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ABSTRACT 
 

Loss of response to TGF-β occurs in many cancers and disruption of its regulatory circuitry 

appears as a central event in the genesis of colorectal cancer (CRC) malignancy. Lack of 

inhibitory response to TGF-β is common to most colon cancer cell lines. However, 

inactivating mutations at receptors and transducers occur in less than a half of neoplastic 

colon tissues, which underscore the significance of additional mechanisms diverting TGF-

β growth suppression. In this context, abrogation of TGF-β response by some miRNAs has 

been recently reported. 

 

By searching for miRNAs in regions showing copy number changes and concordant gene 

expression in 36 sporadic CRCs compared to their normal counterpart, we identified the 

miR-17-92 cluster on the 13q31 locus, which is gained and highly expressed at early stages 

of CRC. We hypothesized an involvement of miR-20a in the suppression of TGF-β 

response in CRCs and selected the TGF-β sensitive FET colon carcinoma, expressing low 

miR-20a levels, to investigate the relationship between enhanced expression of miR-20a 

and TGF-β sensitivity and address growth inhibition. 

 

We found that miR-20a affects regulation of p21 expression, has a negative and significant 

effect on the cytostatic response mediated by TGF-β, as evaluated by BrdU incorporation, 

MTT assay, and cell-cycle analysis, but shows little effect on TGF-β untreated cells. 

Although CDKN1A transcript and protein are significantly decreased in cells treated or not 

with the cytokine, we could observe that the p21 up-regulation driven by TGF-β is twofold 

lower after miR-20a administration. 

 

We confirmed that p21 down-modulation is addressed by the direct binding of its 3’-UTR 

by miR-20a. Moreover, we observed that miR-20a is also able to block the transactivation 

of the 2.3-kb CDKN1A promoter upon TGF-β stimulation, as assessed by luciferase-based 

assay, but not the activation of the Smad3/4-reponsive reporter. Down-modulation of c-

Myc by TGF-β, crucial to regulation of CDKN1A transcription, is also subverted by miR-

20a delivery into cells. 
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Using luciferase reporter assays we demonstrated that two of the c-MYC repressor genes, 

E2F5 and KLF11, are directly targeted by miR-20a thus resulting in abrogation of the 

TGF-β mediated repression of c-MYC.  

Our experiments suggest for miR-20a an interference with the TGF-β homeostasis in colon 

addressing the up-regulation of p21 expression, through mechanisms involving more 

effectors of the TGF-β cascade. Overall, miR-20a seems to participate in the abrogation of 

this key regulatory response in colonic epithelium. 

 

Finally, analysis of the effects of TGF-β stimulation on miRNAs that we found altered in 

CRC, identified seven miRNAs whose expression was significantly induced by the 

cytokine. They could be further investigated to understand the mechanisms by which 

miRNAs and genes from this pathway regulate each other. 
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1 INTRODUCTION 
 

1.1 HALLMARKS OF CANCER  
 

Tumor formation is a complex process that usually proceeds over several years and 

drives normal cells evolution into cells with increasingly neoplastic phenotype and is 

driven by a sequence of randomly occurring mutations and epigenetic alterations of DNA 

that affect genes controlling crucial cellular processes, leading to malignant growth. The 

genetic abnormalities that contribute to cancer pathogenesis basically take place through 

two main mechanisms: inactivation of negative mediators of cell proliferation (including 

tumor suppressor genes) and activation of positive mediators of cell proliferation 

(including proto-oncogenes) [1].   

These genetic alterations, involving cells and tissues bring also clearly to phenotypic and 

morphological onset that have been well characterized and can be summarized in the eight 

so called “Hallmarks of Cancer”: self-sufficiency in growth signals, insensitivity to anti-

growth signals, limitless replicative potentials, evading apoptosis, sustained angiogenesis, 

tissue invasion and metastasis, and the last two, more recently defined, reprogramming of 

energy metabolism and evading immune destruction [2] (Figure 1). In addition, the biology 

of tumors should be investigated not only focusing on the traits of cancer cells, but also 

considering the contributions of the “tumor microenvironment”. Cancer is also determined 

by individual variability provoked by hereditary predisposition, lifestyle and other 

variables like environmental influences, infectious agents, nutritional factors, hormonal 

and reproductive factors, carcinogens and radiation [3]. These predispositions could lead to 



the disruption of the eight hallmarks enabling transformation of a normal cell into its 

neoplastic counterpart. 

The conception that human tumor development is characterized by a multi-step process has 

been documented most clearly in the epithelia of the intestine and colon cancer providing a 

good model for the study of morphological and genetic stages in cancer progression. 

 

 

 

 

Figure 1. The hallmarks of cancer [2] 
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1.2 COLORECTAL CANCER  OVERVIEW 
 

Colorectal cancer (CRC) is the third most common cancer type and the third leading cause 

of cancer-related death in the world, with an estimated incidence of 1 million new cases 

and a mortality of >500000 deaths annually [4]. In the following paragraphs the 

morphological and histological characteristics of the colon epithelium and the changes that 

undergo normal tissues while developing a malignant phenotype will be described. 

 

1.2.1 HISTOPATHOLOGICAL CHARACTERISTICS OF COLORECTAL 
CANCER 
 

The intestinal epithelium is formed by a one cell depth layer in many  sites, and this 

population of cells is in constant flux to maintain homeostasis of cell renewal process, in 

which cell proliferation, differentiation and apoptosis of enterocytes is highly regulated 

both spatially and temporally [5].  Epithelial cells are anchored on a basement membrane 

(basal lamina) that forms part of the extracellular matrix and is assembled from proteins 

secreted by both epithelial and stromal cells, mostly fibroblast, lying beneath the 

membrane. Other cell types including endothelial cells, which form the walls of capillaries 

and lymphatic vessels, and immune cells are also present. Beneath this layer of stromal 

cells there is a thick layer of smooth muscles responsible for intestinal peristalsis through 

periodic contractions [6]. Most of the pathological changes associated with the 

development of colon cancer occur in the epithelial layer, which undergoes transformation 

through a series of intermediate steps from carcinoma, where it is possible to observe a 

variety of tissue states with different degrees of abnormality, to mildly deviant tissues and 

high malignancy state, and later into multiple metastatic growths (Figure 2). 

 



 

 

 

 

Figure 2. Progression from polyp to cancer (modified from John Hopkins Medicine 
Colorectal Cancer http://www.hopkinscoloncancercenter.org) 

 

Focusing on the histopathological alterations of the colonic epithelium, there are some 

hyperplastic areas where epithelial cell proliferation is unusually high although the 

individual cells have normal phenotype. Other areas are characterized by growth with 

abnormal histology deviating from that of normal cells and the well ordered cell layer 

typical of the normal colonic epithelium is not present. During further stages of 

progression abnormal growth leading to adenoma formation is observed [6]. All these 

forms are considered benign until they pass through the basal membrane and invade the 

underlying tissues and the cells switch into a malignant direction. The deeper they 

penetrate into the stromal layers, the higher is the risk that they can migrate to anatomically 

distant sites in the body and metastasize.  
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1.2.2 GENETICS OF COLORECTAL CANCER 
 

CRC is defined on the basis of clinical, pathological and genetic findings and can be 

subdivided into hereditary (< 5 %), familial (20–25 %) and sporadic (75 %) disease [7]. 

The inherited variants of CRCs account for a small fraction of all colorectal tumors and are 

well described on the basis of clinical, pathological, and genetic characteristics. The most 

common are hereditary nonpolyposis colon cancer (HNPCC), also named Lynch 

syndrome, and the familiar adenomatous polyposis (FAP) syndrome. FAP is caused by 

alterations of APC gene and is characterized by development of hundreds to thousands of 

colonic adenomas (polyps) which develop into CRC when not treated. HNPCC is caused 

by alterations in DNA mismatch repair genes leading to microsatellite instability (MSI) 

and although affected individuals can develop colonic adenomas with greater frequency 

that the general population, poplyposis is rare condition.  

In addition to the inherited syndromes, 20-25% of CRC exhibit increased familiar risk, 

probable related to inheritance, but the genetic loci responsible for the risk genotype are 

mainly unknown. They are likely to be caused by alterations in genes that are less 

penetrant, but more common that those associated with the familiar syndromes. 

Polymorphisms in genes that regulate metabolism or in genes regulated by environmental 

factors could be related to familiar predisposition to CRC. Sibling studies and studies with 

parent/child pairs have estimated that up to 35% of all CRC cases can be attributed to 

genetic susceptibility [8].  

In sporadic CRC genetic instability occurs either as chromosomal instability (CIN), in 85 

% of all cases, or as microsatellite instability (MSI), in 15 % of the patients. 
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Key changes in CINs include widespread alterations in terms of gained and lost 

chromosomal regions, recurrently identified on chromosomes 7, 8, 13, 18 and 20 [9-11]. 

Although the molecular basis of CIN is unknown, mutations in p53, loss of (18q region 

and amplifications of 20q where multiple putative oncogenes map were reported as 

implementing CIN mediated tumor progression [12-14]. Direct involvement of APC in 

chromosomal instability was also reported [15].  

MSI CRCs are characterized by defects in the DNA mismatch repair system, which result 

in a consequent instability of repetitive units of DNA (DNA microsatellites) [16, 17]. 

Genes involved and inactivated by either mutation or hypermethylation include MSH2, 

MSH3, MSH6, MLH1, PMS1 and PMS2.  

 

 

1.2.2.1 Vogelgram – a progression model for colorectal cancer 
 

The worldwide adopted model presented by B. Vogelstein in 1990 describes the series of 

key genetic events that characterize colorectal cancer progression (Figure 3) [12]. The 

adenoma to carcinoma sequence is initiated by inactivation of APC and this event takes 

place in the normal epithelium. The APC gene encodes a large multidomain protein that 

binds to β-catenin and Axin and downregulates Wnt signaling pathway. Most of APC 

mutations involve the region responsible for β-catenin binding, blocking the inhibition of 

Wnt signaling and leading to over proliferation of cells. APC mutations can be either 

frameshift (68%) or nonsense (30%) and lead to the carboxy-terminal truncation of the 

protein. During the normal cell growth and turn-over of the colonic epithelium, normal 

enterocytes migrate out of colonic crypts, differentiate and die within 3 to 4 days for 

apoptosis. As consequence of this short life, most mutations occurring in their genome will 



soon be lost. However, loss of APC function results in trapping cells within crypts and 

later, in the accumulation of APC-negative cell populations. Thus, because migration from 

crypts is blocked, the resulting mutant cells will also be retained into crypts. In this 

context, disruption of APC pathway may be sufficient to start small adenomatous growth 

[18]. 

The next genetic event involves hypomethylation and occurs at the state of hyperplastic 

polyp. Slightly larger adenomas are characterized by mutations in K-Ras gene that 

constitutively activate this oncogene and cause progression.  

Late stage adenomas show also loss of 18q-arm; best candidate tumor suppressor gene that 

is lost is DPC4/MADH4, which encodes SMAD-4, involved in the transforming growth 

factor β (TGF-β) signaling pathway [18]. Driving progression from the intermediate stage 

adenoma to late adenoma, alterations in the TGF-β pathway occur and result in loss of the 

growth inhibitory effects of TGF-β [19]. 

 

 

Figure 3. Vogelgram. Transformation of normal colon epithelium into malignant 
carcinoma by step-wise accumulation of genetic aberrations as presented by Fearon and 
Vogelstein in 1990 [14]. 

 

About half of the carcinomas show LOH on the short harm of Chromosome 17 (17p) 

where p53 (17p13) maps. p53 is a tumor suppressor gene, frequently mutated in colorectal 

cancer, which suppresses cell division or induces apoptosis in response to stress damage. 

Loss of this gene by damage of both alleles drives progression to carcinoma [19] (Figure 

3). 
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1.2.2.2 Structural and copy number variations in colorectal cancer  
 

Beside the gene mutations, an additional mechanism that can disrupt gene function is the 

copy number variation (CNV), a characteristic of sporadic CRC. These variations can 

include deletions, segmental duplications, insertions, inversions or complex chromosomal 

rearrangements and it became clear that they are actually very common events in cancer 

genesis [20-25]. Changes in copy number are already present in high-grade dysplasias and 

adenomas, but they are significantly more abundant in carcinomas causing alteration of the 

expression of genes directly involved in cancer.  

The development of high resolution techniques has allowed to detect and catalogue CNVs 

and to associate them with specific biological functions and complex human genetic 

diseases [26]. Array-based analysis of single nucleotide polymorphisms (SNPs) is widely 

used for the identification of these variations. Multiple genome-wide association studies 

(GWAS) aimed at associate specific disease genotype to phenotype [27] have recently 

identified several susceptibility SNP loci that have been proposed to predispose to CRC 

[28-31]. Analysis of structural variations in CRC patients can provide new highlights to 

define further colon cancer tumorigenesis. 
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1.3 TGF-β SIGNALING PATHWAY 
 

TGF-β is a pleiotropic cytokine that regulates several biological processes 

including tissue growth and morphogenesis during embryonic development, cell 

proliferation and apoptosis, epithelial-mesenchymal transition (EMT), adhesion, 

differentiation, migration and metastasis [32, 33]. The TGF-β superfamily of ligands 

includes more than 30 factors including the TGF-β isoforms, Bone morphogenetic proteins 

(BMPs), Growth and differentiation factors (GDFs), Anti-müllerian hormone (AMH), 

Activins and Nodals. 

The TGF-β cytokine family is composed of the TGF-β isoforms (TGF-β1, β2 and 

β3) whose bioactive cytokine molecule is a dimer composed of a polypeptide chain which 

is cleaved from a precursor by enzymes like furin, a proprotein convertases that process 

latent precursor proteins into their biologically active products, and other convertases [34, 

35]. 

The canonical signaling pathway involves the phosphorylation of Smad proteins. 

TGF-β  ligand binds with high affinity to the TGF-β  type-II receptor (TβR-II) and recruits 

the type-I TGF-β receptor (TβR-I) forming a hetrotetrameric complex resulting in 

phosphorylation of the type I receptor by the receptor type II. TβR-I subsequently 

recognizes and phosphorylates receptor-regulated Smad proteins (R-Smads) Smad-2 and 

Smad-3. Smads are intracellular proteins that transduce extracellular signals from TGF-β 

ligands to the nucleus where they activate gene transcription. In the basal state, the R-

Smads are retained in the cytoplasm by binding to SARA (Smad anchor for receptor 

activation) [36]. After the phosphorylation of the Smads, their affinity to SARA decreases 

and Smad-2 and -3 are released. Subsequently they interact with Smad-4. This is a binding 
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partner common to all receptor activated Smad proteins, that is not phosphorylated, but 

essential for the formation of all Smads transcriptional complexes and that drives the 

accumulation of Smad proteins in the nucleus. The phosphorylation by TGF-β receptor I 

kinases at C-terminal serine residues (SXS domain) is a nuclear localization signal. Smad-

2 and Smad-3 linked to Smad-4 undergo constant nucleo-cytoplasmic shuttling, 

determined by repeated cycles of de-phosphorylation and re-phosphorylation, involving 

direct interactions with both nuclear pore proteins and importins and exportins.  

Once in the nucleus, there is a “sequence mediated” mechanism that regulates interactions 

between the Smad complex proteins and their target genes by directly recognizing target 

genes carrying several copies of Smad cognate sequence CAGAC [37]. However, Smad 

proteins have a low affinity to DNA and they need additional DNA binding co-factors to 

recognize and sufficiently bind Smad-responsive promoter elements containing only one 

copy of this sequence.  

The inhibitory Smads, Smad-6 and Smad-7, negatively regulate the TGF-β signaling in 

response to feedback loops and antagonistic signals. Smad-7 competes with R-Smads for 

binding the receptor activated complex and consequently induces termination of TGF-β 

signaling [38] (Figure 4). Interestingly, the inhibitory Smads can be up-modulated by the 

TGF-β ligands which they regulate: Smad-7 by TGF-β, activin and BMP members, while 

Smad-6 is induced by BMP [38, 39]. Transcriptional repressors such as Ski and SnoN (Ski-

like) can also inhibit the Smad signaling [40]. These findings demonstrate that the TGF-β 

signaling requires integration of positive and negative signals for inducing specific cellular 

responses: these signals are extremely variable depending on the cellular type and the 

stimulation context. TGF-β induces epithelial cells to undergo growth arrest and apoptosis 

restraining their growth, whereas it can also induce epithelial-mesenchimal transition and 

pro-angiogenesis promoting tumor growth and angiogenesis. The variety of the gene 

targets (more that 300 genes can be activated by TGF-β) and the nature and the mutability 



of the cells determines the response to the cytokine and provides to TGF-β tumor-

suppressing or oncogenic properties [41].  

 

 

 

Figure 4. The TGF-β signaling pathway [42].  
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1.3.1 TUMOR SUPPRESSOR FUNCTION OF TGF-β 
 

The most characterized anti-tumor response induced by TGF-β is the growth arrest. 

Progression of cell cycle is blocked at G1 as a result of transcriptional up-regulation of the 

cyclin-dependend kinase (CDK) inhibitors p21Cip1/WAF1 (CDKN1A) and p15Ink4b 

(CDKN2B) [43, 44] and transcriptional repression of the pro-growth transcription factor c-

MYC [45] (Figure 5).  

 

 

Figure 5. The TGF-β cytostatic program (modified from Seoane et al., 2004) [46] 

 

CDKN1A (also called p21, WAF1, CAP20, Cip1, and Sdi1) contains a conserved 

region of sequence at the NH2 terminus that is required for the inhibition of Cyclin/Cdk 

complexes, whereas the COOH terminal regions are variable in length and function. p21 

binds and inhibits the Cyclin D-CDK4/6 and the Cyclin E-CDK2 complexes preventing the 

activation of substrates essential for the progression into S phase [44]. The mechanism by 

which TGF-β promotes transcription of CDKN1A and CDKN2B involves both 

transcriptional activation and removal of their transcriptional repression. For this aim, 

different transcriptional complexes are formed: activation complex provoking CDKN1A or 
21 

 



CDKN2B transcription and repressor complex inducing repression of c-MYC, a direct 

inhibitor of p21 [47] and p15 [48] (Figure 5).  

The up-regulation of these cell cycle inhibitors depends not only on Smads, but also 

on the Smad-interacting transcriptional factors. FoxO transcriptional factors belong to the 

Forkhead box (Fox) family and are known to be involved in many cellular processes 

including cell division, metabolism and in the control of cell and organismal growth [49]. 

In response to TGF-β, Smad-3 and Smad-4 bind to the FoxO3 domain which includes 

DNA binding site and target a region of CDKN1A promoter containing Forkhead binding 

elements (FHBE) and Smad binding elements (SBE) inducing in this way its 

transactivation (Figure 6) [31]. 

 

 

Figure 6. Schematic representation of protein-protein interactions in FoxO3-Smad-3 
and FoxO3-Smad-4 complexes. The interacting domains are connected with lines [31]. 

  

Besides FoxO proteins, the members of the Runt-related DNA-binding cofactors (RUNX) 

family were also identified as Smad-interacting factors which up-regulate CDK inhibitors. 

This family consists of three DNA-binding cofactors, Runx1, Runx2 and Runx3, which 

play a key role in the normal development and neoplasias. All Runx family members share 

the central Runt domain that recognize a specific DNA sequence, but the N- and C-

terminal region of each Runx factor is different from the others. Runx3 activity is closely 
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associated with TGF-β, and after stimulation by the cytokine Runx3 forms a complex with 

Smads and directly up-regulates the CDKN1A transcription [50]. 

In response to a variety of stress stimuli, p21 expression can be induced also by p53, which 

mediates the p53-dependent cell cycle G1 phase arrest [51]. The promoter contains two 

conserved p53-binding sites necessary for p53 responsiveness after DNA damage [52]. A 

variety of transcription factors induced by p53-independent mechanisms, such as Sp1, Sp3, 

Ap2, STATs, C/EBPα, C/EBPβ, can activate CDKN1A transcription [53].  

In addition to p21 up-regulation, another critical event in TGF-β-induced cell cycle arrest 

is the rapid down-regulation of the pro-growth transcription factor c-Myc [54]. Myc is a 

basic Helix–Loop–Helix Leucine Zipper (bHLHZip) protein with the ability to regulate 

different events such as cell cycle, growth and metabolism, differentiation, apoptosis, 

transformation, genomic instability, and angiogenesis, and it is also known as a direct 

inhibitor of p21 [55, 56]. After forming a heterodimer with the small bHLHZip protein 

Max, the complex recognizes specific CACGTG and similar E-box binding sequences and 

regulates the expression of the target genes [57]. 

In proliferating cells, c-Myc is tethered to the CDKN1A and CDKN2B promoters by the 

zinc-finger protein MIZ1 and prevents their transcription. In this context, c-MYC 

downregulation in response to activation of the TGF-β signaling cascade allows the 

transcriptional activation of these cell cycle inhibitors. 

Analysis of c-MYC promoter identified a Smad responsive element consisting of TGF-β-

inhibitory element (TIE) which is directly recognized by Smads and a specific E2F binding 

site [58]. The TIE element, GnnTTGGnG, is located between position -92 and -63 and 

mediates transcriptional downregulation of c-MYC by a TGF-β-induced protein complex 

consisting of Smad-3, Smad-4, E2F4/5 and the transcriptional repressor p107. Smad-3 has 

direct contacts with specific regions of p107 and E2F4 and -5 (Figure 7). Although p107 is 

a member of RB family proteins and is inhibited by CDK-dependent phosphorylation in 



the nucleus, the pool of p107 that is involved in c-MYC down-regulation resides in the 

cytoplasm and is not involved in CDK phosphorylation. The complex preexists in the 

cytoplasm and in response to TGF-β stimuli moves into the nucleus and binds the c-MYC 

promoter for repression. 

 

 

Figure 7. Schematic representation of protein-protein interactions between the 
members of the c-MYC repressing complex. The interacting domains are connected with 
lines [37]. 

 

Other works analyzing the TGF-β mediated suppression of different growth promoting 

transcription factors identified an alternative c-Myc repressing mechanism mediated by 

TGF-β. It was reported that interaction of Krüppel-like factor 11 (KLF11/TIEG2) with 

activated Smad-3 results in increased Smad-3 affinity for binding the TIE element on the c-

MYC promoter. In addition to its effect on c-MYC promoter, KLF11 also contributes to 

terminate the negative TGF-β feedback loop implemented by Smad-7 by binding to GC-

rich elements within the proximal Smad-7 promoter, and terminating its induction through 

recruitment of mSin3A corepressor complex [59]. mSin3A inhibits the transcriptional 

activation of target genes by histone deacetylation and subsequent remodeling of the 

chromatin structure [60] (Figure 8).  
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Figure 8. A schematic model of the interactions of KLF11 with the TGF-β induced 
cell growth inhibition. KLF11 is the key factor in the mechanism mediated by TGF-β-
induced nuclear interaction of Smad-3 with KLF11, resulting in c-Myc silencing and 
growth inhibition.   

 

Besides induction of p21 and repression of c-Myc, TGF-β also has other mechanisms for 

implementing the cytostatic program, such as repression of the inhibitors of differentiation 

ID1, ID2 and ID3 [61]. ID members can interact with retinoblastoma proteins (RB) and 

promote cell proliferation. The repression of ID1 is regulated by a complex formed of 

Smad-3 and activating transcription factor-3 (ATF3), and  down-regulation of ID2 is a 

secondary effect of the TGF-β mediated repression of c-MYC [62]. 

Another protein which is repressed by TGF-β as part of the cytostatic program is the 

tyrosine phosphatase cdc25A [63]. Cdc25A downregulation by TGFβ leads to 

accumulation of tyrosine phosphorylation on cdk4 and cdk6 and subsequent inhibition of 

these kinases. Moreover, c-Myc is as a positive regulator of cdc25A expression [64], a 

mechanism that could also antagonize the growth suppression effect of TGFβ. This 

multiplicity of anti-proliferative TGFβ gene responses by regulation of high number of 

genes assures that the growth inhibition will be implemented efficiently. The cytostatic 

program mediated by TGF-β is schematically represented in Figure 9. 
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Figure 9. Schematic representation of the TGF-β cytostatic program. TGF-β induces 
CDK inhibitors such as CDKN1A (also named WAF1, KIP1 or p21) and CDKN2B (also 
named INK4B or p15); and represses growth-promoting factors such as c-MYC, ID1 and 
ID2 [65]. 

 

In addition to the growth arrest, TGF-β can implement its tumor-suppressor action also by 

activation of the apoptotic pathway [66, 67]. Smad mediated up-regulation of the Fas 

receptor resulting in caspase-8 activation [68] and induction of the death associated protein 

kinase (DAPK) was also reported [67]. TGF-β also downregulates Bcl-xL, an anti-

apoptotic Bcl-2 family member, and induces up-regulation of the proapoptotic proteins 

Bim and Bmf [69]. 
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1.3.2 Tumor promotion 
 

During carcinogenesis, cells often loss the growth-inhibitory responsiveness to the 

TGF-β stimuli. Moreover, tumor cells can overproduce the cytokine creating a local 

environment that stimulates tumor growth and invasiveness. TGF-β induces epithelial-

mesenchymal transition (EMT), a process of migration which requires loss of cell-cell 

adhesion and acquisition of fibroblastic properties through repression of the  cell-cell 

adhesion receptor  E-cadherin by Smad-3 and Snail [70].  

Mouse models showed that TGF-β can facilitate the tumor growth also by repressing the 

host immune response [71]. Another oncogenic property of TGF-β is the ability to induce a 

pro-angiogenic environment by activation of angiogenic factors, such as the connective 

tissue growth factor (CTGF) and the vascular endothelial growth factor (VEGF) [72-74]. 

TGF-β can also promote distant tissue specific metastases, for example to the bones, 

through induction of pro-osteolytic factors such as the parathyroid hormone-related protein 

(PTHrP) [70, 75]. The expression of the matrix metalloproteases 2 and 9 can be stimulated 

by the ligand, and their activation results in enhancement of migratory and invasive 

properties of the endothelial cells [66, 76].  

 

The TGF-β signaling represents a complex regulatory network which possesses tumor 

suppressing and oncogenic properties, and it can also interact with different oncogenic and 

tumor suppressor signaling cascades. Crosstalk between Smads and a wide number of 

proteins, such as extracellular-signal-regulated kinase (ERK1 and ERK2), p38, MAPKs, c-

Jun N-terminal Kinase (JNK), PI3K-Akt or small GTPases, is commonly observed in 

carcinogenesis. Constitutive activation of the Ras-Mek-ERK signaling pathway (MAPK 

signaling pathway), due to a mutational activation of K-Ras, inhibits Smad signaling. Erk-

mediated phosphorylation of MAP kinase sites within the linker region of Smad-2 and 

Smad-3 blocks the complex formation with Smad-4 [77]. Indeed, this pathway is a strong 
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antagonist of the TGF-β signaling [78]. In contrast, signaling crosstalk with JNK or 

MEKK1 (upstream activator of the JNK pathway) seems to facilitate the nuclear 

accumulation of Smad complexes [79].  

 

Inactivating mutations in the Smad proteins or in the TGF-β receptor are present only in 

small part of the cases, suggesting that the switch from tumor suppressing to tumor 

promoting activity of TGF-β could be a result of downstream alterations of the signaling 

pathway, or due to a post-transcriptional modulations of  its target genes. 
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1.4 TGF-β and colorectal cancer 
 

The TGF-β signaling pathway is frequently altered during the carcinogenesis of 

CRC.  It has been reported that nearly all pancreatic cancers [80, 81] and colon cancers 

[82] have mutations in genes from the TGFβ signaling pathway. These mutations most 

frequently occur in the TGFβ receptors, Smad-4 or Smad-2, but mutations affecting 

unknown components of the signaling pathway can not be excluded.   

 

Mutations in the TGF-β type II receptor (TβRII) occur in approximately 30 % of all 

colorectal cancers [83] and are present in 80-90 % of the MSI tumors [84]. Mouse models 

experiments showed that mice possessing homozygous deletion of TβRII in the intestinal 

epithelium develop adenoma and carcinoma with increased rates, suggesting that loss of 

TGF-β inhibition contributes to CRC development [85]. Mutational inactivation of the 

TGFβ type I receptor has also been detected in human cancers, but in CRC their frequency 

is relatively low. Homozygosity of a common germline polymorphism, TβRI (6A), is 

associated with loss of TGF-β growth inhibition response and increased cancer risk [86]. 

 

Smad-2 and Smad-4 map on chromosome 18q21 which is one of the regions frequently 

deleted in CRC. Smad-4 is mutated in 16-38 % of colorectal tumors and alterations of this 

gene inculude deletions of entire chromosomal segments, small deletions or frameshift, 

nonsense and missense mutations [87]. Smad-2, also located on 18q21, is mutated in a 

small proportion of the CRCs [88, 89]. Smad-deficient mice display phenotypes which 

support a tumor suppressor role for these genes. Mice which have loss of one of the Smad-

4 alleles develop gastric polyps which progress into tumors [90]. Furthermore, when these 

mice are crossed with mice defective in APC gene, their progeny develop larger polyps 

than mice with only APC mutations which quickly progress into carcinomas [91]. 
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Although there are no mutations in Smad-3 found in human cancer, mice with a 

homozygous deletion of this gene develop aggressive metastatic colorectal cancer at an 

early age, which is a characteristic of the genetically predisposed CRCs [37].  

In a subset of colorectal tumors loss of normal growth-inhibitory response to TGF-β is 

caused by mutations of TGF-β regulated genes. However, in the majority of the tumors 

which are not responsive to the growth inhibition stimuli by TGF-β, the signaling cascade 

is intact. Hence, epigenetic mechanisms of inactivation of the pathway have been proposed 

and the involvement of different microRNAs was also reported.  
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1.5 microRNAs   
 

The microRNAs (miRNAs) are a new class of small non-coding RNAs (18-25 

nucleotides long), that act as post-transcriptional regulators of gene expression, binding to 

the 3’ untranslated regions (UTRs) of target mRNAs and promoting mRNA degradation or 

translational repression [92]. Although their function was originally described during 

normal development, nowadays it is known that the miRNAs have an important role as 

integral components of oncogenic and tumor suppressor networks [66]. 

MiRNAs derive from larger precursors (pri-miRNAs) folded into imperfect stem-loop 

structures. Pri-miRNAs are transcribed by RNA polymerase II (Pol II) and processed into 

~70-nucleotide precursors (pre-miRNAs) which is then cleaved to generate ~21-25-

nucleotide mature miRNAs. miRNAs are positioned at diverse genomic regions; for 

example, some pri-miRNAs map within introns of both protein-coding or non-coding 

genes and are therefore transcriptionally regulated through the promoters of these genes. 

The transcription of different miRNAs by the same promoter results in formation of 

microRNA clusters which are transcribed at the same time. 

The sequential process of miRNA maturation is catalyzed by different multiprotein 

complexes; the pri-miRNA is processed by a complex called the Microprocessor, localized 

in the nucleus and composed by an RNase III enzyme Drosha and the double-stranded 

RNA-binding domain (dsRBD) protein DGCR8/Pasha. These enzymes generate 2-

nucleotide-long 3’ overhangs at the cleavage site. Drosha ability to process pri-miRNA 

into ~70-bp pre-miRNAs depends on the terminal loop size, the stem structure and the 

flanking sequence of the Drosha cleavage site. If shortening of terminal loop is present, 

disruption of the complementary within the stem sequence, or mutations of flanking 

sequence of the Drosha cleavage site, the Drosha processing of pri-miRNAs is 

significantly reduced, if not abolished.  



Once the pri-miRNAs are cleaved by Drosha, they are exported from the nucleus into the 

cytoplasm by Exportin 5 (Exp5), a nucleo/cytoplasmic cargo transporter Ran-GTP 

dependent. In the cytoplasm these hairpin precursors are cleaved into a small imperfect 

dsRNA duplex containing both the mature miRNA strand and its complementary strand. 

This cleavage is performed by another RNase III enzyme, Dicer. The ability of Dicer to 

recognize the pre-miRNA molecules is due to the presence of a PAZ (Piwi-Argonaute-

Zwille) domain that allows a low-affinity interaction with the 3’ end of ssRNAs. For this 

reason, the dsRNA that presents 2-nucleotide 3’ overhangs, such as those resulting from 

Drosha cleavage, can be easily recognized and processed by Dicer. 

Dicer cleavage generates mature miRNAs ~21-25-nucleotide long. Once that the dsRNA 

duplex is formed, the target specificity and the functional efficiency of a miRNA, requires 

that the mature miRNA strand from the imperfect duplex is incorporated into the RNA-

induced silencing complex (RISC).  

 

Figure 10. MicroRNA biogenesis [93]. 
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The mechanism by which the RISC complex incorporates the mature miRNA strand of the 

dsRNA duplex is driven by the different stability of the 5’ ends of the two arms of the 

miRNA duplex. Potentially the mature miRNA strand can reside on either strand of the 

hairpin stem, but because of thermodynamic reasons it mostly derives from the strand with 

the less stable 5’. Once incorporated into the RISC, the miRNA drives this complex to its 

RNA target by base-pairing interactions. If mRNA/miRNA complementary is perfect or 

near-perfect, the target mRNA can be cleaved and degraded; otherwise the translation is 

repressed and mRNA remains intact [94]. 

The target recognition is determined by base-pairing of nucleotides in a particular region of 

the microRNA, called the “seed sequence”. The seed sequence is a conserved 

heptametrical sequence which is mostly located at positions 2-7 from the miRNA 5´-end 

and is essential for the binding of the miRNA to the mRNA. The miRNA seed sequences 

are used for developing of computational approaches for target predictions. The microRNA 

target site is positioned at the 3’-UTR region, probably because the movement of the 

ribosomes occurring during translation will contrast the RISC binding [95]. Different 

reports about “non 3’ interactions” are emerging recently. It was reported that some 

miRNAs can bind to the open reading frame (ORF) sequences or to the 5’-UTR region of 

the target genes, determining gene activation rather than repression [93]. The RISC action 

on target mRNA is determined by the character of the Ago protein which is incorporated in 

the complex with the miRNA and by the grade of complementarity between the miRNA 

strand and its mRNA target as well.  
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1.5.1 microRNAs involvement in TGF-β signaling 
   

The first reported microRNA cluster involved in the TGF-β signaling was miR-106b-25 

localized on chromosome 7 [96]. This cluster of miRNAs regulates the expression of p21 

and Bim and makes gastric cancer cells insensitive to TGF-β mediated cell-cycle arrest 

[66, 97]. The miR-106b-25 cluster contains three members: miR-106b, miR-93, and miR-

25 which share seed region homology with the members of two other clusters, which are 

referred as its paralogs: miR-17-92, positioned on 13q31 and miR-106a-363, located on 

chromosome X. Probably the similarity between the clusters is a result of ancient gene 

duplications during early vertebral evolution [98]. Unlike the miR-17-92 and miR-106b-25 

clusters, which are both abundantly expressed in different types of malignancies [99], the 

expression of the miR-106a-363 cluster is undetectable or at trace levels [100]. 

The miRNAs encoded by the three clusters can be classified into four separate miRNA 

families according to their seed sequences: the miR-17 family (miR-17, miR-20a, miR-

20b, miR-106a, miR-106b, and miR-93), the miR-18 family (miR-18a and miR-18b), the 

miR-19 family (miR-19a, miR-19b-1, and miR-19b-2) and the miR-92 family (miR-92a-1, 

miR-92a-2, miR-383, and miR-25). All microRNAs in one family have the same seed 

sequence and consequently could recognize the same target genes (Figure 11). Indeed, the 

regulation of p21 by miR-17 and miR-20a from the miR-17-92 cluster was also reported 

(previously shown as target of miR-106b) [101, 102]. 

 



 

Figure 11. Organization of the miR-17-92 cluster and its paralogs [103]. The seed 
regions are highlighted in blue. The classification in four groups (right panel) is according 
to the seed region shared between different members.  

 

The involvement of miR-17-92 in TGF-β signaling was demonstrated also by reports 

showing that miR-20a modulates the expression of the TGFβRII [99] and miR-18 that of 

Smad-4 [104]. miR-34a and miR-373 were also identified as TGFβRII regulators [105]. 

Interestingly, modulation of the microRNA expression by TGF-β was also reported. It was 

demonstrated that Smads can facilitate the cleavage reaction by Drosha by direct 

association with a specific binding element within the miRNA sequence (Figure 12). The 

consensus sequence is similar to the Smad binding element in the promoter of TGF-β 

regulated genes and was named R-SBE (RNA-Smad binding element). Mutations in R-

SBE impair the miRNA induction by the cytokine, and introduction of this element in pri-

miRNAs previously not modulated by TGF-β allows their up-regulation [106]. MiR-21 

and miR-199a were the first two microRNAs identified as induced by TGF-β [107].  
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Figure 22. Schematic representation of the Smad binding element (R-SBE) within the 
pri-miRNA stem region. Smad binding to R-SBE facilitates the pri-miRNA processing by 
Drosha. 
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1.5.2 The miR-17-92 cluster 
 

MiR-17-92 is a polycistronic miRNA cluster also named oncomir-1 and located in 

chromosome 13 open reading frame 25 (C13orf25) on 13q31.3, which encodes six 

microRNAs: miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1. Expression 

profiling studies have revealed that miRNAs included in the miR-17-92 cluster are 

overexpressed in diverse tumor subtypes including both hematopoietic malignancies and 

solid tumors such as those derived from breast, lung, pancreas, prostate and colon [99].  

 

The transcription of the miR-17-92 cluster is directly transactivated by the oncogene c-

Myc which binds directly to the cluster locus and activates its expression [108]. The 

transcriptional factors E2F1, -2 and -3 activate genes involved in the cell cycle progression 

and drive the cell into S phase. c-MYC and E2F factors could activate one another’s 

transcription. E2F1, -2 and -3 are negatively regulated by miR-17-5p and miR-20a from 

the cluster and this will consequently result in decreasing of c-Myc levels or also was 

proposed inhibiting the proapoptotic function of E2F1 [109-111]. This complex regulatory 

network in which c-Myc, E2Fs and miR-17-92 members regulate their levels by both 

positive and negative feedback loops suggested that miR-17-92 can regulate the expression 

of different types of genes, probably depending of the cellular context and resulting in 

oncogenic or tumor suppressive (Figure 13).  

 



 

Figure 33. The interactions among c-Myc, e2Fs and the miR-17-92 cluster [112]. 

 

Additionally, it is known that c-Myc is a potent inducer of tumor angiogenesis through 

downregulation of antiangiogenic proteins like thrombospondin-1 (Tsp1) and connective 

tissue growth factor (CTGF). Both Tsp1 and CTGF are negatively regulated by miR-17-92 

cluster, whose expression is enhanced by c-Myc [113].   

The oncogenic properties of the cluster were confirmed also by mice model experiments. A 

mouse line that selectively overexpresses miR-17-92 in the lymphocytes was generated, 

and as a result these mice developed lymphoproliferative disease and died prematurely 

[114]. miR-17-92 also stimulates proliferation of the lung epithelium [115] and can affect 

tumor angiogenesis [113].  

Even that accumulating evidences indicate the oncogenic role of miR-17-92, it was also 

reported that in some circumstances the cluster can act as tumor suppressor. The tumor 

suppressive activity of this cluster, as mentioned before, is attributed to the downregulation 

of E2Fs operated by miR-17-92 which results in decreasing of the c-Myc levels.  

 

A reverse correlation between the levels of miR-17/miR-20a and Cyclin D1 was found in 

breast cancer cell lines, where Cyclin D1 has an oncogenic function [116].  
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Study performed by high-resolution array-based comparative genomic hybridization 

reported deletion of the miR-17-92 in 16,5% in ovarian cancers, 21,9% of breast cancers 

and 20% of melanomas suggesting a tumor suppressive role for the cluster [117]. 

 

 

1.5.3 Involvement of microRNA in colorectal cancer pathogenesis 
 

To date, different studies have reported aberrant miRNA expression in colon cancer 

specimens. Expression of miRNAs in colon tumors can be influenced by numerous clinical 

variables such as tumor grade and location, and also by the mutational status of genes 

crucial for the colorectal cancer genesis [118]. Several microRNAs have consistently 

emerged as deregulated in colon cancer. Among these, miR-31, promotes cell migration 

and invasion in colon cancer cells, is frequently upregulated [119], while the microRNA 

cluster miR-143/145, inhibit cell growth, are found down-regulated in colon cancer [120]. 

Among the miRNAs with higher expression in CRC tumors, APC is a validated target of 

miR-135b [121]. miR-21 is the microRNA most frequently upregulated in most solid 

tumors and it was reported as associated with the progression of CRC [122].  
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2 MATERIALS AND METHODS 
 

2.1 Colorectal cancer specimens 
 

Tissue specimens from 76 consecutive sporadic CRCs were obtained from previously 

untreated patients lacking family history and high-frequency microsatellite instability 

(MSI) who underwent surgical resection at the Foundazione IRCCS Istituto Nazionale dei 

Tumori Milano (INT) between 1998 and 2000. Tumor specimens containing more than 

70% neoplastic cells and their surrounding normal mucosa were selected by an 

experienced pathologist from cryopreserved tissue.  

 

2.2 Cell lines 
 

SW837, HT 29, Fs74, COLO 205, SW 480, SW 620, T 84, HCT 116, SW 1116, SW 1463 

and Caco 2 cell lines were derived from the collection available at IFOM (Istituto Firc di 

Oncologia Molecolare, Milano) and grown in appropriate media as described in ATCC 

[123].  

FET, colon carcinoma cell line, was provided by Michael G. Brattain [124]. Cells were 

grown in D-MEM⁄F-12 Media - GlutaMAX™ (Invitrogen) + 10% fetal bovine serum +1% 

Sodium Pyruvate. 

HEK293T, a specific cell line originally derived from human embryonic kidney cells, 

derived from the collection available at IFOM (Istituto Firc di Oncologia Molecolare, 

Milano). Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen) 

+ 10% fetal bovine serum + 1% Glutamine.  

All cell lines were maintained as a monolayer in a humidified incubator at 37°C with a 

supply of 5% CO2. 
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2.3 Nucleic Acids Extraction and Molecular Analysis 
 

Total RNA containing small RNA was extracted using the Trizol reagent (Invitrogen) and 

the miRNeasy Mini Kit (Qiagen) according to manufacturer’s protocol. DNA was 

extracted using the QIAamp DNA Mini Kit-Tissue Protocol (Qiagen). 

 
 

2.4 High-Density DNA Copy Number and RNA Expression 
 

Microarray production was done following standard protocols by AROS Applied 

Biotechnology AS (Aarhus, Denmark). All 51 DNA samples were hybridized to 

Affymetrix GeneChip® Human Mapping 250K NspI (SNP arrays). Three samples were 

excluded because of poor quality hybridizations resulting in 48 samples. All 36 RNA 

samples hybridized to Affymetrix GeneChip® Human Exon 1.0 ST arrays passed quality 

controls. All samples hybridized to the exon arrays were also hybridized to the SNP arrays.  

 

2.5 Statistical analysis  
  

TaqMan Array MicroRNA Cards v.2 were used to quantify the level of mature miRNAs 

according to the manufacturer’s instructions. The analysis of the miRNA profiles were 

performed by bioinformaticians using nonparametric or parametric methods. 

Bioinformaticians also performed meta-analysis of gene expression microarray datasets 

following the guidelines from [125]. Briefly, data were extracted from seven studies of 

normal and tumor tissue of CRC patients available at the NCBI GEO archive [126], 

annotated and analyzed. Using an FDR rate of 5%, 7629 differentially expressed genes 

were found.  
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2.6 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) of 
genes and miRNAs 

 

Gene expression analysis was done using TaqmanR assays. Briefly, 500 ng of total RNA in 

a final volume of 20 μl was reverse transcribed to cDNA using High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems) according to the manufacturer’s 

instructions. qRT-PCR was performed using the FAST chemistry (Applied Biosystems) 

with the manufacturer provided gene-specific assay in ABI PRISM 7900 Real-Time PCR 

system (Applied Biosystems). The cycle threshold (Ct) is defined as the number of cycles 

at which the fluorescence passed the fixed threshold in qRT-PCR. The ΔCt value 

represents the difference between the Ct value of the gene used for normalizing (house-

keeping gene), and the Ct value of the gene of interest. Data are represented as -ΔCt or as 

2-ΔCt (values are directly related to expression levels). For microRNA expression analysis 

cDNA was synthesized from 30 ng of total RNA using miRNA–specific primers, then 

qRT-PCR was performed with miRNA-related specific assay and the expression levels of 

miRNAs were normalized to RNU6B. Data analyses for gene and miRNA expression were 

done using the Sequence Detector version SDS 2.1. 

 

 

2.7 microRNA precursor transfection 
 

For transient transfection, FET cells were seeded one day prior to the experiment to 

achieve 30-40% of confluence at the time of transfection. Transfection was done using 

Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s instructions. Pre-

miR-20a and pre-miR negative control#1 (scramble) (Ambion) were transfected at a final 

concentration of 50nmol/L. Twelve hours after transfection cells were treated with 5 

ng/mL of recombinant human TGF-β1 (R&D Systems), in combination with 10µM U0126 

MEK1 inhibitor (Sigma-Aldrich).  



43 

 

2.8 Western Blotting analysis 
 

After transfection and treatments, cells were collected by trypsinisation and whole cell 

lysates were resuspended in 300 μl of 1X SDS sample buffer (50 mM Tris-HCl pH 8.5, 

0.15 mM NaCl, 1% Triton-X, 0.2% SDS, 0.05% Sodium deoxycholate, 2 mM EDTA, 2 

mM EGTA, 1mM PMSF, 5 mM Glycerolphosphate, 10% glycerol, 50 mM NaF, 10 mM 

NaPP) supplemented with protease inhibitors cocktail (Calbiochem). The suspensions were 

then sonicated for 5 seconds (two cycles) to shear DNA and reduce viscosity. For 

separating the nuclear and cytoplasmic fraction, cells were lysed with hypotonic buffer (10 

mM HEPES, pH 7.9, 2.5 mM MgCl2, 0.2% NP40, 1 mM EDTA, 0.5 mM DTT, 0.5 mM 

PMSF) and protease inhibitors cocktail. After centrifugation for 10 minutes at 4000 rpm at 

4°C the supernatant representing the cytoplasmatic fraction was removed and 

supplemented with 0.15 M NaCl and 1% Triton-X. The remaining pellet was resuspended 

in RIPA buffer and sonicated for 5 seconds (two cycles). 

 

Protein quantification was performed using the BCA protein assay (Thermo Scientific). 

For each sample 40 μg of protein lysate was precipitated using 100% cold acetone for 20 

minutes at -20°C, then centrifuged at 8000 rpm for 7 minutes and dried in the speed 

vacuum for 10 minutes. The pellets were resuspended in 20 μl of 1X loading buffer (200 

mM Tris HCl pH 6.8, 8% SDS, 0.4% Bromophenol blue, 40% Glycerol) and then boiled at 

98°C for 5 minutes. Samples were loaded onto gels made with different polyacrylamide 

concentrations: 12% for p15 and p21, and 8% for all other proteins analyzed. Proteins were 

then transferred on Nitrocellulose membranes with porosity of 0,2 μm. The primary 

antibodies used for Western blotting are showed in Table 1. 
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Antigen Antibody Type Species Dilution Supplier 

CDKN1A (p21) 
C-19 

sc-397 
Polyclonal Rabbit 1:1000 Santa Cruz 

CDKN1B (p15) #4822 Polyclonal Rabbit 1:1000 Cell Signaling 

c-Myc D84C12 Monoclonal Rabbit 1:1000 Cell Signaling 

E2F5 
E-19  

sc-999 
Polyclonal Rabbit 1:300 Santa Cruz 

Smad 2/3 #3102 Polyclonal Rabbit 1:1000 Cell Signaling 

Phospho-Smad 2/3  
#3108 

138D4 
Monoclonal Rabbit 1:1000 Cell Signaling 

p44/42 MAPK (Erk1/2)  
#4695 

137F5 
Monoclonal Rabbit 1:1000 Cell Signaling 

Phospho-p44/42 MAPK 

(Erk1/2)  

#9106 

E10 
Monoclonal Mouse 1:1000 Cell Signaling 

Actin 
691002 

5029J 
Monoclonal Mouse 1: 5000 MP Biomedicals

Lamin B 
C-12 

sc-365214 
Monoclonal Mouse 1:500 Santa Cruz 

 

Table 1. The antigen, dilution and source of antibodies used for Western Blotting. 

 

 

2.9 MTT viability assay 
 

Twelve hours after pre-miR-20a or scramble oligonucleotide transfection, cells were 

collected by trypsinization and seeded into a 96 well plate at a density of 5000 cells per 

well in six replicates, and then treated with 5ng/ml TGF-β. 36 hours later the cell 

proliferation rate was measured using an MTT assay, a colorimetric test for measuring the 

activity of enzymes produced by viable metabolically active cells that reduce MTT (3-[4,5-

Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) substrate to formazan, giving a 

purple colour. In more detail, MTT powder (Sigma) was dissolved in the growth medium 

at the concentration of 1 mg/2 ml and added to each well. The cells were incubated at 37°C 

and after two-three hours Lysis buffer (10% SDS, HCl 0.01 M) was added to the MTT 
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solution. Plates were then re-incubated at 37°C overnight under light protected conditions 

and the following day were read on a microplate reader (Infinite M200 TECAN) at a 

wavelength of 570 nm. 

 

 

2.10 BrdU proliferation assay 
 

Cells were seeded in 8well Lab-Tek chamber slide (ThermoScientific) at 30-40% of 

confluence. 12 hours later transfection with pre-miR-20a or pre-negative control treatment 

with 5ng/ml TGF-β was performed. After 30 hours, cells were incubated for 6h in presence 

of 100 µM BrdU (R&D Systems). The bromodeoxyuridine (BrdU) incorporation was 

evaluated by immunofluorescence staining with anti-BrdU antibody. Images were acquired 

by florescence.  

 

 

2.11 Cell cycle analysis 
 

Cell-cycle was evaluated in arrested-restimulated cells. Following transfection with 

miRNA duplexes, cells at 60% confluence were serum-deprived for 24 h. Then, the cells 

were re-stimulated to grow in medium containing 10% serum and Nocodazol mitotic 

blocker (100ng/mL) for additional 24 hours. Cells were scraped and fixed in ice-cold 

ethanol and stained with RNAse/propidium iodide protocol. The effect of the TGF-β 

treatment on cell-cycle progression was evaluated by flow-cytometric analysis of cellular 

DNA content via FACS instrument (Beckton & Dickinson). 
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2.12 c-MYC and CDKN1A silencing 
 

A siRNA pool of four oligonucleotides (ON-TARGETplus SMARTpool) targeting 

different portions of the c-MYC gene were bought from ThermoScientific Dharmacon. The 

c-MYC siRNAs pool was transfected into cells at the final concentration of 25 nM using 

Lipofectamine RNAiMAX (Invitrogen). ON-TARGETplus SMARTpool targeting 

CDKN1A was also provided, and the transfection was performed following the same 

conditions. The sequences of the siRNAs against c-MYC and CDKN1A are shown in 

Table 2. The control siRNA (siGENOME non targeting siRNA#1) containing a mixture of 

four scrambled oligonucleotides sequence with no significant homology to any known 

human mRNA was also obtained from ThermoScientific Dharmacon.  

 

Name Sequence 

c-MYC #1 5’- ACGGAACUCUUGUGCGUAA -3’ 

c- MYC #2 5’-GAACACACAACGUCUUGGA -3’ 

c- MYC #3 5’-AACGUUAGCUUCACCAACA -3’ 

c- MYC #4 5’-CGAUGUUGUUUCUGUGGAA -3’ 

CDKN1A #1 5’ –CGACUGUGAUGCGCUAAUG -3’ 

CDKN1A #2 5’ –CCUAAUCCGCCCACAGGAA-3’ 

CDKN1A #3 5’ –CGUCAGAACCCAUGCGGCA-3’ 

CDKN1A #4 5’ –AGACCAGCAUGACAGAUUU-3’ 

 

Table 2. Sequences of the individual siRNAs from the pools targeting c- MYC and 
CDKN1A (p21).  
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2.13 DNA constructs 
 

The luciferase reporter vectors used in our experiments contain the following promoter 

regions: 

1) pWAF1Luc containing the 2.2-kb CDKN1A promoter region  

2) p(CAGA)9luc containing SMAD3/4 responsive promoter  

3) p(c-MYC -367/+16)luc containing -367/+16 from the c- MYC promoter   

4) p(c-MYC -367/+16) E2Fm luc containing mutation in the E2F binding site. 

The cells were transfected with 200 ng of the reporter vector and 40 ng of pRL-TK co-

reporter, and then cotransfected with miR-20a synthetic precursor or negative control using 

transfection mix of Lipofectamine 2000 and Lipofectamine RNAiMAX (Invitrogen). 

Following the co-transfections, the cells were treated with 5 ng/ml of TGF-β for 36 hours 

and the luciferase activity was measured using the Dual Luciferase Assay kit (Promega).  

 

 

2.14 Luciferase assay  
 

According to the protocol, cells were firstly resuspended in 100 μl of passive lysis buffer 

and then analysed using a Veritas luminometer (Turner Biosytems). Briefly, 100μl of 

Luciferase Assay Reagent II (LARII) was added to 20μl of the cell lysate to measure the 

firefly luciferase reporter activity. After quantifying this luminescence, 100 μl of the Stop 

&Glo Reagent was added to the same samples to determine the activity of the Renilla 

Luciferase used for normalization. 
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2.15 Cloning of the ID4 3’UTR into the pGL3-promoter vector 
 

 

The fragments of the 3’- UTR regions of CDKN1A, E2F5 and KLF11 containing the 

predicted miR-20a binding site, were amplified by PCR reaction using the following 

primers (Table 3), flanked by the restriction sites for the XbaI enzyme (TCTAGA) that was 

also added with the sequence GCATAT to enhance the stability at the end of the sequence 

for E2F5 and KLF11.  

 

 

Oligo Sequence 
Amplified 
fragment 

(bp) 
CDKN1A FW  5’-TCTAGAATGAAATTCACCCCCTTTCC-3’ 

CDKN1A RV  5’-TCTAGACTGTGCTCACTTCAGGGTCA-3’ 
174 

E2F5 FW  5’-GCATATTCTAGATCCAAACAGACGTTCACTGC-3’ 

E2F5 RV  5’-GCATATTCTAGATGTACAGGCATTGGCACATT-3’ 
206 

KLF11 FW  5’-GCATATTCTAGATTCTGAGAACCACAAACCTTG-3’ 

KLF11 RV  5’-GCATATTCTAGAAAAAGGCTCAAAGTCACAAAAGA-3’
150 

 

 
Table 3. List of the oligonucleotides used for amplification of the 3’-UTRs of the 
indicated genes. 

 

 

The cDNA used as template for the amplification reaction was synthesized by reverse 

transcription of 2 μg of total RNA extracted from the FET cell line (expressing high levels 

of CDKN1A, E2F5 and KLF11) using the High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems) according to the manufacturer’s instructions. The PCR amplification 

was performed using GoTaq DNA polymerase (Promega) with the conditions of the 

reaction listed in Table 4. 
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  CDKN1A E2F5 KLF11 HMBS Cycles 

Initialization 95°C for 2 min 95°C for 5 
min 1 

Denaturation 95°C for 30 sec 95°C for 30 
sec 

Annealing 60 °C for 20 sec 56 °C for 20 sec 56 °C for 20 sec 60°C for 20 
sec 

Extension 72°C for 20 sec 72°C for 25 sec 72°C for 20 sec 72°C for 20 
sec 

35 

Final Extension 72° C for 5 min 72°C for 5 
min 1 

 

Table 4. PCR reaction conditions used for amplification of the 3’-UTRs of the 
indicated genes. 

 

 

The amplification product was visualized by UV-illumination on a 1.5% agarose gel, 

excised and extracted from the gel, subjected to automated sequencing by ABI PRISM 

3100 genetic Analyser (Applied Biosystems) using BigDye® Terminators kit v3.1 

(Applied Biosystems) and analyzed with the Sequencing Analysis 5.2 software (Applied 

Biosystems). After validation we used TOPO TA Cloning® Kit Dual Promoter pCR® II-

TOPO® (Invitrogen) for direct insertion of the 3’-UTR fragments of CDKN1A, E2F5 and 

KLF11 3’UTR into pCR II-TOPO vector which was characterized by single 3’-thymidine 

(T) overhangs for cloning PCR products. The vectors were digested with the XbaI enzyme 

(New England Biolabs) for 2 hours at 37°C and then purified using Wizard SV Gel and 

PCR Clean-Up System kit (Promega) before being cloned into the pGL3-Promoter vector 

(Promega) which had previously been digested with the same enzyme. Ligation reaction 

was performed incubating CDKN1A, E2F5 and KLF11 3’UTR fragment and pGL3-

Promoter vector with T4 DNA ligase (New England Biolabs) overnight in water at 16°C. 
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3 RESULTS 
 

3.1 Identification of miRNAs positioned on regions frequently altered 
during colon cancer progression 

 

3.1.1 Analysis of Molecular Markers Linked to Colon Cancer  

We analyzed a consecutive cohort of sporadic colon cancer specimens including 43 

tumors belonging to stages II to IV (Cohort 1) for copy number and gene expression 

profiles.  Affymetrix 250K NspI arrays (copy number analysis) and Affymetrix Exon 1.0 

ST arrays (gene expression) were used for the analyses. All samples were MSS and CIN 

and were previously characterized for mutations in APC, KRAS, TP53 and LOH of 18q, 

all known to be involved in colon cancer progression (Table 5) [14, 127].  

  APC KRAS TP53 18qLOH 
Total cases 43 33 24 20 22 

Stage II 10 7 4 6 7 

Stage III 10 8 5 3 4 

Stage IV 23 18 15 11 11 
 

Table 5. Distribution of mutations in APC, KRAS, TP53 and 18q LOH in 43 CRC 
samples (Cohort 1). Samples belonged to consecutive series of sporadic CIN colon cancer 
cases diagnosed at IRCCS INT Foundation (1998-2000) (Cohort 1). 

Only two cases had none of the described genetic alterations whereas most patients had 

two (18 samples), followed by triplets (12 samples), singletons (9 samples) and seven 

samples carried all four genetic alterations. The comparison of our cohort of samples with 

data from literature [128, 129] highlighted that our specimens resemble the characteristics 

of colon cancer case series (mutation frequencies of APC, KRAS, TP53, and 18q LOH are 

77, 56, 44, and 50%, respectively), thus minimizing any selection bias.  

Copy number analysis highlighted substantial chromosomal instability in all patients. 

Aberrations that were present in at least 15% of the samples were amplifications on 
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chromosome arms 7, 8q, 12, 13q, and 20 and deletions on chromosome arms 1p, 5q, 8p, 

9q, 10p, 14q, 15q, 16p, 17, 18, 19, 20p, and 22q (Table 6). These regions are frequently 

altered during the colon adenoma to carcinoma progression.   

Chromosome arm Gain Lost 
1p 2 27 
5q 6 17 
7p 58 0 
7q 42 0 
8p 6 40 
8q 38 0 
9q 6 19 

10p 4 38 
12p 25 4 
12q 17 4 
13q 56 4 
14q 4 27 
15q 0 35 
16p 8 48 
17p 0 83 
17q 8 35 
18p 2 54 
18q 6 52 
19p 2 65 
19q 6 54 
20p 33 21 
20q 69 10 
22q 0 67 

 

Table 6. Frequencies of gained and lost regions found in 43 CRC samples (Cohort 1). 
Gain or loss of an arm of a sample was attributed if it contained more than 20% gain or 
loss over all SNPs found on the arm. Regions with highest concordance between copy 
number alterations and gene expression are labeled in red. 

 

By integrating the copy number analysis data with the expression patterns of 2774 genes 

performed on the same samples, we found a predominantly positive correlation (74%) 

between the chromosomal alterations (gain and loss of specific regions) and the expression 

levels of the genes located on them. Gained regions containing genes with increased 

expression were found on chromosomal arms 7, 8q24, 12p, 13q, and 20; whereas genes 
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with decreased expression and lost were found on chromosomal arms 6p21, 8p, 18q, and 

20p. The highest number of genes with expression levels correlated to the copy number of 

the regions where they map was observed on the chromosomal arms 20q and 13q with 182 

and 118 genes respectively (Table 6, labeled in red) [127]. 

 

3.1.2 Identification of miRNAs positioned on frequently altered regions  
 

We hypothesized that miRNA expression could also be linked to chromosomal gain 

and losses. To demonstrate this, we searched for miRNAs positioned in the regions that we 

found frequently gained or lost in our samples. Chromosomal locations of the miRNAs 

were obtained from the miRBase database v.11.0 [130] and gain and losses were defined 

by scanning our copy number dataset with a 100kb window. A total of 609 miRNAs were 

analyzed: 96 of them fell in regions with poor coverage or no SNPs and 274 were localized 

on altered regions (60 miRNAs in regions with over 20% gain and 214 in regions with over 

20% loss), and the remaining 239 miRNAs mapped on regions with no alterations. We 

focused on the miRNAs positioned on 13q and 20q, where highest correlation with the 

gene expression was observed (Table 6). We identified nine miRNAs on chr13q including 

six miRNAs belonging to the cluster miR-17-92, and 13 miRNAs on 20q (Table 7). Over-

expression of the miR-17-92 cluster was reported in different types of tumors, suggesting 

its oncogenic characteristics and co-involvement in crucial regulatory mechanisms. 

Therefore, we concentrated our further study on the miR-17-92 and its association with 

CRC.  
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miRNA name Band 
hsa-miR-1297 13q21.1 
hsa-miR-622 13q31.3 
hsa-miR-17 13q31.3 

hsa-miR-18a 13q31.3 
hsa-miR-19a 13q31.3 
hsa-miR-20a 13q31.3 

hsa-miR-19b-1 13q31.3 
hsa-miR-92a-1 13q31.3 
hsa-miR-1267 13q33 
hsa-miR-644 20q11.22 

hsa-miR-1259 20q13.13 
hsa-miR-645 20q13.13 

hsa-miR-1302-5 20q13.13 
hsa-miR-296 20q13.32 
hsa-miR-298 20q13.32 
hsa-miR-646 20q13.33 

hsa-miR-1257 20q13.33 
hsa-miR-124-3 20q13.33 
hsa-miR-941-1 20q13.33 
hsa-miR-941-2 20q13.33 
hsa-miR-941-3 20q13.33 
hsa-miR-647 20q13.33 

 

Table 7. MicroRNAs located on 13q and 20q, regions previously identified with 
highest correlation between copy number and gene expression. The chromosomal 
positions of the miRNAs were obtained from the miRBase database. MicroRNAs labeled 
in red belong to the miR-17-92 cluster. 

 

 

3.1.3 miR-17-92 maps on a gained region and is over-expressed in CRC 
specimens 

 

To confirm if concordant amplification of 13q13 region results in overexpression of 

miRNAs from the 17-92 cluster in colon cancer specimens, we analyzed the expression 

levels of the 6 miRNAs belonging to the cluster (miR-17, miR-18a, miR19a, miR-19b-1, 

miR-20a and miR-92a-1) in a second CRC cohort of 40 pairs of primary colon tumor and 

adjacent non-tumor tissues (Cohort 2). The group is representative of the first test cohort 



according to age, gender, cancer type and stage and the cases were collected in the same 

timeframe. The second cohort was also characterized for presence of mutations in APC, 

KRAS, TP53 and 18qLOH analyses and their frequencies resembled that found in the first 

cohort. With respect to their paired non-tumor tissues, the tumor specimens exhibited 

higher expression levels of all six miRNAs from the cluster miR-17-92 (Figure 14). MiR-

18a, miR-92a, and miR-20a showed the highest fold difference, and therefore we looked 

for their predicted target genes using the Targetscan database [131]. After excluding miR-

18a (very few putative gene targets) and miR-92a (its commercially available expression 

assay was shown to recognize also other miRNAs [132], we focused our further studies on 

miR-20a.  

 

 

 

Figure 44. qRT-PCR expression levels of miR-17-92 cluster in 40 CRC patients 
(Cohort 2). The expression of each miRNA from the miR-17-92 cluster is shown as a log2 
of the ratio of its expression level in the tumor samples versus its matched normal tissue. 

 

We also analyzed the expression levels of miR-20a in 22 samples for which RNA was still 

available from the patient cohort 1, used previously for copy number and gene expression 
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analysis, and we confirmed a trend of difference between the expression levels of miR-20a 

in tumor tissue versus its normal counterpart (Figure 15).    
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Figure 55. qRT-PCR expression levels of miR-20a in 22 CRC patients from Cohort 1. 
The expression levels of miR-20a in tumor or normal specimens are shown as –ΔCt 
obtained by normalization with the endogenous control RNU6B. 

 

 

 

3.1.4 miR-20a putative target genes  
 

It was recently reported that miR-106b, a paralog of miR-20a, from the cluster 

miR-106-25 targets p21 and abrogates the cytostatic effect of TGF-β in gastric cell lines. 

Based on the homology between the seed regions of the members belonging to these 

polycystron microRNA clusters, we hypothesized a potential involvement of miR-17-92 in 

the inactivation of the TGF-β mediated growth suppression in CRC and next, we searched 

for genes predicted as targets of miR-20a involved in this signaling pathway. The 

screening using the TargetScan program identified about 1,000 genes with a 

complementary binding site in their 3’-UTR for this miRNA. To categorize functionally 
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the obtained predicted genes, we used the database for annotation, visualization and 

integrated discovery DAVID [133] and the classification by the KEGG database. We 

enriched the list with other genes found in the literature as regulated by the cytokine, but 

not classified in this category by KEGG and we finally selected eight genes with the 

highest probability to be targeted by miR-20a and involved in TGF-β signaling, listed in 

Table 8. 

 

 

 

Table 8. Putative miR-20a target genes co-involved in TGF-β signaling pathway. 
Consequential pairing shows the complementary sequence between miR-20a and its 
putative gene targets, and the seed match shows the number of the nucleotides involved in 
the pairing: 7mer-m8 represents an exact match to positions 2-8 of the mature miRNA (the 
seed + position 8) and 8mer is an exact match to positions 2-8 of the mature miRNA (the 
seed + position 8) followed by an 'A' [131]. 
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3.1.5 miR-20a is differentially expressed in colorectal cancer cell lines 

 
To study the involvement of miR-20a in the TGF-β-mediated regulatory network, we 

searched for a cell line showing an intact TGF-β/Smad signaling and expressing low 

endogenous levels of this miRNA. For this aim, we evaluated the expression levels of miR-

20a in a panel of 12 colorectal cell lines by qRT-PCR (Figure 16), and using the 

information from public databases [134] we characterized the cell lines from our panel for 

mutations in genes involved in TGF-β signaling pathway (SMAD-4, TGFβR).  
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Figure 66. MiR-20a shows a broad expression range in CRC cell lines. The expression 
levels of miR-20a are shown as -ΔCt values, following normalization with an endogenous 
control RNU6B.  

 

The four cell lines showing lowest endogenous miR-20a expression were SW1116, Caco2, 

HCT116 and T84. In three of them we found mutations in genes crucial for the TGF-β 

signaling: SW1116 (del SMAD-4 -/-), HCT116 (del TGFBR2 -/-) and Caco2 (functionally 
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inactive SMAD-4 [134, 135], and the cell line T84 we found as not responsive to the 

growth suppression effect of TGF-β (data not shown). Among the other cell lines analyzed, 

we found that SW837 and FET cell lines express relatively low endogenous miR-20a 

levels and possess intact TGF-β signaling, thus making them suitable for experiments 

requiring overexpression of miR-20a and studying its interactions with the TGF-β 

signaling network. We analyzed the growth rates of FET and SW837 cells in response to 

TGF-β treatment by performing MTT viability assay. For this aim, cells were treated with 

5ng/ml TGF-β ligand for 48 hours and then the cell proliferation was measured. We found 

that both cell lines showed reduced proliferation rates after TGF-β treatment. The 

stimulation with the cytokine decreased of 36% cell growth in SW837 cells, and twice 

stronger effect was observed in FET cells (about 72%) (Figure 17). 

 

 

Figure 77. MTT assay showed reduced cell viability of SW837 and FET cells after 
TGF-β treatment. Both cell lines showed reduced growth rates after stimulation. Cells 
were seeded in six replicates in 96well plate, treated with TGF-β (5 ng/ml) for 48 hours 
and then the absorbance was measured. Averages and standard deviations are calculated 
from the six measurements. 

 

Next, we optimized the transfection conditions in FET and SW837 by testing several 

concentrations of the oligonucleotide and different transfection reagents. Transfection 

using RNAiMAX and Lipo2000 gave effective results for FET cells. Regarding SW837 
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cells, we were not able to reduce the toxicity of the transfection reagents (used both in 

combination for transfection of microRNA precursors and plasmid vectors concurrently) to 

not toxic levels. For this reasons, we continued our work only with the FET colon 

carcinoma cell line. This cell line has been isolated from a well-differentiated early stage 

CRC, is unable to generate progressive tumor growth in vivo and retains many normal 

growth controls including growth inhibitory responsiveness to TGF-β [124]. As we 

observed, the endogenous expression levels of miR-20a are relatively low in this cells 

which makes the FET cell line a suitable in-vitro model for our study. 

 

 

3.1.6 Over-expression of miR-20a leads to decrease of p21 mRNA and 
protein levels 

 

Rapid activation of cyclin-dependent kinase inhibitors (p21 and p15) is crucial for 

implementing the TGF-β mediated growth suppression. CDKN1A (p21) is predicted as a 

putative target of miR-20a, and other groups confirmed that it is repressed by this miRNA 

family. To investigate if miR-20a modulates p21 levels and represses its induction by 

TGF-β in our cellular model, we transfected FET cells with synthetic RNA duplexes of 

miR-20a or with a control sequence (scramble) and treated them with the cytokine for 36 

hours. CDKN1A mRNA expression was analyzed by qRT-PCR and protein levels were 

quantified by western blotting. Overexpression of miR-20a resulted in a significant 

decrease of p21 protein compared to the negative control in cells not stimulated with TGF-

β. This effect was even stronger when the cells were treated with the cytokine, showing 

that miR-20a causes a remarkable attenuation of the p21 up-regulation provoked by TGF-β 

(Figure 18A). The down-modulation of the p21 protein was paralleled by a reduction of 

mRNA, suggesting that the regulation caused by miR-20a occurs also at transcriptional 



level (Figure 18B). Actually, the induction of CDKN1A mRNA by the cytokine in 

presence of mir-20a is twofold lower when compared with the scramble (Figure 18C). 
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Figure 88. MiR-20a modulates p21 at mRNA and protein level. (A) p21 protein levels 
were determined by Western blotting after miR-20 overexpression and 36 hours treatment 
with TGF-β. 40 µg of total protein were loaded and β-actin was used as a control of equal 
loading. (B) The expression levels of CDKN1A mRNA were analyzed by qRT-PCR under 
the same conditions. The presented values are calculated as 2(-ΔCt) and normalized to 
GAPDH. RNA from two separated experiments was used and for each sample the qPCR 
reaction was performed in triplicate. (C) Induction of CDKN1A mRNA provoked by TGF-
β was calculated as a ratio of TGF-β treated versus TGF-β non treated cells. 

 

 

3.1.7 CDKN1A is a direct target of miR-20a                                                                  
 

The 3’-UTR of CDKN1A mRNA possess a binding site complementary to the 

miR-20a seed region. In order to validate the direct effect between CDKN1A and miR-20a, 

a 150 bp fragment of the CDKN1A 3’-UTR was cloned downstream of the luciferase 

reporter gene into PGL3-Promoter vector (pLuc CDKN1A WT 3’-UTR). The cloned 

region extends from nucleotide 401 to nucleotide 567 and contains the miR-20a 

complementary site at position 470-477 (Figure 19). 
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Figure 19. Scheme of the CDKN1A WT 3’-UTR/ CDKN1A MUT 3’-UTR luciferase 
reporter vector. The 3’-UTR of CDKN1A (containing WT or mutated binding site for 
miR-20a) was cloned downstream of the luciferase (Luc+) reporter gene into PGL3-
Promoter vector (5.0 Kb).  

 

The pLuc CDKN1A MUT 3’-UTR reporter vector in which two nucleotides from the miR-

20a binding region were mutated was generated using the QuickChange II XL Site-

Directed Mutagenesis Kit. In this way the complementarity to miR-20a was removed and 

the vector was used as a control of the miR-20a/CDKN1A interaction (Figure 20). 

 
 

p21 mut 3’UTR      5’ ... AGAAGTAAACAGATGGCCCTGTG 

AGAAGTAAACAGATGGCACTTTG 
I I I I I I I 

GAUGGACGUGAUAUUCGUGAAAU 

p21 WT 3’UTR       5’ ... 

miR-20a                 3’ 

 
Figure 90. Mutagenensis of the miR-20a complementary region in the 3’-UTR of 
CDKN1A. The miR-20a seed sequence GCACTTT was mutated into GCCCTGT.  

 

To confirm the direct effect of miR-20a on the CDKN1A transcript, HEK293T cells were 

transfected with pLuc CDKN1A WT 3’-UTR/ pLuc CDKN1A MUT 3’-UTR, and co-

transfected with pre-miR-20a. The basal luciferase activity of the pLuc CDKN1A WT 3’-

UTR/ pLuc CDKN1A MUT 3’-UTR plasmids (without miR-20a transfection) was used for 

normalization. 24 hours after transfection, cells were lysed and the luciferase activity was 

detected. After miR-20a transfection, decrease of 30 % (p-value = 0.001) in the luciferase 

activity of the pLuc CDKN1A WT 3’-UTR reporter compared to the pLuc CDKN1A MUT 

3’-UTR was observed confirming the direct interaction between miR-20a and CDKN1A 

(Figure 21).  
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Figure 10. MiR-20a modulates the CDKN1A mRNA 3’-UTR reporter plasmid. Co-
transfection of the pLuc CDKN1A WT 3’-UTR construct with miR-20a duplexes resulted 
in down-regulation of luciferase activity, compared to a construct in which the miR-20a 
complementary sites were mutated (pLuc CDKN1A MUT 3’-UTR). Averages and 
standard deviations are calculated from three independent experiments. 

 

 

3.1.8 Inhibition of MAPK signaling did not influence the effect of miR-20a 
on p21  

 

The FET cell line harbors hyperactive k-Ras allele and constitutively active MAPK/ERK 

signals, which can contribute to attenuate the TGF-β suppressive response. We used the 

MEK1/2 inhibitor U0126 in our assays in order to down-regulate MAPK/ERK cascade and 

prevent the phosphorylation of ERK. Treatment with 10µM U0126 significantly decreased 

the pERK protein levels (Figure 22A). 

We observed a significant p21 up-regulation induced by the cytokine, and the mechanism 

mediated by miR-20a that suppresses this TGF-β effect on p21 is still operative, as 

evidenced by the remarkable reduction of p21 in miR-20a FET-transfected cells (Figure 

22B). 
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Figure 112. The modulation of p21 and c-Myc protein levels by miR-20a was 
maintained after inhibition of the MAPK signaling pathway. (A) The efficiency of the 
inhibition of the MAPK pathway was confirmed by analyzing the protein levels of pERK 
and ERK proteins. (B) p21 protein levels were determined by western blotting after 
transfection with miR-20a or negative control precursors, treatment with TGF-β and 
U0126 addition. 
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3.1.9 miR-20a significantly decreases TGF-β induced growth inhibition 
 

 

In order to analyze if the cytostatic function of TGF-β is implemented after 

overexpression of miR-20a and consequent reduction of the CDK inhibitor p21, the 

proliferation rates of FET cells were analyzed following miR-20a transfection and TGF-β 

treatment by BrdU incorporation and MTT-based viability assay experiments. We 

observed that miR-20a overexpression has a slight effect on TGF-β non stimulated cell 

proliferation increasing by about 20% the portion of BrdU-marked nuclei. As expected, 

following TGF-β treatment growth suppression was induced and the population of 

proliferating cells was strongly reduced in control cells (about 70%), while the cells 

transfected with miR-20a precursor showed only a moderate reduction of BrdU 

incorporation (about 25%) (Figure 23A). This finding was confirmed by MTT assay which 

showed similar results: no significant growth inhibition due to miR-20a transfection was 

observed, and the inhibition of the cell growth was twofold higher in control cells (about 

33%) than in miR-20a transfected (about 17%) (Figure 23B). 
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Figure 23. Exogenous miR-20a abrogated the growth arrest induced by TGF-β. (A) 
BrdU incorporation assay was performed 48 hours after transfection with miR-20a or with 
negative control and 36 hours after TGF-β treatment. Averages and standard deviations are 
calculated from three independent experiments, for each condition at least six fields were 
counted. (B) MTT assay performed following the same conditions as for BrdU assay. After 
transfection and TGF-β treatment, the cells were seeded in six replicates and the 
absorbance was measured. The represented values are calculated from the six 
measurements performed. 

 

 

3.1.10  Knockdown of CDKN1A abolishes TGF-β induced growth inhibition 
in FET cells 

  

We observed that in FET cells the TGF-β mediated cytostatic program is present, 

and stimulation with the cytokine resulted in growth arrest. The growth suppression effect 

is implemented by rapid activation of CDK inhibitors, such as p21 and p15. To understand 

if the observed effect of TGF-β in our cellular model is due to activation of p21 or p15, we 

decided to knock down the expression of endogenous p21 in FET cells and to analyze 

subsequently the proliferation rate of the cells. For this aim, cells were transfected with 

siRNA duplexes targeting p21 (siCDKN1A) or with a control unspecific siRNA sequence 

(siCNTR), and treated with TGF-β for 36 hours. In the control cells, TGF-β stimulation 
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reduced the cell growth for about 80%, while after siRNA mediated depletion of p21 the 

cell proliferation rates were decreased for only about 40% (Figure 24). This result 

suggested that in our cellular model the growth inhibition induced by TGF-β is achieved by 

induction of the CDK inhibitor p21.  

 

 

 

Figure 124. Growth inhibition induced by TGF-β is impaired upon depletion of 
CDKN1A. FET cells were transfected with siCDKN1A duplex or with a negative control 
siCNTR, treated with TGF-β for 36 hours and stained for BrdU incorporation assay. 
Averages and standard deviations are calculated from two independent experiments, for 
each condition at least six fields were counted.  

 

We analyzed also the induction of p15 after stimulation with the cytokine and its eventual 

regulation by miR-20a. FET cells were transfected with miR-20a precursors and stimulated 

with TGF-β for 36 hours. CDKN1B (p15) does not possess a complementary seed region 

for miR-20a, therefore a direct modulation was not expected and indeed was not observed 

(no difference between miR-20a and scramble transfected cells). Neither induction by 

TGF-β was found (Figure 25). This result indicates that in the FET cell line, the cytostatic 

effect of TGF-β is achieved by induction of CDKN1A (p21). 
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Figure 135. CDKN1B (p15) protein is not modulated by mir-20a and is not induced 
by TGF-β in FET cells. p15 protein levels were evaluated by Western Blot in the nuclear 
fraction after miR-20 overexpression and treatment with TGF-β. 40ug of nuclear protein 
were loaded and the nuclear protein lamin was used as a control of equal loading. 

 

 

3.1.11  miR-20a affects cell cycle progression  
  

To study if the effect of miR-20a on p21 expression also affects cell cycle 

progression, we transfected FET cells with miR-20a precursor and cultured them in serum 

free medium for 24 hours (cells enrichment in the G0/G1 phase). The cell cycle progression 

was then re-stimulated by adding serum-containing medium, in absence or presence of 

TGF-β. Nocodazole, a mitotic blocker, was also included in the medium to prevent entry 

into second phase G1 (G1’). Following RNAse treatment/propidium iodide staining, the 

distribution of cells in cell-cycle phases was determined by analyzing their DNA content 

via FACS. The relative DNA profiles of mock- and miR-transfected cells, harvested 24 

after re-stimulation with serum showed that, in absence of TGF-β most of the cells (about 

85%) escaped the G0/G1 block operated during the serum-deprivation step and progress 

through the cell-cycle (Figure 26A).  Following TGF-β addition, a significant delay of 

G1/S transition was observed both in scramble and miR-transfected cells. However, this 

delay appears significantly attenuated in miR-20a-transfected cells (32% cells in G1 phase 
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in miR-20a transfected cells vs. 52.3% in control, Figure 26B), suggesting that miR-20a 

interferes with the TGF-β signaling by subverting the G1/S arrest induced by the cytokine.  
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Figure 146. The block of G1/S transition induced by TGF-β is rescued by mir-20a. 
The cells were transfected with miR-20a, left not treated with TGF-β (Figure 26A) or 
stimulated with the cytokine (Figure 26B) and with nocodazole. The cell cycle profiles 
were analyzed by flow cytometry. The presented data derives from one of the three 
experiments performed.  



70 

 

3.1.12  mir-20a decreases the CDKN1A promoter transactivation induced by 
TGF-β  

 

We found that many of the miR-20a predicted target genes are transcriptional 

factors forming complexes that bind directly to the CDKN1A promoter and induce its 

transcription (RUNX3), or regulate the repression of the p21 inhibitor c-Myc (E2F5, p107, 

KLF11) in response to TGF-β stimulation. We suggest that a potential repression of these 

genes caused by direct binding of miR-20a to their 3’-UTR can destabilize them, thus 

resulting in decrease of the TGF-β induced CDKN1A promoter activity. To investigate this 

hypothesis, we transfected FET cells with a reporter vector containing the 2.2-kb 

CDKN1A promoter upstream of the luciferase gene. Co-transfection experiments with the 

miR-20a precursor or scramble were performed and treatment with TGF-β was carried out 

for 36 hours. As expected, upon stimulation with the cytokine we observed a 2- to 2.2-fold 

induction of the CDKN1A promoter activity in the control cells, while in cells 

overexpressing miR-20a this activation was significantly reduced. Not significant 

modulation of the basal response (TGF-β untreated cells) was observed in presence of 

miR-20a (Figure 27). These results indicate that miR-20a does not affect the basal 

CDKN1A promoter activity, but reverses its induction mediated by TGF-β. 

 



 

Figure 27. mir-20a decreases CDKN1A promoter transactivation driven by TGF-β. 
FET cells were co-transfected with miR-20a precursor or scramble and CDKN1A luc 
vector and treated with TGF-β for 36 hours. Averages and standard deviations are 
calculated from three independent transfections. 

 

 

3.1.13  SMAD-dependent promoter activation is not modified by miR-20a 
 

After observing inhibition of the TGF-β mediated CDKN1A promoter induction by 

miR-20a, we tested whether this microRNA interferes also with the Smad-mediated 

signaling. Smad-3 and Smad-4 bind to the TGF-β inducible DNA element named CAGA 

box and drive TGF-β dependent CDKN1A transcription. A reporter p(CAGA)9luc vector 

composed of nine repeats of the CAGA box upstream of the luciferase gene was 

transfected into FET cells. Following co-transfection with miR-20a or scramble, cells were 

treated with TGF-β for 36 h and assayed for luciferase activity. FET cell line is responsive 

to TGF-β mediated growth inhibition, and as expected we observed increased p(CAGA)9 

promoter activity for about 15 fold after TGF-β stimulation (Figure 28, scramble). We 

found that the promoter transcativation by TGF-β was not significantly altered when the 

cells were co-transfected with miR-20a precursor (Figure 28, miR-20a) showing that miR-

20a has no effect on the activity of the Smad-responsive reporter and does not affect the 

71 

 



Smad signaling cascade to the nucleus, confirming that its effect is downstream of the core 

Smad-3/-4 TGF-β signaling.  

 

 

Figure 158. The Smad-3/-4 promoter activity is not affected by miR-20a. FET cells 
were co-transfected with miR-20a precursor or scramble and p(CAGA)9luc vector and 
treated with TGF-β for 36 hours. Averages and standard deviations are calculated from two 
independent transfections. For each condition the luciferase activity was measured in 
triplicate.  

 

 

3.1.14  c-Myc repression is necessary for TGF-β mediated p21 activation 
 

c-Myc down-regulation is required for implementing of the cytostatic program regulated 

by TGF-β, but is not uniformly present in cells that are grow inhibited by this cytokine. c-

Myc via the zinc finger protein Miz-1 binds to the CDKN1A promoter and directly inhibits 

its transcription [45, 46]. Decreasing of c-Myc levels enables trans-activation of p21 by a 

TGF-β activated complex, and consequently initiation of the growth suppression program. 

To confirm that this mechanism is operating in our cellular model, FET cells were co-

transfected with a reporter vector containing the 2.2-kb CDKN1A promoter upstream of 

the luciferase gene (p21/WAFluc vector) and siRNA duplexes targeting c- MYC or with a 
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control siRNA. The efficiency of the c- MYC knockdown was confirmed by qRT-PCR and 

western blotting, showing a reduction in c- MYC mRNA and protein levels (Figure 29A). 

After 36 hours treatment with TGF-β, the luciferase activity was measured and we 

observed that the induction of the CDKN1A promoter was significantly increased in cells 

where c-Myc expression was silenced compared with the control cells (Figure 29B). We 

measured also the CDKN1A mRNA levels, and we observed that TGF-β and c-Myc 

silencing result in synergistic induction of p21 expression (Figure 29C). This data 

confirmed that in our cellular model an operating c-Myc repressive mechanism mediated 

by TGF-β is present.  

A       

siCTRL               siMYC

c-myc

vinculin

 

B 

           

73 

 



C                                          

 

 

Figure 29. c-MYC silencing synergizes with TGF-β in inducing p21/WAF1 promoter 
activity and CDKN1A mRNA expression. (A) Transfection with 25nM of siRNA 
targeting c- MYC reduced significantly its mRNA and protein levels. (B) FET cells were 
co-transfected with a p21/WAFluc vector and siRNA duplexes against c- MYC or control 
siRNA and treated with TGF-β for 36 hours. Two independent experiments were 
performed and the luciferase activity for each condition was measured in triplicate. (C) The 
same conditions were used for measuring the mRNA expression of CDKN1A. The 
presented values are calculated as 2(-ΔCt) and normalized to GAPDH. RNA from two 
separated experiments was used and for each sample the qPCR reaction was performed in 
triplicate. 

 

 

3.1.15  miR-20a predicted target genes are implicated in c-MYC repression 
complexes 

 

The mechanisms by which TGF-β represses c-Myc as part of its cytostatic effect are still 

not completely clear. Current models of TGF-β action describe that activated Smad 

complexes recruit transcriptional co-activators or co-repressors in the nucleus, associate 

with DNA binding cofactors and induce different transcriptional complexes with 

specificity to a particular gene, leading to its activation or repression. Such a complex is 
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formed between Smad-3 and the transcription factors E2F4/5, DP1 and the co-repressor 

p107. This complex preexists in the cytoplasm, and moves into the nucleus in response to 

TGF-β, associates with Smad-4 and binds the c- MYC promoter for repression, thus 

promoting CDKN1A transcription [61]. Besides the Smad-3/E2F4-5/p107 c-Myc 

repressing complex, an alternative one is formed of activated Smad-3 and KLF11. 

Following induction by TGF-β, KLF11 interacts with Smad-3 and recognizes the TIE of 

the c- MYC promoter. KLF11 binds also the Smad7 promoter and blocks its expression, 

disrupting the negative feedback loop of the TGF-β signaling.  

When we searched for putative miR-20a targets, we identified conserved binding sites for 

this microRNA in E2F5, p107 and KLF11 mRNA 3’-UTRs (Table 8). We hypothesized 

that inhibition of these genes by miR-20a can destabilize the repression complexes, 

preventing the down modulation of c-Myc by TGF-β and resulting in high c-Myc levels. 

Schematic representation of the putative interactions of miR-20a and c-Myc repressive 

complexes is shown in Figure 30. 
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Figure 160. Schematic models representing the predicted interactions of miR-20a 
with genes involved in c-Myc repressing complexes mediated by TGF-β. miR-20a 
possess complementary binding site to the 3’-UTRs of E2F5 and p107 (A) and KLF11 (B). 
Putative interaction with these genes could disrupt the c-Myc repressing complexes.  

 

 

 

3.1.16  c-Myc repression in response to TGF-β stimulation is abrogated by 
miR-20a 

 

The 3’-UTR region of c-MYC lacks putative binding sites for miR-20a, and direct 

modulation cannot be achieved. We suggest that down modulation of the genes forming c-

Myc repressive complexes (E2F5, p107 and KLF11) by miR-20a could result in high c-

Myc levels thus abrogating the induction of CDKN1A transcription by the cytokine. c-Myc 

protein levels were analyzed in cells transfected with miR-20a or scramble precursors and 

stimulated with TGF-β for 36 hours. Suppression of c-Myc mediated by TGF-β was 

observed in the cells transfected with the negative control, while in the miR-20a 
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transfected cells this mechanism was abolished (Figure 31). As expected, there was no 

effect of miR-20a overexpression on c-Myc endogenous levels due to lack of 

complementary binding site. Our data suggest that miR-20a abrogates the TGF-β cytostatic 

program not only by direct modulation of p21, but also indirectly by abolishing the 

repression of c-Myc. 

 

c-myc 

Lamin B 

miR-20a      scramble       miR-20a        scramble  

             TGFβ -                                      TGFβ +  

 

Figure 31. c-Myc down-regulation by TGF-β was abrogated by mir-20a. c-Myc protein 
levels were evaluated by western blotting after miR-20 overexpression and 36 hours 
treatment with TGF-β. 40 µg of nuclear protein were loaded and the nuclear protein Lamin 
B was used as a control.  

 

3.1.17  Over-expression of miR-20a leads to decrease of E2F5 mRNA and 
protein levels 

 

To establish whether miR-20a modulates E2F5, we firstly analyzed variations in its mRNA 

and protein levels after miR-20a transfection. For this aim, we transfected FET cells with 

miR-20a precursors and treated them with TGF-β for 36 hours. Then, we measured E2F5 

mRNA expression by qRT-PCR and quantified its protein levels by western blotting. No 

significant difference in E2F5 mRNA levels was observed between miR-20a transfected 

and control cells, suggesting that this miRNA regulates E2F5 expression at post-

transcriptional level (Figure 32A). Indeed, a reduction of E2F5 protein level by about 60% 
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was observed in TGF-β not treated cells, and after stimulation with the cytokine a down-

modulation of about 40% was observed (Figure 32B).  
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E2F5 

Lamin B 

miR-20a      scramble       miR-20a        scramble  

          TGFβ -                            TGFβ + 
 

 
 
 

Figure 172. miR-20a does not affect E2F5 mRNA expression, but reduces its protein 
levels. FET cells were transfected with miR-20a or scramble and treated 36 hours with 
TGF-β. (A) The E2F5 expression levels detected by qRT-PCR are normalized to GAPDH 
and presented as 2(-ΔCt). RNA from two separated experiments was used and for each 
sample the qPCR reaction was performed in triplicate. (B) E2F5 protein levels were 
detected by Western blot. 40 µg of nuclear protein were loaded and the nuclear protein 
Lamin B was used as a control. 
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3.1.18  E2F5 is a direct target of miR-20a 
 

 

To validate the direct interaction between E2F5 3’-UTR and miR-20a a 206 bp fragment of 

the E2F5 3’-UTR, spanning from nucleotide 410 to nucleotide 615 and containing the 

miR-20a complementary site at position 502-509, was cloned downstream of the luciferase 

gene into PGL3-Promoter vector (pLuc E2F5 WT 3’-UTR). The pLuc E2F5 MUT 3’-UTR 

construct contains two mutated nucleotides in the miR-20a binding region and was 

generated using the QuickChange II XL Site-Directed Mutagenesis Kit. The induced 

mutations are shown in Figure 33. 

 

 
 

E2F5 mut 3’UTR      5’ ... GTGCCTTCTGTTTTAGCCCTGTA 

GTGCCTTCTGTTTTAGCACTTTA 
I I I I I I I 

GAUGGACGUGAUAUUCGUGAAAU 

E2F5 WT 3’UTR       5’ ... 

miR-20a                    3’ 

 
Figure 183. Mutagenensis of the miR-20a complementary region in the 3’-UTR of 
E2F5. The miR-20a seed sequence GCACTTT was mutated into GCCCTGT. 

 

Next, luciferase reporters carrying the 3' UTR of the gene with wild type (pLuc E2F5 WT 

3’-UTR) or mutated miR-20a binding region (pLuc E2F5 MUT 3’-UTR) were transfected 

into HEK293T cells and followed by co-transfection with pre-miR-20a. The basal 

luciferase activity of the reporter vectors without miR-20a transfection was used for 

normalization. Cells were lysed 24 hours after transfection and the luciferase activity was 

measured.  

A reduction of about 35% in luciferase activity (p-value 0.01) was observed in miR-20a 

and pLuc E2F5 WT 3’-UTR co-transfected cells compared to the luciferase activity 

measured after pLuc E2F5 MUT 3’-UTR and miR-20a co-transfection (Figure 34). These 
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data indicate a direct regulation of the E2F5 transcript by miR-20a and may provide a 

mechanism explaining the subverted down-modulation of c-Myc induced by TGF-β that 

we previously observed.  

 

 

 

Figure 194. miR-20a modulates the E2F5 mRNA 3’-UTR reporter plasmid. Co-
transfection of the E2F5 WT 3’-UTR construct with miR-20a duplexes resulted in down-
regulation of luciferase activity, compared to a construct in which the miR-20a 
complementary sites were mutated (E2F5 MUT 3’-UTR). Averages and standard 
deviations are calculated from two independent experiments. 

 

 

 

3.1.19  Attenuated E2F5 expression by miR-20a prevents its binding to the c-
MYC promoter 

 

Activation of a Smad-3/4-E2F4/5 complex on c-MYC promoter in response to 

TGF-β has been previously described as indispensable for the repression of its expression, 

a key event in growth suppression mediated by TGF-β. This complex directly binds to TIE 

(TGF-β inhibitory Element) on the promoter, which contains Smad binding site (TIE) and 

E2F consensus element. The integrity of both binding sites is required in order for TGF-β 

to fulfill its inhibitory effect on c-MYC transcription [61]. 

80 

 



We investigated whether the decrease of the E2F5 protein observed in miR-20a-transfected 

cells could affect the binding of the Smad-3/E2F4-5/p107 complex to the c-MYC promoter 

and abolish its repression by TGF-β. For this aim, FET cells were transfected with a 

reporter construct containing the -367/+16 sequence of the c-MYC promoter upstream of 

the luciferase gene with intact binding sites for Smad (TIE) and E2F, or with a reporter 

mutated at the E2F site (E2Fm) (Figure 35A). Then, the cells were co-transfected with 

miR-20a and stimulated with TGF-β. Both constructs include three CAGA sequences, 

directly recognized and activated by Smad-3/-4, and consequently stimulation of the cells 

with the cytokine activates them. Therefore, we normalized the relative luciferase response 

(RLU) of the wild-type reporter to the relative response of the reporter containing E2Fm 

site (pRL-TK vector was used as an internal control), and analyzed the contribution of 

miR-20a for the Smad-3/E2F4-5/p107 binding to the c-MYC promoter.  

As expected, TGF-β treatment decreased the activity of c-myc (-367/+16)luc  in the control 

cells, while miR-20a transfection significantly attenuated this repression, thus subverting 

the implementation of the growth inhibition mediated by the cytokine  (Figure 35B). 
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Figure 205. miR-20a overexpression abrogates TGF-β-induced repression of MYC 
promoter activity. (A) Schematic representation of the nucleotide sequence of TIE 
element (blue) and E2F binding site (yellow) in MYC promoter [modified from 61]; 
mutation at E2F consensus sequence (E2Fm) are shown (B) FET cells were transfected 
with the reporter vectors encoding the -367/+16 MYC promoter, containing intact or 
mutated E2F binding site, co-transfected with miR-20a or scramble precursors, and treated 
with TGF-β for 36 hours. Transactivation of the wild-type promoter is normalized to the 
E2Fm construct.   
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3.1.20  KLF11 is a direct target of miR-20a 
 

In order to analyze the predicted regulation of KLF11 by miR-20a, KLF11 expression 

levels were analyzed after miR-20a overexpression by qRT-PCR. FET cells were 

transfected with miR-20a or a scramble sequence and stimulated with TGF-β for 36 hours. 

A significant reduction of KLF11 mRNA after miR-20a overexpression was observed: 

reduction of about 70% was measured in not stimulated cells and reduction of about 40% 

when cells were treated with the cytokine (Figure 36). Due to a lack of specific antibody 

we were not able to analyze the variations of the protein after miR-20a overexpression.   

 

  

 

Figure 216. KLF11 mRNA expression is down-regulated after mir-20a 
overexpression. Relative expression levels of KLF11 were analyzed by qRT-PCR after 
miR-20a transfection and 36 hours TGF-β treatment. The presented values are calculated 
as 2(-ΔCt) and normalized to GAPDH. RNA from two separated experiments was used and 
for each sample the qPCR reaction was performed in triplicate. 

 

The predicted direct regulation of KLF11 transcript by miR-20a was analyzed by luciferase 

reporter assay using a reporter vector containing a 150 bp fragment of the KLF11 3’-UTR 

(from position 2049 to 2199 containing the miR-20a complementary site downstream of 

the luciferase gene into PGL3-Promoter vector (pLuc KLF11 WT 3’-UTR). Two 

nucleotides in the miR-20a binding region were mutated by QuickChange II XL Site-
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Directed Mutagenesis Kit and pLuc KLF11 MUT 3’-UTR reporter vector was generated 

(Figure 37). 

 

 
KLF11 mut 3’UTR      5’ ... GTGGGCTCCCCTCGTGCCCTGTA 

GTGGGCTCCCCTCGTGCACTTTA 
I I I I I I I 

GAUGGACGUGAUAUUCGUGAAAU 

KLF11 WT 3’UTR       5’ ... 

miR-20a                      3’ 

 

Figure 227. Mutagenensis sites of the miR-20a complementary region in the 3’-UTR 
of KLF11. The miR-20a seed sequence GCACTTT was mutated into GCCCTGT. 

 

Next, we co-transfected HEK293T cells with pLuc KLF11 WT 3’-UTR or pLuc KLF11 

MUT 3’-UTR reporter vectors and miR-20a. The influence of the endogenous miRNA 

levels was analyzed in the same transfection conditions without miR-20a overexpression. 

24 hours after the transfection cell were lysed and luciferase activity was detected. 

Decrease of 30% in luciferase activity was observed in miR-20a / KLF11 WT 3’-UTR co-

transfected cells compared to miR-20a / KLF11 MUT 3’-UTR co-transfection confirming 

a direct interaction between miR-20a and KLF11 (p-value) (Figure 38).  

 

Figure 238. miR-20a modulates the KLF11 mRNA 3’-UTR reporter plasmid. Co-
transfection of the KLF11 WT 3’-UTR construct with miR-20a duplexes resulted in down-
regulation of luciferase activity, compared to a construct in which the miR-20a 
complementary sites were mutated (KLF11 MUT 3’-UTR). Averages and standard 
deviations were calculated from three independent experiments. 
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The effect of the KLF11 repression by miR-20a can have an effect of the binding of this 

protein to the TIE element in the c-MYC promoter, thus blocking the inhibition of the 

transcriptional activity of the promoter induced by TGF-β. The relevance of the KLF11 

cooperation with Smad-3 was confirmed by the finding that RNA-mediated knockdown of 

KLF11 strongly diminished the Smad-3 binding to the c- MYC promoter TIE element. We 

suggest that overexpression of miR-20a could also contribute to the destabilization of the 

Smad-3-KLF11 interactions, and we are currently working to understand the involvement 

of miR-20a in this mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2 Analysis of TGF-β modulation on colorectal cancer deregulated 
miRNAs   

 

3.2.1 Differential microRNA expression analysis in colorectal cancer 
specimens  

 

We performed a miRNA profiling of 40 CRC cases matched with their normal 

tissue (Cohort 2) Using TaqMan Array MicroRNA Cards containing 632 microRNAs. 23 

miRNAs were found significantly deregulated between tumor and normal samples (p-

value=0.05). Eighth of them were down-modulated in tumors, while 15 showed higher 

expression levels when compared to normal counterparts (Figure 39). 

 

Figure 39. Differentially expressed microRNAs in 40 CRC patients (Cohort 2). The 
expression of each miRNA is shown as a log2 of the ratio of its expression level in the 
tumor samples versus its matched normal tissue (RQ: Relative Quantity). The two 
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horizontal dashed lines correspond to the thresholds used for considering miRNAs 
significantly up or down-regulated (two-fold). Each miRNA was normalized to the control 
RNU6B. 

 

 

3.2.2 TGF-β regulated miRNAs 
 

It was reported that Smad proteins can promote the miRNA biogenesis by 

facilitating the cleavage of pri-miRNA by Drosha after binding to a specific RNA-Smad 

binding element within the pri-miRNAs (R-SBE) [107]. We hypothesized that induction of 

a miRNA by TGF-β can speculate potential involvement in the TGF-β signaling pathway, 

thus leading to the identification of new miRNA candidates interfering with this signaling 

network. We decided to analyze the expression of the miRNAs previously identified as 

differentially expressed in our patients Cohort 2 (Figure 39) before and after stimulation 

with the cytokine. For this aim, we used FET cells (possessing an intact TGF-β signaling 

cascade) and as a control we analyzed their expression also in HT29 (cell line not 

responsive to TGF-β growth inhibition). The cells were treated with 5 ng/ml of TGF-β for 

24 hours and RNA was extracted before and after the stimulation. The expression levels of 

the miRNAs were detected by qRT-PCR. We found that five of the 19 miRNAs analyzed 

(miR-135b, -183, -21, -424 and -96) showed a strong induction by TGF-β in FET cells, 

while significantly lower or no induction of their expression was observed in HT29 cells 

(Figure 40).  

 



 

 

Figure 240. Alterations in the expression levels of five miRNAs (miR-135b, -183, -21, -
424 and -96) in FET and HT-29 cells after TGF-β stimulation. RNA was extracted 
before treatment and 24 hours after treatment with TGF-β. The presented values are 
calculated as 2(-ΔCt) and normalized to rnu6b. Relative expression was calculated by 
considering as value 1 the expression level before the treatment. RNA from two separated 
experiments was used and for each sample the qPCR reaction was performed in triplicate. 

 

We observed detectable levels of miR-137, down-modulated in our CRC samples, only 

after TGF-β treatment in FET cells, while in HT29 and in FET not stimulated cells the 

expression of this miRNA was not detectable (data not shown). Other miRNAs frequently 

lost in CRC are miR-143 and miR-145, which were not included in the 23 miRNAs with 

highest alterations between tumor and normal specimens in our profile. We analyzed their 

expression before and after TGF-β stimulation and observed induction of 10 fold for miR-

143 and 20 fold for miR-145 in FET cells, while their up-modulation in HT29 after TGF-β 

stimulation was low (Figure 41).  
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Figure 251. Alterations in the expression levels of miR-143 and miR-145 in FET and 
HT-29 cells after TGF-β stimulation. RNA was extracted before and 24 hours after 
treatment with TGF-β. The presented values are calculated as 2(-ΔCt) and normalized to 
rnu6b. Relative expression was calculated by considering as value 1 the expression level 
before the treatment. 

 

Next, we searched the putative target genes of these miRNAs in Targetscan and we found 

that all these miRNAs can putatively target at least one gene involved in the TGF-β 

signaling pathway (Table 9).  

miRNA putative target gene 

miR-135b SMAD-4 

miR-183 SMAD-4 

miR-21 TGFβRI 

miR-424 SMAD-3, SMAD-7 

miR-96 SMAD-7 

miR-143 SMAD-3 

miR-145 SMAD-3, SMAD-4 
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Table 9. The miRNAs induced by TGF-β have as putative targets genes involved in 
TGF-β signaling pathway. Predictions were retrieved from Targetscan. 

 

Integration of the expression data of the miRNAs we identified as differentially expressed 

between normal and tumor colon samples with the results of a meta-analysis on seven 

public gene expression CRC datasets done comparing 229 tumors to 131 normal samples, 

identified 33 miRNAs that had 121 target genes belonging to CRC related pathways 

classified according to KEGG (Apoptosis, Cell cycle, Colorectal cancer, MAPK signaling 

pathway, p53 signaling pathway, TGF-β signaling pathway, Wnt signaling pathway) 

Putative miRNA-mRNA target pairs where included if they shared opposite patterns of 

expression and were significant in both the miRNA screening and the gene expression 

meta-analysis (Figure 39).  

Four of the miRNAs that we found induced by TGF-β had targets involved in TGF-β 

signaling pathway with opposite pattern of expression. They showed opposite expression 

with genes from TGF-β signaling pathway: miR-135b and miR-183 with SMAD-4, miR-

21 and TGFβRI, and miR-424 and SMAD-3 (Table 10). 

 

miRNA putative target gene 

miR-135b SMAD-4 

miR-183 SMAD-4 

miR-21 TGFβRI 

miR-424 SMAD-3 

 

Table 10. Putative interacting miRNA-gene pairs between miRNA induced by TGF-β 
and genes involved in this pathway. High miRNA levels corresponded with low gene 
expression in tumor compared to normal samples. 
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The reverse correlation of the expression levels of the miRNAs identified in our patients 

cohort with the expression levels of their predicted target genes (found in public gene 

expression CRC datasets) and the induction of some of them by the cytokine indicate their 

potential role as regulators of this signaling pathway.  
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4 DISCUSSION 

 

We investigated the role of one miRNA from the miR-17-92 cluster, miR-20a, into 

the TGF-β signaling pathway as possible regulator of TGF-β-mediated cell cytostatic 

program in CRC. This cluster was identified in our previous study as localized on a region 

of chromosome 13, 13q31, which was highly amplified in CRC. We also confirmed 

concurrent over-expression of all the microRNAs from the cluster, highlighting that 

amplification of the region could be responsible for the over-expression of the cluster. 

Moreover, we identified additional microRNAs that seem to be involved in the TGF-β 

signaling which expression levels are modulated by the cytokine. miRNAs regulate 

different oncogenic and tumor suppressor pathways that are involved in the pathogenesis 

of cancer. Dissection of their role represent a knowledge improvement in cancer biology 

and could be useful for understanding the mechanisms involved in cancer progression and 

for the identification of novel pharmaceutical targets [136]. miRNA expression profiles can 

be  used for prediction of prognosis and characterization of cancer sub-types and stages. 

Changes in the expression profiles of miRNAs have been observed in a variety of human 

tumors, including CRC. This tumor type is characterized by a well-defined multi-step 

progression, and several miRNAs are known as effectors of signaling pathways involved in 

the different steps of this progression. For example, there are miRNAs that regulate 

members of the Wnt/β-catenin and phosphatidylinositol-3-kinase (PI-3-K) pathways, 

KRAS, p53, extracellular matrix regulators and EMT transcriptional factors [12]. These 

findings significantly extend the number and type of molecules involved in the 

Vogelstein’s model of CRC pathogenesis. However, still little is known about the role of 

miRNAs in the switch from intermediate adenoma to late adenoma, triggering progression. 

This is the time frame when loss of TGF-β growth inhibitory effect occurs giving 

advantages to the cells regarding their proliferation [137, 138]. Moreover, during the 
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carcinogenesis, the TGF-β signaling pathway achieves pro-oncogenic characteristics. The 

mechanisms inducing transition of tumor suppressor into oncogenic pathway are still not 

clear, and the contribution of the miRNAs cannot be excluded.  

 

Previous experiments conducted in our laboratory reported the amplification of the miR-

17-92 cluster in a cohort of CRC patients, and found concurrent increased expression of 

the miRNAs from this cluster. miR-17-92 cluster is implicated in the regulation of TGF-β 

response by interfering with cell-cycle arrest and apoptosis induced by the cytokine [132]. 

It was reported that miR-106b from the miR-106b-25 cluster (paralog of miR-20a from 

miR17-92 cluster) can abrogate the TGF-β mediated growth arrest in gastric cell lines by 

direct modulation of p21 and BIM [96].  Disruption of the tumor suppressor effect of TGF-

β is observed in a large portion of the CRC [83], and we asked whether miR-20a could 

have a negative effect on the growth inhibition induced by the cytokine in an in-vitro 

model of TGF-β responsive colon carcinoma. FET cells are growth-inhibited by TGF-β 

and unable to grow in-vivo, unless the TGF-β signaling is artificially inactivated [139]. 

Defining the mechanisms abrogating TGF-β growth inhibition through miR-20a over-

expression using FET, in-vitro cellular model of colon carcinoma, in the context of 

negative regulation of TGF-β response is the main goal of this project. 

We have observed that miR-20a delivery to FET cells (expressing low endogenous level of 

this microRNA) results in decrease of endogenous p21 protein and mRNA, and after TGF-

β stimulation attenuation of p21 up-regulation. We confirmed that this effect occurs after 

direct binding of miR-20a to CDKN1A 3’-UTR region by luciferase reporting assays 

containing an intact or mutated miR-20a complementary site. Reduction in the luciferase 

activity of 30% was observed comparing the activities of vectors containing the 3’-UTR 

WT vs MUT seed sequence (p-value = 0.001). Other groups also reported this modulation 

[102].  
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We found that, by transiently administering the miR-20a in FET cells the TGF-β mediated 

growth suppression is significantly inhibited. Cells transfected with a scramble 

oligonucleotide showed about 70% reduction in growth rates when treated with the 

cytokine, while miR-20a administration diminished this effect only 30%. miR-20a also 

negatively regulates the cell-cycle progression, inducing escape of the TGF-β- induced 

G1/S arrest and promoting entry into S-phase (32% cells in G1 phase in miR-20a 

transfected cells vs. 52.3% in control), suggesting that miR-20a interferes with the TGF-β 

signaling by subverting the G1/S arrest induced by the cytokine.  

Its known that the TGF-β signaling is abrogated in presence of active MAPK signaling due 

to a constitutive activation of K-Ras, which is present also in our cellular model. Using a 

specific inhibitor of this cascade, we were able to confirm the effect of miR-20a on the p21 

expression, thus showing that its effect is independent of the MAPK pathway-mediated 

p21 down-modulation.  

Interestingly, we found also a significant reduction of CDKN1A promoter trans-activation 

by TGF-β after miR-20a delivery. CDKN1A is directly up-regulated by TGF-β through 

interactions of the Smad-3/Smad-4 complex to its proximal elements [46], while the 

growth promoting factor c-Myc is a direct inhibitor of its transcription [140]. C-myc down-

modulation is part of the TGF-β mediated cytostatic program, and we observed abrogation 

of this mechanism in presence of miR-20a. c- MYC lacks a complementary binding site for 

miR-20a, suggesting that this miRNA negatively regulates c- MYC transcription via its 

promoter. 

The transcriptional repression of c-MYC is mediated by a TGF-β inhibitory element 

located on its promoter (TIE) in proximity of an E2F site (TIE/E2F). This core sequence is 

recognized by a transcriptional complex composed by Smad-3, Smad-4, E2F proteins, the 

co-repressor p107 and other partners, which induce suppression of the promoter activity 

[141]. Recent works have shown than an alternative c-Myc repressive mechanism operated 

by KLF11 and Smad-3 exists and binds the TIE element on the c-MYC promoter. Using 
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bioinformatics tools we found that both E2F5 and KLF11 possess miR-20a complementary 

binding sites. Our analysis showed variation in their mRNA and/or protein levels after 

miR-20a transfection. For E2F5 no significant differences in mRNA levels were observed 

after miR-20a administration, but a reduction in E2F5 protein level of about 60% in TGF-β 

not treated cells and about 40% after stimulation with the cytokine was detected. KLF11 

showed a significant mRNA reduction after miR-20a over-expression ( about 70% in not 

stimulated cells and about 40% when cells were treated with the cytokine) suggesting that 

miR-20a could regulate KLF11 at transcriptional level. We functionally validated their 

predicted interaction with miR-20a using reporter assays containing intact or mutated 

complementary miR-20a sites, and we observed for E2F5 reduction in luciferase activity of 

35% (3’-UTR WT vs MUT, p-value = 0.04) and reduction of 30% for KLF11 (p-value = 

0.01). We suggest that down modulation of the genes forming c-Myc repressive complexes 

by miR-20a destabilizes them resulting in high c-Myc levels, thus allowing its 

transcriptional repression on the CDKN1A promoter. Indeed, we demonstrated that after 

miR-20a administration, the binding of E2F5 to the c-MYC promoter is abolished. We are 

now investigating if the KLF11 binding to the TIE is also affected by miR-20a. The 

participation of E2F5 and KLF11 in the miR-20a mediated deregulation of c-Myc 

repression will be addressed by knockdown of these transcriptional factors both separately 

or in combination. To understand whether miR-20a affects the assembling of the c-Myc 

repressive complexes, and not only their DNA binding, we are also setting the conditions 

for performing oligonucleotide affinity precipitation of the region of c-MYC promoter 

containing the TIE and E2F responsive sequences (either wild-type or mutated).   

 

So far, our model proposes that miR-20a could modulate the TGF-β mediated cytostatic 

program interfering with the both branches: subverting the induction of CDKN1A by direct 

regulation of its 3’-UTR, and indirectly through down-modulation of E2F5 and KLF11 

thus abrogating the c-Myc repression (schematically represented in Figure 42). Our 



experiments indicate an oncogenic role of miR-20a in CRC model, suggesting that it could 

have a direct effect on loss of TGF-β growth inhibition. 

 

 

 

Figure 262. Schematic representation of miR-20a involvement in the TGF-β pathway. 
In presence of TGF-β, miR20a blocks CDKN1A, E2F5 and KLF11 by binding to their 3’-
UTR. Block of E2F5 and KLF11, two repressors of c-Myc expression, increases c-Myc 
levels, which strongly down-modulates p21 expression, together with mir-20a, triggering 
cells to growth induction. 

 

Other groups confirmed that TGFβRII, and the pro-apoptotic gene BIM are also direct 

targets of miR-17-92 [99] suggesting that the functional implication of miR-17-92 cluster 

with the TGF-β tumor suppressor pathway is even wider and affects also its pro-apoptotic 

function. In-vivo studies support a model in which TGF-β inhibits development of early 

lesions but promotes tumor progression and invasion when its suppressor activity is 

96 

 



97 

 

overridden by oncogenic alterations. In this context, dissecting the mechanisms addressed 

by miR-20a should contribute to the knowledge of understanding the molecular alterations 

which subvert the TGF-β tumor suppressive role in cancer and provide escape from the 

TGF-β-dependent cell cycle arrest and apoptosis. 

During the last few years a lot of information was accumulated about miRNAs regulation 

of crucial genes involved in carcinogenesis, but still little is known about the processes 

regulating the biogenesis of the miRNAs. The genomic regions which encode them are not 

different from the promoters of the protein coding genes and undergo the same 

modifications, including transcriptional regulation. Drosha processing of pri-miRNAs 

occurs immediately after transcription, and its association with other proteins can promote 

this process. It was reported that Smad proteins recognize a specific binding region within 

the primary stem pri-miRNA transcript called RNA Smad Binding Element (R-SBE) 

[106]. Mutation of this element abrogated the TGF-β mediated recruitment of Smads and 

Drosha impairing the processing of mature miRNAs. Not all miRNAs possess R-SBE and 

consequently cannot be induced by the cytokine, and currently is not yet explored what 

determines this selective regulation. Moreover, introduction of R-SBE into previously 

unregulated miRNAs by TGF-β promotes their induction by the cytokine. One of the 

possible theories why some genes induce miRNAs could be the necessity of extremely 

rapid cellular responses. The induction of multiple miRNAs in response to TGF-β, which 

modulate hundreds of genes, could have a strong impact on the gene expression and 

physiological condition of the cell.  

 

In a study performed by our group we identified a panel of 23 miRNAs which expression 

is significantly altered between tumor and normal CRC specimens. Next, we analyzed their 

expression levels before and after TGF-β stimulation in FET cells (sensitive to TGF-β 

induced growth inhibition) and in the HT29 cell line (not responsive to TGF-β stimuli), 
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and found that five miRNAs (miR-135b, -183, -21, -424, -96) were strongly induced in 

FET, while in HT29 cells the induction was minimal or not present. All five miRNAs were 

up-regulated in our CRC tissue specimens panel. Interestingly, we found that the 

expression levels of miR-137, that we identified down-modulated in CRC, were detectable 

only after TGF-β stimulation in the responsive cell line, while this miRNA was not 

expressed in HT29 cells, both before and after stimulation with the cytokine. We analyzed 

the effects of TGF-β on the miRNAs from the 17-92 cluster and we observed only a weak 

down-modulation of their levels, as reported also by Petrocca et al [96]. We also found 

strong induction for two other miRNAs known as tumor-supressors in CRC, miR-143 and 

miR-145, thus demonstrating that both oncomiRs and tumor suppressor miRNAs could be 

up-regulated by the cytokine. The induction of four of the eight miRNAs that we found 

induced by TGF-β (miR-21, -424, -143 and -145) was reported in the literature [106, 107]. 

Moreover, each of the modulated miRNAs has as a predicted target gene at least one of the 

crucial effectors of the TGF-β signaling pathway. For some of the predicted pairs 

(miRNA/gene) we confirmed opposite correlation between the expression levels of the 

miRNA analyzed in our CRC panel and the expression levels of their target genes retrieved 

from public CRC gene expression databases. In details, we found correlation between miR-

135b and miR-183 with Smad-4, miR-21 and TGFβRI, and miR-424 and Smad-3. These 

interactions could suggests a negative feedback loop in which through induction of specific 

miRNAs by the cytokine, the expression of genes directly involved in the pathway could 

be negatively modulated. The regulatory mechanisms between the miRNAs and the genes 

from the TGF-β signaling pathway are probably much more complicated, since the induced 

miRNAs beside the genes from the TGF-β pathway regulate the expression of hundreds of 

tumor suppressor and oncogenes, and this will result in a strong impact on the cellular gene 

expression profile. We are planning to investigate in details the mechanisms by which 

TGF-β induces the expression of these miRNAs (presence of R-SBE in the pri-miR 
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sequence), and also the possible direct modulation on the putative target genes from the 

pathway  through direct binding to their 3’-UTR.  

So far, only few reports demonstrate that Smads could induce miRNA biogenesis, and 

more studies are necessary to uncover the mechanisms by which these interactions occur.  

The two different approaches we used to identify miRNAs involved in the TGF-β 

signaling network (identification of miRNAs localized on altered genomic regions and 

differentially expressed in CRC and identification of miRNAs whose expression is induced 

by the cytokine) highlighted the primary role of miRNAs in the TGF-β network their 

prominent potential as therapeutic targets in the cancer therapy.  

 

The degree of miRNA alteration in cancer is measured comparing the normal tissue pattern 

with the malignant. Although the miRNAs largely perturbate the transcriptome and 

proteome in tumor cells, only some of them are deregulated in cancer. They are 

implemented in regulation of high number of genes involved in different signaling 

pathways, and unlike the protein coding genes that need to be translated, the miRNAs can 

modify gene expression more rapidly. Therefore, the development of therapeutic strategies 

to restore homeostasis by modifying miRNA expression may be more successful than 

targeting individual genes or proteins. 

 

Two are the most promising strategies to target miRNA expression in cancer. Direct 

strategies involve the use of oligonucleotides or virus-based constructs to block the 

expression of oncogenic miRNAs or to rescue the loss of a tumor suppressor miRNAs. 

Indirect strategies involve the use of drugs to modulate miRNA expression by targeting 

their transcription and processing. Since the levels of the oncogenic miRNAs are 

upregulated in cancer, a promising strategy could be use of antisense oligonucleotides in 

order to block their expression. Antisense oligonucleotides act as competitive inhibitors of 
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miRNAs presumably by annealing to the mature miRNA strand and inducing its 

degradation or duplex formation. A possible problem could be represented by difficulties 

in introducing modifications to the chemical structure of the oligonucleotides to increase 

stability, binding affinity and specificity [142]. It was reported that oligonucleotides with 

2’-O-methyl groups have proved to be effective inhibitors of miRNA expression in 

different cancer cell lines [143]. 

 

Another class of analogues nucleic acids are so called locked nucleic acids (LNA), in 

which the ribose ring is locked by a methylene bridge, thus assuring high affinity towards 

complementary single-stranded RNA and complementary single and double stranded DNA 

[144]. This “LNA anti-miR” constructs have been used in several in vitro studies to knock 

down specific miRNAs, and later also in vivo experiments using mice models confirmed 

the efficiency of this approach [145, 146].  

 

Other therapeutic strategies involve the use of miRNA sponges, transcripts that contain 

multiple tandem-binding sites to a specific miRNA. Introduction of this construct in the 

cell will compete with the genes which are targets of the miRNA of interest, since 

possessing identical complementary binding sites. Moreover, miRNA families sharing the 

same seed regions were found co-repressed by the same sponge [147, 148]. 

miRNA-masking antisense oligonucleotides technology (miR-mask) was also proposed. 

miR-mask consists of single-stranded 2’-O-modified antisense oligonucleotides fully 

complementary to the predicted miRNA binding site in the 3’-UTR of the target mRNA. 

The introduced miR-mask covers the miRNA binding site protecting in this way the 

mRNA target from repression [149]. 

 

Since targeting multiple miRNAs using antisense oligonucleotides or mimics could be 

technically challenging, the indirect strategies involve several drugs that have the ability to 
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modulate miRNAs expression by targeting pathways that regulate miRNA encoding gene 

[149]. Variations in miRNA expression in response to drug treatment in vitro and in vivo 

have been reported [150], and miRNAs have been shown to be actively re-expressed after 

treatment with drugs working by DNA methyltransferase inhibition resulting in tumor 

suppressor gene re-expression mediated by promoter hypomethylation [151]. 

 

The development of miRNA-based therapy includes issues related to the delivery, the 

potential off-target effects and safety. Since “naked” oligonucleotides are rapidly degraded, 

the first difficult is their delivery in the cells under active forms. The second problem is 

their uptake by the cell, since they are negatively charged  and high amounts are necessary 

to achieve their effect [152]. Concerning the potential off-target effects, engineering 

effective systems that deliver the synthetic miRNA oligonucleotides specifically to the 

diseased tissues or cancer cells are necessary. 

 

The discovery of miRNAs has changed the view on gene regulation and it is now evident 

that deregulation of miRNAs is a key step in the development of many cancers, including 

CRC. A number of studies based on expression profiling have proven that there are 

significant changes in miRNA expression levels in CRC tissue in comparison to normal 

colorectal epithelium. Concerning this, the present work confirmed that increased 

expression of miR-20a from the miR-17-92 cluster in CRC could contribute to disruption 

of the TGF-β-mediated cytostatic program. 

From this perspective, since TGF-β loss occurs at early stages of CRC (stage II), 

therapeutic strategies to restore TGF-β homeostasis by modifying miRNA expression 

could represent a possible therapeutic treatment for early grade of CRC. Only a small 

percentage of cancers detected at early stages will recur, and at present there are no 

markers of recurrence for these tumors, it could be interesting to verify if differences in 

miR-20a expression between recurrent and non recurrent stage II patients are present. miR-
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20a could therefore be used as marker to identify patients with higher probability to relapse 

and that should be kept under strict clinical control and treatments [128]. 

 

The miRNAs field continues to evolve, a better understanding of miRNA biogenesis and 

function will certainly affect the development of miRNA-based therapies. The research 

efforts should focus on maximizing the benefit of target diversity and preventing off-target 

effects, thus leading to overcome of the current obstacles regarding cancer therapy.  
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