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Non-Abelian linear Boltzmann equation and quantum correction to Kramers
and Smoluchowski equation
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A quantum linear Boltzmann equation, constructed in terms of the operator-valued dynamic structure factor
of the macroscopic system the test particle is interacting with, is proposed. Due to this operator structure it is
a non-Abelian linear Boltzmann equation and when expressed through the Wigner function it allows for a
direct comparison with the classical one. Considering a Brownian particle, the corresponding Fokker-Planck
equation is obtained in a most direct way taking the limit of small energy and momentum transfer. A typical
guantum correction to the Kramers equation thus appears, describing diffusion in position and further imply-
ing a correction to Einstein’s diffusion coefficient in the high temperature and friction limit in which the
Smoluchowski equation emerges.
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The study of irreversible processes, even in relatively ~NON-ABELIAN LINEAR BOLTZMANN EQUATION
simple cases in which one considers the reduced dynamics of Let us start writing the LBE for the classical case, stil

a system with few degrees of freedom interacting With &¢\ying on the quantum expression for the collision cross
suitable reservoir, is a subject of major interest in both clasgection, in a way that is actually not the most common one.
sical and quantum mechanics. In the specific case of a miaccording to Van Hove4], the energy-dependent differen-
crosystem whose interaction with a macroscopic system atial cross section per target particle describing scattering of a
reservoir can be described in terms of collisions, a major tooicroscopic probe off a macroscopic sample is given by

for the classical description of its dynamics is the linear Bolt- ) ,

zmann equatiofLBE) or transport equation. This equation do =p—2(q)S(q E) 1)

has proved essential in fields like neutron transport thgbry dQ, dg, P ’

and is still the standard reference for this kind of dynamics ) )

even at quantum levdR], the only improvement being the | the€ momentum of the microscopic probe changes ffoim

. . e ;
introduction of the quantum collision cross section in plac =p*a (q) is heFe the collision cross  section for
the single scattering event, given by3(q)

of the classical one. This kinetic equation, provided a suit-" "~ , o 2 I E (D) 2. with T the Fourier t

able expansion of the collision term can be performed, the% m (quhgé n?atri)i élg)s|cr’ib\?r/1lg théqgne-?aairogcr)llﬁ;io;asni_e-
Igadg toa Fpkker-PIanleE) equayon for Fhe study of dis- tween the test particle and the particles constituting the
sipation, which for Brownian motioiBM) is the so-called sample, supposed to depend only on the modulus of the mo-
Kramers equatiolKE). Considering situations in which dis- mentum transfeg. S(q,E) is a two-point correlation func-
sipation is very important, KE in turn leads to the so-calledijon known as DSIS), reflecting the equilibrium many-body
Smoluchowski equation in which Einstein’s diffusion coeffi- properties of the fluid, depending on momentgnand en-
cient appears. ergyE=E(q,p)=0g%/2M + p-g/M transferred to the test par-

In this paper, we give the structure of a fully quantum,ticle of massM, whose general expression is given by the
non-Abelian LBE, non-Abelian just due to the presence in itFourier transform with respect to energy and momentum
of the operator-valued rather th@mumber dynamic struc- transfer of the time-dependent spatial autocorrelation func-
ture factor(DSF) of the macroscopic system, as typical of tion according to
the quantum realm, giving a physical example of a recently
obtained mathematical result on Lindblad generators of
translation-covariant completely positive quantum dynamical
semigroupq 3]. Considering the BM of a test particle in a 1
gas, a most straightforward expansion of the non-Abelian I
LBE, written in terms of the Wigner function, leads to a KE X Nf d*Y(N(YN(x+y,0)).
with a typical quantum correction linked to position diffusion
vanishing in the semiclassical limit—0. Such a correction
ensures positivity at quantum level and is connected to th
time evolution of the off-diagonal matrix elements of the D n
statistical operator in the momentum representation, which —f(x p,t)=—— -V, f(x,p,t) + _f dq3(q)
can only be given in a fully quantum mechanical version of M M2
the LBE. Studying the high friction limit of this FP equation
analogously to the classical case, a quantum correction to X[S(a.p=af(x.p=a.) = S(a.pT(x,p1)]
Einstein’s diffusion coefficient also appears. 2

1 )
— 3y ai/f(Et—Qq-x)
S(q,E) ST dtJ d°x e

Using Eq.(1) the LBE in the absence of external potentials
may be written a$1]
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with S(q,p)=5(q,E) the DSF of the homogeneous macro- see[11]), the expression of the correlation function being in
scopic fluid of densityn the particle is interacting with. So this case incidentally the same for both classical and quan-
far the classical case, all expressions appearing if&g@re  tum realm[5]
c-number functions.

Recent work on the study of subdynamics in nonrelativ- Am1 B (2mE(q,p) +q?)?
istic quantum field theory6] has led to a scattering theory Swe(d.p)= ﬁaex ~8m 2
derivation of a particular structure of master equafior9], q
which goes beyond the usual limitation of linear coupling
and is a natural candidate to be considered as a fully quan- QUANTUM CORRECTION TO KRAMERS EQUATION
tum LBE. Instead of an equation for the classical distribution As a first step we recover from E€@) the classical KE

function it is an equation for the full statistical operajor for the BM of a massive test particle in a gas of much lighter
associated to the test particle, describing not only its momergnes. Settinge=m/M the ratio between the masses and con-
tum distribution, but also its coherence properties. These ar§dering the Brownian limit of smalk, corresponding to

particularly relevant for the time evolution of the off- small energy transfer, the correct limiting expression of Eq.

diagonal matrix elements, related to the phenomenon of dqg) stjl| satisfying the detailed balance condition[i]
coherence, and for the low temperature behavior, where the

classical particle viewpoint is insufficient and wave effects . B/m
are to be taken into account. The quantum kinetic equation is Swe(a,p)= 2
given by

- (4

%e(ﬁ/Sm)qze(ﬁ/Z)E(q,p)_ (5)

- . Starting from the LBE written in terms of the DSF as in Eq.
dp I—[F'o b1+ Lf &q3(q) (2) and using Eq(5) one obtains in a most straightforward
dt he M2 way KE. Substituting Eq(5) in Eg. (2) one in fact has

(i) X S(q,0)pVS(a,p —(ilh)g-x
X[V S(a,p)pVS(gp)e %f(xyp,t):_5_fo(xlp,t)+% //;_mf G
— H{s(a.p).p}], 3 M= T e a

with X and p position and momentum operator for the test
particle, Hy=p%/2M, S(q,p) the operator-valued DSF, X @~ (Bl2M)a-pf(x b t) (6)
which is a positive operator due to E¢l). Equation(3) o o

addresses the same physics as the LBE but is non-Abelig@d considering the limit of small momentum trangjeex-

due to the appearance in it of operators instead-mimber ~ Panding the exponentials and keeping terms up to second
functions. It provides a physical realization of the generalorder one immediately has for an isotropic medium
mathematical structure of translation-covariant quantum dy-

namical semigroup(3], while other known physical ex- _f(X’p’t):_E,fo(X'p’t)

amples are restricted to the diffusive case. Neglecting the Jt M

dependence on the momentum operataand therefore on

< e—(ﬁlam)(1+2a)q2[e—q-vp_ 1]

the energy transfer of the DSF {8), so that its appearance + ﬁw /B_mJ d3q qg(q)e—(ﬁ/Bm)(HZa)qz
only corrects the integration measure, one recovers a struc- 6M3 V2

ture of master equation typically proposed on a more phe- 3

nomenological basis for the study of the phenomenon of de- xS i[(p M i) F(x,p t)}
coherence, which has gone through many refinemgrits =1 9p; ' B ap; o

all missing the correct description of momentum and energy

transfer, which may not be critical for the description of and therefore KE for the description of BM

short-time decoherence but are crucial for the approach t

the correct stationary state. In fact, while the modzllos in Ref.?a/‘?t) fxp == (P/M) - Vi f(x,p ) + 7 V- [PF(x,P.1)]

[10] predict a steady growth of kinetic energy and do not +(M/B)A, F(x,p,0)}, 7
admit a stationary state, provided the fluid is iBeKMS

(Kubo, Martin, Schwingerstate or equivalently the DSF sat- with a friction coefficient explicitly given by

isfies the detailed balance condition, E8). admits a station-

ary solution of the form expf 8p%/2M), with M the mass of _1n /ﬁ_mf $Baas (q)e- (FEmL+ 22

the test particle an@ the inverse temperature of the fluid KA M3 2 aax(q)e ‘

[11]. In order to clarify analogies and differences between

Eqg. (2) and Eq.(3) we will now consider a dynamics in We now want to obtain the corresponding result from the
which also the off-diagonal elements of the statistical operanon-Abelian LBE(3). To do this it is particularly convenient
tor are of relevance, corresponding to position diffusion. Weto use the Wigner function, which even if it is not a well-
focus on a system in which the DSF can be explicitly calcu-defined probability density, well serves the purpose of com-
lated, a free gas of particles of masssatisfying Maxwell-  paring quantum versus classical equations. Introducing the
Boltzmann statisticgfor the extension to quantum statistics Wigner function fz"(x,p,t), Eq. (3) may be rewritten for
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a Brownian particle in a Maxwell-Boltzmann gas, using ance of both position and momentum diffusions in EL)
Eq. (5), as or equivalently in Eq(11) is due to the fact that E¢3) is an
evolution equation not only for the diagonal elements of the
I w p W n pm( . 2(q) statistical operator giving the momentum distribution of the
St P == Vi f 7 (xp )+ Y \/zf d 0=~ test particle, but also for its quantum coherence properties,
which actually require preservation of the positivity of the
B statistical operator. In fact the quantum correction in Eq.
eq'Vp—cos< mCI'Vx” (10), actually corresponding to the double commutator with
the momentum operator in E€L1), is necessary for Eq11)
x e~ (BAEPEN(x p t). (8) to have a Lindblad structure ensuring complete positivity
(corresponding with positivity for FP equations of the form
The comparison between E€6) and Eq.(8) is straightfor-  (11) [13]). Correctness and relevance of this term are heavily
ward: the cosine term in Eq@8), arising from the non- debated14,7,8,11, and its appearance as a typical quantum
Abelian structure of Eq(3), is replaced by a factor 1 in the correction coming from the Brownian and small momentum
classical case, and this result can be simply obtained by takransfer limit of the non-Abelian LBE3) expressed in terms
ing the semiclassical limit —0 in Eq.(8), the argument of of the operator-valued DSF sheds light on its physical origin.
the cosine depending linearly dn The quantum correction The quantum FP equatiafil) due to the minimum uncer-
to KE then comes from this contribution and amounts to aainty relation ApyAxy=7%/2 has furthermore the distin-
term corresponding to diffusion in position, as can be seeiguishing feature of being expressible in terms of a single
considering the small momentum transfer limit of E8). generator for Cartesian directi¢], a property actually re-
quired for the diffusive component of the generator of a
W translation-covariant semigrou8]: both Eq.(3) and Eq.
Vo [P, (x,pb)] (11) are proper generators of completely positive quantum
dynamical semigroups, admitting the correct equipartition
stationary solution and being invariant under translations.
The three features of complete positivity, equipartition, and
) covariance are in fact not contradictory provided one consid-
ers covariance under the symmetry relevant to the physical

with 7 as in Eq.(7). Thus position and momentum diffusion Problem, which is not necessarily translation invariance,
do appear together in the quantum description of BM, eveﬁ)therwlfse, mdepe_ndently 0f_p0$|t|V|ty or complete_posnmty
though with different weights, as appears from the differenf the time evolution, covariance would lead to high nonu-
B dependence of the two contributions, while the additionaffidueness of the stationary solutiptb]. Equations(3) and
diffusion term vanishes in the limfi—0. This can be seen (11) are essentially the two possible structures of generators
more clearly by introducing the thermal momentum sprea f trgnslation—covariant semigroups, the results exposed in
Aptzh:M/:B and the thermal position spread or square ther 3] giving the quantum counterpart of the well-known clas-

2 op2 e - _ sical result according to which the only meaningful approxi-
mal vyaveleng_tmxth—ﬁﬁ /aM, satisfying the minimum un mation of the integro-differential LBE as a differential equa-
certainty relatiomA pAxy,=%/2, so that one has

tion is a second order FP equatifib].

X(_:‘—(,rs/sm)(lJrza)q2

d
7w
&tf"

p
(P =— 37 Vol xp ) + 7

M
B

hZ

B
+ Ap f\r/)v(xapvt)—‘rm 16Axf\[ﬁv(xapvt):|:

wW_ _ , w (W 20 £W Now that the quantum correction to KE has been given—
(@l t, (PIM) V£ 4 7LV - (PF,) + APirApT which unlike previous results is not dependent on the pres-
L1 szhA £ (10) ence of external potentia[47], but only relates to Heisen-
4 th=x " p

berg’s uncertainty principlgl2]—we move on to investigate
; ; whether this correction also has consequences on the Smolu-
for;r,]?e';ziﬁgLigtltcr)llgg\)/vgil-iﬂb(v%/g) ;?:C?ue[&r%c ast in operator chowski equatiofSE) for the description of BM in the limit
of high temperature and friction, when momentum is ex-
dp i . i s pecte_d to quickl_y relax_ to its equ_ilibrium value and one is
—=——[Ho.pl—+ = E [Xi,{pi .p}] only interested in the time evolution of the slowly varying
dt % h2i= marginal position distributionr(x,t) = fd3p f¥'(x,p,t).

3 3
A a 1 A A A
- ﬁ—ZApchE [Xi ,[Xi ,,o]]—ﬁ—ﬂ2 ZAXchE [pi.[pi.p]1], QUANTUM CORRECTION TO SMOLUCHOWSKI
=1 =1 EQUATION

(11) We therefore start from Ed9), essentially following the

which could have been obtained directly from E8) as in dgrivation of the SE from the KE in the h?gh frictipn I.imit
[11], without going through the use of the Wigner function, 9iven by van Kampeiil8], though more refined derivations
missing however in this way the particularly manifest ap-have been givenl9], differing however only for higher or-
pearance of the quantum correction that provides an inhomdl€r contributions. Setting

geneous contribution to the collision term in the LBE 5 )

through the appearance of the cosine in 8. The appear- n(BIM) (77/16) = (n/4) AXx=D (12
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and considering a high temperature, strong friction situationresponsible for position diffusion in the quantum K&. The

in which the quantum position diffusion term can be consid-new overall coefficient can be written as HNIB)[1

ered as a perturbation, we write HE) as + (7Bh)?/16], so that the correction is actually given by the

M 17 g 0 square ratio between two characteristic timgé, for the

—A fW= _[_fW+ Zv.fY-D..A fW} bath and 1# for the test particle, which should be much less

BPP qlatr M X TR than that according to the Markov approximation.

(13 We have thus proposed a fully quantum, non-Abelian
LBE given by (3) and expressed in terms of tilematrix
describing collisions and the operator-valued DSF of the en-

(O 1 vironment, thus going beyond the usual restriction of linear

K [9]_Vp'(pg)+ﬁApg dissipation. Considering a massive test particle interacting

with a gas of much lighter particles the LBE written in terms

Vo (pf)+

Introducing the differential operators

1 D 1)9 p of the DSF leads in a most straightforward way to the KE for
7,'- [9]= e M V9~ DxAd the description of BM in both classical and quantum cases.
One simply has to consider the clear-cut physical limit in
and expressinng as an expansion in powers ofl/ which momentum transfer and energy transfer equiva-
W_ (W(0) W) lently ratio between the masgeme small, thus obtaining in
fo=f7+ (L) 157+, (14 the classical case KE and in the quantum cé®ewith a

peculiar, heavily debated quantum correction linked to posi-
tion diffusion, whose appearance is to be traced back té the
dependent, inhomogeneous cosine correction in(@qvan-
ishing in the semiclassical limit. Further studying the case of

lies in the structure of the ™) operator, where also the La- high temperature and friction the quantum $E) is ob-

placian with respect to position appears. Going through théaine_d_, in which Einstein's diffusion coefficient is. .slightlly
very same procedure, integrating over the fast degree of frednodified due to the presence of the quantum position diffu-
dom given by the momentum dependence of the Wigner disSion coefficient(12), which depends linearly on the inverse

tribution function, and neglecting terms higher than first or-témperature and vanishesif-0. The non-Abelian LBE3)
der in 1/ one obtains again for the marginal position due to its intrinsic quantum structure should prove as a sound

distribution o"¥(x,t) the SE starting point for the study of quantum kinetic, in which not
p only the momentum distribution, but also coherence proper-
(a1 at) az"(x,t)=[(1/17Mﬁ) +DXX]AXU\,§V(X1t) (15)  ties are of relevance; it, furthermore, has the advantage of
being expressed in terms of quantities of direct physical
with a diffusion coefficient which is however not simply Ein- meaning, such as the DSF and the collision cross section, for
stein’s, but has a quantum correction that vanishes in thehich suitable phenomenological ansatz or experimentally
semiclassical limithi—0, just given by the coefficientl2) determined expressions can be inserted.

Eq. (13 may be rewritten a& [ f}']=(1/) L[ f}'] and
solved by iteration using Eq14) and equating on both sides
contributions of the same order in. The only difference
with respect to the classical situation considered in Rie]
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