
Optimizing the Automatic Test Generation by SAT
and SMT Solving for Boolean Expressions

Paolo Arcaini∗, Angelo Gargantini†, and Elvinia Riccobene∗
∗Dip. di Tecnologie dell’Informazione - Università degli Studi di Milano, Italy

{paolo.arcaini,elvinia.riccobene}@unimi.it
†Dip. di Ing. dell’Informazione e Metodi Matematici - Università di Bergamo, Italy

angelo.gargantini@unibg.it

Abstract—Recent advances in propositional satisfiability (SAT)
and Satisfiability Modulo Theories (SMT) solvers are increasingly
rendering SAT and SMT-based automatic test generation an
attractive alternative to traditional algorithmic test generation
methods. The use of SAT/SMT solvers is particularly appealing
when testing Boolean expressions: These tools are able to deal
with constraints over the models, generate compact test suites,
and they support fault-based test generation methods. However,
these solvers normally require more time and greater amount of
memory than classical test generation algorithms, limiting their
applicability. In this paper we propose several ways to optimize
the process of test generation and we compare several SAT/SMT
solvers and propositional transformation rules. These optimiza-
tions promise to make SAT/SMT-based techniques as efficient as
standard methods for testing purposes, especially when dealing
with Boolean expressions, as proved by our experiments.

I. INTRODUCTION

In the context of model-based test generation, propositional
satisfiability (SAT) and Satisfiability Modulo Theories (SMT)
solvers are increasingly considered an attractive alternative [9],
[2] to traditional algorithmic test generation methods. Besides
their capability of dealing with complex constraints, these
techniques can achieve the goal of compact test suites without
compromising their fault detection capability [8].

Although SAT and SMT solvers are already successfully
employed in several projects of software testing and verifi-
cation, in some areas, like testing of Boolean specifications,
they are rarely used. For Boolean expressions, classical testing
criteria (like MCDC [3] or MUMCUT [15]) are widely used
together with simple yet fast algorithms for test generation.
These algorithms, however, do not explicitly consider the
expression fault classes and they often also require expressions
to be in a particular normal (usually disjunctive) form.

Recent results [9] show how it is possible to reduce the
problem of finding fault detecting test cases for Boolean
expressions to a logical satisfiability problem, which can be
solved by a SAT/SMT-based algorithm. This approach does
not require the specifications under test to be expressed in
a particular normal form, so avoiding possible overhead due
to the formula transformation, generates test cases directly
targeting specific fault classes and uses several reduction
policies to minimize the size of resulting test suites.

The process of automatic test generation by SAT/SMT
techniques requires, however, more time and memory than

Figure 1. Test generation process

standard generation algorithms and this fact limits its use in
practice. The contribution of this paper is to improve this
process by proposing a number of optimizations that promise
to make SAT/SMT techniques as efficient as standard methods
for test generation purposes with the mentioned benefits.
Some optimizations regard the actual use of the tools (e.g.
avoiding exchanging files and using native libraries instead).
Other optimizations improve the SAT/SMT-based process of
automatic test generation, independently from a specific input
specification and selected testing criterion. Others are specific
to the process instantiated for testing Boolean expressions.

We also propose a comparison of different SAT and SMT
solvers usable in the test generation process and that are able
to support (not necessarily all) the proposed optimizations.
On the base of the best (among those used) tool, we show
evidence that the proposed optimizations are effective. And,
on the base of our experiments, we conclude that SAT/SMT
solvers can be successfully applied to Boolean testing and that
SMT-solvers may have better performance than SAT solvers.

II. TEST GENERATION PROCESS

The overall test generation process by SAT/SMT solvers
optimized in this paper is presented in [9] and is depicted
in Fig. 1. A set TPS of test predicates is generated from a
specification (À in Fig. 1) depending on the testing criteria.

The generation of the complete test suite (Á in Fig. 1) can be
performed by taking a test predicate tp and trying to generate
a test that covers it by using a SAT/SMT solver which is
able to find a model for tp. A core optimization employed
in this paper consists in finding tests that cover as many test
predicates as possible instead of single test predicates. We call



collection the set of test predicates sharing the same model,
and collecting the process of grouping test predicates. The
collecting phase is shown in Fig. 1 as Â and again uses a
SAT/SMT solver. Although the collecting process is able to
produce very compact test suites [9], it is very expensive in
terms of solver calls, since it requires a call of the solver to
check if a test predicate tp is compatible with Tpc, i.e. if
there exits a common model for tp and Tpc. If compatible,
tp is added to the collection Tpc. If tp is not compatible, it
must be checked if it is satisfiable; otherwise it is removed
from TPS in order to avoid trying to collect a test predicate
which is actually infeasible. Note that infeasible test predicates
consume computing resources without producing usable tests.

Once a collection Tpc is built, the SAT/SMT solver is in-
voked (Ã in Fig. 1) to find a model for Tpc and, therefore, for
all the test predicates collected in it. The coverage evaluation
(Ä in Fig. 1) gathers information useful to skip the generation
for test predicates already covered (also called monitoring),
while post reduction (Å in Fig. 1) is the last step of the process,
removes unnecessary test predicates (if any), and it can be
performed in a negligible amount of time.

We here assume that the specifications under test are
Boolean expressions in general form (GF) and we perform
the experiments using fault-based testing criteria that explicitly
target faults in Boolean expressions (like those in [11]). The
test predicates have form tpi = ϕ ⊕ ϕ′

i (called detection
conditions), where ⊕ denotes the exclusive or (xor), ϕ is
the Boolean specification, and ϕ′

i are all the possible faulty
implementations.

III. OPTIMIZATIONS

O.1 Simplification of the test predicate: Since test pred-
icates have form ϕ ⊕ ϕ′ and that ϕ and ϕ′ often have a
common subexpression, we can use several equivalences (like
(a ∧ b)⊕ (a ∧ c) ≡ a ∧ (b⊕ c)) that allow to factor a part of
the formula and to push the ⊕ operator near the literals.

O.2 Optimizing the transformation to CNF: Almost all
SAT solvers require CNF input formulas, while Boolean
expressions we consider and their test predicates have general
form. Efficient transformation to CNF is still a research topic
[13], and we have experimented several translations to CNF.

O.3 Avoiding the transformation to clausal form: Convert-
ing a non-clausal formula to CNF requires a great effort
(it can grow exponentially in length) and it may destroy
the initial structure of the formula, which could be used
for efficient satisfiability checking. SAT/SMT solvers taking
Boolean expressions in general form (GF) may perform better.

O.4 Using the API and avoiding the exchange of files: A
simple optimization regards the way the solvers are invoked:
Instead of using input files and calling the solvers in a
command shell, we can embed the solver in the test generation
process itself.

A. Collecting Optimizations

Since collecting is the most powerful technique to generate
small test suites, but it is also the most expensive [9], a great

effort should be spent to improve this part of the generation
process.

O.5 Marking feasible test predicates: A first optimization
consists in marking if a test predicate is feasible. Feasible test
predicates do not need to be checked for feasibility when they
are not compatible with the collection.

O.6 Collection with witness: The collecting algorithm re-
turns the collected test predicates and the SAT/SMT solver
is called after the collecting process to find a model for the
conjunction of the collected test predicates (Ã in Fig 1). Since
the solver has been already invoked to check if the last test
predicate added to the collection is compatible with the other
test predicates previously collected, a further call to the SMT
solver is useless.

O.7 Checking if the witness is a model: When trying to add
the current test predicate tp to the collection Tpc, one could
check if the witness for the collection Tpc is already a model
for tp. In this case tp can be added to Tpc without any further
call of the SMT solver.

O.8 Collecting incrementally: Most modern SAT/SMT
solvers maintain the logical context of a given problem and
allow incremental satisfiability checking. This feature can be
exploited when collecting test predicates.

O.9 Collecting incrementally with backtracking: Most
SMT solvers, like Yices [6] and Z3 [5], have the further feature
of removing an added formula from the current logical context.
We can, therefore, incrementally collect all the test predicates
having a common model: Before adding a single test predicate
tp to the collection, tp is added into the context. If the context
has still a model, then tp is added to the collection, otherwise
tp is removed from the context.

O.10 Double incremental collecting: In case all the test
predicates have the form ϕ⊕ϕ′

i (if the ⊕ is not pushed), one
can use the following Xor elimination logical equivalence:

n∧
i=1

(ϕ⊕ ϕ′
i) ≡ (ϕ ∧

n∧
i=1

¬ϕ′
i) ∨ (¬ϕ ∧

n∧
i=1

ϕ′
i)

to simplify the collecting process. One starts with two con-
texts: c> initially containing only ϕ, and c⊥ containing ¬ϕ.
When a test predicate tpi = ϕ ⊕ ϕ′

i must be checked for
compatibility with all the test predicates already collected,
¬ϕ′

i is added to c> (if still valid), while ϕ′
i is added to c⊥(if

still valid). (1) If both contexts are still satisfiable, then tpi is
accepted; (2) if only one context is satisfiable, then tpi is still
accepted but the context without model is invalidated and no
longer considered; (3) if no valid context is satisfiable, then
tpi is refused and the valid contexts are restored.

B. Limiting Collecting

To make the collecting process of test predicates faster,
another approach consists in limiting the test predicates that
can be possibly collected. In this case, instead of reducing
the time necessary to collect every possible test predicate,
one could try to limit the number of test predicates that are
collected. The collection would not contain all the uncovered
test predicates which could be possibly collected together (we



can say that it is a partial collection), and this may reduce the
effectiveness of the collecting process itself. We devise the
following policies.

O.11 Quit after N: Quit collecting when a maximum
number of test predicates are added to the collection. The
collecting process is very fast with small N , but it produces
bigger test suites. With increasing N , it behaves similarly to
the unlimited collection but also the time may increase.

O.12 Collecting until useful: Quit collecting as soon as it
becomes useless, i.e. when the collection admits an unique
model. We can discover if a model is unique by using the
SAT/SMT solver and the following proposition.

Prop. 1: Let ψ be a feasible predicate, m be a model of ψ,
and asExpr(m) be the function that returns the conjunction
of the variables having value true in m and the negation of
the variables having value false in m. m is the unique model
of ψ if ψ ∧ ¬asExpr(m) is not satisfiable.

Note that O.12 collects all the useful test predicates and,
therefore, it does not impact over the test suite size.

O.13 Checking uniqueness after N : Add the first N pred-
icates (if possible) in a classic way. After that, check if the
model of the collection is unique: If it is, quit collecting.

IV. EXPERIMENTAL RESULTS

For experimentation, we initially consider the same set
of Boolean specifications for TCAS introduced by [14]. As
SAT solver we select SAT4J [12], MiniSAT [7], PicoSAT
[1] and NFLSAT [10]. As SMT solver, we use Yices [6],
which includes a very efficient SAT solver; it claims to be
“competitive as an ordinary SAT and MaxSAT solver” [6]. To
implement optimization O.4 we use the solvers (if possible)
together with the Java Native Access (JNA) libraries, which
simply require native shared libraries. NFLSAT does not
require inputs as CNF, but it cannot work with JNA since
it comes as executable binary. Yices has a very rich API,
accepts GF Boolean expressions and supports a very efficient
backtracking technique.

Initial experiments revealed that O.1 always speeds up the
generation process and that (O.2) the test generation made
with the Tseitin algorithm is faster (by around 75%) than
the generation made with an equivalence preserving CNF
translation algorithm even if it increases the number of literals.
For the rest of reported experimentations, we assume the use
of these two optimizations.

A comparison among the solvers using only optimizations
O.3 and O.4 whenever possible is reported in Fig. 2. NFLSAT
is faster than the others SAT solvers used at command line
(CLI): Optimization O.3 has a positive effect: NFLSAT and
Yices, which take GF predicates, perform better than the other
solvers that accept only CNF. However, NFLSAT is much
slower than the other solvers when applying O.4 which is
not supported by NFLSAT. All the solvers with JNA perform
considerably better than the CLI counterparts: O.4 drastically
reduces the time necessary to generate the tests.

In order to thoroughly compare the best solvers (SAT4J,
Yices and MiniSAT with JNA), we select 12200 random spec-

●

●●

●●0

50

100

150

200

250

300

tim
e 

(m
in

ut
es

)

M
in

is
at

C
LI

 *

P
ic

os
at

C
LI

 *

Y
ic

es
C

LI
 

N
fls

at
 

S
AT

4J
 

M
in

is
at

JN
A

 

P
ic

os
at

JN
A

 *

Y
ic

es
JN

A
 

* In each run was not able to complete the
test generation for 2 specs due to the timeout

Figure 2. Comparing the solvers using TCAS specs

●

N
I_

W N
I

N
I_

C

N
I_

W
_C

N
I_

X

N
I_

X
_W

N
I_

X
_W

_C

N
I_

X
_C

S
I_

W S
I

D
I_

W D
I

S
I_

X
_W

S
I_

X

tim
e 

(m
in

:s
ec

)

2:6

12:11

14:18

16:23

18:30

20:36

22:42

24:48

26:54
NI = not incremental collecting
SI = single incremental collecting (O.9)
DI = double incremental collecting (O.10)
X = xor simplification (O.1)
W = collection with witness (O.6)
C = checking if the witness is a model (O.7)

●

S
I_

W S
I

D
I_

W D
I

S
I_

X
_W

S
I_

X

55
60
65
70
75
80
85
90

tim
e 

(s
ec

on
ds

)

Figure 3. Optimization evaluation with Yices

ifications with different number of variables and complexity.
We found that Yices performs better than the other two SAT
solvers, therefore, SMT solving is competitive even for test
generation for Boolean expressions. From here on, we use
Yices with JNA.

A. Optimization Evaluation

Fig. 3 reports the time required to complete the test genera-
tion for 40 specifications (the 20 TCAS specifications and 20
most complex random specifications) for 50 runs, depending
on the optimizations O.1, O.6, O.7, and incremental collecting
in three variants: not applied, single incremental collecting
(O.9), and double incremental collecting (O.10). The grey box
enlarges the cases in which incremental collecting is applied.
It is evident that the incremental collecting significantly im-
proves the performances.

We found that the only ineffective optimization is O.6: It
seems that an extra call of the SMT solver after the collecting
phase does not impact over the final time.

All the other optimizations are effective. The incremental
collecting (O.9 and O.10) boosts the performances by signifi-
cantly reducing the time. The best performances are obtained
when the single collecting (O.9) is applied together with O.1.



N

0 10 20 30 40 50 60

 731

 818

 906

 994

1082

1169

 8.5

17.0

25.5

34.1

42.6

51.1

size
time

si
ze

tim
e 

(s
ec

on
ds

)

Figure 4. Quit collecting after N (O.11)

N

0 10 20 30 40 50 60

710

720

730

740

750

760

 46

 67

 88

108

129

150
size
time

si
ze

tim
e 

(s
ec

on
ds

)

Figure 5. Checking uniqueness after N (O.13)

In this case, the generation for all the test suites for all the
40 specifications requires only 57.6 secs, with an average of
1.44 secs for specification. This proofs that a well engineered
and optimized SMT-based test generation process can be used
in practice for Boolean specifications instead of the classical
algorithms.

B. Limiting Collecting
In this experiment, we test how all the limiting policies

introduced in Sect. III-B may affect the test generation process
(used together with O.9). Fig. 4 depicts the effects of O.11.
As the figure shows and as expected, the size of the test suite
decreases with increasing N , but the time required increases
as well. For small N the size rapidly decreases, but after
a threshold (around 15) the test suite size is reduced only
marginally. This option gives the user more control over the
collecting process: A suitable value of N can be chosen to
balance between test suite compactness and test generation
time. Note that the test suite becomes of comparable size
w.r.t. the case without limiting when N approaches 60, but
the generation time still remains smaller.

O.12 and O.13 can find test suites as small as those found
without limiting. However, O.12 requires almost a tripled time
with respect to the best combination without limiting (O.9 and
O.1), and, therefore, O.12 is not effective. Fig. 5 depicts the
effects of O.13 depending on N ; for values of N lower than
around 20 the time is greater than the best combination without
limiting, for values of N greater than 20 the time is lower:
O.13 is effective for N greater than 20.

Overall, we can state that limiting the collecting is effective
in reducing the time for test generation with possible no
negative effects over the test suite size.

V. CONCLUSION AND FUTURE WORK

We have presented a set of optimizations to improve a
process of automatic test generation by SAT/SMT techniques.

Although we propose and apply the optimizations only for a
selected number of SAT and SMT solvers and for fault-based
testing of Boolean expressions, most techniques are general
enough and can be applied to other approaches, as well, to
speed up the model-based test generation even not for Boolean
expressions. Some optimizations exploit specific features of a
SAT or an SMT solver, others requires specific form of the
input formulas or are applicable only to fault-based test pred-
icates. However, most of the proposed optimizations modify
the test generation process and can be applied regardless the
notation and the tool used for test generation.

Experimenting these optimizations through a set of bench-
mark case studies, we make apparent that a well engineered
and optimized SAT/(but better an)SMT-based test generation
process can be used in practice for Boolean specifications
instead of the classical algorithms like MUMCUT and MCDC.

In this paper, we assume completeness of the input space.
As future work, we plan to review the proposed process in the
presence of constraints on input values, and to adapt optimiza-
tions accordingly. We plan also to study the application of the
optimizations to the generation of combinatorial tests by SMT
solvers [2], [4] and to experiment some heuristics regarding
test predicate ordering.

REFERENCES

[1] A. Biere. PicoSAT essentials. JSAT, 4(2-4):75–97, 2008.
[2] A. Calvagna and A. Gargantini. A formal logic approach to constrained

combinatorial testing. J. of Automated Reasoning, 45(4):331–358, 2010.
[3] J. Chilenski and S. Miller. Applicability of modified condition/decision

coverage to software testing. Software Engineering Journal, 9(5), 1994.
[4] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of highly-

configurable systems in the presence of constraints. In Proceedings
of the 2007 international symposium on Software testing and analysis,
ISSTA ’07, pages 129–139, New York, NY, USA, 2007. ACM.

[5] L. De Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS,
pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[6] B. Dutertre and L. de Moura. The Yices SMT solver. Technical report,
SRI Available at http://yices.csl.sri.com/tool-paper.pdf, 2006.

[7] N. Een and N. Sörensson. Minisat v2. 0 (beta). Solver description, SAT
race, 2006.

[8] A. Gargantini. Dealing with constraints in boolean expression testing.
In CSTVA 2011- 3rd Workshop on Constraints in Software Testing,
Verification, and Analysis, Berlin, March 25, 2011, 2011.

[9] A. Gargantini and G. Fraser. Generating minimal fault detecting test
suites for general boolean specifications. Information and Software
Technology, Elsevier, 53:1263–1273, 2011.

[10] H. Jain and E. M. Clarke. Efficient SAT solving for non-clausal formulas
using DPLL, graphs, and watched cuts. In Proc. 46th ACM/IEEE Design
Automation Conf. DAC ’09, pages 563–568, 2009.

[11] K. Kapoor and J. P. Bowen. Test conditions for fault classes in
Boolean specifications. ACM Transactions on Software Engineering and
Methodology, 16(3):10, 2007.

[12] D. Le Berre and A. Parrain. The SAT4J library, release 2.2, system
description. Journal on Satisfiability, Boolean Modeling and Computa-
tion(JSAT), 7:59–64, 2010.

[13] S. Prestwich. Handbook of satisfiability, chapter 2 - CNF Encodings,
pages 75–98. IOS Press, 2009.

[14] E. Weyuker, T. Goradia, and A. Singh. Automatically generating test
data from a Boolean specification. IEEE Transactions on Software
Engineering, 20(5):353–363, May 1994.

[15] Y. T. Yu, M. F. Lau, and T. Y. Chen. Automatic generation of test cases
from boolean specifications using the MUMCUT strategy. Journal of
Systems and Software, 79(6):820–840, 2006.


