estimates generally presented the wider 95%CI and therefore the 

highest standard errors, while standard pooled crude estimates presented similar standard errors to 

GS analysis. The Jackson’s method generally produced intermediate 95%CI than standard age-

adjusted and crude pooled estimate approach.  

Looking at the point estimate, the standard crude estimate approach generally produced OR most 

similar to the GS ones, while the standard age-adjusted estimate approach often obtained the most 

different point estimates. As for the significance of the results, with the crude estimate and the 

Jackson’s approaches, two rare variants were significantly associated with melanoma, despite they 

were not associated with melanoma with the GS approach; with the standard age-adjusted approach, 

the significant association of one variant with melanoma observed in the GS analysis was not 

reproduced. 

Finally, the standard two-stage analysis seemed to produce the most closer results to GS analysis for 

both point and interval estimates in our dataset. 
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In conclusion, the Jackson’s method seemed to have intermediate properties in the estimation of the 

“true” OR, being generally more powerful than the standard age-adjusted estimate approach and 

more conservative that the standard crude estimate approach. The latter one generally had a good 

performance, probably due to the similarity between age-adjusted and crude estimates in our data. 

 

3.3.4. Complete analysis of the M-SKIP data 

Sections 33.2 presented an application of the Jackson’s method to a simplified dataset obtained 

from the M-SKIP Project. In this section, I will extend the previous analyses to the complete 

dataset, by taking into account all the confounders available in each study. In the simple scenario 

described by Jackson et al. [Jackson et al. 2009], all the studies included in the pooled-analysis 

provided the same set of confounders and only some studies provided all of the confounders. This 

scenario is unlikely to happen in a real situation. More frequently, each study included in a pooled-

analysis collected information on a different set of variables, providing more than two possible 

levels of adjustments. 

In the complete M-SKIP dataset, all the studies collected information on age, gender and family 

history of melanoma. Some studies collected further information on other possible confounders like 

sun exposure (chronic and/or intermittent), sunburns (during lifetime and/or childhood) and naevi 

count (common and/or atypical). A summary of the available confounders is presented in Table 3.1. 

A strict application of a bivariate approach would force to consider as “partially adjusted estimates” 

the 17 estimates adjusted by age, gender and family history, and as “fully adjusted estimates” the 

five estimates obtained by studies which included information on at least one confounder in each 

class of important confounders (sun exposure, sunburns, naevi count). With this choice, however, I 

would discharge information on additional confounders for five studies (Dwyer, Landi, Debniak, 
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Han, Ribas) which have data on more than the “basic” confounders, but no data on all the main 

classes of confounders. 

In order to use all the possible available information, I decided to extend the application of the 

bivariate approach to a multivariate approach following described. 

 

 Statistical analysis on the complete dataset    

I divided all the confounders in three classes of important confounders: sun exposure, sunburns and 

naevi count. I considered as “level 1 adjusted estimates” the ones adjusted by basic confounders 

(age, gender, family history), as “level 2 adjusted estimates” the ones adjusted by basic confounders 

+ at least one confounder in the class of sunburns, as “level 3 adjusted estimates” the ones adjusted 

by basic confounders + at least one confounder in the class of sunburns and sun exposure, as “level 

4 adjusted estimates” the ones adjusted by basic confounders + at least one confounder in all the 

three considered classes.   

Using the same notation as in section 3.3.1, here X1 is a vector including the MC1R variant of 

interest, age, gender and family history, X2 is a vector including the variables related to sunburns, X3 

is a vector including the variables related to sun exposure, and X4 is a vector including the variables 

related to naevi count.  

For each study where X1, X2, X3 and X4 are observed, the full logistic regression model in (3.10) 

may be expressed as follows: 

logit 41( XXXXβ)X,X,X,XY 32104321 4
L4
3

L4
2

L4
1 ββββ ++++==           (3.15) 

where L4
1β , L4

2β , L4
3β  and 4β are the vectors of coefficients for the fully adjusted model.  
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For each study where X1, X2, and X3 are observed, the logistic regression model may be expressed as 

follows: 

logit 3XXXXXXY L3
3

L3
2

L3
1 βββ +++== 210321 ),,1( β                       (3.16)          

For each study where X1 and X2, are observed, the logistic regression model may be expressed as 

follows: 

logit 21021 ),1( XXXXY L2
2

L2
1 ββ ++== β             (3.17) 

Finally, for each study where X1 is observed, the logistic regression model may be expressed as 

follows: 

logit 101)1( XXY L1
1β+== β               (3.18) 

Note that for the studies which provide information on all the possible confounders, I can estimate 

all the vectors Lj
1β , Lj

2β , Lj
3β  and applying the previous models, while for studies including only 

basic confounders, only L1
1β  may be calculated. 

We are interested in inferences regarding the first component of the vector 1β . For any given study 

with all the confounders assessed, it is assumed that:  
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The underlying L1
1β , L2

1β , L3
1β and L4

1β  may vary from study to study. This variation can be 

modelled as: 
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providing the marginal mulitivariate normal distribution for the study in question as: 
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Equation (3.21) represents a four-dimensional model for meta-analysis, where the four levels of 

possible adjustments are considered.          

I calculated the pooled fully-adjusted estimate for each MC1R variant by using a two-stage analysis 

[Stukel et al. 2001] as described in sub-chapter 3.2. In the first step, each available study-specific 

estimate was calculated with unconditional logistic regression model including all the available 

covariates. Missing data were imputed with multiple imputation models for variables with less than 

20% of missing data, by using the iterative Markov chain Monte Carlo method [Horton et al. 2007]. 

In the second step, the multivariate model above described was applied. The within-study 

correlations between each pair of adjustments levels were calculated with the nonparametric 

bootstrap estimate described in section 3.3.1, with 500 bootstrap samples. For computationally 

reasons, the starting values for the estimate of the between-study variances and covariance were set 

equal to the between-study variances estimated in the corresponding univariate model and assuming 

a covariance kij=1.00, as suggested [Riley et al. 2007b, Jackson et al. 2009] .  
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Results    

The classification of studies according to their maximum level of adjustment is reported in Table 

3.17. I can correctly classify all the studies but one (Ribas) which included information on X1, X2 

and X4, but not on X3. In  order to be conservative, I classified this study as “level 2”, however I 

calculated the estimate adjusted also by neavi count, in order to not discharge information on this 

potentially important confounder.  

 

Table 3.17. Classification of studies into their maximum available level of adjustment 
 

First author, 
year 

Possible confounders assessed beyond age, gender and family 
history of melanoma 

Maximum  level 
of adjustment 

Gruis, 2001 Sun exposure (chronic, intermittent), sunburns (lifetime), naevi 
(common, atypical) 

LEVEL 4 

Dwyer, 2004 Sun exposure (chronic, intermittent), sunburns (lifetime, childhood) LEVEL 3 
Ghiorzo, 2004 Sun exposure (chronic, intermittent), sunburns (lifetime, childhood), 

naevi (common, atypical) 
LEVEL 4 

Landi, 2005 Sun exposure (chronic, intermittent), Sunburns (lifetime) LEVEL 3 
Debniak, 2006 Sunburns (lifetime, childhood) LEVEL 2 
Fargnoli, 2006 Sun exposure (chronic, intermittent), sunburns (childhood), naevi 

(common, atypical) 
LEVEL 4 

Han, 2006 Sunburns (lifetime) LEVEL 2 
Stratigos, 2006 Sun exposure (chronic, intermittent), sunburns (lifetime, childhood),  

naevi (common, atypical) 
LEVEL 4 

Ribas, 2007 Sunburns (childhood), naevi (common) LEVEL 2 
Branicki, 2009 - LEVEL 1 
Cornelius, 2009 - LEVEL 1 
Hansson, 2009 - LEVEL 1 
Kayser, 2009 - LEVEL 1 
Kumar, 2009 - LEVEL 1 
Nagore, 2009 - LEVEL 1 
Palmieri, 2009 - LEVEL 1 
Kanetsky, 2010 Sun exposure (chronic, intermittent), sunburns (lifetime, childhood),  

naevi (atypical) 
LEVEL 4 

 

Tables 3.18 to 3.26 respectively report for each MC1R variant: the study-specific coefficients 

adjusted for each of the four levels, where available, with their corresponding within-study standard 

errors, and the bootstrap correlation coefficient ρ for the correlation between each  pair of available 

estimates. Moreover the same tables present the pooled estimates obtained for each of the four 
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levels of adjustment. For each variant, the calculated pooled fully adjusted OR with its 95%CI is 

reported in Table 3.27. All the calculated ORs but that for V60L were higher than 1.00; a significant 

increase in melanoma risk was observed for carriers of the six MC1R variants D84E (OR; 95%CI: 

2.92; 1.69-5.04), R142H (OR; 95%CI: 2.24; 1.15-4.37), R151C (OR; 95%CI: 1.56; 1.27-1.92), 

I155T (OR; 95%CI: 2.84; 2.03-3.92), R160W (OR; 95%CI: 1.43; 1.19-1.72), and D294H (OR; 

95%CI: 1.74; 1.34-2.27). Pooled fully adjusted estimates with the lowest standard errors were those 

obtained for V92M (σ=0.091), R160W (σ=0.093), R151C (σ=0.105), R163Q (σ=0.109), while 

higher standard errors was observed for the four rare variants R142H (σ=0.341), D84E (σ=0.279), 

I155T (σ=0.171) and D294H (σ=0.134), and for the common variant V60L (σ=0.165).  
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Table 3.18. Estimated coefficients βi(L4), βi(L3), βi(L2), and βi(L1), for levels of adjustment 4, 3, 2 and 1, respectively, to assess the association 
between V60L variant and melanoma development, with their corresponding standard errors σi(L4), σi(L3), σi(L2), and σi(L1) and estimated 
bootstrap correlation coefficients ρi(LkLj) for each pair of available estimates, and pooled estimates calculated for each level with a 
multivariate adaptation of the Jackson’s method 

Author βi(L4) σi(L4) βi(L3) σi(L3) ρi(L4L3) βi(L2) σi(L2) ρi(L4L2) ρi(L3L2) βi(L1) σi(L1) ρi(L4L1) ρi(L3L1) ρi(L2L1) 
Gruis 0.005 0.324 0.228 0.294 0.930 0.233 0.294 0.912 0.995 0.234 0.290 0.898 0.987 0.992 

Dwyer   -0.500 0.279  -0.462 0.276  0.989 -0.449 0.275  0.974 0.987 
Ghiorzo -0.173 0.247 -0.155 0.199 0.783 -0.132 0.168 0.695 0.856 -0.133 0.168 0.654 0.844 0.975 
Landi   0.197 0.241  0.209 0.239  0.958 0.216 0.238  0.954 0.989 

Debniak      0.045 0.223   0.059 0.222   0.831 
Fargnoli -0.733 0.266 -0.472 0.242 0.920 -0.380 0.236 0.854 0.932 -0.373 0.235 0.851 0.935 0.997 

Han      0.242 0.243   0.275 0.241   0.986 
Stratigos 0.840 0.362 1.010 0.309 0.768 0.928 0.301 0.739 0.953 0.892 0.288 0.598 0.793 0.838 

Ribas      0.606 0.316   0.574 0.265   0.773 
Branicki          0.004 0.298    
Cornelius          0.250 0.565    
Hansson          0.507 0.187    
Kayser          0.262 0.304    
Kumar          -0.079 0.134    
Nagore          0.279 0.131    
Palmieri          0.000 0.302    
Kanetsky -0.177 0.160 -0.099 0.151 0.843 -0.098 0.151 0.843 0.997 -0.092 0.150 0.793 0.906 0.916 
POOLED -0.039 0.165 0.138 0.108  0.121 0.085   0.109 0.075    
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Table 3.19. Estimated coefficients βi(L4), βi(L3), βi(L2), and βi(L1), for levels of adjustments 4, 3, 2 and 1, respectively, to assess the association 
between D84E variant and melanoma development, with their corresponding standard errors σi(L4), σi(L3), σi(L2), and σi(L1) and estimated 
bootstrap correlation coefficients ρi(LkLj) for each pair of available estimates, and pooled estimates calculated for each level with a 
multivariate adaptation of the Jackson’s method 

Author βi(L4) σi(L4) βi(L3) σi(L3) ρi(L4L3) βi(L2) σi(L2) ρi(L4L2) ρi(L3L2) βi(L1) σi(L1) ρi(L4L1) ρi(L3L1) ρi(L2L1) 
Gruis 1.613 0.684 2.005 0.672 0.991 2.041 0.662 0.990 0.999 2.025 0.651 0.993 0.997 0.999 
Dwyer   0.765 0.655  0.779 0.653  0.999 0.709 0.642  0.997 0.998 

Ghiorzo -0.578 1.016 0.360 0.801 0.823 0.434 0.678 0.622 0.755 0.434 0.676 0.620 0.752 1.000 
Fargnoli 1.728 1.172 1.142 1.169 1.000 1.171 1.162 0.999 0.999 1.195 1.161 0.999 0.999 1.000 

Ribas      0.687 1.379   1.244 1.238   0.999 
Branicki          2.056 1.308    
Cornelius          -0.137 1.225    
Hansson          0.446 0.445    
Kumar          1.195 0.441    
Nagore          0.993 0.784    

Kanetsky -0.060 0.521 -0.036 0.497 0.741 -0.050 0.496 0.738 1.000 0.008 0.495 0.602 0.801 0.801 
POOLED 1.072 0.279 0.656 0.253  0.662 0.246   0.804 0.204    
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Table 3.20. Estimated coefficients βi(L4), βi(L3), βi(L2), and βi(L1), for levels of adjustments 4, 3, 2 and 1, respectively, to assess the association 
between V92M variant and melanoma development, with their corresponding standard errors σi(L4), σi(L3), σi(L2), and σi(L1) and estimated 
bootstrap correlation coefficients ρi(LkLj) for each pair of available estimates, and pooled estimates calculated for each level with a 
multivariate adaptation of the Jackson’s method 

Author βi(L4) σi(L4) βi(L3) σi(L3) ρi(L4L3) βi(L2) σi(L2) ρi(L4L2) ρi(L3L2) βi(L1) σi(L1) ρi(L4L1) ρi(L3L1) ρi(L2L1) 
Gruis 0.482 0.324 0.303 0.306 0.951 0.317 0.304 0.950 0.995 0.351 0.300 0.937 0.985 0.992 

Ghiorzo 0.299 0.388 0.457 0.311 0.815 0.492 0.249 0.684 0.824 0.467 0.246 0.654 0.781 0.960 
Landi   -0.283 0.399  -0.324 0.396  0.986 -0.335 0.396  0.975 0.991 

Fargnoli 0.379 0.402 0.293 0.374 0.952 0.301 0.370 0.883 0.931 0.307 0.370 0.880 0.929 0.998 
Han      0.165 0.256   0.169 0.254   0.975 

Stratigos 0.101 0.673 0.207 0.513 0.637 0.300 0.503 0.609 0.973 0.229 0.472 0.540 0.804 0.811 
Ribas      0.934 0.483   0.799 0.415   0.785 

Branicki          0.003 0.290    
Cornelius          0.506 0.628    
Hansson          0.216 0.182    
Kumar          0.016 0.136    
Nagore          0.210 0.195    
Palmieri          -0.598 0.644    
Kanetsky -0.098 0.184 -0.084 0.174 0.868 -0.092 0.173 0.866 0.993 -0.091 0.172 0.815 0.942 0.951 
POOLED 0.169 0.091 0.114 0.072  0.131 0.078   0.132 0.067    
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Table 3.21. Estimated coefficients βi(L4), βi(L3), βi(L2), and βi(L1), for levels of adjustments 4, 3, 2 and 1, respectively, to assess the association 
between R142H variant and melanoma development, with their corresponding standard errors σi(L4), σi(L3), σi(L2), and σi(L1) and estimated 
bootstrap correlation coefficients ρi(LkLj) for each pair of available estimates, and pooled estimates calculated for each level with a 
multivariate adaptation of the Jackson’s method 

Author βi(L4) σi(L4) βi(L3) σi(L3) ρi(L4L3) βi(L2) σi(L2) ρi(L4L2) ρi(L3L2) βi(L1) σi(L1) ρi(L4L1) ρi(L3L1) ρi(L2L1) 
Gruis 0.648 0.853 0.333 0.878 0.999 0.364 0.858 0.999 1.000 0.368 0.864 0.999 0.999 1.000 

Ghiorzo 3.102 1.122 2.707 1.072 0.999 1.214 0.528 0.246 0.246 1.231 0.525 0.242 0.242 0.998 
Landi   1.188 0.832  1.127 0.831  1.000 1.086 0.829  0.999 1.000 

Fargnoli 0.240 0.537 0.017 0.527 0.993 0.112 0.519 0.988 0.992 0.092 0.518 0.988 0.992 0.999 
Stratigos 2.132 0.974 1.502 0.875 0.948 1.553 0.891 0.950 0.999 1.552 0.842 0.932 0.984 0.983 

Ribas      -0.910 0.827   -0.376 0.691   0.616 
Branicki          0.137 0.644    
Cornelius          0.183 1.304    
Hansson          1.557 1.121    
Kayser          1.251 0.731    
Kumar          1.209 0.347    
Nagore          0.706 0.402    
Palmieri          -0.494 0.752    
Kanetsky -0.643 0.503 -0.598 0.460 0.477 -0.645 0.457 0.477 0.993 -0.632 0.456 0.410 0.938 0.947 
POOLED 0.806 0.341 0.497 0.262  0.496 0.225   0.489 0.203    
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Table 3.22. Estimated coefficients βi(L4), βi(L3), βi(L2), and βi(L1), for levels of adjustments 4, 3, 2 and 1, respectively, to assess the association 
between R151C variant and melanoma development, with their corresponding standard errors σi(L4), σi(L3), σi(L2), and σi(L1) and estimated 
bootstrap correlation coefficients ρi(LkLj) for each pair of available estimates, and pooled estimates calculated for each level with a 
multivariate adaptation of the Jackson’s method 

Author βi(L4) σi(L4) βi(L3) σi(L3) ρi(L4L3) βi(L2) σi(L2) ρi(L4L2) ρi(L3L2) βi(L1) σi(L1) ρi(L4L1) ρi(L3L1) ρi(L2L1) 
Gruis 0.533 0.355 0.291 0.339 0.959 0.281 0.339 0.957 0.994 0.353 0.335 0.935 0.980 0.985 

Dwyer   -0.315 0.286  -0.319 0.285  0.992 -0.301 0.284  0.980 0.988 
Ghiorzo 0.310 0.343 0.649 0.286 0.818 0.725 0.245 0.692 0.878 0.725 0.243 0.663 0.850 0.976 
Landi   1.238 0.330  1.140 0.322  0.951 1.165 0.320  0.944 0.994 

Debniak      0.209 0.259   0.226 0.258   0.787 
Fargnoli 0.597 0.480 1.011 0.451 0.931 0.988 0.444 0.895 0.943 0.994 0.443 0.894 0.940 0.998 

Han      0.855 0.304   0.904 0.300   0.981 
Stratigos 1.112 0.767 1.227 0.613 0.952 1.012 0.596 0.941 0.993 1.074 0.573 0.721 0.780 0.789 

Ribas      -0.242 0.626   0.267 0.525   0.882 
Branicki          0.798 0.337    
Cornelius          -1.250 0.909    
Hansson          0.371 0.165    
Kayser          0.030 0.379    
Kumar          0.616 0.148    
Nagore          0.399 0.244    
Palmieri          1.044 1.057    
Kanetsky 0.603 0.214 0.627 0.204 0.885 0.624 0.204 0.883 0.998 0.661 0.202 0.835 0.929 0.933 
POOLED 0.445 0.105 0.475 0.126  0.459 0.111   0.517 0.085    
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Table 3.23. Estimated coefficients βi(L4), βi(L3), βi(L2), and βi(L1), for levels of adjustments 4, 3, 2 and 1, respectively, to assess the association 
between I155T variant and melanoma development, with their corresponding standard errors σi(L4), σi(L3), σi(L2), and σi(L1) and estimated 
bootstrap correlation coefficients ρi(LkLj) for each pair of available estimates, and pooled estimates calculated for each level with a 
multivariate adaptation of the Jackson’s method 

Author βi(L4) σi(L4) βi(L3) σi(L3) ρi(L4L3) βi(L2) σi(L2) ρi(L4L2) ρi(L3L2) βi(L1) σi(L1) ρi(L4L1) ρi(L3L1) ρi(L2L1) 
Gruis 1.701 1.535 1.115 1.512 1.000 0.999 1.489 1.000 1.000 0.904 1.468 0.999 1.000 1.000 

Ghiorzo -0.749 0.758 -0.105 0.656 0.710 0.038 0.517 0.524 0.710 0.045 0.515 0.511 0.695 0.992 
Fargnoli 0.537 0.850 0.574 0.783 0.997 0.402 0.774 0.658 0.657 0.377 0.773 0.656 0.655 1.000 

Han      0.836 0.646   0.917 0.655   0.996 
Ribas      2.390 0.922   2.318 0.793   0.991 

Branicki          -0.394 0.690    
Cornelius          0.136 0.691    
Hansson          0.759 0.557    
Kumar          0.610 0.426    
Nagore          0.025 0.322    
Palmieri          0.372 1.133    
Kanetsky -0.276 0.470 -0.163 0.443 0.934 -0.136 0.443 0.925 0.996 -0.179 0.439 0.851 0.917 0.921 
POOLED 1.043 0.171 0.636 0.163  0.473 0.172   0.458 0.157    
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Table 3.24. Estimated coefficients βi(L4), βi(L3), βi(L2), and βi(L1), for levels of adjustments 4, 3, 2 and 1, respectively, to assess the association 
between R160W variant and melanoma development, with their corresponding standard errors σi(L4), σi(L3), σi(L2), and σi(L1) and estimated 
bootstrap correlation coefficients ρi(LkLj) for each pair of available estimates, and pooled estimates calculated for each level with a 
multivariate adaptation of the Jackson’s method 

Author βi(L4) σi(L4) βi(L3) σi(L3) ρi(L4L3) βi(L2) σi(L2) ρi(L4L2) ρi(L3L2) βi(L1) σi(L1) ρi(L4L1) ρi(L3L1) ρi(L2L1) 
Gruis 0.136 0.295 0.230 0.275 0.930 0.283 0.272 0.919 0.983 0.349 0.268 0.908 0.965 0.985 

Dwyer   0.580 0.275  0.551 0.273  0.989 0.533 0.269  0.957 0.965 
Ghiorzo 0.940 0.537 1.028 0.383 0.717 0.855 0.293 0.544 0.779 0.850 0.293 0.548 0.760 0.973 
Landi   0.103 0.492  0.140 0.489  0.948 0.123 0.489  0.940 0.997 

Debniak      3.489 0.725   3.488 0.725   1.000 
Fargnoli 0.155 0.516 0.403 0.487 0.955 0.410 0.483 0.924 0.964 0.432 0.481 0.919 0.959 0.996 

Han      0.438 0.288   0.466 0.285   0.987 
Stratigos 0.469 0.949 1.112 0.851 0.978 1.176 0.847 0.976 0.998 1.007 0.784 0.927 0.946 0.952 

Ribas      1.634 0.937   1.534 0.853   0.993 
Branicki          0.545 0.283    
Cornelius          1.075 0.714    
Hansson          0.511 0.153    
Kayser          0.238 0.310    
Kumar          0.539 0.146    
Nagore          0.887 0.314    
Palmieri          1.112 1.081    
Kanetsky 0.322 0.200 0.417 0.191 0.825 0.416 0.191 0.825 0.998 0.424 0.190 0.765 0.935 0.937 
POOLED 0.359 0.093 0.555 0.070  0.557 0.069   0.561 0.068    
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Table 3.25. Estimated coefficients βi(L4), βi(L3), βi(L2), and βi(L1), for levels of adjustments 4, 3, 2 and 1, respectively, to assess the association 
between R163Q variant and melanoma development, with their corresponding standard errors σi(L4), σi(L3), σi(L2), and σi(L1) and estimated 
bootstrap correlation coefficients ρi(LkLj) for each pair of available estimates, and pooled estimates calculated for each level with a 
multivariate adaptation of the Jackson’s method 

Author βi(L4) σi(L4) βi(L3) σi(L3) ρi(L4L3) βi(L2) σi(L2) ρi(L4L2) ρi(L3L2) βi(L1) σi(L1) ρi(L4L1) ρi(L3L1) ρi(L2L1) 
Gruis 0.473 0.376 0.486 0.356 0.934 0.466 0.354 0.923 0.989 0.495 0.350 0.915 0.978 0.989 

Ghiorzo -0.150 0.603 -0.141 0.449 0.545 -0.278 0.384 0.456 0.876 -0.304 0.381 0.454 0.872 0.992 
Landi   1.038 0.607  1.054 0.606  0.717 0.992 0.605  0.717 1.000 

Debniak      0.461 0.340   0.462 0.339   0.612 
Fargnoli -0.338 0.676 -0.242 0.606 0.977 -0.259 0.599 0.521 0.573 -0.262 0.599 0.515 0.565 0.998 

Han      0.186 0.394   0.173 0.392   0.986 
Stratigos 0.635 1.207 0.781 1.054 0.992 0.564 1.052 0.993 0.999 0.185 1.044 0.993 0.999 0.999 

Ribas      0.531 0.703   1.031 0.604   0.841 
Branicki          0.027 0.477    
Cornelius          0.577 0.768    
Hansson          -0.079 0.179    
Kayser          0.511 0.332    
Kumar          -0.014 0.176    
Nagore          0.119 0.294    

Kanetsky -0.042 0.275 0.045 0.259 0.874 0.057 0.258 0.868 0.998 0.045 0.257 0.831 0.950 0.954 
POOLED 0.203 0.109 0.201 0.085  0.169 0.083   0.092 0.082    
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Table 3.26. Estimated coefficients βi(L4), βi(L3), βi(L2), and βi(L1), for levels of adjustments 4, 3, 2 and 1, respectively, to assess the association 
between D294H variant and melanoma development, with their corresponding standard errors σi(L4), σi(L3), σi(L2), and σi(L1) and estimated 
bootstrap correlation coefficients ρi(LkLj) for each pair of available estimates, and pooled estimates calculated for each level with a 
multivariate adaptation of the Jackson’s method 

Author βi(L4) σi(L4) βi(L3) σi(L3) ρi(L4L3) βi(L2) σi(L2) ρi(L4L2) ρi(L3L2) βi(L1) σi(L1) ρi(L4L1) ρi(L3L1) ρi(L2L1) 
Gruis -0.392 1.014 -0.287 0.993 0.998 -0.266 0.996 0.998 1.000 -0.045 0.932 0.997 0.999 0.999 

Dwyer   -0.841 0.513  -0.803 0.510  0.999 -0.826 0.509  0.699 0.699 
Ghiorzo 0.857 0.528 0.799 0.414 0.456 0.707 0.343 0.364 0.859 0.704 0.343 0.360 0.846 0.984 
Landi   0.644 0.538  0.596 0.535  0.813 0.698 0.524  0.799 0.990 

Fargnoli 1.029 0.579 1.038 0.551 0.982 1.031 0.547 0.965 0.981 1.028 0.547 0.963 0.979 0.999 
Han      0.480 0.460   0.453 0.456   0.995 

Ribas      0.710 0.595   1.426 0.511   0.410 
Branicki          1.212 1.144    
Cornelius          0.202 1.934    
Hansson          0.750 0.849    
Kumar          0.543 0.323    
Nagore          0.747 0.272    
Palmieri          0.419 0.532    
Kanetsky 0.823 0.365 0.852 0.353 0.893 0.843 0.353 0.891 0.999 0.864 0.352 0.839 0.940 0.942 
POOLED 0.555 0.134 0.673 0.194  0.651 0.131   0.690 0.119    
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Table 3.27. Pooled fully adjusted Odds Ratio (OR) with 95% Confidence Intervals (CI) for 
the studied MC1R variants calculated with the multivariate adaptation of the Jackson’s 
method 

MC1R variant N studies OR (95%CI) 
V60L 17 0.96 (0.70-1.33) 
D84E 11 2.92 (1.69-5.04) 
V92M 14 1.18 (0.99-1.42) 
R142H 14 2.24 (1.15-4.37) 
R151C 17 1.56 (1.27-1.92) 
I155T 12 2.84 (2.03-3.97) 

R160W 17 1.43 (1.19-1.72) 
R163Q 15 1.22 (0.99-1.52) 
D294H 14 1.74 (1.34-2.27) 

Note: significant results are in bold. 
 

3.3.5. Discussion 

Observational studies are likely to differ in terms of the information that they provide and are 

particular susceptible to the influence of confounders. Provided that fully and partially adjusted 

estimates are kept distinct and assuming that at least some studies provide enough information to 

produce fully adjusted estimates, the method proposed by Jackson et al. [Jackson et al. 2009] can be 

used to incorporate data from all the available studies. 

I adapted the proposed model to a binary outcome with logistic regression model and case-control 

studies. Moreover, I extended the proposed approach to a multivariate (four-dimensional) rather 

than the bivariate analysis proposed by Jackson in the original paper.  

From the validation study here performed, I found that the pooled age-adjusted estimates obtained 

with the Jackson’s method were similar to the “true” pooled age-adjusted estimates, but with two 

main differences: first, the 95%CI were always larger for Jackson’s method estimates than for the 

GS estimates; second, with the Jackson’s method two MC1R variants that were not significantly 

associated with melanoma in the GS analysis were found to have ORs significantly higher than 

1.00. The wider 95%CI were due to larger standard errors for the estimates obtained with the 

bivariate Jackson’s approach than for the univariate GS approach. The same difference between a 

bivariate and a univariate meta-analysis was previously observed in simulation studies [Riley et al. 
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2007b]. This may be explained with the fact that the between-study covariance kτ1τ2 is formulated 

so that k=1.00 and k is constrained to be no higher than 1.00; then to obtain the necessary solution 

for the between-study covariance, the maximum likelihood estimator can only increase the 

between-study variances 2
1̂τ  and 2

2τ̂ , which do not have an upper bound constraint. Thus the 

between-study variance estimates are inflated to compensate for the constraint on k, finally 

providing larger variability estimates in bivariate rather than univariate meta-analyses. This may not 

be considered, however, a major concern as the maximum likelihood estimator for 2
1̂τ  and 2

2τ̂  is still 

asymptotically unbiased (the bias decreases as the number of studies increases) and the inflation is 

simply caused by the sensible and necessary constraint on k. Furthermore, the inflation is essentially 

conservative, leading to a larger standard error and mean-square error of the pooled estimates. The 

false significant results obtained for the two MC1R variants I155T and R163Q highlighted a 

possible problem in the Jackson’s method to obtain an unbiased estimate of the association of 

interest. This could be attributable to the relatively low allele frequencies for these two variants, 

leading to a larger variability and possible bias in the final estimate. It may be therefore necessary to 

use caution when the study exposure is rare and the standard error of the pooled-estimate is 

relatively high. 

By comparing the Jackson’s estimates obtained in the validation study with those obtained with a 

univariate random-effect meta-analysis on a subset of studies with information on age, I observed 

that the point estimates were generally more similar to the “true” ones for the Jackson’s method, 

and also the 95%CI were more strict, giving a more precise estimate. This result therefore 

highlighted an advantage of using Jackson method than reducing the number of studies to be 

included in a univariate analysis.  

Otherwise, when I compared the Jackson’s estimates obtained in the validation study with those 

obtained with a univariate random-effect meta-analysis on all the crude estimates, and with those 

obtained from a standard two-stage approach as presented in section 3.2, I did not observe any 
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significant advantage of Jackson’s method. On the contrary, pooled crude and standard two-stage 

estimates generally were more similar to the GS as point estimates and were more precise. This was 

probably due to the fact that in my study age was probably not a main confounder and crude and 

age-adjusted estimates were in fact very similar. For this reason, the univariate approach maintained 

some advantages on the bivariate approach, both for the lower standard errors obtained (as 

previously discussed) and for a more unbiased estimate. This latter point need a further 

consideration. The GS for a pooled fully adjusted estimates is indeed obtained by pooling fully 

adjusted estimates from all the studies, in a scenario where all the fully adjusted studies are 

available. With this scenario, a bivariate meta-analysis including both fully adjusted and partially 

adjusted estimates is not motivated, because we are only interested in the fully adjusted estimates 

and not in both estimates. Indeed, a bivariate meta-analysis is really motivated when we are 

interested in both outcomes and therefore we want an unbiased estimate for each outcome, which 

take into account the correlation between the two outcomes. In the application proposed by Jackson, 

the bivariate meta-analysis was used just to solve the problem of missing confounders in some 

studies, but has not a reason a priori, therefore, when partially and fully adjusted estimates were not 

significantly heterogeneous, a univariate meta-analysis may provide estimates which were less 

unbiased than a bivariate meta-analysis. 

In conclusion I think that Jackson’s method may be a very useful and good approach to deal with 

the problem of missing data in some observational studies when there is a significant difference 

between partially and fully adjusted estimates. In this situation, pooling together the two types of 

estimates is not recommendable because of the large heterogeneity, and pooling together just the 

partially adjusted estimates may lead to biased estimates when the confounders discharged are 

really influent in the estimate of the association of interest. Moreover, separate subgroup estimates 

are generally more biased and less precise than the ones obtained with the Jackson’s method. 

Caution should be used in applying Jackson’s method when the exposure of interest is rare and 
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when there is no heterogeneity between partially and fully adjusted estimates. In this case, a 

univariate meta-analytic approach may be preferable. 

 

3.4. Heterogeneity estimate and meta-regression 

Homogeneity among study-specific estimates was evaluated by Q statistic and I2, and meta-

regression analysis was performed to deeply investigate heterogeneity among study estimates. The 

Q statistic is a Chi Square test and thus have a limited power. For this reason I considered that 

statistically significant heterogeneity was present when the p-value was ≤0.10; furthermore I 

calculate the I2 proposed by Higgins et al. [Higgins et al. 2002], which represents the percentage of 

total variation across studies that is attributable to heterogeneity rather than to chance. If a 

significant heterogeneity was found among study estimates, I performed meta-regression. This 

method extends a random-effects meta-analysis to estimate the extent to which one or more 

covariates, with values defined for each study in the analysis, explain heterogeneity in the study 

estimates. Meta-regression fits models with two additive components of variance, one representing 

the variance within units, the other the variance between units, and therefore is applicable to the 

pooled-analysis situation, where each unit is one study. 

I first evaluated whether there was a statistically significant heterogeneity between study estimates 

according with different levels of adjustment. In this analysis I tested the difference between 1) 

estimates adjusted only for the base confounders (age, gender, family history of melanoma) versus 

all the other estimates, and 2) estimates adjusted by each of the four levels reported in Table 3.17. 

No significant heterogeneity was found for any of the nine studied variants and for each of the two 

analyses carried out. For this reason, I decided to use in all the following analyses the results 

obtained with the standard two-stage approach, that was found to provide more reliable pooled-

estimates than the ones obtained with the Jackson method when the study-specific estimates were 

homogenous, as discussed in the section 3.3.5.  
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A significant heterogeneity among the study-specific estimates was found for the four MC1R 

variants V60L (I2:42.5%, Q statistic p-value:0.033, Figure 3.1), R142H (I2:39.8%, Q statistic p-

value:0.062, Figure 3.4), R151C (I2:39.8%, Q statistic p-value:0.046, Figure 3.5), and R160W 

(I2:39.9%, Q statistic p-value:0.046, Figure 3.7). The pooled estimates for these variants but V60L 

revealed a statistically significant association with melanoma.  

We evaluated by meta-regression the possible role in the observed heterogeneity of the following 

study-related variables: publication year, study area (Australia/North Europe, South Europe, North 

America), genotyping methodology (sequencing, others), deviation from HW equilibrium, source of 

controls, and source of DNA. None of these variable seemed to explain the observed heterogeneity 

for V60L, R151C and R160W variants. A significant p-value (p=0.04) was observed for the meta-

regression model including DNA source for R142H variant. This was probably due to one 

(Kanetsky) of the two studies (Kanetsky, Branicki) that extracted DNA from buccal cells, which 

had a very low OR (0.53; 95%CI:0.20-1.41). By excluding this study from the analysis, the 

heterogeneity disappeared (I2: 17.6%, Q statistic p-value: 0.27), and the pooled-OR (95%CI) 

increased to 2.08 (1.41-3.06).       

 

3.5. Participation bias 

Funnel plots to evaluate participation bias were drawn and Egger's test was performed. A funnel 

plot shows the logarithm of the study-specific ORs against their Standard Errors (SEs); it assumes 

that studies with small sample size (large SE) should obtain an OR more distant from the real OR 

with respect to one study with a large sample size (small SE). When there is no 

participation/publication bias, the plot should be a symmetric funnel, viceversa it should appear 

asymmetric. The Egger test lets measuring the participation/publication bias in a formal way. The 

test performs a linear regression on the logarithm of ORs: the dependent variable is the Normal 

Standard Deviate (SND), defined as OR/SE, while the independent variable is the precision of the 
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estimate, defined as the inverse of SE, giving the following equation: SND=α+β (1/SE). If there is 

no participation/publication bias, α will be equal to 0, while it will be significantly different from 0 

when participation/publication bias will be present.  

Funnel plots for each of the nine main MC1R variants are presented in Figure 3.11-3.19. I found 

evidence of publication bias for R163Q variant. Indeed the funnel plot in Figure 3.18 shows a blank 

area in the left-bottom part of the graph, which would include small studies with low OR. 

 

Figure 3.11. Funnel plot for V60L variant 
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Egger’s test : pvalue = 0.526 
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Figure 3.12. Funnel plot for D84E variant 
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Egger’s test : pvalue = 0.472 
 

Figure 3.13. Funnel plot for V92M variant 
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Egger’s test : pvalue = 0.404 
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Figure 3.14. Funnel plot for R142H variant 
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Egger’s test : pvalue = 0.731 
 
 
Figure 3.15. Funnel plot for R151C variant 
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Egger’s test : pvalue = 0.647 
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Figure 3.16. Funnel plot for I155T variant 
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Egger’s test : pvalue = 0.107 
 
 
Figure 3.17. Funnel plot for R160W variant 
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Egger’s test : pvalue = 0.145 
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Figure 3.18. Funnel plot for R163Q variant 
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Egger’s test : pvalue = 0.049 
 
 
Figure 3.19. Funnel plot for D294H variant 

0
.5

1
1.

5
2

S
E

-4 -2 0 2 4
LOG(OR)

Funnel plot with pseudo 95% confidence limits
D294H

 
Egger’s test : pvalue = 0.484 
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3.5.1. Sensitivity analysis 

For the three MC1R variants for which we observed a significant between-studies heterogeneity, I 

performed sensitivity analyses by excluding the studies that lies out of the funnel. For V60L, I 

excluded three studies [Dwyer, Stratigos, Hansoon] and recalculated the pooled-OR (95%CI) as 

1.10 (0.98-1.23), which was similar to that previously obtained (1.14; 0.9-1.31, Figure 3.1), but 

with no more evidence of heterogeneity among studies (I2:9.4%, Q statistic p-value:0.35). For 

R151C, I excluded two studies [Dwyer, Landi] and recalculated the pooled-OR (95%CI) as 1.67 

(1.45-1.91), with no more evidence of between-studies heterogeneity (I2:0.0%, Q statistic p-

value:0.49). For R160W, I excluded one study [Debniak] and recalculated the pooled-OR (95%CI) 

as 1.65 (1.44-1.89), with no more evidence of between-studies heterogeneity (I2:0.0%, Q statistic p-

value:0.84).      
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Chapter 4 

 

Gene-phenotype interaction 

 
In the previous chapter I found that many MC1R variants were indeed associated with an increased 

risk of melanoma, independently from the main important confounders related with sun exposure. 

However, since MC1R is one of the most important genes which determine skin pigmentation, and 

since certain pigmentation characteristics were among the most important risk factors for 

melanoma, the study of the relationship between MC1R variants and melanoma risk could not avoid 

the investigation of gene-phenotype interaction. This is particularly important since melanoma is a 

complex and heterogeneous diseases, and it is therefore unlikely that it occurs as a result of a single 

disease SNP or a single phenotypic characteristic. It is probable that genetic, phenotypic and 

environmental factors interact and jointly contribute to its development. Thus it is crucial to 

investigate the role of gene-phenotype interactions and to identify combinations of genetic and 

phenotypic factors leading to an increased risk of melanoma.  

If specific MC1R variants are associated with a higher melanoma risk in certain sub-populations, 

genetic-based innovative techniques for early detection may be developed and applied to these 

populations. Moreover, melanomas occurred to patients with certain combinations of MC1R 

variants and phenotypic characteristics may share similar mechanisms of development, and ad hoc 

therapies may be therefore applied to these categories of patients.    
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4.1. Analyses stratified by phenotypic characteristics  

First, I want to investigate whether the observed association between MC1R variants and melanoma 

varied according with different phenotypic characteristics. I therefore performed stratified analyses 

for MC1R variants and melanoma according with the following phenotypic characteristics: skin 

color, skin type, hair color, eye color, and presence of freckles. The hypothesis of homogeneity of 

ORs among strata was tested by meta-regression models with random-effects and restricted 

maximum likelihood estimates, after the calculation of strata-specific OR in each study. The models 

took into account the two sources of variation (within and between studies). The correlation 

between the ORs calculated in the same studies was taken into account by using a bivariate 

approach previously described [van Houwelingen et al. 2002]. When more than two strata were 

considered in the analysis, I calculated both the overall p-value, evaluating whether there was any 

difference among strata-specific ORs, and the p-value for each strata compared with the reference 

strata category.   

 

4.1.1. Skin color 

Fair skin color is one of the identified risk factors for melanoma, according with a previous meta-

analysis [Gandini et al. 2005c] and was also associated with certain MC1R variants [Beaumont et al. 

2007; Raimondi et al. 2008]. For the present analysis, I classified skin color variable in each study 

with available information by using two categories: fair and medium/dark. Results of the stratified 

analysis for the association between each of the nine considered MC1R variants and melanoma 

according with skin color are reported in Table 4.1. No difference among ORs of fairer and darker 

subjects was observed for any of the studied MC1R variants. However, it is worthwhile to notice 

that ORs for darker pigmented subjects were higher than those of fairer pigmented subjects for 

almost all MC1R variants, with a borderline p-value observed for D294H variant (p-value:0.08).    
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Table 4.1. Stratified analysis for MC1R variants and melanoma association, according with 
skin color 

Variant Strata OR (95%CI) P-value 
V60L Fair 1.07 (0.67-1.71) 0.34 

 Medium/Dark 1.33 (0.84-2.09)  
D84E* Fair 1.56 (0.49-4.98) 0.54 

 Medium/Dark 2.95 (0.56-15.58)  
V92M Fair 1.20 (0.71-2.03) 0.66 

 Medium/Dark 1.44 (0.78-2.67)  
R142H Fair 2.68 (0.76-9.37) 0.55 

 Medium/Dark 5.36 (0.64-45.03)  
R151C Fair 1.20 (0.66-2.18) 0.27 

 Medium/Dark 1.70 (0.93-3.11)  
I155T** Fair 5.28 (0.25-113.36) 0.47 

 Medium/Dark 2.02 (0.05-79.66)  
R160W Fair 2.31 (0.81-6.57) 0.31 

 Medium/Dark 3.48 (1.13-10.68)  
R163Q Fair 0.78 (0.37-1.63) 0.10 

 Medium/Dark 1.69 (0.97-2.94)  
D294H Fair 1.06 (0.61-1.83) 0.08 

 Medium/Dark 2.84 (1.11-7.26)  
OR= Odds Ratio; CI=Confidence Intervals 
*Only one study with medium/dark category 
**Only three studies with fair category and one with medium/dark category 

 

4.1.2. Skin type 

Skin types I and II were found to be associated with an increased risk of melanoma compared with 

skin types III and IV [Gandini et al. 2005c] and were also associated with certain MC1R variants 

[Beaumont et al. 2007]. For the present analysis, I maintained the classical categorization of skin 

type in four phototypes, as proposed by Fitzpatrick [Sachdeva 2009], and based on predisposition to 

sunburn and tanning ability. Specifically, the classification is as follows: skin type I “burns easily, 

never tans”; skin type II “burns easily, tans minimally with difficulty”; type III “burns moderately, 

tans moderately and uniformly”; type IV “burns minimally, tans moderately and easily”. Results of 

the stratified analysis for the association between each of the nine considered MC1R variants and 

melanoma according with skin type are reported in Table 4.2. A borderline difference among ORs 

of different skin types was observed for V60L variant (p-value: 0.06), with a significant p-value 
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(0.02) obtained for the difference between skin types IV and I. Again, it is interesting that ORs 

generally increased with increasing skin type for almost all MC1R variants.  

 

Table 4.2. Stratified analysis for MC1R variants and melanoma association, according with 
skin type 

Variant Strata OR (95%CI) P-value (vs IV) P-value (overall) 
V60L I 0.32 (0.13-0.81) 0.02 0.06 

 II 0.89 (0.66-1.20) 0.46  
 III 1.08 (0.83-1.39) 0.90  
 IV 1.11 (0.64-1.94)   

D84E I 3.80 (0.43-33.36) 0.60 0.53 
 II 1.18 (0.44-3.12) 0.50  
 III 1.98 (0.55-7.13) n.c.  
 IV n.c.   

V92M I 0.69 (0.22-2.16) 0.13 0.40 
 II 1.07 (0.76-1.52) 0.17  
 III 1.24 (0.93-1.66) 0.27  
 IV 2.14 (0.85-5.40)   

R142H I 1.70 (0.13-21.81) 0.67 0.40 
 II 2.15 (0.82-5.63) 0.18  
 III 0.95 (0.41-2.23) n.c  
 IV n.c.   

R151C I 1.57 (0.66-3.74) 0.52 0.85 
 II 1.57 (1.13-2.18) 0.39  
 III 1.70 (1.27-2.28) 0.48  
 IV 2.36 (0.98-5.65)   

I155T* I 0.97 (0.07-13.44) 0.84 0.93 
 II 0.86 (0.39-1.89) 0.74  
 III 1.27 (0.47-3.43) 0.92  
 IV 1.50 (0.06-38.38)   

R160W I 0.72 (0.29-1.82) 0.09 0.37 
 II 1.59 (1.15-2.21) 0.56  
 III 1.53 (1.15-2.04) 0.49  
 IV 2.06 (0.92-4.61)   

R163Q I 0.33 (0.03-4.28) 0.33 0.70 
 II 1.24 (0.77-2.02) 0.94  
 III 1.01 (0.74-1.39) 0.65  
 IV 1.30 (0.46-3.67)   

D294H I 1.26 (0.36-4.37) 0.82 0.62 
 II 1.43 (0.81-2.51) 0.89  
 III 2.32 (1.35-4.01) 0.75  
 IV 1.65 (0.22-12.54)   

n.c.=not calculable; OR= Odds Ratio; CI=Confidence Intervals 
Note: significant p-values are in bold 
*Only one study with IV phototype 
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4.1.3. Hair color 

Fair hair color, and red color in particular, is one of the identified risk factors for melanoma 

[Gandini et al. 2005c]. Red hair color is determined by MC1R gene and was therefore associated 

with certain MC1R variants [Beaumont et al. 2007; Raimondi et al. 2008]. For the present analysis, 

I classified hair color variable in each study with available information by using two different 

classifications: fair (blonde/red) versus dark (brown/black) and red versus all the other colors. 

Results of the stratified analysis for each MC1R variant and melanoma are reported in Tables 4.3 

and 4.4 according with the two adopted classification, respectively. No difference among ORs of 

fairer and darker subjects was observed for any of the studied MC1R variants. As for the previous 

pigmentation characteristics, however, ORs for darker pigmented subjects were higher than those of 

fairer pigmented subjects for almost all MC1R variants. For R142H variant, a significantly lower 

OR was observed for red-haired subjects than subjects with other hair colors (p-value: 0.02). The 

same result was also found for V60L variant, but with a borderline p-value (0.06). Moreover. For 

almost all the MC1R variants, subjects with red hair had lower ORs than subjects with other colors.     
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Table 4.3. Stratified analysis for MC1R variants and melanoma association, according with 
hair color (fair –blonde/red- versus dark –brown/black- colors) 

Variant Strata OR (95%CI) P-value 
V60L Fair 0.90 (0.67-1.22) 0.12 

 Dark 1.15 (0.90-1.47)  
D84E Fair 1.30 (0.60-2.81) 0.18 

 Dark 3.04 (1.05-8.75)  
V92M Fair 1.41 (1.01-1.96) 0.50 

 Dark 1.23 (0.96-1.56)  
R142H Fair 1.42 (0.55-3.69) 0.68 

 Dark 1.77 (0.78-4.04)  
R151C Fair 1.45 (1.06-1.98) 0.41 

 Dark 1.69 (1.24-2.29)  
I155T Fair 0.80 (0.37-1.77) 0.40 

 Dark 1.25 (0.63-2.49)  
R160W Fair 1.40 (1.10-1.79) 0.35 

 Dark 1.66 (1.28-2.15)  
R163Q Fair 1.17 (0.80-1.71) 0.89 

 Dark 1.22 (0.88-1.67)  
D294H Fair 1.18 (0.62-2.23) 0.24 

 Dark 1.82 (1.13-2.94)  
OR= Odds Ratio; CI=Confidence Intervals 
 

Table 4.4. Stratified analysis for MC1R variants and melanoma association, according with 
hair color (red versus other colors) 

Variant Strata OR (95%CI) P-
value 

V60L Red 0.37 (0.13-1.10) 0.06 
 Other 1.06 (0.87-1.28)  

D84E Red 1.01 (0.17-6.05) 0.40 
 Other 2.23 (1.12-4.44)  

V92M Red 0.46 (0.12-1.72) 0.14 
 Other 1.26 (1.02-1.55)  

R142H Red 0.29 (0.05-1.79) 0.02 
 Other 2.24 (1.01-4.97)  

R151C Red 1.13 (0.50-2.58) 0.37 
 Other 1.65 (1.28-2.13)  

I155T* Red 0.19 (0.02-2.24) 0.17 
 Other 1.11 (0.65-1.92)  

R160W Red 1.74 (0.80-3.77) 0.71 
 Other 1.49 (1.24-1.79)  

R163Q Red n.c. n.c. 
 Other 1.17 (0.90-1.52)  

D294H Red 2.78 (0.82-9.43) 0.40 
 Other 1.60 (1.11-2.32)  

OR= Odds Ratio; CI=Confidence Intervals 
Note: significant p-values are in bold 
*Only one study with red hair 
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4.1.4. Eye color 

Blue eye color was suggested to increase melanoma risk with respect to other eye colors [Gandini et 

al. 2005c]. MC1R does not directly determine eye color, but may be related also with this 

phenotypic characteristic via its association with RHC phenotype. For the present analysis, I 

classified eye color variable in each study with available information by using two categories: fair 

(blue, green, hazel, grey) and dark (brown, black). Results of the stratified analysis for this 

phenotypic characteristic are reported in Table 4.5. A significantly higher OR was found for 

subjects with dark eyes carrying the D294H variant than with fair eyes carrying the same variant (p-

value: 0.02). For R151C variant I obtained a similar result, although the difference between the two 

OR did not reach the statistical significance (p=0.09). Moreover, the same trend was observed for 

almost all the other MC1R variants.    

 

Table 4.5. Stratified analysis for MC1R variants and melanoma association, according with 
eye color (fair –blue/green/grey/hazel versus dark –brown/black-) 

Variant Strata OR (95%CI) P-
value 

V60L Light 1.07 (0.80-1.42) 0.65 
 Dark 0.99 (0.72-1.36)  

D84E Light 2.39 (0.98-5.81) 0.57 
 Dark 1.53 (0.38-6.06)  

V92M Light 1.08 (0.80-1.46) 0.26 
 Dark 1.39 (0.97-2.01)  

R142H Light 1.90 (0.84-4.30) 0.55 
 Dark 1.40 (0.55-3.54)  

R151C Light 1.40 (1.00-1.94) 0.09 
 Dark 2.02 (1.37-2.99)  

I155T Light 0.60 (0.29-1.27) 0.16 
 Dark 1.43 (0.56-3.65)  

R160W Light 1.63 (1.28-2.07) 0.65 
 Dark 1.46 (0.99-2.16)  

R163Q Light 1.26 (0.91-1.75) 0.81 
 Dark 1.17 (0.72-1.92)  

D294H Light 1.21 (0.75-1.95) 0.02 
 Dark 2.85 (1.64-4.94)  

OR= Odds Ratio; CI=Confidence Intervals 
Note: significant p-values are in bold 
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4.1.5. Freckles 

The presence and the amount of freckles were known risk factors for melanoma development 

[Gandini et al. 2005c] and MC1R gene was strongly associated with this phenotypic characteristic 

[Beaumont et al. 2007]. Since very few studies in the M-SKIP project gave information on the 

amount of freckles for each subject, I classified freckles variable in each study as presence or 

absence of freckles. Results of the stratified analysis for the association between each of the nine 

considered MC1R variants and melanoma according with the presence of freckles are presented in 

Table 4.6. Carriers of V92M and of R160W with no freckles had significantly higher ORs than 

carriers of the same variants with freckles (p-values: 0.05 and 0.02, respectively). The same result 

was observed for V60L and D294H variants, although the p-values were borderline (0.09 and 0.07, 

respectively). The same trend was observed for almost all the remaining MC1R variants.  

 

Table 4.6. Stratified analysis for MC1R variants and melanoma association, according with 
the presence of freckles 

Variant Strata OR (95%CI) P-value 
V60L Yes 0.81 (0.65-1.02) 0.09 

 No 1.12 (0.84-1.50)  
D84E Yes 1.16 (0.55-2.47) 0.20 

 No 3.24 (0.83-12.65)  
V92M Yes 0.80 (0.58-1.11) 0.05 

 No 1.41 (0.89-2.25)  
R142H Yes 1.77 (0.32-9.82) 0.75 

 No 1.22 (0.16-9.52)  
R151C Yes 1.37 (0.92-2.04) 0.39 

 No 1.75 (1.03-2.95)  
I155T Yes 0.59 (0.26-1.31) 0.34 

 No 1.38 (0.28-6.72)  
R160W Yes 1.28 (0.73-2.26) 0.02 

 No 3.00 (1.57-5.74)  
R163Q Yes 1.30 (0.73-2.33) 0.76 

 No 1.46 (0.84-2.52)  
D294H Yes 1.10 (0.60-2.04) 0.07 

 No 3.67 (1.06-12.67)  
OR= Odds Ratio; CI=Confidence Intervals 
Note: significant p-values are in bold 
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4.2. Explorative analysis of gene-phenotype interaction  

The stratified analyses suggested that the role of some MC1R variants changed according with 

different phenotypic characteristics. Although this is an interesting result, it has small utility in 

clinical practice, because each subject is characterized by a combination of phenotypic 

characteristic, therefore it is difficult to understand which MC1R variant(s) may increase melanoma 

risk in each subject. For this reason, it would be valuable to identify combinations of phenotypic 

characteristics and MC1R variants, in order to better identify subgroup population characterized by 

a higher risk to develop melanoma. 

In order to reach this goal, I decided to apply a method of statistical analysis recently proposed in 

the genetic field to select combinations of genes mostly associated with a disease: the logic 

regression [Kooperberg et al. 2001; Ruczinski et al. 2003; Kooperberg et al. 2005]. Within the M-

SKIP project, I extended the application of this method to the study of both genetic and phenotypic 

factors, in order to find which combinations of MC1R variants and phenotypic characteristics were 

mostly associated with melanoma development. This approach is particularly useful for detecting 

subpopulations at high or low risk of disease, characterized by high-order interactions among 

covariates, and thus the methodology could be well applied to the study of complex diseases like 

cancer. 

In section 4.2.1 I will introduce the basics of logic regression and explain how to find and select the 

best model. In section 4.2.2 I will describe the application of logic regression to a subset of data 

from the M-SKIP project. In section 4.2.3 I will compare the results presented in section 4.2.2 with 

those obtained with a classical approach based on logistic regression models. Finally I will discuss 

in section 4.2.4 strengths and possible pitfalls of the presented analysis.  
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4.2.1. Logic regression      

Logic regression is a recently proposed tree-based statistical technique intended for situations where 

most predictors are binary, and the goal is to find Boolean combinations of these predictors that are 

associated with an outcome variable. Logic regression can be applied to any type of regression 

outcome as long as the proper scoring function is specified.  

Let X1, X2,…, Xn be binary predictors, and let Y be a response variable. A logic regression model can 

be written as: 
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For a binary outcome the model (4.1) is a logistic regression model with Boolean expressions as 

covariates: 
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and the appropriate score function is the binomial deviance. 

The goal is to find the Boolean expressions Lj that minimize the score function associated with a 

specific model type, estimating the parameters βj and the Boolean expressions Lj simultaneously. 

The output from logic regression is therefore represented as a series of trees, one for each Boolean 

predictor Lj, and the associated regression coefficient. The logic tree for the expression defined 

earlier is shown in Figure 4.5. Using this representation it is possible to start from a logic tree and 

obtain any other logic tree by a finite number of operations such as growing of branches, pruning of 

branches and changing of leaves.    
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Figure 4.5. Example of a logic tree representing the Boolean expression (X4)C
 Λ [X5 V X1 V 

(X3)C]. White letters on black background denote the conjugate of the variable   

 

 

Search for the best model 

The searching of the optimum combination of variables which is mostly associated with the 

outcome may be obtained by a (stochastic) simulated annealing algorithm, which searches for 

Boolean combinations of predictors in the entire space of such combinations. The first step is to 

select the variable mostly associated with the outcome. Then, at each next step a new tree is 

selected at random among those that can be obtained by simple operations on the current tree. This 

new tree always replaces the current tree if it has a better score than the old tree, and it is accepted 

with a probability that depends on the difference between the scores of the old and the new tree and 

the stage of the algorithm, otherwise. For any pair of scores, the further ahead we are in the 

annealing scheme, the lower the acceptance probability, if the proposed new tree has a score worse 

than the score of the old state. This was done in order to overcome the problem of a possible local 

optimum: it is possible the search get “stuck” if a better tree can be reached in more than one 

moves, but not in one move. This more probably happens in the first steps of the algorithm rather 
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than in the last steps. Since Lj and βj are estimated simultaneously using the simulated annealing 

algorithm, for computational reasons the maximum number k of trees has to be preselected. In order 

to avoid too complex solutions, not clearly interpretable, it would be good to not select too many 

logic trees. The model presented in (4.1) may also include other continuous and/or binary 

predictors, as possible confounding factors to be included as covariates in the model. The 

previously described algorithm has a good chance to find a model that has the best or close to best 

possible score, but in the presence of noise in the data, typically overfits the data. In order to select 

the best model, it was therefore suggested to apply a combination of cross-validation, 

randomization tests and a Monte Carlo Markov Chain (MCMC)-based method.  

 

 Model selection 

Let s be the model size of the best model obtained with the annealing simulating algorithm, and 

defined as the total number of leaves in the logic trees involved in the model. The goal of model 

selection methods is to assess how well the best model of size s performs in comparison to models 

of different sizes.  

With cross-validation, the subjects of the dataset are split into m (usually m=10) equally sized 

groups. For each of the m groups of cases (say group k), the cases were removed from the data and 

the best scoring model of size s was found using only the data from the remaining m-1 groups, and 

the cases of group k were scored under this model. This yields score εsk. The cross-validated (test) 

score for the model size s is: 

  ∑
=

=
m

k
sks m 1

1 εε   (4.3)     

The next step is to compare the cross-validated scores for models of various sizes and select the 

model with the lowest cross-validated score. 

Another proposed method to select the best model is based on randomization. First, a test for 

identifying signal in the data should be carried out. Briefly, it tests the null hypothesis that there is 
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no association between the predictors X1, X2,…, Xn  and the response Y. If that hypothesis was true, 

then the best model fit on the data with the response randomly permuted should yield about the 

same score as the best model fit on the original data. The procedure could be repeated t times, and 

the proportion of scores better than the score of the best model on the original data was used as an 

exact p-value. If there is evidence of signal in the data, then the second step is to select the optimal 

size s of the model that best describes the association between predictors and response. A sequence 

of randomization tests is carried out, with null hypothesis that the optimal model has size si and that 

the better scores obtained by models of larger sizes is due to noise. Randomization performed for 

each model of size si, with },...,1,0{ ssi ∈  is “conditioned” on this model, assuming that the null 

hypothesis for model of size si is true. The response variable Y is permuted according with the null 

hypothesis and the number of scores better than the score of the optimum model with size s is 

computed. If the randomized scores are much worse, the true model size may be larger. The general 

rule is to chose the smallest model size where a fraction higher than p of the randomization scores 

have scores better than s.  

Finally, a MCMC logic regression was recently proposed with the primary aim to identify all the 

interesting gene-gene interactions with a greater power than classic logic regression [Kooperberg et 

al. 2005]. I decided to apply this method, in combination with cross-validation and permutation 

tests described above, to select the model of the best size s. The method is clearly described 

elsewhere and its full application is not objective of the present study. I will briefly explain how it 

may be used for model selection. The goal of MCMC logic regression is to identify all models and 

combinations of covariates that are potentially associated with the outcome. Given a specific 

number of trees, the algorithm provides n logic regression models of different size, containing 

Boolean expression mostly associated with the outcome. The output gives the distribution of size of 

these visited models. If the highest percentage of visited models were of size S, it would be a 

suggestion that optimum model size is indeed S. Moreover the fraction pi of models that contain a 
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particular covariate Xi is given and is a direct measure of the importance of this covariate for 

predicting the outcome. This information may be used to check whether the selected logic 

regression model indeed includes the most important covariates.        

 

4.2.2. Application of logic regression to the M-SKIP dataset 

For the present analysis of gene-phenotype interaction, I selected only the melanoma cases and 

controls with no missing data on the nine most studied MC1R variants and no missing data on the 

following phenotypic characteristics: hair and eye color, skin type, common and atypical nevi, 

freckles. I excluded from the analysis solar lentigines because the information was collected on a 

few number of subjects, and skin color because it partially overlaps with skin type, and it was less 

clearly defined than the latter one. I also excluded subjects with a not univocal definition of hair 

color (blonde/red, brown/black, other) and on eye color (brown/black, not blue, blue/green, other). I 

decided to include the variables related to naevi count because they represent an hereditary, not 

modifiable exposure, as the other considered phenotypic characteristics, although MC1R gene does 

not determine nor seems to be associated with naevi formation. The final dataset used for the 

analysis included data on 496 cases and 639 controls from three studies (Gruis, Ghiorzo, Debniak), 

which represents around 7% of the collected melanoma cases and controls. 

In order to be included in logic regression models, the phenotypic characteristics were dichotomized 

by creation of dummy variables. Each of the nine MC1R variant was also dichotomized assuming a 

dominant model, as discussed in section 3.1.2, thus comparing carriers of no variant allele with 

carriers of 1 or 2 variant alleles. The variables considered in the analysis were 24: four hair colors 

(red, blonde, brown, black), three eye colors (blue, brown, green/grey/hazel), three skin types (I, 

II/III, IV), three classes of common naevi (≤10, 11-45, >45), atypical naevi (any/none), freckles 

(any/none), and the nine MC1R variants V60L, D84E, V92M, R142H, R151C, I155T, R160W, 

R163Q, D294H.      



105 
 

In order to find the combinations of MC1R variants and phenotypic characteristics mostly 

associated with melanoma, I applied logic regression and selected the optimum model as described 

in section 4.2.1. I allowed a maximum number of three logic trees, in order to not obtain a too 

complex model of difficult interpretation. For the selection procedure, the maximum number of 

leaves was set to 12, which is half of the included variables. This seemed a reasonable number in 

order to avoid too complex trees and too much time spent for randomization tests, otherwise 

allowing a large number of variables to be included in the final model. 

The parameter used for MCMC logic regression depended on the geometric prior on model size and 

was set to log2, as suggested [Kooperberg et al. 2011]. The number of iterations was set to 100,000. 

The statistical analysis was performed using the package “LogicReg” implemented in R software 

[Kooperberg et al. 2011].   

 

 Results  

The best model with three trees included almost all the phenotypic characteristics and the three 

MC1R variants V60L, R151C and D294H (Figure 4.5). 
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Figure 4.5. The logic trees of the optimum model obtained with the simulation annealing algorithm 

   

ATYP=atypical naevi; BLACKH=black hair; BLONDEH=blonde hair; BLUEE=blue eyes; BROWNH=brown hair; FEWNAEVI=maximum of 10 common naevi; 
INTNAEVI=intermediate number of common naevi (11-45); LIGHTE=light eye color, other than blue (green, grey or hazel); MSTNAEVI=more than 45 common naevi; 
PHOTOINT=intermediate skin phototype (II or III); PHOTOIV=skin phototype IV 
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The randomization test assessing the existence of any association between the predictor variables 

and melanoma gave a p-value <0.0001 (0 randomized scores were better than the best score, Figure 

4.6). 

 

Figure 4.6. The scores of the null randomization test. The score of the null model was obtained 
by fitting an intercept, the score of the best model was obtained from a model with three trees 
allowed  

 

Since the best model found with the simulation annealing algorithm typically overfits the data, I 

proceeded with several tests to select the optimum model of size s. The scores of all the considered 
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models, with one to three trees and one to 12 leaves, are presented in Figure 4.7. The models with 

one tree had clearly worse scores than models with two or three trees, while from a first look it 

seems that models with two and three trees had similar scores. As expected, the model with the best 

score is that with the maximum number of trees and leaves allowed (three trees and 12 leaves). 

 

Figure 4.7. The scores of the best linear models with various numbers of leaves and trees. The 
number of trees allowed in the linear model is indicated by the white number super-imposed 
on the black squares 
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The cross-validated scores of the investigated models are presented in Figure 4.8. It may be noticed 

that models with three trees and five to nine leaves had better cross-validation scores than all the 

other models. Basing just on the results from cross-validation, the optimum model would be that 

with three trees and five leaves. This model is drawn in Figure 4.9 and included just phenotypic 

characteristics and no MC1R variant. Subjects with either brown eyes or more than 45 common 

naevi had a doubled risk of developing melanoma than subjects with none of these two phenotypic 

characteristics (OR; 95%CI: 2.04; 1.58-2.63); subjects with atypical neavi had OR (95%CI)=2.49 

(1.79-3.47) of developing melanoma compared to those with no atypical naevi; subjects with either 

freckles or brown hair had higher melanoma risk than subjects with none of these phenotypic 

characteristics: OR (95%CI): 2.72 (2.06-3.60). 

 

 

 

 

 

 

 

 

 

 

 

 



110 
 

Figure 4.8. The cross-validation scores of the linear models with various numbers of leaves 
and trees. The number of trees allowed in the linear model is indicated by the white number 
super-imposed on the black squares.  
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Figure 4.9. The logic trees of the optimum model obtained after cross-validation. 

  

ATYP=atypical naevi; BROWNE=brown eyes; BROWNH=brown hair; MSTNAEVI=more than 45 common naevi 
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The results from randomization tests in order to verify the hypothesis that the optimum model size 

is s, with }12,...,1,0{∈s are reported in Table 4.7. According to the results of randomization test, the 

acceptable models were those with two trees and ten to 12 leaves, and those with three trees and 

eight to 12 leaves. The optimum model would be the more simple, so that with two trees and ten 

leaves. This model is drawn in Figure 4.10 and included both phenotypic characteristics and the two 

MC1R variants V60L and D294H. Looking at gene-phenotype interaction, the MC1R variant V60L 

played a role in combination with common naevi count, while D294H interacted with both common 

naevi count and eye color. According with this model, subjects with no more than 45 common 

naevi, not brown eyes and not MC1R D294H variant or subjects with black hair or subjects with the 

extreme skin types I or IV had OR (95%CI)=0.34 (0.26-0.44) of developing melanoma compared 

with subjects without this combination of phenotypic and genetic characteristics. Subjects with no 

freckles and no atypical naevi with either not brown hair or both MC1R V60L wild type and 

extreme number of naevi (≤10 or >45) had OR (95%CI)=0.31 (0.23-0.40) of developing melanoma 

compared with subjects without this combination of phenotypic and genetic characteristics.  
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Table 4.7. Distribution of scores of the randomization test for model selection, obtained 
conditioning on 0 to 12 leaves. The score of the null model (intercept only) is 1555.379 while 
the best overall score found using the original (non-randomized) data is 1327.852. The general 
rule is to choose the smallest model size where a fraction higher than 20% of the 
randomization scores have scores better than 1327.852 (bold) 
Trees Leaves Minimum 1st quartile Median 3rd quartile Maximum %<best 

1 1 1413 1432 1438 1442 1452 0 
1 2 1395 1407 1414 1420 1431 0 
1 3 1375 1388 1396 1400 1407 0 
1 4 1362 1375 1383 1388 1400 0 
1 5 1374 1378 1382 1388 1394 0 
1 6 1362 1378 1382 1390 1395 0 
1 7 1365 1370 1379 1382 1394 0 
1 8 1354 1375 1381 1386 1404 0 
1 9 1362 1370 1377 1383 1404 0 
1 10 1349 1377 1384 1388 1401 0 
1 11 1364 1376 1379 1385 1395 0 
1 12 1360 1368 1379 1388 1407 0 
2 2 1391 1399 1408 1412 1434 0 
2 3 1356 1367 1376 1383 1390 0 
2 4 1355 1363 1368 1373 1390 0 
2 5 1351 1357 1366 1368 1376 0 
2 6 1322 1341 1349 1357 1369 4 
2 7 1327 1337 1345 1351 1365 4 
2 8 1330 1342 1348 1352 1363 0 
2 9 1327 1340 1345 1347 1356 4 
2 10 1315 1326 1335 1340 1356 32 
2 11 1314 1324 1331 1338 1350 44 
2 12 1315 1328 1338 1346 1353 28 
3 3 1363 1369 1376 1382 1387 0 
3 4 1329 1358 1366 1374 1386 0 
3 5 1326 1344 1351 1354 1365 4 
3 6 1326 1337 1342 1345 1358 4 
3 7 1317 1333 1338 1341 1351 16 
3 8 1318 1326 1339 1343 1356 28 
3 9 1306 1326 1331 1336 1349 32 
3 10 1305 1320 1328 1334 1344 48 
3 11 1311 1320 1326 1331 1337 64 
3 12 1298 1317 1323 1330 1338 60 
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Figure 4.10. The logic trees of the optimum model obtained after permutation tests 

  

ATYP=atypical naevi; BLACKH=black hair; BROWNE=brown eyes; BROWNH=brown hair; INTNAEVI=intermediate number of common naevi (11-45),; MSTNAEVI=more 
than 45 common naevi; PHOTOINT=intermediate skin phototype (II or III) 
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By combining the results of cross-validation and permutation tests, the acceptable models were 

those with three trees and eight or nine leaves.  

The frequency of models of any size with three trees visited by MCMC logic regression algorithm 

is presented in Figure 4.11. Models of size eight and nine were visited almost an equal number of 

times from the Monte Carlo algorithm and were the two model sizes with the highest frequency 

among all the considered model sizes. I therefore chose to select the less complex model with eight 

leaves as the optimum model for the data including in this study. The final model selected in this 

way is presented in Figure 4.12 and included brown hair, brown eye, intermediate skin types, 

common and atypical naevi, freckles and the two MC1R variants R151C and D294H. According to 

this finally selected model, the OR (95%CI) of developing melanoma for subjects with no atypical 

naevi and no MC1R D294H variant was 0.40 (0.29-0.55) compared to subjects with at least one of 

these risk factors; subjects with either brown eyes or more than 45 common naevi have a doubled 

melanoma risk (OR; 95%CI: 2.10; 1.63-2.72) than those with none of these phenotypic 

characteristics; subjects with freckles or subjects with both an intermediate skin type (II/III) and 

either brown hair or MC1R R151C variant had an OR (95%CI)=3.11 (2.35-4.12) compared to 

subjects without this combination of phenotypic and genetic characteristics (see Table 4.8). 
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Figure 4.11. Percent size distribution of regression models with three trees visited by the 
Monte Carlo algorithm 
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Figure 4.12. The logic trees of the final optimum model selected by a combination of cross-validation, randomization tests and Monte Carlo 
logic regression 

  

ATYP=atypical naevi; BROWNE=brown eye; BROWNH=brown hair; MSTNAEVI=more than 45 common naevi; PHOTOINT=intermediate skin phototype (II or III) 
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Table 4.8. Odds Ratios (OR) with 95%Confidence Intervals (CI) for the association between 
combinations of phenotypic characteristics and MC1R variants obtained from the final 
selected logic regression model 
N tree Gene-phenotype combination OR (95%CI) 

1 
 

Any atypical naevi 
D294H variants ≥1 

1.00 (ref) 

No atypical naevi + no D294H variant 0.40 (0.29-0.55) 
2 
 

Not brown eye + common naevi ≤45 1.00 (ref) 
Brown eye 

>45 common naevi 
2.10 (1.63-2.72) 

3 
 

No freckles + photoype I/IV 
No freckles + phototype II/III + no brown hair + no R151C variant 

1.00 (ref) 

Freckles 
Phototype II/III + brown hair 

Phototype II/III + R151C variants ≥1 

3.11 (2.35-4.12) 

 

The phenotypic characteristics most frequently included in models visited by the Monte Carlo 

algorithm were freckles, atypical naevi, more than 45 common_naevi, brown eyes and hair, and 

intermediate skin types (Figure 4.13). These are exactly the phenotypic characteristics included in 

the optimum selected model. The most frequent MC1R variant was D294H, followed by R151C, 

I155T and R142H. Again, this agrees with the inclusion of D294H and R151C in the optimum 

selected model. 
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Figure 4.13. Percent marginal frequency of being in the model for each variable according to 
Monte Carlo algorithm 

 

ATYP=atypical naevi; BLACKH=black hair; BLONDEH=blonde hair; BLUEE=blue eyes; BROWNE=brown eyes; 
BROWNH=brown hair; FEWNAEVI=maximum of 10 common naevi; INTNAEVI=intermediate number of common 
naevi (11-45); LIGHTE=light eye color, other than blue (green, grey or hazel); MSTNAEVI=more than 45 common 
naevi; PHOTOI=skin phototype I; PHOTOINT=intermediate skin phototype (II or III); PHOTOIV=skin phototype IV; 
REDH=red hair 

 

4.2.3. Classical model selection for the analysis of M-SKIP dataset 

In order to compare the results obtained with logic regression with those obtained with classical 

methods of variables selection for logistic regression models, I performed a new analysis on the 
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same dataset with 496 cases and 639 controls from three studies. The aim was again to find 

combinations of phenotypic characteristics and MC1R variants mostly associated with melanoma. 

 

Statistical analysis 

The studied variables were the same as described in section 4.2.2. All the variables were binary. 

The reference categories for hair color, eye color, skin type and common naevi were, respectively: 

black hair, green/grey/hazel eyes, intermediate skin types II/III, intermediate number of common 

naevi (11-45). Since the reference categories for each phenotypic characteristic were linear 

combinations of the dummy variables, they were not included in the analysis and the final number 

of considered variables was therefore 20.  

The main effect of each variable on melanoma development was estimated by unconditional logistic 

regression models. The best model including the variables mostly associated with melanoma was 

obtained by forward or backward selection, whichever had the smallest AIC. All the possible two 

by two interactions of the selected variables were defined and included in a new logistic regression 

model. The best model including the main effects and interactions mostly associated with 

melanoma development was obtained by forward or backward selection, whichever had the smallest 

AIC. Higher order interactions were not taken into account because they lead to difficultly 

interpretable models. The goodness of fitting data for classical model selection and logic regression 

was compared using the AIC obtained by the two final models.  

 

Results 

Using both forward and backward selection, the variables mostly associated with melanoma 

development were: red and brown hair, brown eyes, common naevi count ≤10 and >45, atypical 

naevi, freckles, and MC1R D294H variant. The OR with 95% CI for the main effect of these 
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variables were reported in Table 4.9. Subjects with at least one D294H variant had the highest risk 

of melanoma (OR; 95%CI: 2.32; 1.11-4.85), while subjects with few common naevi had the lowest 

risk (OR: 95%CI: 0.71; 0.54-0.94). Except few naevi count, all the other selected variables 

represented risk factors for melanoma development. With respect to the variables included in the 

best logic regression model, with classical methods two more variables were selected: red hair color 

and few common naevi count, otherwise skin type and MC1R R151C variant were not selected.   

 

Table 4.9. Odds Ratios (OR) with 95%Confidence Intervals (CI) for the association between 
phenotypic characteristics and MC1R variants obtained by forward and backward selection 
applied to logistic regression models 

Variable Category OR (95%CI) 
Hair color Black 1.00 (ref) 

Red 1.97 (1.12-3.48) 
Brown 1.93 (1.46-2.55) 

Eye color Green/grey/hazel 1.00 (ref) 
Brown 1.67 (1.26-2.20) 

Common naevi count ≤10 0.71 (0.54-0.94) 
11-45 1.00 (ref) 
>45 1.97 (1.24-3.12) 

Atypical naevi None 1.00 (ref) 
Any 2.13 (1.51-3.01) 

Freckles None 1.00 (ref) 
Any 1.88 (1.44-2.46) 

D294H No variant allele 1.00 (ref) 
1 or 2 variant alleles 2.32 (1.11-4.85) 

 

When the two by two interactions were added to the logistic regression model, the variables 

selected as mostly associated with melanoma were: red and brown hair, brown eyes, common naevi 

count ≤10 and >45, atypical naevi, freckles. The interactions mostly associated with melanoma 

were: brown hair and eyes, brown hair and freckles, brown eyes and more than 45 common naevi, 

MC1R D294H and no more than 10 common naevi. This model was obtained by forward selection; 

the ORs with 95%CI were reported in Table 4.10. It may be noticed that in this model D294H 

seemed to play a role in melanoma development only in interaction with common naevi count, with 
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a significant synergic effect, somewhat nullifying the protective effect of having few common 

naevi.  

 

Table 4.10. Odds Ratios (OR) with 95%Confidence Intervals (CI) for the association between 
phenotypic characteristics, MC1R D294H variant, and their interactions obtained by forward 
selection applied to logistic regression models 

Variable Category OR (95%CI) 
Hair color Black 1.00 (ref) 

Red 1.76 (0.98-3.17) 
Brown 1.84 (1.64-3.77) 

Eye color Green/grey/hazel 1.00 (ref) 
Brown 1.84 (1.18-2.86) 

Common naevi count ≤10 0.69 (0.52-0.91) 
11-45 1.00 (ref) 
>45 3.48 (1.95-6.20) 

Atypical naevi None 1.00 (ref) 
Any 2.09 (1.48-2.97) 

Freckles None 1.00 (ref) 
Any 1.78 (1.90-4.08) 

Hair and eye color No brown hair and no brown eyes 1.00 (ref) 
Brown hair and brown eyes 1.09 (0.62-1.92) 

Hair color and freckles No brown hair and no freckles 1.00 (ref) 
Brown hair and freckles 0.47 (0.27-0.80) 

Eye color and common naevi 
count 

No brown eyes and ≤45 naevi 1.00 (ref) 
Brown eyes and >45 naevi 0.22 (0.09-0.52) 

D294H and common naevi count No variant allele and >10 naevi 1.00 (ref) 
1 or 2 variant alleles and ≤10 naevi 2.93 (1.12-7.63) 

 

The AIC associated with the logic regression model selected in the section 4.2.2 was 1,388.722. The 

AIC associated with the logistic regression model obtained by forward selection was 1,401.665.   

 

4.2.4. Discussion 

Logic regression is a new tool useful for detecting subpopulations at high or low risk of disease, 

characterized by high-order interactions among covariates. The types of interactions identified by 

logic regression are not “traditional” interactions, where one predictor modifies the effect of another 

predictor, but rather combinations of predictors that are associated with increased or decreased 
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disease risk. With respect to other regression models this allow to estimate disease risk for 

combinations including not only the operator “AND”, but also the “OR” operator. With a single 

logic tree, such logic regression identifies a single group of persons at increased (decreased) risk; 

when the underlying risk profile is more complicated, additional logic trees may be needed. The 

logic trees provide easily interpretable description of subpopulations, and thus the methodology 

could be well applied to the study of complex diseases like cancer. In the study of gene-phenotype 

interaction in melanoma development, I could observe that logic regression generated a much 

simple characterization of the subsets of the population at high risk than did linear logistic 

regression, which depended on weighted averages of covariate values and of their interactions. 

Moreover logic regression takes into account even high-order interactions among covariates, while 

with classical logistic regression models this would lead to very difficultly interpretable models. A 

reason of the less complexity of logic regression approach is that it allows to compute the 

importance of variables interactions without using the interactions as input variables, thus using less 

degrees of freedom in the final model. In the application on M-SKIP dataset, the logic regression 

model had three degrees of freedom, while the classical logistic regression model had 11 degrees of 

freedom. This did not affect the model fitting; on the contrary the AIC for the logic regression 

model was smaller than that of logistic regression model. Thus it was possible to select by logic 

regression a model with a good fitting, not too complex and quite easily interpretable. Finally, since 

logic regression is a well-defined procedure, model selection and multiple-comparisons corrections 

for the significance level are implicit and do not require further resampling or bootstrapping.  

The approach based on logic regression has, however, some limitations. First, the variable 

important measures are currently restricted to analyses of data with a binary outcome. If one wish to 

enter continuous predictors in the interactions, they would have to be dichotomized. In my 

application to M-SKIP dataset, I dichotomized categorical variables with dummy variables. This 

was easy and lead to a good interpretation of results, however other classifications  (i.e. light vs 

dark hair color, skin types I/II versus III/IV) would had provide different results. My choice of 
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dummy variable creation was orientated by (1) having as much differentiation as possible in hair 

and eye color, and (2) separating the extreme classes of skin type and common naevi count by 

intermediate classes. This was done for clinical reasons and also because in pooled-analysis setting 

misclassification probably affects the intermediate classes of exposure more than the extreme ones 

[Gandini S et al. 2005c]. The computation time of the proposed approach depends not only on the 

number of iterations used in simulated annealing but also on the maximum number of variables and 

trees allowed in the models: 10-fold cross-validation and randomization tests, where models with 

three trees and 12 leaves were investigated, took several hours. In my application, I had missing 

data on a number of covariates, and chose to drop subjects with any missing values. The amount of 

missing data was huge, and the analysis was therefore restricted to 7% of the whole dataset. 

However, due to the very large amount of collected data in the M-SKIP project, this subgroup  

In conclusion, logic regression seems an accurate method for identifying combinations of binary 

variables mostly associated with a response and its results are easily interpretable. The application 

of logic regression to the study of gene-phenotype interaction in melanoma risk let to identify three 

subgroups of patients characterized by a higher risk of melanoma, and suggested possible 

interaction between the two MC1R variants D294H and R151C with atypical naevi and skin type, 

respectively. Further investigation are warrant to better analyze gene-phenotype interaction and to 

assess the role of sun exposure on a larger M-SKIP dataset and within a pooled-analysis setting.   

 

4.3. Validation analyses on gene-phenotype interaction 

The previous analysis was carried out on a small subset of M-SKIP dataset (496 cases and 639 

controls from three studies), characterized by no missing data on the studied phenotypic 

characteristics and MC1R variants. I then validated the previous results with a new analysis 

including, for each identified high-risk sub-population, all the studies in which the sub-population 

could be defined and taking into account the available confounders. The high risk sub-populations 
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identified by logic regression, pooling subjects of three different studies (Gruis, Ghiorzo, Debniak), 

included subjects with 1) any atypical naevi or any D294H variant; 2) brown eye or more than 45 

common naevi; 3) freckles or phototypes II/III and (brown hair or any R151C variant).  

For this analysis I used a two-stage meta-analytic approach (section 3.2), by pooling, for each sub-

population, the confounders-adjusted ORs of available case-control studies. I excluded case-control 

studies with more than 20% of missing data for the variable(s) used to define the high-risk sub-

population.  

 

4.3.1. Population one: atypical naevi or any D294H variant 

The OR (95%CI) found with logic regression for this population was 2.50 (1.82-3.45). For this 

validation analysis I excluded the study by Debniak because there were more than 20% of missing 

data for atypical naevi variable. The validation analysis was carried out on five independent studies 

(Figure 4.14) including 1,360 cases and 1,220 controls. The pooled-OR (95%CI) to develop 

melanoma for population one was 4.08 (2.38-6.98), with evidence of heterogeneity between studies 

(I2:82.7%, Q statistic p-value:<0.0001). However all the study-specific estimates were significantly 

higher than 1.00, therefore the association with melanoma for population one could be confirmed. 
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Figure 4.14. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between population one* and melanoma 

Odds ratio
.1 1 10

 Combined

 Kanetsky
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 Fargnoli

 Ghiorzo

 Gruis

    
*subjects with atypical naevi or any D294H variant 
 

4.3.2. Population two: brown eye or more than 45 common naevi 

The OR (95%CI) found with logic regression for this population was 2.10 (1.63-2.72). For this 

validation analysis I excluded the study by Debniak because there were more than 20% of missing 

data for common naevi variable. The validation analysis was carried out on five independent studies 

(Figure 4.15) including 699 cases and 1,085 controls. The pooled-OR (95%CI) to develop 

melanoma for population two was 1.15 (0.55-2.40), with evidence of heterogeneity between studies 

(I2:88.4%, Q statistic p-value:<0.0001). The significant association with melanoma for this 

population was indeed observed only in the two studies included in the logic regression analysis, 

while this was not confirmed by the further three studies included in the validation analysis. 

Therefore the association with melanoma for population two could not be confirmed. 
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Figure 4.15. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between population two* and melanoma 

Odds ratio
.1 1 10

 Combined

 Ribas

 Stratigos

 Fargnoli

 Ghiorzo

 Gruis

    
*subjects with brown eye or more than 45 common naevi 
 

4.3.3. Population three: freckles or phototypes II/III and (brown hair or any R151C variant) 

The OR (95%CI) found with logic regression for this population was 3.11 (2.35-4.12). The 

validation analysis was carried out on 11 independent studies (Figure 4.16) including 2,997 cases 

and 2,971 controls. The pooled-OR (95%CI) to develop melanoma for population two was 2.10 

(1.41-3.13), with evidence of heterogeneity between studies (I2:86.9%, Q statistic p-value:<0.0001). 

However all the study-specific estimates but two (Stratigos, Branicki) were higher than 1.00, with 

statistical significance reached for all the studies but one (Dwyer), therefore the association with 

melanoma for population three could be confirmed. 
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Figure 4.16. Study-specific and pooled-Odds Ratio (OR) with 95% Confidence Intervals (CI) 
for the association between population three* and melanoma 
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*subjects with freckles or phototypes II/III and (brown hair or any R151C variant) 
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Chapter 5 

 

Discussion and conclusions 

 

5.1. Main effect of MC1R gene variants on melanoma 

I found a significant association with melanoma for the five MC1R variants D84E, R142H, R151C, 

R160W, and D294H by using both the standard two-stage analysis and the multivariate adaptation 

of the new approach proposed by Jackson [Jackson et al. 2009]. Our previous meta-analysis and 

earlier studies have already suggested that the three variants R151C, R160W, and D294H were 

significantly associated with melanoma risk, probably via pigmentary pathways [Raimondi et al. 

2008; Palmer et al. 2000; Kennedy et al. 2001; Matichard et al. 2004; Landi et al. 2005; Debniak et 

al. 2006: Fargnoli et al. 2006b; Han et al. 2006]. The association of D84E and R142H with 

melanoma was controversial: in some studies these variants were found significantly associated 

with melanoma risk [Valverde et al. 1996; Smith et al. 1998; Kennedy et al. 2001; Mossner et al. 

2007; Fargnoli et al. 2006b] but other studies [Palmer et al. 2000; Matichard et al. 2004; Stratigos et 

al. 2006] did not show a particular relationship between these variants and melanoma. The 

controversial results could be explained with the fact that these variants are less common and 

therefore large sample sizes are necessary to reach powerful results. In vitro expression studies on 

D84E, R151C, and R160W receptors revealed that they have reduced cell surface expression and a 

corresponding impairment in cAMP coupling. The R142H and D294H variants showed normal cell 

surface expression, but had reduced functional responses [Beaumont et al. 2007]. This could explain 

why these mutations are common in individuals with red hair and fair skin and therefore we can at 

least partly explain the association of these five MC1R variants with melanoma by pigmentary 

pathways: red hair and fair skin individuals are unable to increase melanin levels in the skin in 
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response to high exposure to UV light and therefore increase the levels of pheomelanin, which is 

mutagenic and cytotoxic [Harsanyi et al. 1980; Koch et al. 1986].   

A small association between melanoma and V92M variant was suggested with the standard two-

stage analysis (OR; 95%CI: 1.15; 1.00-1.31), but not confirmed by the analysis with Jackson 

approach (1.18; 0.99-1.42), although the two ORs and 95%CI were very similar. For this variant it 

is warranted to increase the statistical power of the pooled-analysis by including further studies: this 

may be done in a next step of the project, when new classical association studies and GWAS will be 

included and analyzed. Anyway, the lack of association observed with the Jackson’s approach may 

be also explained with the lower precision of the CI with respect to the classical two-stage approach 

observed in the validation studies. In our previous meta-analysis [Raimondi et al. 2008], we found 

no association with melanoma for V92M variant. For these three variants, functional studies 

reported a marginal role in affecting cyclic adenosine monophosphate levels and therefore MC1R 

function [Beaumont et al. 2007].  

No association between I155T variant and melanoma was found with the standard two-stage 

analysis (OR; 95%CI: 1.36; 0.97-1.90), while with the Jackson’s approach I observed an OR  

significantly higher than 1.00 (2.84; 2.03-3.97). This may be explained with the fact that I155T 

variant is rare, and the Jackson’s approach might therefore obtain false positive results, as happened 

in my validation study. An association between I155T variant and melanoma was previously 

observed [Debniak et al. 2006; Han et al. 2006; Raimondi et al. 2008], however the lack of 

association with red hair color and fair skin previously found [Raimondi et al. 2008] suggests that, 

for this variant, melanoma risk could be possibly increased via non-pigmentary pathways.           

Finally, no association was observed between melanoma and the two MC1R variants V60L and 

R163Q by using both the standard two-stage analysis and the multivariate adaptation of the new 

approach proposed by Jackson. In our previous meta-analysis [Raimondi et al. 2008], we found no 

association with melanoma for V60L variant, while we observed a significantly higher risk of 
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melanoma for R163Q variant. For these two variants, functional studies reported a marginal role in 

affecting cyclic adenosine monophosphate levels and therefore MC1R function [Beaumont et al. 

2007].  

A significant heterogeneity among the study-specific estimates was found for the four MC1R 

variants V60L, R142H, R151C and R160W, but seemed to be attributable to single studies. With 

the exclusion, in a sensitivity analysis, of these studies with “strange” risk estimates I obtained 

similar results than the main analysis. 

A participation bias was suggested for R163Q variant: a blank area in the left-bottom part of the 

graph was observed, which would include small studies with low OR. This is a typical result for 

publication bias, indicating that results from small studies, with low statistical power, were 

published only if they suggest a significant association between the variant and melanoma. 

However, within the M-SKIP project, I asked all the available data from the identified studies, and 

therefore I received both published and unpublished data. A possibility is that certain investigators 

of small studies had deleted the data of R163Q variant after the observation of null results, also 

because functional studies did not demonstrated a role in melanoma development for this variant. 

This hypothesis, however, need to be directly verified with the investigators of small studies with 

no data on R163Q variant. 

 

5.2. Gene-phenotype interaction 

The independent role of MC1R variants on melanoma was investigated by taking into account 

several phenotypic characteristics that may increase, by themselves, the risk of melanoma., and that 

may be determined by MC1R variants.   

Stratified analyses were performed for skin color, skin type, hair color, eye color and freckles. I 

found statistically significant lower ORs for red-haired subjects compared to subjects with other 
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hair colors for R142H variant (p-value: 0.02); higher ORs for subjects with dark eyes (brown or 

black) compared to subjects with light eyes (blue, green, grey or hazel) for D294H variant (p-

value:0.02); higher ORs for subjects with no freckles compared to subjects with freckles for V92M 

and R160W variants (p-values: 0.05 and 0.02, respectively). Moreover, I generally observed higher 

ORs among darker pigmented subjects for almost all variants and pigmentation characteristics. 

Similar results were observed in a previous study and meta-analysis [Kanetsky et al. 2010], where 

association between some MC1R variants and melanoma was stronger in subjects with dark hair, 

dark eyes, skin type III/IV, and in subjects who reported low recreational sun exposure. These 

results seemed to suggest an important role of MC1R gene also via non-pigmentary pathways, 

therefore several MC1R variants could be associated with melanoma development independently by 

pigmentation characteristics. From a clinical point of view, this result suggests to screen the MC1R 

gene only in darker pigmented subjects, for which the presence of certain variants may significantly 

increase the risk of melanoma compared to dark pigmented subject without MC1R variants. For 

high risk subjects, specific approach for melanoma early detection may be developed and applied.    

Since the sequencing of all MC1R gene is expensive, a further goal is to identify how combinations 

of MC1R variants and phenotypic characteristics are at higher risk of develop melanoma, in order to 

genotype only few MC1R variants, which were indeed associated with melanoma in combination 

with specific phenotypic characteristics. According with the results of the M-SKIP pooled-analysis 

on 496 cases and 639 controls from three studies (Gruis, Ghiorzo, Debniak), I found that three 

population subgroups were at higher risk of melanoma.  

The first subgroup included subjects with either atypical naevi or MC1R D294H, who have a more 

than doubled risk of melanoma (OR=2.5) than subjects with none of these factors. The genetic risk 

factors for this group of patients could let identify it as a group with “genetic risk”. Atypical naevi 

was found as an important risk factor for melanoma in a previous meta-analysis [Gandini et al. 

2005a] with a very high summary Relative Risk (RR) of 10.12 (95%CI: 5.04-20.2) for the presence 
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of any atypical naevus. Also the MC1R D294H variant was previously associated with melanoma 

[Raimondi et al. 2008] and was showed to have reduced functional responses. Interaction between 

these two risk factors, however, was never identified before. The higher risk of melanoma for this 

subgroup was confirmed by a further analysis on an extended dataset.   

The second subgroup of high risk subjects included those with either brown eye or more than 45 

common naevi. This group of subjects seemed to have a “mixed genetic and environmental risk”. In 

fact brown eye color was not identified as a risk factor for melanoma, even if in a previous meta-

analysis it was not analyzed alone, but aggregated with black eye color [Gandini et al. 2005c]. It 

would be possible that subjects with quite dark phenotypic characteristics like brown eyes and hair 

exposed more to sun and with less levels of filter protection than subjects with light pigmentation. 

This could increase their sun-related exposure risk. Otherwise, the association between high number 

of naevi and melanoma was previously suggested [Gandini et al. 2005a], with meta-analytic RR 

(95%CI) ranging from 2.24 (1.90-2.64) for the class 41-60 naevi to 6.89 (4.63-10.25) for the highest 

class of more than 100 common naevi. In the validation analysis performed on a larger M-SKIP 

dataset, the association with melanoma for this subgroup of patients was not confirmed. In 

particular, in most studies subjects with brown eyes were indeed protected by melanoma risk, 

according with the previous published results [Gandini et al. 2005c].  

The last high risk subgroup again contained a such combinations of factors that characterized it as 

having “mixed genetic and environmental risk”: subjects with freckles or with intermediate skin 

type and brown hair or with intermediate skin type and at least one MC1R R151C variant had a 

triple risk of melanoma than subjects without this combination of phenotypic and genetic factors. 

Freckles was found to be a risk factor for melanoma in a previous meta-analysis [Gandini et al. 

2005c] with summary RR (95%CI) for high density of freckles: 2.10 (1.80–2.45). Subjects with 

both intermediate skin type and brown hair may had an increased risk of melanoma due to 

“environmental reasons”: as hypothesized above, they may exposed more to sun than high risk 
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subjects with skin type I and may not have sun protection as well as subjects with skin type IV. 

Similarly, the subjects with intermediate skin type and MC1R R151C variant may exposed to sun 

more than subjects with skin type I, having however a genetic predisposition to melanoma given by 

the MC1R variant R151C. If this hypothesis was true, the increased risk of melanoma in this 

subgroup of patients could be explained by a gene-environment interaction. This subgroup of 

subjects was confirmed to have high risk of melanoma also in the confirmatory analysis on an 

extended M-SKIP dataset.      

 

5.3. Conclusions  

In conclusion, taking into account the possible confounding effect of the main risk factors for 

melanoma (sun exposure, sunburns and naevi count) we found that the five MC1R variants D84E, 

R142H, R151C, R160W, and D294H resulted associated with melanoma risk, while no significant 

association with melanoma was found for the two not functional MC1R variants V60L and R163Q. 

Results for the association with melanoma of V92M and I55T variant were still controversial and 

further investigations is warranted.  

Among the MC1R variants associated with melanoma, however, the two variants D294H and 

R151C seemed the two ones that could indeed increase melanoma risk in combination with 

phenotypic characteristics and that are warranted to screen. The suggestion is to genotype D294H 

variant in subjects without atypical naevi, and R151C variant in subjects with no freckles and 

intermediate skin type II/III, in order discriminate individuals with a higher risk of melanoma from 

those protected. 

It would be worthwhile to validate the results of the present analysis with prospective studies.  
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