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Abstract

Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement
genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility,
including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ,2,100 genes of
cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733
controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative
novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel
variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We
confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p,10233; LPA:p,10219;
1p13.3:p,10217) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p,561027). However, we
found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising
common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele
odds ratios for CAD risk with each of the novel variants ranging from 1.06–1.09. Associations with variants at LIPA, TRIB1, and
ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants
in LPA, none of the other ,4,500 low frequency and functional variants showed a strong effect. Associations in South Asians
did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P
for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to
diverse biochemical and cellular functions and clarified the literature with regard to many previously suggested genes.
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Introduction

Coronary artery disease (CAD) has a substantial genetic

component which is incompletely characterised. Genomewide

association (GWA) studies have recently identified several novel

susceptibility loci for CAD [1–9]. Because GWA studies involve

assumption-free surveys of common genetic variation across the

genome, they can identify genetic regions responsible for previously

unsuspected or unknown disease mechanisms. However, despite the

success of the GWA approach, it has potential limitations. Because

CAD loci identified through GWA studies have predominantly

been found in regions of uncertain biological relevance, further

work is required to determine their precise contribution to disease

aetiology. Furthermore, in contrast with their high coverage of

common genetic variation, GWA studies tend to provide limited

coverage of genes with well-characterised biological relevance

(‘‘candidate genes’’) [2], particularly in relation to lower frequency

genetic variants (such as those with minor allele frequencies of 1–

5%). Such variants are also often difficult to impute from GWA

data. Although candidate gene studies should provide more

comprehensive coverage of lower frequency and functional variants

than GWA studies, most have been inadequately powered.

To complement GWA studies, we undertook a large-scale gene-

centric analysis of CAD using a customised gene array enriched

with common and low frequency variants in ,2,100 candidate

cardiovascular genes reflecting a wide variety of biological pathways

[10]. The array’s potential to identify disease-associated lower

frequency variants has been demonstrated by previous identification

of strong independent associations with 2 variants in the LPA gene -

rs3798220 (minor allele frequency 2%), and rs10455872 (7%) - and

CAD risk [11]. We have now investigated this gene array in a

further 13 studies comprising a total of 15,596 CAD cases and

34,992 controls. To enable interethnic comparisons, participants

included 4,394 cases and 4,259 controls of South Asian descent, an

ethnic group with high susceptibility to CAD. For further evaluation

of putative novel associations, we attempted to replicate them in an

additional 17,121 cases and 40,473 controls.

Results

The experimental strategy used is shown in Figure 1. In the

discovery phase we genotyped participants from 12 association

studies of CAD/myocardial infarction (MI), including a total of

11,202 cases and 30,733 controls of European descent (10 studies),

plus 4,394 South Asian cases and 4,259 South Asian controls (2

studies) (Table 1, Table S1, with further details of the studies given

in Text S1).

Associations with known CAD loci
36,799 SNPs passed QC and frequency checks and were

included in the meta-analysis (reasons for exclusion of variants in

each study are given in Table S2). The distribution of association P

values in the discovery stage analyses are shown in Figure 2. We

found significant associations with CAD for several previous

GWA-identified loci contained on the array including 9p21.3

(rs1333042, combined European and South Asian P = 1.1610237)

and 1p13.3 (rs646776, 3.1610217; Table S3). We also confirmed

associations of other genes with strong prior evidence including

the first association of a variant at the apolipoprotein E

locus at genomewide significance (APOE/TOMM40, rs2075650,

P = 3.261028), as well as associations at apolipoprotein (a) (LPA,

rs10455872, P = 1.2610220), and low density lipoprotein receptor

(LDLR, rs6511720, P = 1.161028; Table S3). However, we found

no persuasive evidence of association of several prominently-

studied genes and variants for which the previous epidemiological

evidence has been inconclusive, even though the majority of these

loci were well-tagged (Table S4) and the current study was well-

powered to detect associations of modest effect (Figure S1).

Notable variants that did not show significant association included

the angiotensin converting enzyme (ACE) insertion/deletion

polymorphism, the cholesteryl-ester transfer protein (CETP) Taq1B

polymorphism and the paraoxonase 1 (PON1) Q192R polymor-

phism (Table S4). Perhaps contrary to expectation, apart from the

LPA variant rs3798220, we did not observe any other strong

association (odds ratio .1.5) among the ,4,500 low frequency (1–

5%) variants and/or variants with suspected or known functional

impact on protein structure/function or gene expression specifi-

cally selected for the inclusion on the array (Table S3).

Novel CAD loci
Based on simulations conducted prior to the analysis (Figure

S2), loci were eligible for replication if unadjusted P-values for

CAD were ,161024 in either the primary (each ethnic group

analysed separately) or secondary (combined) analyses and the loci

had not been previously established with CAD. This identified 27

loci in total: 15 in the European only analysis, 3 in the South

Asian only analysis, and 9 in the combined analysis (Table S5). A

recent GWA meta-analysis from the CARDIoGRAM Consor-

tium with some overlapping cohorts to those in our study, reports

discovery of three of these loci [12]: COL4A1/COL4A2, ZC3HC1,

CYP17A1. The P values observed for the lead variants at these

loci in the current study were: COL4A1/COL4A2: rs4773144,

P = 3.561028; ZC3HC1: rs11556924, P = 3.161027; CYP17A1:

rs3824755, P = 1.261027, providing further strong evidence for

the association of these loci with CAD. Hence, only the lead

SNPs at the 24 remaining loci were taken forward for replication.

This was done in silico in 17,121 CAD cases and 40,473 controls,

all of whom were of white European ancestry and derived from

non-overlapping cohorts from CARDIoGRAM and EPIC-NL

(Text S1, Table S6). The power of our replication sample to

confirm significant associations is shown in Figure S1. Of the 24

variants taken forward, four were independently replicated (1-

tailed Bonferroni-corrected P,0.05 is P,1.961023; Figure 3,

Table S5), comprising variants in or adjacent to: LIPA, IL5,

TRIB1 and ABCG5/ABCG8 (Figure 4). For the variant at the

LIPA locus, the combined P-value was 4.361029, exceeding

conventional thresholds for GWA studies. For each of the IL5,

TRIB1 and ABCG5/ABCG8 variants, the P-value was ,361026,

exceeding array-wide levels of significance (Figure 3). CAD

associations in the individual component studies are shown in

Figure S3. The CAD associations for these loci did not vary

Novel Variants for Coronary Artery Disease
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materially by age, sex or when restricted to the MI subphenotype

(Figure S4).

Potential mechanisms
To investigate whether the 4 newly identified loci associate with

cardiovascular risk traits, we interrogated available data from

previous GWA meta-analyses of diabetes mellitus (n = 10,128

individuals) [13], systolic blood pressure (n = 25,870) [14], and

low-density (LDL) and high-density (HDL) lipoprotein-cholesterol

and triglycerides (n = 99,900) [15]. This showed that the risk allele

at the TRIB1 locus was associated with higher triglyceride

(P = 3.2610253), higher LDL-C (P = 6.7610229) and lower

HDL-C (P = 9.9610217) and that the ABCG5/ABCG8 risk allele

was associated with higher LDL-C (P = 1.7610247; Figure 5). We

also examined the association of the novel risk variants with gene

expression in full transcriptomic profiles of circulating monocytes

derived from 363 patients with premature myocardial infarction

and 395 healthy blood donors from the Cardiogenics study (Text S1).

We found a highly significant association (P = 1.06102124) of the

risk allele at the LIPA locus with LIPA mRNA levels in these cells

explaining ,50% of the variance in the expression of the gene

(Figure 6).There were no other highly significant associations

between CAD risk alleles and gene expression at the novel loci

(Table S7a and S7b).

Ethnic-specific analyses
We explored whether associations of loci with CAD differed

between individuals of white European ancestry and South Asian

ancestry. For most loci, frequency of risk alleles and pattern of risk

associations did not differ qualitatively by ethnicity, although the

evidence of association was often weaker in South Asians, perhaps

due to lower power (Figure 3, Tables S3 and S5). For the 9p21.3

locus, despite similar risk allele frequencies (Table S3), odds ratios

were higher in Europeans than South Asians (rs1333042: 1.27 v

1.14; P = 0.003 for difference), though common haplotype

frequencies did not vary by ethnicity (Table S8). The three

variants at the TUB, LCT and MICB loci selected for replication

on the basis of South Asian-specific results did not show evidence

of association in Europeans (Table S5).

Discussion

Our in-depth study of ,2,100 candidate genes has yielded

several novel and potentially important findings, adding to the

emerging knowledge on the genetic determination of CAD. First,

we have identified several novel genes for CAD. These genes relate

to diverse biochemical and cellular functions: LIPA for the locus on

10q23.3; IL5 (5q31.1); ABCG5/ABCG8 (2p21); TRIB1 (8q24.13);

COL4A1/COL4A2 (13q34); Z3HC1 (7q32.3); and CYP17A1

(10q24.3). We have furnished evidence directly implicating the

candidacy of these genes, either because the locations of the signals

discovered are within a narrow window of linkage disequilibrium

or because there is evidence of a mechanistic effect, or both.

Second, we have provided large-scale refutation of the relevance of

many prominent candidate gene hypotheses in CAD, thereby

clarifying the literature. Third, contrary to expectation, we did not

observe highly significant novel associations between low frequen-

cy variants and CAD risk, despite study of .4,500 such variants.

Fourth, we have confirmed the relevance of several previously

established CAD genes to both Europeans and South Asians,

without finding qualitative differences in results by ethnicity.

LIPA (lipase A) encodes a lysosomal acid lipase involved in the

breakdown of cholesteryl esters and triglycerides. Mutations in

LIPA cause Wolman’s disease [16], a rare disorder characterized

by accumulation of these lipids in multiple organs. However,

despite evidence that the risk allele was associated with higher

LIPA gene expression (suggesting that both under- and over-

activity of LIPA increase CAD risk), it was not significantly

associated with altered lipid levels. This finding suggests that the

impact on CAD risk is either through an alternative pathway, or

that the mechanism is more complex than reflected through

conventionally measured plasma lipid levels. Two recent studies

have also found associations of variants in the LIPA gene with

CAD using a GWA approach, strengthening the evidence for this

association [17,18].

Our identification of the association of variants near interleukin

5 (IL5), an interleukin produced by T helper-2 cells, is interesting

given the evidence that both acute and chronic inflammation may

play important roles in the development and progression of CAD

[19]. Most previous human association studies of inflammatory

genes and CAD have focused on other cytokines and acute-phase

reactants. Nevertheless, some experimental data predict that IL-5

has an atheroprotective effect and this has been supported by

association between higher circulating IL-5 levels and lower carotid

intimal-medial thickness [20–22]. Our findings now highlight the

potential importance of IL-5 in CAD, especially as the IL-5 receptor

is already a viable therapeutic target in allergic diseases, although we

can not rule out the possibility that another gene at this locus may be

mediating the association with CAD risk.

The ATP-binding cassette sub-family G proteins ABCG5 and

ABCG8 are hemi-transporters that limit intestinal absorption and

promote biliary excretion of sterols. Mutations in either gene are

associated with sitosterolaemia, accumulation of dietary cholesterol

and premature atherosclerosis [23]. Recently, common variants in

ABCG8 have also been shown to be associated with circulating LDL-

C and altered serum phytosterol levels with concordant changes in

risk of CAD [15,24]. Our findings confirm that this locus affects

CAD risk either directly through its effect on plasma phytosterol

levels or through primary/secondary changes in LDL-cholesterol.

The association signal on 8q24.13 maps near the TRIB1 gene

which encodes the Tribbles homolog 1 protein. Tribbles are a

Author Summary

Coronary artery disease (CAD) has a strong genetic basis
that remains poorly characterised. Using a custom-
designed array, we tested the association with CAD of
almost 50,000 common and low frequency variants in
,2,000 genes of known or suspected cardiovascular
relevance. We genotyped the array in 15,596 CAD cases
and 34,992 controls (11,202 cases and 30,733 controls of
European descent; 4,394 cases and 4,259 controls of South
Asian origin) and attempted to replicate putative novel
associations in an additional 17,121 CAD cases and 40,473
controls. We report the novel association of variants in or
near four genes with CAD and in additional studies identify
potential mechanisms by which some of these novel
variants affect CAD risk. Interestingly, we found that these
variants, as well as the majority of previously reported CAD
variants, have similar associations in Europeans and South
Asians. Contrary to prior expectations, many previously
suggested candidate genes did not show evidence of any
effect on CAD risk, and neither did we identify any novel
low frequency alleles with strong effects amongst the
genes tested. Discovery of novel genes associated with
heart disease may help to further understand the aetiology
of cardiovascular disease and identify new targets for
therapeutic interventions.
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family of phosphoproteins implicated in regulation of cell

function, although their precise roles are unclear [25]. However,

SNPs in or near TRIB1 - including the lead SNP in our study

(rs17321515) - have recently been shown to have highly

significant associations with levels of several major lipids [15],

providing a possible mechanism for their association with CAD.

Our findings confirm the previous suggestion that this variant is

also associated with CAD risk [15,26]. Hepatic over-expression of

TRIB1 in mice has been shown to lower circulating triglycerides;

conversely, targeted deletion of the TRIB1 gene in mice led to

higher circulating triglycerides [27]. The location of the CAD-

associated variant downstream of TRIB1 suggests that its effect may

be mediated by regulation of TRIB1 expression leading to adverse

lipid profiles, although we did not find an eQTL at this locus in

monocytes.

Our study brings to 33 the number of confirmed loci with

common variants affecting risk of CAD (Figure 7). We estimate that

in aggregate these variants explain about 9% of the heritability of

CAD which is consistent with the recent analysis by CARDIo-

GRAM [12]. Interestingly, the odds ratios that we observed for the

novel loci were generally lower than those of previously identified

loci. This suggests that most of the common variants with moderate

effects have been identified and that increasingly larger sample sizes

will be required to detect further common variants that affect risk of

CAD. However, the modest odds ratios associated with such

variants do not necessarily imply that they are not of potential

clinical or therapeutic relevance. For example, there are only

modest effects of common variants in the LDLR gene on CAD risk

(Figure 7); yet this pathway has become a major target for the

prevention and treatment of CAD with the development of statins.

Figure 1. Design of the study.
doi:10.1371/journal.pgen.1002260.g001

Novel Variants for Coronary Artery Disease

PLoS Genetics | www.plosgenetics.org 4 September 2011 | Volume 7 | Issue 9 | e1002260



Despite the success of the GWA approach in identifying several

common variants that affect risk of CAD, such loci explain only a

small proportion of the heritability of CAD [5]. It has been

hypothesized that some of the unexplained heritability resides in

lower frequency (1–5%) variants which are not adequately

represented on current genomewide arrays and/or are difficult to

impute from GWA data. Because the gene array used in the current

study included ,4500 lower frequency variants as well as known

functional variants for the majority of the genes on the array, we were

able to examine this issue for CAD, at least in relation to candidate

cardiovascular genes. Although we confirmed the previously reported

associations of lower frequency variants in LPA and PCSK9 with CAD

risk, we did not detect any other strongly associated variants in the 1–

5% range or an enrichment of low frequency variants amongst SNPs

that showed nominal association with CAD. However, it is important

to note that rare variants in the genome (minor allele frequency ,1%)

were not addressed in this study.

CAD is more common in South Asians and tends to occur at an

earlier age than in Europeans, perhaps partly due to genetic

factors [28]. Our study provides the first systematic exploration of

this issue. We observed a weaker effect size for the 9p21.3 locus in

South Asians compared with Europeans, although this did not

appear to be related to any obvious differences in haplotype

structure at the locus, confirming recent findings in Pakistanis [29].

This difference in effect size between ethnic groups will require

further evaluation and replication as other differences between the

European and South Asian studies (eg, different sex distributions)

could explain this finding. Most of the other disease-associated

variants we found had slightly weaker effects in South Asians,

although, because power to detect heterogeneity of effect between

the ethnicities was low and there were only 2 South Asian studies,

this finding will require further evaluation. We observed variants

at 3 loci (TUB, LCT and MICB, Table S5) which showed modest

(P,1024) associations in South Asians but were convincingly null

in Europeans and will therefore require replication in additional

South Asian samples. Overall, we did not find clear evidence of

major variation in genetic risk factors for CAD between

Europeans and South Asians.

In summary, using a large-scale gene-centric approach we have

identified novel associations of several genes for CAD that relate to

diverse biochemical and cellular functions, including inflammation

and novel lipid pathways, as well as genes of less certain function.

Together, these findings indicate that previously unsuspected

biological mechanisms operate in CAD, raising prospects for novel

approaches to intervention.

Materials and Methods

Participants
Characteristics of the discovery phase studies are summarised in

Table 1, Table S1 and the replication studies in Table S6. Further

details of all the studies are given in Text S1. All individuals

provided informed consent and all studies were approved by local

ethics committees.

Genotyping in discovery cohorts
Using the HumanCVD BeadChip array (Illumina), which is

also known as the ‘‘ITMAT-Broad-CARe’’ (IBC) 50K array, we

Table 1. Summary details of discovery and replication stage studies.

Stage Study Cases / Controls Male (%)
Mean age (SD) of
cases at diagnosis

Number of
cases with MI (%)

Version of
IBC array**

European discovery ARIC 424 / 8447 46.4 -u 368 (82.7) V2

BHF-FHS 2101 / 2426 63.3 49.8 (7.7) 1538 (73.2) V1

BLOODOMICS - Dutch 1462 / 1222 72.6 48.8 (12.0) 1462 (100) V2

BLOODOMICS - German 1910 / 1932 63.3 59.2 (10.9) 1181 (61.8) V2

CARDIA 87 / 1343 46.8 -u 86 (100) V2

CHS 737 / 3155 43.9 -u 381 (50.5) V2

FOS 59 / 6976 45.1 -u 13 (22.0) V2

MONICA-KORA 275 / 1413 57.5 52.9 (9.4) .50%* V1

PennCATH 1027 / 489 66.0 54.2 (8.8) 439 (40.6) V1

PROCARDIS 3120 / 3330 59.2 61.0 (8.7) 2136 (68.5) V2

Total 11,202 / 30,733

South Asian discovery PROMIS 1856 / 1905 82.5 53.3 (10.7) 1856 (100) V1

LOLIPOP 2538 / 2354 83.7 - 1125 (44.4) V2

Total 4394 / 4259

Replication CARDIoGRAM{ 15,949 / 38,823 57.0 53.5 (9.8) 10,890 (68.3) N/A

EPIC-NL 1172 / 1650 30.6 51.9 (10.6) 341 (30.3) V3

Total 17,121 / 40,473

ARIC = Atherosclerosis Risk In Communities; BHF-FHS = British Heart Foundation Family Heart Study; CARDIA = Coronary Artery Risk Development in Young Adults;
CHS = Cardiovascular Health Study; FOS = Framingham Offspring Study; LOLIPOP = London Life Sciences Prospective Population Cohort; PROCARDIS = Precocious
Coronary Artery Disease; PROMIS = Pakistan Risk of Myocardial Infarction Study; EPIC-NL = European Prospective Investigation into Cancer & Nutrition (Netherlands)
cohort.
*All MONICA-KORA cases are either MI or sudden cardiac death.
**V2 contains an additional 132 genes (3,857 SNPs) compared to V1. SNPs on V2 were only analysed in studies that used the V2 array.
{Details of studies in the CARDIoGRAM Consortium are presented in Table S6.
uThe 4 studies in the CARe Consortium contributed data only on prevalent CAD cases at baseline for whom ages were not available.
doi:10.1371/journal.pgen.1002260.t001
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genotyped 49,094 single nucleotide polymorphisms (SNPs) in

,2,100 candidate genes identified in previous studies of cardiovas-

cular disease, pathway-based approaches (including genes related to

metabolism, lipids, thrombosis, circulation and inflammation), early

access to GWA datasets for CAD, type 2 diabetes, lipids and

hypertension, as well as human and mouse gene expression data

[10]. Variants in genes suspected to be associated with sleep, lung

and blood disease phenotypes were also included, along with SNPs

that were related in GWA datasets to rheumatoid arthritis, Crohn’s

disease and type 1 diabetes. Human and mouse gene expression

data was also used to select variants. Genes were then prioritised by

investigators, with ‘high priority genes’ densely tagged (all SNPs

with MAF.2% tagged at r2.0.8), ‘intermediate priority genes’

moderately covered (all SNPs with MAF.5% tagged at r2.0.5),

and ‘low priority genes’ tagged using only non-synonymous SNPs

and known functional variants with MAF.1%.

A ‘‘cosmopolitan tagging’’ approach was used to select SNPs

providing high coverage of selected genes in 4 HapMap popu-

lations (CEPH Caucasians, Han Chinese, Japanese, Yorubans).

For all genes, non-synonymous SNPs and known functional

variants were prioritised on the array. Genotypes were called using

standard algorithms (eg, GenCall Software and Illuminus) and

standard quality control methods were applied to filter out poorly

performing or rare (,1% minor allele frequency) SNPs (Text S1).

After exclusion of low frequency variants (average 8,354 in each

study), non-autosomal variants (average 1,224) and variants that

failed quality control (average 842 – predominantly due to high

missingness or failure of HWE), the number of SNPs taken forward

for analysis in each study ranged from 30,550–39,027 (Table S2).

Statistical analysis
In each study, unadjusted logistic regression tests using a case-

control design assuming an additive genetic model were

conducted, with most studies using PLINK [30]. All studies made

attempts to reduce over-dispersion. The genomic inflation factor

for each study after adjustment was ,1.10 with one exception

(Table S2). The primary analysis was a fixed-effect inverse-

variance-weighted meta-analysis performed separately for each

ethnic group using STATA v11. A chi-squared test for between-

ethnicity heterogeneity was performed. A secondary analysis

combined European and South Asian studies to identify additional

variants common to both ethnicities (Text S1).

Figure 3. Novel loci identified in the current study. Loci ordered by chromosomal position. SNP = SNP showing strongest evidence of
association in discovery stage studies; Frequency = pooled frequency of risk allele across controls; European discovery = per-allele odds ratio,
confidence interval and 2-tailed P value from fixed-effect meta-analysis of European discovery stage studies; South Asian discovery = per-allele odds
ratio, confidence interval and 2-tailed P value from fixed-effect meta-analysis of South Asian discovery stage studies; Combined discovery = per-allele
odds ratio, confidence interval and 2-tailed P value from fixed-effect meta-analysis of all European and South Asian discovery stage studies combined;
Replication = per-allele odds ratio, confidence interval and 1-tailed P value from fixed-effect meta-analysis of replication stage studies comprising
non-overlapping participants from CARDIoGRAM plus all participants from EPIC-NL; Overall = P value from relevant discovery stage studies combined
with the replication stage P value using Fisher’s method.
doi:10.1371/journal.pgen.1002260.g003

Figure 2. Manhattan plots for discovery stage meta-analyses. Y-axis shows unadjusted 2log10(P values) from fixed-effect meta-analysis of
discovery stage studies. NB: European and Combined plots are truncated at P = 10220. Blue horizontal line at P = 1024 indicates threshold for
replication; Red horizontal line at P = 361026 indicates array-wide significance level.
doi:10.1371/journal.pgen.1002260.g002
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Replication
Based on a simulation study conducted prior to the analysis

(Figure S2), variants were selected for the replication stage if they

had an unadjusted P,161024 in either the primary analysis or

the combined ethnicity analysis. Only the most significant (‘‘lead’’)

SNP from each locus was taken forward for replication. SNPs at

known coronary disease risk loci (eg, 9p21.3, LPA, APOE) were

excluded from the replication stage, leaving 27 SNPs to take

forward. In silico replication was conducted using non-overlapping

participants from the CARDIoGRAM GWA meta-analysis [12] of

Figure 4. Regional association plots for novel loci identified. All SNPs included in meta-analysis of the European discovery stage studies are
represented by diamonds, with the lead SNP (lowest P value) at each locus represented by a large red diamond. Genes are represented as horizontal
arrows, with the direction of the arrow reflecting the direction of transcription. Recombination rates are represented as vertical blue peaks based on
the Hapmap 2 CEU population. P values are from fixed-effect meta-analysis. LD, represented as r2, is estimated using the controls from the BHF-FHS
study, or Hapmap 2 CEU population where data were not available in BHF-FHS. Vertical dashed lines represent the extent of LD with the lead SNP,
based on an r2 threshold of 0.5 in the Hapmap 2 CEU population. The genes between these lines represent the most likely candidate genes for each
association signal.
doi:10.1371/journal.pgen.1002260.g004

Figure 5. Effects of novel CAD loci on known cardiovascular risk factors. HDL-c = high-density lipoprotein cholesterol; LDL-c = low-density
lipoprotein cholesterol; Beta/odds ratio = combined effect from meta-analysis of SNP versus blood pressure/lipids/T2D. Results for lipids from meta-
analysis of 46 GWA studies containing up to 99,900 individuals [15]. Results for blood pressure from the Global BPGen Consortium: a meta-analysis of
17 GWA studies containing 25,870 individuals [14]. Results for diabetes from the DIAGRAM Consortium: a meta-analysis of 3 GWA studies containing
4,549 T2DM cases and 5,579 controls [13]. * No results available due to poor quality of SNP imputation.
doi:10.1371/journal.pgen.1002260.g005

Novel Variants for Coronary Artery Disease

PLoS Genetics | www.plosgenetics.org 8 September 2011 | Volume 7 | Issue 9 | e1002260



CAD plus an additional study, EPIC-NL [31] (details in Table S6). In

total, the replication stage comprised up to 17,121 coronary disease

cases and 40,473 controls. The threshold for indepen-

dent replication was a 1-tailed Bonferroni-corrected P,0.05

(P,1.961023) from a Cochran-Armitage trend test. P values from

the replication and discovery stages were combined using Fisher’s

method with a chip-wide value of P,361026 considered to be

statistically significant based on the simulation study (Figure S2).

Adjusted P values accounting for both over-dispersion and heteroge-

neity in the discovery stage studies were also estimated through

correction for study- and meta-analysis-specific inflation factors.

Additional analyses
To check for consistency of effect of variants that replicated,

subgroup analyses were performed in the discovery stage studies

for MI cases only, CAD cases aged less than 50, males only and

females only. Replicating SNPs were tested for association with

known cardiovascular risk factors such as blood pressure, lipids

levels and type 2 diabetes mellitus using existing large-scale GWA

meta-analyses data of these traits [13–15]. We also assessed the

association of these variants with gene expression in circulating

monocytes taken from 363 patients with premature myocardial

infarction and 395 healthy blood donors (Text S1). To put novel

findings from this study in the context of existing knowledge, we

summarised associations of common variants established in CAD

(P,561028) using available information from the NHGRI’s

GWA studies catalogue [32].

Supporting Information

Figure S1 Power to detect associated variants in discovery and

replication stages. Power to detect an association with al-

pha = 1024 (two-sided) assuming a per-allele effect and a discovery

stage study size of 11,202 coronary disease cases and 30,733

controls (equivalent to the European studies in the discovery stage)

across a range of minor allele frequencies (1%, 2%, 3%, 4%, 5%,

10%). These power calculations assume that there is no between-

study heterogeneity. Power to detect an association with

alpha = 1.961023 (one-sided) assuming a per-allele effect and a

replication stage study size of 17,121 coronary disease cases and

40,473 controls (equivalent to the whole replication stage) range of

minor allele frequencies (5%, 10%, 25%, 50%). These power

calculations assume that there is no between-study heterogeneity.

(PDF)

Figure S2 Simulated distribution of P values from discovery

stage meta-analyses. The distribution of the number of SNPs with

a P value,1024 under the null hypothesis of no associated SNPs

is based on 50,000 simulations using the controls from the BHF-

FHS study. The median is 2 significant SNPs (mean 2.5),

suggesting that using this threshold for taking SNPs to the

replication stage is likely to result in few false positives. The

comparable numbers for a threshold of P,1023 are median = 27

(mean 27), whilst the mean was 0.25 for P,1025. The

distribution of lowest P value in each simulation across the

Human CVD Beadchip array is based on 50,000 simulations

Figure 6. Evidence for an eQTL association in the LIPA gene. Expression levels of LIPA in monocytes taken from 758 individuals assembled by
the Cardiogenics Consortium partitioned by genotype of SNP rs2246833. Boxes indicate interquartile ranges with a white horizontal line indicating
the median. Error bars represent absolute minimum and maximum levels with dots showing those levels considered to be outliers. rs2246833 is in
strong linkage disequilibrium (r2 = 0.93; D9 = 1) with the CAD-associated variant at the LIPA locus (rs2246942). The T allele, which is associated with
increased LIPA expression, is inherited with the G allele of rs2246942, which is associated with increased risk of coronary disease.
doi:10.1371/journal.pgen.1002260.g006
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using the controls from the BHF-FHS study. The vertical line at

P = 361026 represents the 5th percentile, which was selected to

denote chip-wide significance.

(PDF)

Figure S3 Forest plots for novel SNPs in discovery stage studies.

Forest plots denote study-specific per-allele estimates of risk of

CAD, with the centre of each box representing the odds ratio, the

area of the box proportional to the weight (the inverse of the

variance), and the horizontal line indicating the 95% confidence

interval. Log odds ratios and standard errors were pooled using a

fixed-effect meta-analysis. Open diamonds represent pooled

estimates and 95% confidence intervals. European and South

Asian subgroup analyses did not differ significantly from each

other for any of the SNPs displayed.

(PDF)

Figure 7. Novel loci identified in this study placed in the context of previously confirmed CAD loci. Previously reported variants listed
are those from the NHGRI GWA studies catalogue [32] reported as having P,561028 with CAD. Per-allele odds ratios and percentage risk allele
frequencies (‘Freq’) are those listed in the catalogue. Frequencies and per-allele odds ratios for the novel variants reported in this study (appearing
below the dashed line) are from the CARDIoGRAM replication stage.
doi:10.1371/journal.pgen.1002260.g007

Novel Variants for Coronary Artery Disease

PLoS Genetics | www.plosgenetics.org 10 September 2011 | Volume 7 | Issue 9 | e1002260



Figure S4 Subgroup analyses for novel loci in European

discovery stage studies. Allele = Allele associated with increased

risk of CAD; Freq = frequency of risk allele in control populations.

MI = MI cases only vs all controls; Young = CAD cases diagnosed

aged less than 50 years.

(PDF)

Table S1 Details of studies included in the discovery stage.

- denotes ‘not applicable’ or ‘not available’. All values are means

(6SD) unless otherwise stated. Percentages may not be of all

available individuals due to missing data. ARIC = Atherosclerosis

Risk In Communities; BHF-FHS = British Heart Foundation

Family Heart Study; CARDIA = Coronary Artery Risk Develop-

ment in Young Adults; CHS = Cardiovascular Health Study;

FHS = Framingham Heart Study; LOLIPOP = London Life

Sciences Prospective Population Cohort; PROCARDIS = Preco-

cious Coronary Artery Disease; PROMIS = Pakistan Risk of

Myocardial Infarction Study. * age at baseline. 4 studies (BHF-

FHS, MONICA-KORA, PennCATH and PROMIS) used

version 1 (V1) of the array, whilst the other 8 used version 2

(V2). V2 contains an additional 132 genes (3,857 SNPs) hence

SNPs on V2 were only analysed in studies that used the V2 array.

Participants in the Framingham Heart Study were drawn from the

Offspring and Third Generation cohorts.

(PDF)

Table S2 Quality control information for SNPs in discovery

stage studies. Inflation factor = ratio of median observed chi2 value

to that expected under the null hypothesis; MAF = minor allele

frequency; No result = no odds ratio obtained from model,

generally due to low MAF; HWE = Hardy-Weinberg equilibrium

(P value estimated for controls only).

(PDF)

Table S3 Results for all loci meeting P,1023 in discovery stage

meta-analyses. SNPs are ordered by ascending P value in the

combined meta-analysis. Only the lead SNP (with the lowest P

value) from each locus is shown unless different SNPs met the

threshold in Europeans/South Asians. Data shown are per-allele

odds ratios from unadjusted fixed-effect inverse-variance meta-

analysis of 10 European studies, 2 South Asians studies and 12

studies combined. Loci highlighted in grey are those previously

identified by GWA studies; loci highlighted in yellow are

additional loci considered to be known CAD risk loci.

(PDF)

Table S4 Associations with previously studied candidate vari-

ants. Variants ordered by biological pathway, then gene. Per-allele

odds ratios are presented for the effect allele, which is the minor

allele in European populations. r2 with best imputed proxy was

estimated using ,2.5 M directly genotyped or HapMap-imputed

SNPs in the CARDIoGRAM Consortium. Tagging levels are 1

(r2.0.8 with all HapMap/Seattle SNPs of MAF$0.02), 2 (r2.0.5

with all HapMap/Seattle SNPs of MAF$0.05), 3 (only non-

synonymous and known functional variants of MAF.0.01) and

GWAS (specific SNPs previously identified in recent GWAS).
a rs4343 has r2 = 1 with the insertion/deletion polymorphism in

the ACE gene in CEU HapMap 2 population. b rs17443251 has

r2 = 0.75 with the more commonly studied R144C variant

(rs1799853) in the CYP2C9 gene in CEU HapMap 2 population.
c rs9526246 has r2 = 0.97 with the more commonly studied T102C

variant (rs6313) in the HTR2A gene in CEU HapMap 2

population. d rs1062535 has r2 = 0.97 with the more commonly

studied C807T variant (rs1126643) in the ITGA2 gene in CEU

HapMap 2 population. e rs1805096 has r2 = 0.89 with the more

commonly studied rs6700896 variant in the LEPR gene in CEU

HapMap 2 population. f rs1049897 has r2 = 1 with the more

commonly studied A102T variant (rs4236) in the MGP gene in

CEU HapMap 2 population. g rs4968624 has r2 = 0.97 with the

more commonly studied L125V variant (rs668) in the PECAM1

gene in CEU HapMap 2 population. h rs12944077 has r2 = 1 with

the more commonly studied S563N variant (rs12953) in the

PECAM1 gene in CEU HapMap 2 population.

(PDF)

Table S5 27 loci meeting P,161024 threshold in discovery

stage meta-analyses. Lead SNP = SNP with lowest P-value at

this locus; risk allele = allele associated with increased CAD risk

according to forward strand; freq = frequency of risk allele

pooled across controls; OR = per-allele odds ratio for risk allele;

95% CI = 95% confidence interval around odds ratio; P = P

value from fixed-effect meta-analysis; Combined = 10 European

studies and 2 South Asian studies combined in a single fixed-

effect meta-analysis; Overall = P values from discovery stage and

replication stage combined; P_adj = P value adjusted for both

study-specific and meta-analysis inflation factors in the discov-

ery stage; SNPs ordered by ascending P value. * For 3 loci

(ZC3HC1, CYP17A1, COL4A1/COL4A2), replication data are

not presented here, however genome-wide significant associa-

tions at these loci are reported in the paper by the

CARDIoGRAM Consortium.

(PDF)

Table S6 Details of studies included in the replication stage. All

values are means (6SD) unless otherwise stated.

(PDF)

Table S7 Expression QTL (eQTL) analysis for novel CAD loci.

a. eQTL analysis for novel CAD loci. {Key (Proportion of

all Probes). 1 = Weak (0%–20%). 2 = Medium (20%–80%).

3 = Strong (80%–100%). b. Conditional analysis of expression

QTL (eQTL) loci. Conditional analysis of the lead LIPA SNP on a

secondary SNP at the same locus that is also associated with gene

expression shows that the lead SNP at the LIPA locus has a strong

independent effect on LIPA expression levels. Conditional analysis

of the lead IL5 SNP on a second nearby SNP that is also associated

with RAD50 gene expression shows that the observed eQTL

association with the IL5 SNP is probably due to LD with the

RAD50 SNP.

(PDF)

Table S8 Comparison of haplotype frequencies for novel loci in

European and South Asian controls. Haplotypes are displayed in

decreasing frequency, with the same haplotype order in both

ethnicities. * = haplotype frequencies in bold are those containing

the CAD risk-associated allele of the lead SNP. SNPs were selected

for inclusion in the haplotype if they had r2$0.5 in either the

European or the South Asian controls. The 3330 PROCARDIS

controls were used to represent the European populations, whilst

the PROMIS controls were used to represent the South Asian

population. Only haplotypes that were common (frequency.5%)

in at least one population are displayed.

(PDF)

Text S1 Supplementary Methods, Supplementary References,

Supplementary Acknowledgements.

(PDF)
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