
Introduction

Muscle weakness and myotonia are cardinal features of
myotonic disorders including the myotonic dystrophies
(myotonic dystrophy type 1, myotonic dystrophy type 2,
proximal myotonic myopathy, and proximal myotonic dys-
trophy) [1-3] and the non-dystrophic myotonias (sodium,
calcium and chloride channelopathies and Andersen’s syn-
drome) [4-11]. In this review, we  focus on the non-dys-
trophic myotonias in which genetic and physiological
studies have provided a reasonably complete view of the
pathophysiology of these ion channel disorders (Table 1)
[4, 7, 8]. 
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Abstract Myotonia and muscle weakness are cardinal fea-
tures of myotonic disorders including the myotonic dystro-
phies and the non-dystrophic myotonias.  Despite the recent
progress in molecular genetics of these myotonic disorders,
the precise mechanisms responsible for myotonia and for
permanent  or episodic muscle weakness are still unclear.
Treatment has been mostly symptomatic, independent of the
disease process involved. Moreover, there have been few
randomized controlled trials of treatment for myotonic dis-
orders and consequently no standardized treatment regi-
mens are available. We present a review of selected treat-
ment trials in the myotonic disorders and in muscle chan-
nelopathies, and discuss, on the basis of our experience in
the myotonic disorders, the limits and advantages of treat-
ment trials in this field. Future genotype-phenotype correla-
tions using the patch-clamp technique are also illustrated.
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Table 1 Classification of the non-dystrophic myotonias

Sodium channel diseases (SCNA4)

Hyperkalemic periodic paralysis

Paramyotonia congenita

Potassium-aggravated myotonia

Myotonia fluctuans

Myotonia permanens

Acetazolamide-responsive myotonia

Chloride channelopathies (CLCn1)

Thomsen’s (autosomal dominant)

Becker’s (autosomal recessive)

Calcium channelopathies

Probable channelopathies

Andersen’s syndrome

Schwartz-Jampell syndrome
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Myotonic dystrophies 

Recent molecular studies have classified the myotonic dystro-
phies into 3 groups according to the chromosome involved:
myotonic dystrophy type 1 (DM1) is linked to chromosome
19q13.3; myotonic dystrophy type 2 (DM2), proximal
myotonic myopathy (PROMM) and proximal myotonic dys-
trophy (PDM) are linked to chromosome 3q21.3; and the
remaining families with DM-like phenotypes unlinked to chro-
mosome 3q21.3 still await classification and should be referred
to as DMn, suggesting a third (or more) disease loci [3]. Given
the clinical similarities to myotonic dystrophy, first described
by Steinert in 1909 [11a], and the same type of multisystem
involvement, it is likely that the same molecular mechanisms
are involved in these disorders. However, despite the genetic
progress in this field, the gene lesion responsible for the clini-
cal manifestation is still unknown and the pathophysiology of
this group of muscle diseases is still unclear. Nonetheless,
treatment for muscle weakness and myotonia has been pro-
posed by several authors [12-26]. A summary of selected treat-
ment trials in myotonic dystrophy type 1 is given in Table 2.

Non-dystrophic myotonias 

The non-dystrophic myotonias include disorders of voltage-
gated skeletal muscle ion channels grouped under the term
“periodic paralysis”. These are hereditary disorders that share
the common phenotype of episodic muscle weakness or paral-
ysis in the absence of abnormalities of the motor nerve, neuro-
muscular junction, or contractile proteins [27]. In periodic
paralysis, weakness is often accompanied by characteristic
changes in the serum potassium levels which have formed the
basis for the traditional classification into hyperkalemic and
hypokalemic periodic paralyses. These disorders are associated
with depolarization of the muscle sarcolemma during  episodes
of weakness. In each variant, depolarization is produced by an
increase in sodium conductance [28-34]. For hyperkalemic
periodic paralysis and paramyotonia congenita, this pathologi-
cal increase is triggered in vitro by increasing extracellular K+

or by cooling the muscle fiber, respectively, and the abnormal
conductance can be blocked by the specific muscle sodium
channel blocker tetrodotoxin (TTX), thus implicating sodium
channels in the pathophysiology of both diseases.

Sodium channelopathies 

Hyperkalemic periodic paralysis

The gene locus for sodium channelopathies (SCN4A) has
been defined and the classification of these disorders has
recently been clarified [9, 35-38]. On the basis of plasma
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potassium levels during an attack of paralysis and on the
basis of the effect of potassium administration on the strength
of patients with a sodium channel mutation, this channelopa-
thy is also known as potassium-sensitive periodic paralysis.
Many disorders characterized by potassium sensitivity local-
ize to chromosome 17q23.1 and are related to abnormalities of
the alpha-subunit of the sodium channel [9, 28, 32, 38-45].
From the clinical and laboratory viewpoints, sodium chan-
nelopathies are heterogeneous disorders: the potassium level
during an attack may be normal, elevated and in some occa-
sions even low during an attack of paralysis and may vary
between attacks and between individuals within the same fam-
ily. Inheritance is normally autosomal dominant. Onset of
attacks of weakness is usually in the first decade of life. The
attacks are usually brief and mild in most cases, usually last-
ing several hours. Triggers for the attacks are rest following
exercise and fasting. During rest, after a period of exercise,
there is a small increase of extracellular potassium. This caus-
es a slight membrane depolarization. There is an opening of
sodium channels but also a shift of sodium channels to the
non-inactivating mode so that there is a persistent inward sodi-
um current which causes a sustained depolarization of the
membrane. This leads to either an efflux of potassium and a
further increase of extracellular potassium or to the inactiva-
tion of normal sodium channels with loss of electrical
excitability and thus the paralytic attack. Weakness affects
muscles in a shoulder and pelvic distribution, and is usually
symmetrical and severe enough to determine transitory paral-
ysis. Muscles are typically hyporeactive and tendon reflexes
cannot be elicited during an attack. In the intercritical period
patients usually have muscles of normal bulk and strength.
Only in some cases has permanent weakness been described. 

Myotonia, instead, is usually prominent on both clinical
and electromyographic evaluation at any time in patients with
potassium-sensitive periodic paralysis. It is usually present in
the hands and eyelids, and improves with exercise (warm-up
phenomenon). In sodium channel myotonia, the degree of
myotonia among different families is particularly variable. For
this reason, fluctuation of myotonia, particularly with potassi-
um ingestion, was considered characteristic of sodium chan-
nelopathies. However, there has been a report of a large fami-
ly with fluctuating myotonia which resembled the fluctuations
of sodium channelopathies, in which the genetic defect was
clearly localized to the chloride channel [46]. 

Paramyotonia congenita 

This autosomal dominant disorder, first described by Von
Eulenberg a century ago (in 1886) [46a], is characterized by
paradoxical myotonia. Exercise worsens the myotonia rather
than improving it, as is typical of the warm-up phenomenon of
myotonia. Triggers are also different compared to hyper-
kalemic periodic paralysis: myotonia can be exacerbated by
cold, and attacks of weakness, if present, may also be precipi-
tated by cold exposure. This disorder is allelic to the hyper-

S956

kalemic periodic paralysis gene locus on chromosome 17q. It
involves distinct mutations of the alpha-subunit of the sodium
channel [38, 43, 45]. As more mutations are identified, the
clinical differences between these disorders are less clear [47].
Families with overlapping symptoms have been described.
Rather than being distinct pathophysiological entities, these
disorders form a continuum in which the specific features of a
given family depend critically on the nature and location of
their unique mutation.

Chloride channelopathies 

The chloride channel found in skeletal muscle is the chloride
channel type 1, encoded on chromosome 7q35 [6]. More than
20 missense mutations, four nonsense mutations, three dele-
tions, one insertion and two splice mutations in the gene have
been identified [31]. Mutations in the gene encoding the skele-
tal muscle chloride channel CLCN1 are involved in two forms
of myotonia in man: the autosomal dominant disease myoto-
nia congenita first described by Thomsen in 1876 [4a] and the
recessive myotonia congenita described by Becker in 1957
[4b]. Both diseases are characterized by muscle stiffness
(myotonia) which results from the continued firing of action
potentials in the muscles after the cessation of voluntary effort
or stimulation. This results, like for other myotonic disorders,
in a characteristic repetitive discharge in the electromyogram.
The autosomal dominant form usually is present at birth
whereas the recessive form develops during the first or second
decade, beginning in the legs and progressing to the arms,
neck and facial muscles. The recessive form of myotonia con-
genita is more common in men than in women, suggesting a
reduced penetrance in women or that the disease, for some
hormonal influence, has a milder phenotype. Symptoms are
usually more severe in the recessive form compared to the
dominant form. In both forms the myotonia is accentuated by
rest and gradually relieved by exercise. A distinctive feature of
chloride channelopathy is that weakness and myotonia usual-
ly appear after a period of rest, triggered by exercise. In the
sodium channelopathy instead, the opposite happens: it is rest
following exercise which triggers the attack. The patient with
a chloride channelopathy, in fact, although able to walk nor-
mally, may suddenly fall if he or she tries to walk or run fol-
lowing a period of rest [46]. A gradual warm-up alleviates
many symptoms. Patients usually have muscle hypertrophy as
a consequence of the continuous muscle activity. 

Electrophysiological studies using the patch clamp tech-
nique have been applied to study the expression of CLCN1
channels bearing myotonia-causing mutations [48]. These
have demonstrated either a marked reduction, or the complete
loss of the whole-cell chloride current. Analysis of four mis-
sense mutations producing dominant myotonia showed that
they cause a marked shift in the voltage-dependence of steady-
state activation to more positive potentials. This shift in volt-
age dependency is sufficient to prevent the channel from con-
tributing to repolarization of the action potential and so pre-
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disposes to myotonia. Although these dominant mutations
cause a common phenotype, they occur at diverse locations
throughout the protein. The fact that the structure of the chlo-
ride channel is far from resolved makes it difficult to postulate
how they affect channel gating. For the recessive form of
myotonia, it is expected that individuals heterozygous for the
mutation possess half the number of normal chloride channels,
consistent with the idea that a reduction of more than 50% of
the chloride channel is required to cause the myotonic pheno-
type. Still more puzzling is how mutations in the same gene
give rise to both dominant and recessive forms of myotonia.
The explanation probably depends on the extent to which the
wild-type subunits are inactivated [4, 8]. Another characteris-
tic feature of myotonia congenita is that, in agreement with the
clinical picture described above, repetitive muscle activity is
worse after a period of rest and is alleviated by exercise. It is
possible that this amelioration results from the enhanced activ-
ity of the muscle Na/K ATPase induced by exercise, which
facilitates the clearance of K+ ions from the T tubules. 

Calcium channelopathies

Voltage-dependent calcium channels have been identified on
the basis of their pharmacological properties [49]. One class of
calcium channel proteins, the L-type channel, has been isolat-
ed using its affinity for dihydropyridines. Biochemically, these
channels differ from sodium channels although the high
degree of sequence conservation suggests that they are derived
from the same primordial structure. The basic ion channel of
this muscle protein, as well as its voltage-gated properties, are
contained, like the sodium channel, within the alpha1 subunit.
The other subunits play a role in interaction with cytoskeletal
elements or with modulation of channel activity [28, 33, 40,
50-54]. Mutations in the voltage-gated skeletal calcium chan-
nel cause hypokalemic periodic paralysis [10]. This is a dom-
inantly inherited disorder caused by mutations in the voltage-
sensor dihydropyridine receptor [55]. Sporadic cases may
occur. Most mutations occur in the fourth putative membrane-
spanning segment of the receptor’s fourth domain. The portion
of the receptor containing mutations functions as a voltage
sensor for the calcium channel. Muscle fibers become electri-
cally inexcitable during attacks of weakness. The membrane
potential is decreased during and between attacks with low-
ered potassium concentrations. The plasma potassium level
falls during the paralytic attack usually below 3 mEq/l and
levels below 2 mEq/l may occur [56]. Weakness may persist
for hours after the return to normal potassium levels and
plasma potassium need not fall below normal range during
the attack of paralysis, suggesting that the fall in potassium
level is the result of the attack of weakness rather than its
cause.  Triggers for paralysis are fasting, exercise and exces-
sive liquorice intake. Onset of attacks is typically in child-
hood or young adulthood. Attacks usually occur in the morn-
ing and affect muscles in a shoulder and pelvic type of dis-
tribution, usually in a symmetric distribution. However, sin-

gle limbs may be affected in a transitory manner. Tendon
reflexes are unresponsive during an attack. Myotonia and
muscle pain are not features of this disorder. Intercritically,
more frequently than the sodium channelopathies, patients
may have permament weakness with functional limitations
in everyday activities. This girdle-type distribution of fixed
muscle weakness is in agreement with findings of a vacuolar
myopathy on muscle biopsy of patients with hypokalemic
periodic paralysis. Progression is slow but significant.

Therapy for non-dystrophic myotonias 

Table 3 illustrates selected trials of treatment in the non-dys-
trophic myotonias. 

Sodium channelopathies

Local anesthetics and class 1b antiarrhythmic agents such as
lidocaine, mexiletine and other lidocaine-derivatives have
been tried to prevent muscle stiffness and cold-induced
weakness of paramyotonia congenita [57, 58]. In contrast to
the relief of stiffness and the prevention of cold-induced
weakness, the spontaneous and potassium-induced attacks of
weakness typical for hyperkalemic periodic paralysis and
also occurring in many patients with paramyotonia congeni-
ta are not influenced by mexiletine at the doses of 200 mg tid
[59]. Diuretics such as hydrochlorothiazide and acetazo-
lamide (250 mg bid) can decrease frequency and severity of
paralytic attacks by lowering serum potassium and perhaps
by shifting the pH to lower values [7, 8, 29, 59, 60].

Chloride channelopathies

Many myotonia congenita patients can manage their disease
without medication. When stiffness interferes with everyday
activity and is associated with pain, treatment is recommended.
Stiffness responds well to drugs that reduce the increased
excitability of the cell membrane by interfering with the sodi-
um channels, i.e. local anesthetics, antifibrillar and antiarrhyth-
mic agents, and related drugs. These drugs suppress myotonic
runs by decreasing the number of available sodium channels
and have no known effects on chloride channels. Mexiletine is
the drug of choice for these patients (200 mg tid) [61, 62].

Calcium channelopathies

In general, patients with hypokalemic periodic paralysis
respond to acetazolamide (125 mg bid) [63]. The drug is
generally well tolerated and reduces the frequency and

G. Meola, V. Sansone: Therapy in myotonic disorders and in muscle channelopathies S957



S958 G. Meola, V. Sansone: Therapy in myotonic disorders and in muscle channelopathies 
Ta

bl
e 

3
Se

le
ct

ed
 tr

ia
ls

 o
f 

tr
ea

tm
en

t i
n 

th
e 

no
n-

dy
st

ro
ph

ic
 m

yo
to

ni
as

R
ef

er
en

ce
Pa

tie
nt

s,
 n

Ty
pe

 o
f t

ria
l

Tr
ea

tm
en

t r
eg

im
en

Ev
al

ua
tio

n 
cr

ite
ria

 
C

om
m

en
ts

  

W
an

g,
 C

la
us

en
 [7

6]
15

 H
yp

er
K

PP
O

pe
n

Sa
lb

ut
am

ol
 in

ha
la

tio
n

–
A

lle
vi

at
es

 h
yp

er
ka

le
m

ia
 a

nd
 

pa
ra

ly
si

s 
pr

ec
ip

ita
te

d 
by

 e
xe

rc
is

e 
an

d 
or

al
 K

C
l

Jo
hn

se
n 

[7
7]

5 
H

yp
oK

PP
O

pe
n

D
ia

zo
xi

de
 (7

2 
h 

ex
po

su
re

)
D

eg
re

e 
of

 p
ar

al
ys

is
 a

nd
 le

ve
l o

f
In

iti
al

 im
pr

ov
em

en
t

hy
po

ka
le

m
ia

 b
ef

or
e 

an
d 

af
te

r p
re

-tr
ea

tm
en

t
w

ith
 p

re
-tr

ea
tm

en
t f

ol
lo

w
ed

 b
y

w
ith

 d
ia

zo
xi

de
 d

ur
in

g 
in

du
ct

io
n 

te
st

s
ad

ap
ta

tio
n

fo
r H

yp
oK

PP

To
rr

es
 e

t a
l. 

[6
5]

3 
H

yp
oK

PP
O

pe
n 

A
ce

ta
zo

la
m

id
e

Fr
eq

ue
nc

y 
an

d 
se

ve
rit

y 
of

 a
tta

ck
s 

of
 w

ea
kn

es
s

In
cr

ea
se

 in
 fr

eq
ue

nc
y

an
d 

se
ve

rit
y 

of
 a

tta
ck

s;
im

pr
ov

em
en

t w
ith

 tr
ia

m
te

re
ne

 

D
al

ak
as

, E
ng

el
 [7

8]
3 

H
yp

oK
PP

Si
ng

le
-b

lin
d

D
ic

hl
or

op
he

na
m

id
e

A
ss

es
sm

en
t o

f f
ix

ed
 w

ea
kn

es
s 

by
 Q

M
T

Im
pr

ov
em

en
t o

f m
us

cl
e 

st
re

ng
th

pl
ac

eb
o-

co
nt

ro
lle

d 
an

d 
fr

eq
ue

nc
y 

of
 a

tta
ck

s 
of

 w
ea

kn
es

s
an

d 
re

du
ct

io
n 

of
 a

tta
ck

 fr
eq

ue
nc

y

Li
nk

s 
et

 a
l. 

[7
9]

8 
H

yp
oK

PP
D

ou
bl

e-
bl

in
d 

A
ce

ta
zo

la
m

id
e 

M
us

cl
e 

st
re

ng
th

 b
y 

ha
nd

he
ld

 d
yn

am
om

et
er

;  
Im

pr
ov

em
en

t i
n 

st
re

ng
th

 a
nd

 in
cr

os
s-

ov
er

 
fu

nc
tio

na
l t

es
ts

;  
su

rf
ac

e 
EM

G
fu

nc
tio

na
l t

es
ts

. N
o 

ch
an

ge
in

 s
ur

fa
ce

 E
M

G

Li
gt

en
be

rg
 e

t a
l. 

[8
0]

 
4 

H
yp

oK
PP

Pl
ac

eb
o-

co
nt

ro
lle

d
Pi

na
ci

di
l (

25
 m

g 
qi

d 
)

M
us

cl
e 

st
re

ng
th

 b
y 

ha
nd

he
ld

 d
yn

am
om

et
er

Im
pr

ov
em

en
t o

f m
us

cl
e 

st
re

ng
th

do
ub

le
 b

lin
d 

in
 a

dd
iti

on
 to

 a
ss

es
sm

en
t o

f i
ns

ul
in

 re
le

as
e

in
 2

 o
f 4

 p
at

ie
nt

s 
w

ith
 p

ar
tia

l
du

rin
g 

a 
hy

pe
rg

ly
ce

m
ic

 g
lu

co
se

 c
la

m
p 

 
pa

ra
ly

tic
 a

tta
ck

s

H
an

na
 e

t a
l. 

[8
1]

 
1 

H
yp

er
K

PP
O

pe
n 

Sa
lb

ut
am

ol
 in

ha
la

tio
n 

C
lin

ic
al

 a
nd

 e
le

ct
ro

ph
ys

io
lo

gi
ca

l m
on

ito
rin

g 
Im

pr
ov

em
en

t

Ta
w

il 
et

 a
l. 

[6
6]

 
42

 H
yp

oK
PP

Tw
o 

m
ul

tic
en

te
r, 

D
ic

hl
or

op
he

na
m

id
e

A
tta

ck
 s

ev
er

ity
 a

nd
 fr

eq
ue

nc
y 

in
 H

yp
oK

PP
;

D
ic

hl
or

op
he

na
m

id
e 

is
 e

ff
ec

tiv
e

31
 K

-s
en

si
tiv

e 
PP

ra
nd

om
iz

ed
,

fo
r 8

 w
ee

ks
; 9

-w
ee

k 
w

as
h-

ou
t

nu
m

be
r o

f a
tta

ck
s 

pe
r w

ee
k 

in
 K

-s
en

si
tiv

e 
PP

in
 p

re
ve

nt
io

n 
of

 e
pi

so
di

c 
w

ea
kn

es
s

do
ub

le
-b

lin
d,

 p
la

ce
bo

-
in

 b
ot

h 
st

ud
y 

gr
ou

ps
co

nt
ro

lle
d 

cr
os

so
ve

r  
   

  

H
yp

er
K

PP
, h

yp
er

ka
le

m
ic

 p
er

io
di

c 
pa

ra
ly

si
s;

 H
yp

oK
K

P
, h

yp
ok

al
em

ic
 p

er
io

di
c 

pa
ra

ly
si

s;
  Q

M
T,

 q
ua

nt
ita

tiv
e 

m
us

cl
e 

te
st

in
g



severity of the attacks of weakness. These may become
abortive, affecting only one limb and for a short period of
time that does not limit the patient in everyday activities.
Careful control of renal function and visual acuity is neces-
sary. Treatment should be associated with a carbohydrate-
poor, potassium-rich diet. We generally recommend 1600
kcal diets with a total of 64 g protein (16% of total kcal), 53
g lipids (30% of total kcal) 236 g carbohydrates (55% of total
kcal intake).

Although the efficacy of the carbonic anhydrase
inhibitors is well accepted as the first treatment of choice in
primary periodic paralysis, some patients do not tolerate the
drug [64], worsen [65] or become unresponsive. Recent tri-
als involving another potent anhydrase inhibitor,
dichlorophenamide, have suggested that it is effective in the
prevention of episodic weakness in hypokalemic periodic
paralysis and in potassium-sensitive periodic paralysis [66].
This drug has been previously recommended in the treatment
of permanent muscle weakness in hypokalemic periodic
paralysis which is a major concern for these patients.

Conclusions 

Despite the major advances in molecular genetics in the
myotonic disorders, little is known about the relationship
between gene lesion and clinical manifestations of the
myotonic dystrophies. Little is known about the structure
and function of voltage-gated ion channels responsible for
the known muscle channelopathies despite knowledge of the
mutation involved. This is the reason why treatment strate-
gies have been mainly symptomatic. 

Identification of the channel involved does not substan-
tially modify treatment strategies against either myotonia or
muscle weakness. Considering myotonia, one should also
bear in mind that although similar, each channelopathy has
distinctive clinical features. Triggers for myotonia are differ-
ent in the chloride channelopathies compared to the sodium
channelopathies. Clinically, the myotonic phenomenon is
expressed differently in these two ion channel disorders: it is
severe and diffuse in the chloride channelopathies and incon-
stantly present and less pronounced in the sodium chan-
nelopathies. Yet antimyotonic treatment has often been the
same for both disorders, based on empirical and anedoctical
data. The same applies to treatment strategies against the
attacks of weakness. Weakness in the sodium, chloride or
calcium channelopathy has different characteristics.
Clinically, on the basis of triggering factors, age at onset of
attacks, frequency of the attacks and presence or absence of
permanent weakness, it is possible to direct the diagnostic
approach towards one channel or another. However, this
does not substantially modify the treatment approach. In par-
ticular, the mechanisms involved in the development of per-
manent muscle weakness are still unclear so that only a few
treatment strategies have aimed against its development. 

Future treatment strategies should bear in mind the func-

tion of the protein and of the channel involved in the disease.
Single-channel patch-clamp recordings of chloride channel
currents from muscle fibers of  known myotonia congenita
mutations may, for example, demonstrate the specific effects
of antimyotonic drugs like mexiletine which subjectively
improves myotonia in these patients. We are currently study-
ing chloride channel currents from patients with known chlo-
ride channel mutations to better characterize the mutated
currents and study the effects of specific antimyotonic drugs
on channel kinetics.

This approach may improve knowledge of channel func-
tion and therefore direct treatment strategies according to the
mechanisms involved in the disease process [67].
Understanding the pathophysiology of this channelopathy
may contribute to the understanding of other membrane-
related disorders. DNA-based diagnosis will become a real-
istic proposition for most neurological channelopathies.
Furthermore, it seems likely that new therapies will be
designed based on genotype and mode of ion channel dys-
function.
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