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Non-Abelian linear Boltzmann equation and quantum correction to Kramers
and Smoluchowski equation

Bassano Vacchini
Dipartimento di Fisica dell’Universita` di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan, Italy
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A quantum linear Boltzmann equation, constructed in terms of the operator-valued dynamic structure factor
of the macroscopic system the test particle is interacting with, is proposed. Due to this operator structure it is
a non-Abelian linear Boltzmann equation and when expressed through the Wigner function it allows for a
direct comparison with the classical one. Considering a Brownian particle, the corresponding Fokker-Planck
equation is obtained in a most direct way taking the limit of small energy and momentum transfer. A typical
quantum correction to the Kramers equation thus appears, describing diffusion in position and further imply-
ing a correction to Einstein’s diffusion coefficient in the high temperature and friction limit in which the
Smoluchowski equation emerges.
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The study of irreversible processes, even in relativ
simple cases in which one considers the reduced dynamic
a system with few degrees of freedom interacting with
suitable reservoir, is a subject of major interest in both cl
sical and quantum mechanics. In the specific case of a
crosystem whose interaction with a macroscopic system
reservoir can be described in terms of collisions, a major t
for the classical description of its dynamics is the linear Bo
zmann equation~LBE! or transport equation. This equatio
has proved essential in fields like neutron transport theory@1#
and is still the standard reference for this kind of dynam
even at quantum level@2#, the only improvement being th
introduction of the quantum collision cross section in pla
of the classical one. This kinetic equation, provided a s
able expansion of the collision term can be performed, t
leads to a Fokker-Planck~FP! equation for the study of dis
sipation, which for Brownian motion~BM! is the so-called
Kramers equation~KE!. Considering situations in which dis
sipation is very important, KE in turn leads to the so-call
Smoluchowski equation in which Einstein’s diffusion coef
cient appears.

In this paper, we give the structure of a fully quantu
non-Abelian LBE, non-Abelian just due to the presence in
of the operator-valued rather thanc-number dynamic struc
ture factor~DSF! of the macroscopic system, as typical
the quantum realm, giving a physical example of a recen
obtained mathematical result on Lindblad generators
translation-covariant completely positive quantum dynam
semigroups@3#. Considering the BM of a test particle in
gas, a most straightforward expansion of the non-Abe
LBE, written in terms of the Wigner function, leads to a K
with a typical quantum correction linked to position diffusio
vanishing in the semiclassical limit\→0. Such a correction
ensures positivity at quantum level and is connected to
time evolution of the off-diagonal matrix elements of th
statistical operator in the momentum representation, wh
can only be given in a fully quantum mechanical version
the LBE. Studying the high friction limit of this FP equatio
analogously to the classical case, a quantum correctio
Einstein’s diffusion coefficient also appears.
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NON-ABELIAN LINEAR BOLTZMANN EQUATION

Let us start writing the LBE for the classical case, s
relying on the quantum expression for the collision cro
section, in a way that is actually not the most common o
According to Van Hove@4#, the energy-dependent differen
tial cross section per target particle describing scattering
microscopic probe off a macroscopic sample is given by

d2s

dVp8 dEp8

5
p8

p
S~q!S~q,E! ~1!

if the momentum of the microscopic probe changes fromp to
p85p1q. S(q) is here the collision cross section fo
the single scattering event, given by S(q)
5M2(2p\)3(2p/\)u t̃ (q)u2, with t̃ (q) the Fourier trans-
form of the T matrix describing the one-pair collisions be
tween the test particle and the particles constituting
sample, supposed to depend only on the modulus of the
mentum transferq. S(q,E) is a two-point correlation func-
tion known as DSF@5#, reflecting the equilibrium many-body
properties of the fluid, depending on momentumq and en-
ergyE5E(q,p)5q2/2M1p•q/M transferred to the test par
ticle of massM, whose general expression is given by t
Fourier transform with respect to energy and moment
transfer of the time-dependent spatial autocorrelation fu
tion according to

S~q,E!5
1

2p\E dtE d3x ei /\(Et2q•x)

3
1

NE d3y^N~y!N~x1y,t !&.

Using Eq.~1! the LBE in the absence of external potentia
may be written as@1#

]

]t
f ~x,p,t !52

p

M
•“x f ~x,p,t !1

n

M2E d3qS~q!

3@S~q,p2q! f ~x,p2q,t !2S~q,p! f ~x,p,t !#

~2!
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with S(q,p)[S(q,E) the DSF of the homogeneous macr
scopic fluid of densityn the particle is interacting with. So
far the classical case, all expressions appearing in Eq.~2! are
c-number functions.

Recent work on the study of subdynamics in nonrela
istic quantum field theory@6# has led to a scattering theor
derivation of a particular structure of master equation@7–9#,
which goes beyond the usual limitation of linear coupli
and is a natural candidate to be considered as a fully qu
tum LBE. Instead of an equation for the classical distribut
function it is an equation for the full statistical operatorr̂
associated to the test particle, describing not only its mom
tum distribution, but also its coherence properties. These
particularly relevant for the time evolution of the of
diagonal matrix elements, related to the phenomenon of
coherence, and for the low temperature behavior, where
classical particle viewpoint is insufficient and wave effe
are to be taken into account. The quantum kinetic equatio
given by

dr̂

dt
52

i

\
@Ĥ0 ,r̂ #1

n

M2E d3qS~q!

3[e( i /\)q• x̂AS~q,p̂!r̂AS~q,p̂!e2( i /\)q• x̂

2 1
2 $S~q,p̂!,r̂%], ~3!

with x̂ and p̂ position and momentum operator for the te
particle, Ĥ05p̂2/2M , S(q,p̂) the operator-valued DSF
which is a positive operator due to Eq.~1!. Equation ~3!
addresses the same physics as the LBE but is non-Abe
due to the appearance in it of operators instead ofc-number
functions. It provides a physical realization of the gene
mathematical structure of translation-covariant quantum
namical semigroup@3#, while other known physical ex
amples are restricted to the diffusive case. Neglecting
dependence on the momentum operatorp̂ and therefore on
the energy transfer of the DSF in~3!, so that its appearanc
only corrects the integration measure, one recovers a s
ture of master equation typically proposed on a more p
nomenological basis for the study of the phenomenon of
coherence, which has gone through many refinements@10#,
all missing the correct description of momentum and ene
transfer, which may not be critical for the description
short-time decoherence but are crucial for the approac
the correct stationary state. In fact, while the models in R
@10# predict a steady growth of kinetic energy and do n
admit a stationary state, provided the fluid is in ab-KMS
~Kubo, Martin, Schwinger! state or equivalently the DSF sa
isfies the detailed balance condition, Eq.~3! admits a station-
ary solution of the form exp(2bp̂2/2M ), with M the mass of
the test particle andb the inverse temperature of the flu
@11#. In order to clarify analogies and differences betwe
Eq. ~2! and Eq. ~3! we will now consider a dynamics in
which also the off-diagonal elements of the statistical ope
tor are of relevance, corresponding to position diffusion.
focus on a system in which the DSF can be explicitly cal
lated, a free gas of particles of massm satisfying Maxwell-
Boltzmann statistics~for the extension to quantum statistic
02710
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see@11#!, the expression of the correlation function being
this case incidentally the same for both classical and qu
tum realm@5#

SMB~q,p!5Abm

2p

1

q
expF2

b

8m

~2mE~q,p!1q2!2

q2 G . ~4!

QUANTUM CORRECTION TO KRAMERS EQUATION

As a first step we recover from Eq.~2! the classical KE
for the BM of a massive test particle in a gas of much ligh
ones. Settinga5m/M the ratio between the masses and co
sidering the Brownian limit of smalla, corresponding to
small energy transfer, the correct limiting expression of E
~4! still satisfying the detailed balance condition is@11#

SMB
` ~q,p!5Abm

2p

1

q
e2(b/8m)q2

e2(b/2)E(q,p). ~5!

Starting from the LBE written in terms of the DSF as in E
~2! and using Eq.~5! one obtains in a most straightforwar
way KE. Substituting Eq.~5! in Eq. ~2! one in fact has

]

]t
f ~x,p,t !52

p

M
•“x f ~x,p,t !1

n

M2
Abm

2p E d3q
S~q!

q

3e2(b/8m)(112a)q2
@e2q•“p21#

3e2(b/2M )q•pf ~x,p,t ! ~6!

and considering the limit of small momentum transferq, ex-
panding the exponentials and keeping terms up to sec
order one immediately has for an isotropic medium

]

]t
f ~x,p,t !52

p

M
•“x f ~x,p,t !

1
nb

6M3
Abm

2p E d3qqS~q!e2(b/8m)(112a)q2

3(
i 51

3
]

]pi
F S pi1

M

b

]

]pi
D f ~x,p,t !G

and therefore KE for the description of BM

~]/]t ! f ~x,p,t !52 ~p/M ! •“x f ~x,p,t !1h$“p•@pf ~x,p,t !#

1 ~M /b!Dp f ~x,p,t !%, ~7!

with a friction coefficient explicitly given by

h5
1

6

n

M3
bAbm

2p E d3qqS~q!e2(b/8m)(112a)q2
.

We now want to obtain the corresponding result from t
non-Abelian LBE~3!. To do this it is particularly convenien
to use the Wigner function, which even if it is not a we
defined probability density, well serves the purpose of co
paring quantum versus classical equations. Introducing
Wigner function f r

W(x,p,t), Eq. ~3! may be rewritten for
7-2
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a Brownian particle in a Maxwell-Boltzmann gas, usin
Eq. ~5!, as

]

]t
f r

W~x,p,t !52
p

M
•“x f r

W~x,p,t !1
n

M2
Abm

2p E d3q
S~q!

q

3e2~b/8m!(112a)q2Fe2q•“p2cosS b\

4M
q•¹xD G

3e2~b/2M !q•pf r
W~x,p,t !. ~8!

The comparison between Eq.~6! and Eq.~8! is straightfor-
ward: the cosine term in Eq.~8!, arising from the non-
Abelian structure of Eq.~3!, is replaced by a factor 1 in th
classical case, and this result can be simply obtained by
ing the semiclassical limit\→0 in Eq. ~8!, the argument of
the cosine depending linearly on\. The quantum correction
to KE then comes from this contribution and amounts to
term corresponding to diffusion in position, as can be s
considering the small momentum transfer limit of Eq.~8!

]

]t
f r

W~x,p,t !52
p

M
•“xf r

W~x,p,t !1hF“p•@pf r
W~x,p,t !#

1
M

b
Dp f r

W~x,p,t !1
b

M

\2

16
Dxf r

W~x,p,t !G ,
~9!

with h as in Eq.~7!. Thus position and momentum diffusio
do appear together in the quantum description of BM, e
though with different weights, as appears from the differ
b dependence of the two contributions, while the additio
diffusion term vanishes in the limit\→0. This can be seen
more clearly by introducing the thermal momentum spre
Dpth

2 5M /b and the thermal position spread or square th
mal wavelengthDxth

2 5b\2/4M , satisfying the minimum un-
certainty relationDpthDxth5\/2, so that one has

~]/]t ! f r
W52 ~p/M ! •“x f r

W1h@“p•~pf r
W!1Dpth

2 Dpf r
W

1 1
4 Dxth

2 Dx f r
W#. ~10!

The FP equation~9! or Eq. ~10! can be recast in operato
form, leading to the well-known structure@12#

dr̂

dt
52

i

\
@Ĥ0 ,r̂ #2

i

\

h

2 (
i 51

3

@ x̂i ,$p̂i ,r̂%#

2
h

\2 Dpth
2 (

i 51

3

†x̂i ,@ x̂i ,r̂ #‡2
h

\2

1

4
Dxth

2 (
i 51

3

†p̂i ,@ p̂i ,r̂ #‡,

~11!

which could have been obtained directly from Eq.~3! as in
@11#, without going through the use of the Wigner functio
missing however in this way the particularly manifest a
pearance of the quantum correction that provides an inho
geneous contribution to the collision term in the LB
through the appearance of the cosine in Eq.~8!. The appear-
02710
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or equivalently in Eq.~11! is due to the fact that Eq.~3! is an
evolution equation not only for the diagonal elements of
statistical operator giving the momentum distribution of t
test particle, but also for its quantum coherence propert
which actually require preservation of the positivity of th
statistical operator. In fact the quantum correction in E
~10!, actually corresponding to the double commutator w
the momentum operator in Eq.~11!, is necessary for Eq.~11!
to have a Lindblad structure ensuring complete positiv
~corresponding with positivity for FP equations of the for
~11! @13#!. Correctness and relevance of this term are hea
debated@14,7,8,11#, and its appearance as a typical quantu
correction coming from the Brownian and small momentu
transfer limit of the non-Abelian LBE~3! expressed in terms
of the operator-valued DSF sheds light on its physical orig
The quantum FP equation~11! due to the minimum uncer
tainty relation DpthDxth5\/2 has furthermore the distin
guishing feature of being expressible in terms of a sin
generator for Cartesian direction@7#, a property actually re-
quired for the diffusive component of the generator of
translation-covariant semigroup@3#: both Eq. ~3! and Eq.
~11! are proper generators of completely positive quant
dynamical semigroups, admitting the correct equipartit
stationary solution and being invariant under translatio
The three features of complete positivity, equipartition, a
covariance are in fact not contradictory provided one cons
ers covariance under the symmetry relevant to the phys
problem, which is not necessarily translation invarian
otherwise, independently of positivity or complete positivi
of the time evolution, covariance would lead to high non
niqueness of the stationary solution@15#. Equations~3! and
~11! are essentially the two possible structures of genera
of translation-covariant semigroups, the results exposed
@3# giving the quantum counterpart of the well-known cla
sical result according to which the only meaningful appro
mation of the integro-differential LBE as a differential equ
tion is a second order FP equation@16#.

Now that the quantum correction to KE has been given
which unlike previous results is not dependent on the pr
ence of external potentials@17#, but only relates to Heisen
berg’s uncertainty principle@12#—we move on to investigate
whether this correction also has consequences on the Sm
chowski equation~SE! for the description of BM in the limit
of high temperature and friction, when momentum is e
pected to quickly relax to its equilibrium value and one
only interested in the time evolution of the slowly varyin
marginal position distributionsr

W(x,t)5*d3p f r
W(x,p,t).

QUANTUM CORRECTION TO SMOLUCHOWSKI
EQUATION

We therefore start from Eq.~9!, essentially following the
derivation of the SE from the KE in the high friction limi
given by van Kampen@18#, though more refined derivation
have been given@19#, differing however only for higher or-
der contributions. Setting

h ~b/M ! ~\2/16! 5 ~h/4! Dxth
2 [Dxx ~12!
7-3
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and considering a high temperature, strong friction situat
in which the quantum position diffusion term can be cons
ered as a perturbation, we write Eq.~9! as

“p•~pf r
W!1

M

b
Dp f r

W5
1

h F ]

]t
f r

W1
p

M
•“x f r

W2DxxDx f r
WG .
~13!

Introducing the differential operators

K (0)@g#5“p•~pg!1
M

b
Dpg

1

h
L (1)@g#5

1

h F ]

]t
g1

p

M
•“xg2DxxDxgG

and expressingf r
W as an expansion in powers of 1/h

f r
W5 f r

W(0)1 ~1/h! f r
W(1)1•••, ~14!

Eq. ~13! may be rewritten asK (0)@ f r
W#5(1/h)L (1)@ f r

W# and
solved by iteration using Eq.~14! and equating on both side
contributions of the same order inh. The only difference
with respect to the classical situation considered in Ref.@18#
lies in the structure of theL (1) operator, where also the La
placian with respect to position appears. Going through
very same procedure, integrating over the fast degree of f
dom given by the momentum dependence of the Wigner
tribution function, and neglecting terms higher than first
der in 1/h one obtains again for the marginal positio
distributionsr

W(x,t) the SE

~]/]t ! sr
W~x,t !5@~1/hMb! 1Dxx#Dxsr

W~x,t ! ~15!

with a diffusion coefficient which is however not simply Ein
stein’s, but has a quantum correction that vanishes in
semiclassical limit\→0, just given by the coefficient~12!
f

ed
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responsible for position diffusion in the quantum KE~9!. The
new overall coefficient can be written as 1/(hMb)@1
1(hb\)2/16#, so that the correction is actually given by th
square ratio between two characteristic times,b\ for the
bath and 1/h for the test particle, which should be much le
than that according to the Markov approximation.

We have thus proposed a fully quantum, non-Abeli
LBE given by ~3! and expressed in terms of theT matrix
describing collisions and the operator-valued DSF of the
vironment, thus going beyond the usual restriction of line
dissipation. Considering a massive test particle interac
with a gas of much lighter particles the LBE written in term
of the DSF leads in a most straightforward way to the KE
the description of BM in both classical and quantum cas
One simply has to consider the clear-cut physical limit
which momentum transfer and energy transfer~or equiva-
lently ratio between the masses! are small, thus obtaining in
the classical case KE and in the quantum case~9! with a
peculiar, heavily debated quantum correction linked to po
tion diffusion, whose appearance is to be traced back to th\
dependent, inhomogeneous cosine correction in Eq.~8! van-
ishing in the semiclassical limit. Further studying the case
high temperature and friction the quantum SE~15! is ob-
tained, in which Einstein’s diffusion coefficient is slightl
modified due to the presence of the quantum position di
sion coefficient~12!, which depends linearly on the invers
temperature and vanishes if\→0. The non-Abelian LBE~3!
due to its intrinsic quantum structure should prove as a so
starting point for the study of quantum kinetic, in which n
only the momentum distribution, but also coherence prop
ties are of relevance; it, furthermore, has the advantage
being expressed in terms of quantities of direct physi
meaning, such as the DSF and the collision cross section
which suitable phenomenological ansatz or experiment
determined expressions can be inserted.
.
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L. Diósi, Europhys. Lett.22, 1 ~1993!; 30, 63 ~1995!; W.J.
Munro and C.W. Gardiner, Phys. Rev. A53, 2633 ~1996!; S.
Gao, Phys. Rev. Lett.79, 3101 ~1997!; H.M. Wiseman and
W.J. Munro, ibid.. 80, 5702 ~1998!; S. Gao, ibid. 80, 5703
~1998!; G.W. Ford and R.F. O’Connell,ibid. 82, 3376~1999!;
S. Gao,ibid. 82, 3377~1999!.

@15# D. Kohen et al., J. Chem. Phys.107, 5236 ~1997!; B.
Vacchini, e-print quant-ph/0204071, J. Math. Phys.~to be
published!.

@16# R.F. Pawula, Phys. Rev.162, 1861~1967!.
@17# S. Ishioka, J. Phys. Soc. Jpn.48, 367 ~1980!; P. Pechukas, J

Ankerhold, and H. Grabert, Ann. Phys.~Leipzig! 9, 794
~2000!; J. Ankerhold, P. Pechukas, and H. Grabert, Phys. R
Lett. 87, 086802~2001!.

@18# N.G. van Kampen,Stochastic Processes in Physics and Che
istry ~North-Holland, Amsterdam, 1992!.

@19# L. Bocquet, Am. J. Phys.65, 140 ~1997!.
7-4


