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Abstract—This paper presents a privacy-preserving framework
for the protection of sensitive positions in real time trajectories.
We assume a scenario in which the sensitivity of user’s positions
is space-varying, and so depends on the spatial context, while
the user’s movement is confined to road networks and places.
Typical users are the non-anonymous members of a geo-social
network who agree to share their exact position whenever such
position does not fall within a sensitive place, e.g. a hospital.
Suspending location sharing while the user is inside a sensitive
place is not an appropriate solution because the user’s stopovers
can be easily inferred from the user’s trace. In this paper we
present an extension of the semantic location cloaking model [1]
originally developed for the cloaking of non-correlated positions
in an unconstrained space. We investigate different algorithms
for the generation of cloaked regions over the graph representing
the urban setting. We also integrate methods to prevent velocity-
based linkage attacks. Finally we evaluate experimentally the
algorithms using a real data set.

I. INTRODUCTION

Location sharing is an increasingly popular location-based

information service (LBS), available for example in geo-

social networking applications, such as Google Latitude and

Glympse, to enable users equipped with a location-aware

client to share their position with friends. Position is typically

computed by a third party, the network location provider (e.g.

Skyhook Wireless), based on the contextual information sent

by the client, e.g. the wifi networks in the vicinity. In dense

urban areas, individuals can be tracked both in indoor and

outdoor spaces with a spatial accuracy of a few tens of meters.

Moreover, following common practices, the requesters of the

location service are not anonymous.

In this paper we focus on the issue of protecting the users

of a location sharing application, located in an urban setting,

against the risk of semantic location identification [1]. The

problem is to prevent the disclosure of users’ positions to

untrusted LBS providers and friends, when users stop in

some sensitive semantic location (or place) along the way. A

sensitive place is a bounded place within which any position is

considered as sensitive information, e.g. a hospital. Following

the advances in positioning technology, identifying the places

in which users stay is becoming more and more easy [2].

An example of urban setting is shown in Figure 1. The

map shows a number of places in Milan1: the premises of the

1The map is drawn from http://www.openstreetmap.org

Fig. 1. Urban setting including a hospital (H) and a university campus (U).

Policlinico hospital, the University of Milan, a few religious

buildings, various private buildings, and the road network.

Assume that the user Bob connects to the location sharing

service through a mobile device, e.g. a smartphone, requesting

the location service to a trusted network location provider. Bob

is driving his car when in the proximity of the Policlinico

hospital, Bob stops in a parking area and steps onto the

hospital premises where he remains for a few hours for a

medical visit, before again taking the car to reach his friends

in a pub in downtown. During this time, Bob’s position is

continuously reported to the LBS provider as well as his

friends, therefore the route and the places in which Bob stops

as well as the time spent in each of those places are made

known to the untrusted parties (i.e. the adversary), including

the hospital that Bob considers a sensitive place. Of course,

Bob could decide to disconnect himself from the location

sharing service. However that would prevent Bob from being

in touch with his friends, unless suspending and then resuming

the service which would create considerable burden to Bob.

To overcome this problem, policy-based solutions specify-

ing privacy rules such as “do not disclose the position if I am

nearby a hospital” are not really helpful, because the adversary

could infer the destination from the analysis of the user’s

trace. Also the approaches based on the mix-zone and location

anonimyzation paradigms, such as [3], [4] are not appropriate,

because of the assumption that users are not anonymous.
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(a) (b) (c)

Fig. 2. (a) Graph-based representation of the urban setting with two places, Hospital and University; (b) a naive CR (in bold inside the circle) ; (c) the CR
(in bold inside the circle) comprising the two places.

A more robust approach is semantic location cloaking

[1], [5]. Relevant features of this solution are: a) privacy

can be personalized, i.e. a privacy profile specifies sensitive

place types and the desired degree of privacy for each of

those types; b) location cloaking algorithms generate cloaked

regions (CRs) which cover sensitive places while satisfying

the preferences in the privacy profile independently of the

user’s actual position. These algorithms, which can be defined

as location oblivious, prevent any inference on the possible

correlation between the users’ position and the CR; c) finally

the position transformation operation matches users’ position

against the set of CRs. If such a position falls into one of

those CRs then that CR becomes the location which is shared,

otherwise the actual position is disclosed.

Unfortunately, semantic location cloaking methods have

been designed to work only in unconstrained spaces in which

users can move without restrictions, while in an urban set-

ting the movement is confined to road networks (such as

local streets, railways, highways) and places. This calls for

a different model of CR grounded on the urban topology.

Such scenario also brings to the forefront another major

requirement. In particular a CR should not only blur the actual

position but also possible stopovers in sensitive places.

As an example, Figure 2.(a) shows the graph-based repre-

sentation of (a small portion of) the previous urban setting. The

nodes of the graph represent places (black rectangles) and road

junctions (blue circles), while the edges represent two-ways

road segments. This figure shows two places, an hospital (H)

and a university (U). For example, a CR blurring the hospital

could include, besides the hospital, a number of road segments

in proximity (in bold in Figure 2.(b)). Note, however, that

if the user remains in this CR for a sufficiently long time,

for example longer than the time needed for traversing all

the roads, it is very likely that the user stops at the hospital

because there is no alternative place in the CR in which the

user can reasonably spend much time. The user’s stopover is

thus disclosed.

To forestall this privacy breach an approach is to define CRs

which contain one or more non-sensitive places. For example

the CR in Figure 2.(c) contains also the university which is a

highly frequented place. An individual located in the CR can

be either in U or in H, or simply driving along the roads. In any

case, should the user stop at some place, such place would be

uncertain. The higher the popularity of the non-sensitive places

in the CR, the lower the chances of linking the user with a

sensitive place. This calls for solutions which use background

knowledge on places to generate appropriate CRs.

Another requirement to address regards the aforementioned

operation of position transformation, i.e. the operation match-

ing the actual user’s position against the set of CRs. Whenever

the user’s position is frequently updated, an adversary can

use the information on the speed of the user to prune the

CR and thus more precisely localize the user inside the CR.

This inference is called velocity-based linkage attack [6]. Since

this kind of privacy breach can compromise the effectiveness

of the cloaking strategy, countermeasures tailored on the

urban setting are to be integrated into the privacy protection

framework. In this paper we address all these requirements.

In summary, the major contributions of this paper are:

• We present a comprehensive approach to the problem of

safeguarding sensitive positions in an urban setting. The

approach extends the semantic location cloaking model

and integrates countermeasures against the velocity-based

linkage attack.

• We specify two different cloaking techniques for the

offline generation of CRs (static location cloaking).

These techniques generate non-overlapping and overlap-

ping CRs, respectively. This is a major novelty because

existing algorithms are only capable of generating non-

overlapping CRs. We also adapt these algorithms to the

case in which CRs are generated at run-time (dynamic
cloaking).

• We evaluate those methods bases on a real data set

(OpenStreetMap dataset). We show that the generation

of overlapping CRs is significantly more efficient and

provides more accurate CRs than the generation of non-

overlapping CRs.

The remainder of the paper is organized as follows. The

next section overviews related work. Section III develops the

problem formulation, formally defining the privacy require-

ments. Algorithms are provided in Section IV, after which we

detail an experimental evaluation of our proposal in Section

V. Finally, Section VI concludes and presents our agenda for

the future work.
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II. RELATED WORK

This work relates to two main streams of research, concern-

ing the modeling of semantic trajectories and location privacy,

respectively.

a) Semantic trajectories: a semantic trajectory is an

annotated representation of the trace of a moving object.

Although it is not rigorously defined, this notion is used

in a variety of applications, such as recommender systems

suggesting popular places and tours [2], navigation services

in indoor settings [7], compression of raw trajectories [8].

A conceptual data model for the representation of semantic

trajectories has been defined by Spaccapietra et al. [9]. In

such a model, a semantic trajectory is a sequence of stops and

moves where a stop can represent a place, e.g. home, while a

move represents the path, e.g. the sequence of road segments,

between two consecutive places. The overall purpose is to

provide a way for representing the behavior of moving objects.

In this view, blurring sensitive places paves the way to the

definition of privacy-preserving semantic trajectories.

b) Location privacy: In recent work, Chow & Mokbel

[10] survey trajectory privacy techniques in the context of

continuous LBS (as opposed to snapshot LBS), such as [11],

[12], and trajectory data publishing, such as [13], [14]. Tacit

assumption is that the privacy goal is to safeguard identity

privacy [15], because position can act as quasi-identifier
[16] and thus identity privacy is at stake if users are to be

anonymous. In reality, position information can also play, in

alternative or in addition to the role of quasi-identifier, the

role of sensitive attribute. Moreover, the position can have

the granularity of place (instead of coordinated point) and be

defined in a symbolic way. A number of approaches adopt this

viewpoint. For example, Bamba et al. present PrivacyGrid, a

system that supplements location k-anonymity with location
l-diversity [17]. In this approach, a cloaked region is a region

containing k mobile users and l places (here called static

objects, e.g. churches and clinics). There is no distinction

between sensitive and non-sensitive places. A similar notion

of location l-diversity has been used with linear objects for

anonymizing the positions of LBS users driving along a

road network [18]. In this case, the exact user position is

replaced by a set of segments. The number of segments in the

cloaked region defines the degree of diversity. In the previous

approaches, the cloaked region (or the set of segments) is l-
occurrence diverse but not l-type diverse. For example, the l
places may all be of the same type (e.g. l hospitals). Xue et

al. [19] defined location-diversity as the number of different

types of places.

In all these solutions, the degree of diversity is measured by

counting the number of occurrences or types inside the cloaked

region. The fact that places can be differently frequented and

so have a different degree of popularity, is not taken into

account. An approach that overcomes this limitation while

providing guarantees of location diversity in a space of non-

uniformly distributed positions in which there are sensitive

and non-sensitive places is Probe [5]. All these approaches,

however, target snapshots LBS. A different solution which

targets the protection of both sensitive positions and identity

privacy is presented by Monreale et al. [20], but in a different

application context, i.e. trajectory data publishing. We are

not aware, instead, of techniques enabling the protection of

sensitive positions in continuous LBS under road network

constraints, which is the focus of this paper.

III. PROBLEM FORMULATION

A. Background knowledge model and definitions

Let us denote with PT and P the set of place types (e.g.

hospital, mall) and places (i.e. Policlinico, Carrefour) in a bi-

dimensional coordinate space. We introduce the concept of

annotated city network to model the background knowledge

on the urban setting.

Definition 1 (Annotated city network): An annotated city

network is a connected and undirected weighted graph

G=(V,E, pop, pt, tt) where:

i) V = VP

⋃
Vj is the set of vertices with v ∈ VP

representing a place and v ∈ Vj a road junction2

ii) E ⊆ V × V is the non-empty set of edges where edge

(u, v) ∈ E denotes a road segment connecting two road

junctions or, alternatively, one road junction and one

place. Every pair of places are connected through a path

which does not include intermediate places, that is all

places are reachable through a sequence of road segments.

iii) Each place has a popularity and a type, expressed by

the functions pop : VP → (0, 1) and pt : VP → PT ,

respectively

iv) Every edge e = (u, v) ∈ E is assigned a weight of travel

time, i.e. tt : E → R, denoting the minimum time needed

to travel from u to v, and vice versa. ♦
Note that the popularity of a place is intended to represent

the prior probability that a random user is located in that place.

Places having popularity 0 are places that are not reachable

and thus are not relevant for our model. We assume that a

mapping exists between the points in the coordinate space

and the graph elements in V ∪E. Accordingly, a true position

(x, y) is mapped onto either an edge or a place.

In this model, a region is a connected subgraph of the city

network, denoted G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E.

The simplest region consists of a single place. In that case the

graph degenerates in a singleton graph. In case needed, it is

trivial to get an areal representation of the region, by finding

the minimum bounding rectangle of the geo-spatial extension

of the subgraph. Moreover, as we are in an urban setting, the

elements in the region can be also identified by their street

address.

Given a region r, we define the popularity of a place type

pt in r, denoted popr(pt), as the aggregated popularity of

the places of that type located in r. Conventionally, popr(.)
denotes the popularity of the region, i.e.

∑
pti∈PT popr(pti).

2To simplify the terminology, we use the term place for both the elements
in VP and the corresponding locations
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For example the popularity of a region which only encloses

roads (and no places) is 0.

Finally, the real time trajectory of a user over a city

network is a sequence of timestamped regions, i.e. T =
{(r1, t1), (r2, t2), . . . , (rn, tn)} with ti < ti+1. The snapshot

position (ri, ti) means that at time ti the user is located in

the subgraph of region ri where the subgraph can also be a

singleton graph; (rn, tn) is the current position. We refer to

the real time trajectory which is disclosed to the LBS provider

as shared trajectory.

B. Privacy requirements

We adopt the computational model defined in [1]. Let

us introduce the set PTS ⊆ PT of user-defined sensitive

place types. We recall that, in such a model, a set of CRs

blurring the sensitive places are first generated, then each

user’s position is possibly replaced by the CR containing that

position. Transposed into our domain, a CR is a region of

the city network, i.e. a subgraph, satisfying a set of privacy

requirements. We consider two kinds of privacy requirements:

the requirements on the single CR, and the requirements over

sequences of CRs.

Replacing the true position with a CR impacts the qual-

ity of the position information. We measure the quality of

the position resulting from the cloaking operation using the

following metric, the average diameter of the CRs subgraphs

{G1, G2, . . . , Gn}, i.e.

QSCR =
1

n

n∑

i

diameter(Gi)

We refer the reader to [6] for additional metrics that

characterize the loss in service quality due to the protection

against the velocity-based attacks. Those metrics can be

straightforwardly transposed to our domain.

Privacy requirements on single CRs. The privacy

profile specifies for each place type pti ∈ PT a user-

defined threshold value τi indicating the maximum allowed

probability of association between a user and a place of such

type. We rule out the case in which τi = 1 because it means

that the place pti is not sensitive. Formally, the pair (pti, τi)
prescribes that in any CR the posterior probability that a

user is in a sensitive place of type pti must not exceed the

user-defined threshold. The privacy requirement is:

popr(pti)

popr(.)
≤ τi (1)

Consider the example reported in Figure 3. The graph shows

two sensitive places (red circles) of type U and H respectively

and two non-sensitive places (black rectangles). All places

have the same popularity (0.1). Assume a privacy profile

consisting of two constraints: (U, 0.5) and (H, 0.5). The CR in

Figure 3(a) satisfies the two constraints because the posterior

probability that the user is in U (in H) is 0.5. However, it

is easy to see that if the user stops in a place within the

region (and that can be inferred from the time spent in the

(a) (b)

Fig. 3. (a) Cloaking of two sensitive places of different type. The privacy
requirements specified in the privacy profile are satisfied, but not the minimal
dislcosure; (b) A strongly cloaked region satisfies also the minimal disclosure
requirement.

region) such place is certainly sensitive. That leads to a privacy

breach. In general, this privacy breach occurs if the probability

of associating the user with a sensitive place (of any type)

exceeds the highest threshold specified in the privacy profile.

Formally, this additional privacy requirement can be expressed

as follows:

∑

pti∈PTS

popr(pti)

popr(.)
≤ max

i
{τi} (2)

We refer to this privacy requirement as minimal disclosure.

Now we introduce the notion of strongly cloaked region and

show that it satisfies the minimal disclosure requirement and

generalizes the definition given in [1].

Definition 2 (Strongly cloaked region): A strongly cloaked

region r, for a given privacy profile, is a region satisfying the

following conditions:

- r contains at least one sensitive place

- The popularity of r satisfies the following inequality :

∑

pti∈PTS

popr(pti)

τi
≤ popr(.) (3)

♦
Property 1: A strongly cloaked region has the following

properties:

(1) It satisfies the privacy requirements of the privacy profile

(2) It satisfies the minimal disclosure requirement

(3) It contains at least one place which is not sensitive. In

particular, by rewriting inequality 3 as:

∑

pti∈PTS

popr(pti)
(1− τi)

τi
≤

∑

ptj∈PTNS

popr(ptj) (4)

we obtain the condition that must be satisfied by the set

of non sensitive places (PTNS) in the region.

Proof sketch. From inequality 3:

(1) For every place type, it holds that
popr(pti)

τi
≤ popr(.);

(2) It holds:

∑

pti∈PTS

popr(pti)

maxi{τi} ≤
∑

pti∈PTS

popr(pti)

τi
≤ popr(.)

(3) By definition a CR must contain at least one sensitive

place whose popularity cannot be 0. Therefore the left
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member of inequality 4 is greater than 0 and thus also

the popularity of non-sensitive places. ♦
An example of strongly cloaked region is illustrated in

Figure 3(b). The CR contains, in addition to the sensitive

places, also two non-sensitive places (the black rectangles).

Therefore the posterior probability that the user is in some

sensitive place is 0.5 and thus the minimal disclosure

requirement is satisfied.

Privacy requirements on sequences of CRs. The

effectiveness of the cloaking method can be compromised

by the velocity-based linkage attack [6], i.e. an adversary

can leverage the information on the maximum velocity to

delimit the user’s position within the CRs reported in the

shared trajectory. We recall that the edges of the city network

are weighted with travel time, expressing the minimum time

(i.e. maximum velocity) to traverse an edge and that such

information is publicly known. To prevent this privacy breach,

we redefine the safety condition that must hold between CRs

for a shared trajectory not to be susceptible to velocity-based

linkage attacks [6].

Accordingly, we define the node-pairwise distance

dpp(G1, G2) between the two CRs G1=(V1, E1) and

G2=(V2, E2) as the longest shortest path between any

node in G1 and any node in G2, i.e. dpp(G1, G2) =

maxv∈lV1
maxw∈lV2

ShortestPath(v,w). Notice that the

distance along the graph is measured in time units. The safety

requirement is as follows: G1 and G2 are safe to disclose if

the node-pairwise distance between them is lower than the

time t spent by the user to reach G2 from G1 (or vice versa),

i.e.:

dpp(G1, G2) < t (5)

Problem formulation. In summary the problem can be for-

mulated as follows. Assume the adversary knows (i) the city

network, (ii) the user’s privacy profile, (iii) the privacy algo-

rithms and (iv) all the previous and current reported positions.

The problem is to generate strongly cloaked regions and ensure

that those regions are safe at run time, while limiting the loss

of quality of the location sharing service.

C. Architecture

We consider two kinds of architecture: offline and online .

a) In the offline architecture, all the cloaked regions are

precomputed, possibly by the client itself, if the device is

properly equipped, or by some other party, and recorded on

the client. Service requests (i.e. location sharing services) are

checked for privacy breach (against the velocity-based linkage

attacks) if the respective cloaked region is disclosed. If no, the

respective cloaked region is disclosed to the LBS provider,

otherwise a transformation is needed. We consider two kinds

of transformations: time delay and postdating.

In the time delay mode, the request is postponed in time

domain. In the postdating mode, instead of disclosing the

actual cloaked region rj , a previous safe position is disclosed.

The time delay mode introduces temporal error while the

postdating mode introduces spatial error, both measured in

time metrics. Unless the time delay is not greater than the

acceptable time delay threshold, we prefer time delay over

space error. Otherwise, we apply postdating.

b) In the online architecture, both the region cloaking and

transformation are done at client side when the services are re-

quested. Hence, this is more computationally demanding than

the offline cloaking. However, online cloaking is advantageous

for constantly changing city networks (e.g. the popularity of

places during the day) and user privacy requirements.

IV. ALGORITHMS

In this section we propose algorithms that satisfy privacy

preference for each LBS user according to respective privacy

profile. To do so, we first generate cloaked regions and

then transform the current location by taking into consid-

eration both the previously reported location sequence and

the velocity-based linkage attack. We have two kinds of

algorithms, offline cloaking and online cloaking.

A. Offline Cloaking

Offline cloaking operates in two stages, (i) offline static

cloaking of sensitive places, and (ii) online transformation

which ensures no privacy breach against velocity attacks.

We consider two cloaking methods: disjoint and overlapping.

Disjoint cloaking allows no overlap between cloaked regions

but allows more than one sensitive place to be co-located into a

single cloaked region. On the other hand, overlapping cloaking

allows overlaps between cloaked regions and assigns only

one sensitive place per cloaked region. Note that assigning

one sensitive place per cloaked region is possible as all the

places are terminal nodes. During the LBS request, in case a

privacy breach is detected a transformation (either time delay

or postdating) is applied. Figure 4 shows a sample overlapping

and disjoint cloaking.

Since a single place can fall in multiple cloaked regions

with overlapping cloaking (e.g. cr1 and cr2 in Figure 4(a)),

care must be taken while picking the cloaked region to be

reported among alternatives. This is simply because, we have

assumed that the attacker knows our algorithm (hence our

cloaking strategy). One trivial solution is randomly picking

anyone among the alternatives. A potential danger, however,

may be if the user stays too long in the same place and issues

service requests constantly, the attacker can conclude that the

user is indeed at the intersection of randomly reported cloaked

regions. In such case, it suffices to keep sending the initially

randomly selected region all the time.

1) Generating Cloaking Map: The pseudo-code of overlap-

ping and disjoint cloaking algorithms are given in Algorithm

1 and Algorithm 2, respectively. Starting from the sensitive

seed node, the algorithms do a breadth-first search (BFS)

to extend the subgraph for the respective cloaked region.

BFS is preferred because it tends to output compact (small

diameter) subgraphs. After the BFS traversal is completed,

we include all the original edges between the vertices in the
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Fig. 4. Overlapping cloaking and Disjoint cloaking.

resulting BFS tree. This is particularly important to preserve

the shortest paths among the vertices of the subgraph. We call

the output of the algorithms as the cloaking map, consisting

of a number of cloaked regions per profile (not per person, as

many individuals may be assigned to the same profile). Note

that both of the algorithms enforce the privacy requirements

for a particular profile. Also note that, the cloaking map is

produced without any reference to the velocity attack, which

is handled during the transformation stage.

Algorithm 1 Overlapping cloaking

Input: Annotated city network G = (V,E, pop, pt, tt), pri-

vacy profile PP = {(pti, τi)}i∈[1,n]
Output: Cloaked region map

1: map← ∅
2: for all u ∈ V s.t. u.pt ∈ PTS do
3: cr ← ∅
4: totalPop← u.pop
5: while (true) do
6: v ← next move from BFS(u)

7: if v.pt ∈ PTNS then
8: cr.addEdge(edge(parent(v), v))
9: totalPop← totalPop+ v.pop

10: if u.pop
popcr(·) ≤ τi where u.pt = pti then

11: break
12: map← map

⋃{cr}

Consider Figure 4, where rounded rectangles show the

nonsensitive places while the bigger solid circles show the

sensitive places, one from each of Hospital, Night Club

and Temple place types, also shown is the roads and road

crossings. The figure illustrates the progress of the overlapping

and disjoint cloaking algorithms. In the overlapping cloaking, a

separate cloaking is started from each of the sensitive place to

result in three cloaked regions, cr1, cr2 and cr3 (Figure 4(a)).

Note that cr1 and cr2 overlap and if the user is located in the

Algorithm 2 Disjoint cloaking

Input: Annotated city network G = (V,E, pop, pt, tt), pri-

vacy profile PP = {(pti, τi)}i∈[1,n]
Output: Cloaked region map

1: map← ∅
2: for all u ∈ V s.t. u.pt ∈ PTS do
3: cr ← ∅
4: necesNonSenPop← 0
5: while (true) do
6: v ← next move from BFS(u)

7: if v.pt ∈ PTNS then
8: cr.addEdge(edge(parent(v), v))
9: cv ← cloakingRegionOf(v)

10: necesNonSenPop += v.pop (1−τi)
τi

where v.pt =
pti

11: if cv 	= ⊥ then
12: cr.merge(cv)
13: for all w ∈ cv.V s.t. w.pt ∈ PTS do
14: necesNonSenPop += w.pop (1−τi)

τi
where

w.pt = pti
15: if popcr(PTNS) ≥ necesNonSenPop then
16: break
17: map← map

⋃{cr}

intersection, either cr1 or cr2 can be reported as the cloaked

region. In the disjoint cloaking, similarly a separate cloaking

is started from each of sensitive place. However, whenever an

overlap is detected the regions are merged into one to result

in disjoint cloaked regions of cr1 and cr2 (Figure 4(b)).

2) Transformation: When the user requests to use LBS

with his last position, then velocity attack should be voided.

Algorithm 3 gives the pseudo-code for the transformation

needed to guard against the velocity attack. First the algorithm

checks whether it is possible to convey the request under the

velocity attack; if so, the current position is said to be safe
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with respect to the previous position and is conveyed (with or

without cloaking depending on the location of the user w.r.t.

the cloaking map). If the current position opens up a privacy

breach, computed in line 5 according to Equation 5, then two

alternatives (time delay and postdating) are evaluated and time

delay is preferred in case the best time delay is less than a

predefined maximum delay parameter. In case it is impossible,

postdating remains the only possibility and we do a regression

along the path to the previously reported location and report

the first position not causing a privacy breach. In the algorithm,

for the sake of simplicity, we treated user positions not inside

cloaked regions as a degenerate cloaked region consisting of

a single point.

In case the postdating introduces too much spatial error, then

it might be preferable to drop the service request rather than

reporting an obsolete location. For a fixed postdating threshold

the success rate (a quality metric) can be measured.

Algorithm 3 Transformation

Input: Annotated city network G = (V,E, pop, pt, tt), cloak-

ing map map, request timestamp tq , location loc of user

U
Output: Cloaked region/point and issuance time

1: Let A to be last issued cr/point with issuance time tA
2: CRsU ← {cr ∈ map : loc ∈ cr}
3: if CRsU = ∅ then
4: CRsU ← loc � a single point cr
5: CRsU ← {cr ∈ CRsU : cr is safe w.r.t. A}
6: if CRsU 	= ∅ then
7: return a random cr ∈ CRsU and tq
8: mindelay ← mincr∈CRsU{delay needed for cr}
9: if mindelay ≤MAX DELAY then

10: � time delay
11: crmin ← argmincr∈CRsU{delay needed for cr}
12: return crmin and tq +mindelay
13: else
14: � postdate
15: crf ← first safe cr (w.r.t. A) along regressing

path(loc, A)
16: return crf and tq

B. Online Cloaking

We consider online cloaking more appropriate for the cases

where the popularity of places are not static and change

significantly depending on the time of day, day of week

and so on. Just consider for instance that night clubs are

more frequented in nights and almost vacant in day time.

So, any offline cloaking is a potential privacy breach for such

situations.

Algorithm 4 presents our online cloaking method. First of

all the algorithm differs from the offline cloaking method by

combining the cloaking map generation and transformation

stages into a single stage. The function Subgraph(G,A, tq −
tA) returns the subgraph G′ of the annotated city network

G. The subgraph contains A and its reachable vertices/edges

within time tq−tA. The function CloakingRegions(G′, PP )
returns the cloaked regions (local map) for the subgraph G′.
The function can invoke either of Algorithm 1 or 2 with G′.
After we find the local map′, the Transformation algorithm

(Algorithm 3) is invoked to give the cloaked region/point and

issuance time to be reported to the LBS. Note that online

cloaking combines the two stages of offline cloaking on the

local subgraph G′.

Algorithm 4 Online cloaking

Input: Annotated city network G = (V,E, pop, pt, tt), pri-

vacy profile PP = {(pti, τi)}i∈[1,n], request timestamp

tq , location loc of the user U
Output: cr/point and issuance time

1: Let A to be the last issued cr/point with issuance time tA
2: G′ ← Subgraph(G,A, tq − tA)
3: map′ ← CloakingRegions(G′, PP )
4: return Transformation(G′,map′, tq, loc)

1) Performance improvement: Although the online cloak-

ing algorithm is conceptually simple, it may become not prac-

tical due to the online performance requirements. The main

bottleneck is the size of the subgraph for the annotated city

network and number of cloaked regions within it, since both

of them have to be computed online, i.e. following the service

request. To guard against velocity attack, one can be tempted

to pick a cloaked region among a few cloaked regions closest

to the actual user location. However, this approach comes with

a privacy breach regardless of the selection process, whether

deterministic or random. Note that any deterministic strategy is

not private due to the background information of the attacker.

Unfortunately, neither the random selection strategy is privacy

preserving in most non-trivial cases [6].

Our technique uses the last cloaked region reported to LBS,

rather than the actual location/cloaked region. The approach

is as follows. First, a cut (passing through the previous re-

ported location/cloaked region) is selected randomly, hence it

partitions the region into two, the one containing the subgraph

located in clockwise and the another located in counter clock-

wise directions of the cut. After this step we only maintain

the partition containing the actual location and discard the

other. Clearly, this step reduces the size of the subgraph G′ to

almost half. We repeat the process until we get a manageable

number of cloaked regions (denoted with K) left in G′,
which is used for transformation. The partitioning procedure

is integrated in the function CloakingRegions(G′, PP ) (line

3) of Algorithm 4. The procedure ensures that the resulting

map′ contains at most K cloaked regions. The partitioning is

illustrated in Figure 5.

V. EXPERIMENTAL EVALUATION

To assess the utility of the proposal we experimented

with the OpenStreetMap’s Milano Street Map Dataset, and

evaluated our offline and online cloaking algorithms.
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(a) Previous and the current location

�

�

(b) Cloaking around the previous lo-
cation

�

�

(c) Partitioning the cloaked region

�

�

(d) Second iteration for partitioning

Fig. 5. Cutting the local subgraph of annotated city network for partitioning.

A. Dataset

We picked Milano downtown area (from OpenStreetMap3)

and processed the raw data to obtain the annotated city

network according to our definition. In detail, the raw dataset

consist of points, lines, polygons, and in some cases an

attached semantics (like place types). To get our annotated

city network, lines (representing roads), points (representing

points of interests like pharmacies), and polygons (represent-

ing buildings of places like large hospitals) served as the

components. Most of the annotations are added by the users

of the application by tagging. We also apply a data cleaning

stage to fix wrongly spotted places, for instance a car park

with no connection to roads. Table I summarizes the resulting

database.

We use the following hypothetical uniform popularity

for places of type: worship ∝ 0.09, healthcare ∝
0.30, education ∝ 0.60, socialactivities ∝ 0.06,

entertainment ∝ 0.15, shopping ∝ 0.02 and others ∝
0.01. The raw dataset contains travel time information for all

the edges. Since our algorithms repeatedly need shortest paths,

we pre-compute all the shortest paths using Floyd-Warshall

algorithm.

Given the annotated city network, we generate 1000 tra-

jectories each having 100 points to simulate the LBS user

requests. Each trajectory on average runs approximately 7

hours.

B. Experiments

In our preliminary evaluation of two methods for the online

cloaking, disjoint method is found to be too slow in compari-

son to the overlapping method. Since the bottleneck with the

online cloaking is efficiency, in the sequel we only provide

results for overlapping method for online cloaking.

We are particularly interested in two effectiveness metrics,

(i) average cloaked region size measured as mean diameter,

and (ii) average total penalty which adds temporal error (time

delay) and spatial error (postdate distance) to get a single

measure (recall that both are temporal measures). Runtime is

the sole metric for efficiency. Figure 6 shows a sample for our

cloaking maps.

Figure 7 gives the performance results at various disclo-

sure threshold levels. The reported results belong to two

3http://www.openstreetmap.org/

Fig. 6. A sample output from our cloaking methods.

Fig. 8. Time delay versus postdating.

distinct personalized privacy profiles, PP1 = {(worship, τ =
x)} and PP2 = {(worship, τ = x), (healthcare, τ =
x), (entertainment, τ = x)} where the value for x is the

respective value at x-axis. From the results it is clear that

the online method runs quite slow in comparison to offline

methods as expected. This is the price paid to accommodate

the dynamic nature of popularity. Overlapping method for

offline cloaking performs favorably to disjoint method, both

in effectiveness and efficiency. As shown in Figure 8 there is

a tradeoff between time delay and postdating.

Figures 9(e) and 9(f) present the effect of K value on the

runtime and request drop counts for online cloaking. With

partitioning heuristic, service drops are not due to the lack of

solutions rather than to obsolete location reporting. No solution
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TABLE I
MILANO OPENSTREETMAP DATASET

Feature Value
region Milano downtown with spatial extension of 3km by 3km

vertex set 8263 places of interest plus road intersections
# of edges 34000 (bidirectional)
# of places 3800

place types (counts) education (22), healthcare (includes hospitals and pharmacy) (27), worship (64),
social activities (20), entertainment (29), shopping (40)

(a) (b) (c)

PP1 = {(worship, τ = x)}

(d) (e) (f)

PP2 = {(worship, τ = x), (healthcare, τ = x), (entertainment, τ = x)}
Fig. 7. Performance results at various disclosure thresholds.

case is possible since some cloaked regions possibly in the

original solution are ruled out during partitioning. The request

drop counts are average counts per trajectory (e.g. over 1000∗
100 service requests). The results from Figure 9(e) clearly

shows that the runtime decreases with decreasing K values,

and hence the utility of the partitioning heuristic. On the other

hand, we see from Figure 9(f) that when K is smaller the

number of service request drop rates increase as it becomes

hard to meet the time delay and postdate requirements with

small number of cloaked regions.

Scalability is an important issue when the number of private

places are too high. Note that this is quite realistic as we are

working in urban settings. For scalability tests, we generated

10 random private place type each with 50 places, and added

each of them to the next privacy profile one by one. So,

there are 50, 100 and 500 private places in the first, second

and tenth tests, respectively. The effectiveness and efficiency

performances are provided in Figure 9. In the results, we

measure the performance metrics w.r.t. the number of sensitive

places (x-axis). In all of the tests, the disclosure threshold is

set to 0.1 for all the place types. Online cloaking again runs

too slow and its performance degrades with increasing number

of sensitive places. In all the tests, offline-overlapping method

exhibits a nice scalability profile.

VI. CONCLUSION

In this paper, we have presented an approach to the privacy-

preserving sharing of sensitive positions in urban settings.

The reference space is represented by an annotated graph

while different techniques for the computation of cloaked

regions on this graph have been evaluated. The notion of

strongly cloaked region generalizes previous results while

novel cloaking methods for the creation of overlapping sub-

graphs proved to be effective in terms of performance and

quality of position information. This method can run on client
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(a) Average diameter (b) Average total penalty (c) Runtime

(d) Runtime (e) Runtime (f) Service request drop counts

Fig. 9. Scalability (a),(b),(c),(d) and effect of partitioning on online cloaking (e),(f).

devices, e.g. smartphone, provided that the client can store and

efficiently access the annotated city network. Moreover it does

not require dedicated costly infrastructure (i.e. anonymizer),

and that paves the way to the cost-effective deployment of this

solution. Although this work has been developed in the context

of LBSs, we imagine that the approach could be extended to

the protection of trajectory data in data publishing. In this case,

the challenge is to integrate methods for the anonymization of

trajectories with solutions for the safe cloaking of sensitive

places.
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