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Test particle in a quantum gas
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A master equation with a Lindblad structure is derived, which describes the interaction of a test particle with
a macroscopic system and is expressed in terms of the operator valued dynamic structure factor of the system.
In the case of a free Fermi or Bose gas the result is evaluated in the Brownian limit, thus obtaining a single
generator master equation for the description of quantum Brownian motion in which the correction due to
quantum statistics is explicitly calculated. The friction coefficients for Boltzmann and Bose or Fermi statistics
are compared.
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I. INTRODUCTION

The study of the dynamics of a particle coupled to a g
eral many-body system plays a relevant role in modern qu
tum physics, both with respect to foundations and appli
tions of quantum theory. On the one hand it provides a m
simple example of quantum dynamics of a nonisolated s
tem, possibly offering a manageable arena for a truly mic
scopic approach, which might shed some light on mec
nisms of dissipation and decoherence@1#; these last two
issues are now of outstanding relevance in connection w
the rapidly growing experimental ability to deal with tho
oughly quantum-mechanical phenomena, checking for t
coherence properties~at the single-particle level think, fo
example, of the recent cavity QED and ion trapping expe
ments@2#, while at the many-body level, Bose-Einstein co
densation is a most interesting example@3#!. On the other
hand, plenty of interesting physical problems may be m
eled in this way and among these, in particular, motion
diffusion of charged or neutral particles in gases, liquids,
solids. The interaction of a test particle with a dilute or no
interacting gas is strictly connected to the problem of a qu
tum generalization of the Boltzmann equation@4#, whose ev-
erlasting relevance has recently been stressed by
experimental realization of quantum degenerate sample
weakly interacting bosons or fermions@3,5#; in fact for the
study of these systems, resort is often made to a quan
Boltzmann transport equation@6#. A particularly interesting
situation arises if the massM of the test particle is much
bigger than the massm of the particles, which make up th
gas; the so-called Brownian motion, which serves as a p
digmatic example in the description of irreversible and d
sipative processes. The description of the phenomenon is
debated at a quantum level~see Refs.@7,8# and references
cited therein!, even though well settled by now at the clas
cal level in terms of Langevin or Fokker-Planck equations~it
took however almost a century from the observation
Brown to the first successful theoretical description by E
stein, which led to the first example of a fluctuatio
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dissipation relation, linking friction and diffusion coeffi
cients!. A class of models, usually named quantum Brown
motion@9#, given by time evolutions with a non-Hamiltonia
part mapping the algebra of operators at most bilinear in
operatorsx̂ and p̂ of the particle into itself, seem to be th
most natural candidate in order to obtain equations of mo
analogous to the classical ones, leading in particular t
friction force proportional to velocity. On the mathematic
side, generators of time evolution semigroups satisfy
these requirements have been fully characterized through
property of complete positivity, which formally amounts
the requirement that positivity of the time evolution is pr
served even in the presence of coupling without interact
to another system and leads to a typical expression for
generators of these semigroups, known as the Lindblad st
ture @10#. This has led to a wide literature developing th
axiomatic approach@11#, together with a large number o
more or less phenomenological models in which simi
structures are obtained, though not always preserving c
plete positivity ~in this connection see Ref.@12#!. Though
warranting positivity of the statistical operator, comple
positivity is by itself no fundamental requirement as recen
stressed@13#, so that despite its extensive use in many fie
of physics, ranging from quantum optics to quantum co
munication, the study of the conditions and approximatio
under which it emerges from microphysical models
strongly desirable.

In a recent work, the derivation at a fundamental level
a completely positive master equation for a Brownian p
ticle interacting with a free Boltzmann gas has been giv
based on a microphysical model developed for the desc
tion of particle matter interaction@14,7#. The Lindblad equa-
tion thus obtained can be written with a single generator
temperature-dependent friction and diffusion coefficie
were determined in terms of the scattering cross section
this paper we give a major extension of the previous mod
keeping also quantum statistics of the gas into acco
Moreover, before going over to the Brownian limit, in whic
the ratio between the masses is much smaller than one,
sees that the generator of the master equation is express
terms of the dynamic structure factor of the medium, fi
introduced by van Hove@15#. This turns out to be true also
©2001 The American Physical Society15-1
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BASSANO VACCHINI PHYSICAL REVIEW E 63 066115
for an interacting system, thus linking in full generality th
dynamics of the test particle to the density fluctuations of
system@see Eq.~20!#. The property of complete positivity is
retained in the general case under some requirements o
energy dependence of the dynamic structure factor, wh
are exactly fulfilled in the case of Boltzmann particles de
with in Ref. @7#. The Brownian limit is then considered, thu
obtaining the correction at finite temperature due to quan
statistics to the equation describing quantum Brownian m
tion @see Eq.~27!#. In terms of the fugacityz this correction
takes a remarkably simple form@see Eq.~29!#.

The paper is organized as follows: in Sec. II we consi
the general structure of the master equation and its con
tion to the dynamic structure factor. In Sec. III we obtain t
correction due to quantum statistics to the master equa
describing quantum Brownian motion, together with the
lationship between the friction coefficients for Boltzmann
quantum statistics. In Sec. IV we comment on our res
indicating potential future developments.

II. GENERAL STRUCTURE OF THE MASTER
EQUATION IN TERMS OF THE DYNAMIC

STRUCTURE FACTOR

Let us briefly recall the structure of the master equat
obtained in Ref.@14# for the description of the subdynamic
of a particle interacting with a macroscopic system suppo
to be at equilibrium. The result is valid on a time scalet
much longer than microphysical collision time and describ
an interaction through two-particle collisions given by t
full T matrix. The master equation is given by

d%̂

dt
52

i

\
@Ĥ0 ,%̂#1

1

\ (
l,j

F L̂lj%̂L̂lj
† 2

1

2
$L̂lj

† L̂lj ,%̂%G ,
~1!

with

^kuL̂ljuh&5A2«pj

^luTh
kuj&

Ek1El2Eh2Ej2 i«
,

whereĤ0 is the Hamiltonian for the particle and%̂ its statis-
tical operator, while%m5(jpjuj&^ju is the statistical opera
tor for matter at equilibrium,pj being the statistical weight
related to its spectral decomposition. The vectorsul& anduj&
are eigenvectors of the macrosystem HamiltonianHm with
eigenvaluesEl and Ej , respectively, similarlyuk& and uh&
denote eigenvectors ofĤ0 with eigenvaluesEk , andEh . In
writing the equation we have neglected the slow energy
pendence of the T matrix, which would have brought a co
mutator term proportional to the forward scattering amp
tude, diagonal in momentum representation. The terms o
than the commutator in Eq.~1! are linked to the dissipative
behavior, which cannot be obtained in a Hamiltonian form
ism. Interactions at the microphysical level are typica
translationally invariant, so that a general ansatz for th
matrix describing two-body interactions is given byTh

k

5*d3x*d3yc†(x)uk* (y)t(x2y)uh(y)c(x), wherec†, c are
field operators for the macrosystem. We now consider a
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mogeneous system, so as to use as quantum numbers
mentum eigenvalues, thus obtaining with a Fourier tra
form, an expression depending only on the modulus of
momentum transfer:

Th
k5(

hm
dph1pk ,ph1pm

t̃ ~ upm2phu!bh
†bm , ~2!

whereb†, b denote creation and destruction operators in
Fock space of the macrosystem. Restricting to the case
free gas of Bose or Fermi particles, the eigenvectors ofHm
can be characterized as a set of occupation numbersns rela-
tive to particles with a given momentumps , so that uj&
5u$ns

j %&, and the matrix element^lubh
†bmuj& can be readily

evaluated restricted to the primed sum forlÞj, since in the
casel5j, the contributions to the master equation~1! can-
cel out. Denoting byq5pm2ph , the momentum transferre
to the test particle and byDEpmq(p)5(p1q)2/2M1(pm

2q)2/2m2p2/2M2pm
2 /2m the difference in energy befor

and after the collision (M being the mass of the test partic
with momentump, m the mass of the gas particles!, and
supposing the statistical operator%̂ to be quasidiagonal in
momentum representation, according to its slow variabil
one sees that Eq.~1! for a free test particle reduces to@7#

d%̂

dt
52

i

\
F p̂2

2M
,%̂G1

2p

\ ( 8
q

u t̃ ~q!u2H (
pp8

(
m

^nm&

3~16^nm2q&!dFDEpmqS p1p8

2 D G
3e( i /\)q• x̂up&^pu%̂up8&^p8ue2( i /\)q• x̂

2
1

2 (
p

(
m

^nm&~16^nm2q&!

3d„DEpmq~p!…$up&^pu,%̂%J , ~3!

where the1,2 signs refer to Bose, Fermi statistics, respe
tively, and

^nm&5
ze2b(pm

2 /2m)

17ze2b(pm
2 /2m)

accordingly,z denoting the fugacity, determined by the r
quirement (m^nm&5N, and b51/(kBT) the inverse tem-
perature. It is worthwhile introducing the more compact n
tation

SB/F~q,p!5
1

nE d3pm

~2p\!3
^npm

&~16^npm2q&!d„DEpmq~p!…,

~4!
5-2
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wheren denotes the density of particles in the gas and
function SB/F is in fact positive definite, so that Eq.~3! be-
comes

d%̂

dt
52

i

\
F p̂2

2M
,%̂G1

2p

\
~2p\!3nE d3qu t̃ ~q!u2

3F E d3pE d3p8SB/FS q,
p1p8

2 De( i /\)q• x̂up&^pu%̂up8&

3^p8ue2( i /\)q• x̂2 1
2 E d3pSB/F~q,p!$up&^pu,%̂%G . ~5!

The integral in Eq.~4! can be explicitly calculated both fo
bosons and fermions giving at finite temperature the res

SB/F~q,p!57
1

~2p\!3

2pm2

nbq

3
1

12exp$~b/2m!@2s~q,p!q2q2#%

3 logF 17z exp@2~b/2m!s2~q,p!#

17z exp@2~b/2m!@s~q,p!2q#2#
G ,

~6!

wheres(q,p)5(1/2q)@(11a)q212a(p•q)# is expressed in
terms of the dimensionless variablea5m/M , giving the ra-
tio between the masses. Expression~6! is exactly the dy-
namic structure factor for a free Bose or Fermi gas at fin
temperature, as one could realize from Eq.~4! @16# or from
the equivalent expression in terms of momentum transfeq
and energy transferE5q2/2M1p•q/M ~note that we use a
variables momentum and energy transferred to the test
ticle!

SB/F~q,E!57
1

~2p\!3

2pm2

nbq

1

12ebE

3 logF 17z exp@2~b/8m!~2mE1q2!2/q2#

17z exp@2~b/8m!~2mE2q2!2/q2#
G ,

where the dependence on the transferred momentum i
this case, actually only through the modulus. In the followi
we will use, according to convenience, both notationsS(q,p)
and S(q,E), where E[DEq(p)5Ep1q2Ep5q2/2M1p
•q/M is the energy transfer. The dynamic structure facto
an important physical quantity of direct experimental acce
essentially depending on the statistical properties of the m
rosystem and the kinematics of the collision, appearing in
expression of the inelastic differential cross section for a p
ticle interacting with a macroscopic sample. The relation
tween differential cross section and dynamic structure fa
was first derived by van Hove in the case of neutron scat
ing @15# and for scattering from statep to statep85p1q, is
given per target particle, by
06611
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dVp8dEp8

5~2p\!6S M

2p\2D 2
p8

p
u t̃ ~q!u2S~q,E!. ~7!

The dynamic structure factor is expressed in the general
as the Fourier transform of the time-dependent pa
correlation function with respect to energy and moment
transfer, according to

S~q,E!5
1

2p\

1

NE dtE d3x

3expF i

\
~Et2q•x!G E d3y^N~y!N~x1y,t !&,

~8!

whereN(y) denotes the local particle density for the macr
scopic system and̂ . . . & the ensemble average. Alterna
tively the dynamic structure factor may be written in term
of the Fourier transform of the density operatorN(y), given
by

rq5E d3ye2( i /\)q•yN~y!5(
m

bm
† bm1q , ~9!

thus obtaining

S~q,E!5
1

2p\

1

NE dt e( i /\)Et^rq
†rq~ t !&. ~10!

Expression~10! through relation~7! allows a determination
of the equilibrium fluctuations of the system in terms of sc
tering experiments@16# ~think, for example, of the very in-
teresting applications in the case of neutron scattering fr
different states and isotopes of helium@17#!. Coming back to
Eq. ~6! we note that in the limit of very small fugacityz
!1, one recovers the result for Maxwell Boltzmann partic

SMB~q,p!5
1

~2p\!3

2pm2

nbq
z expF2

b

2m
s2~q,p!G , ~11!

which in terms of momentum and energy transfer may a
be written

SMB~q,E!5
1

~2p\!3

2pm2

nbq
z expF2

b

8m

~2mE1q2!2

q2 G .
Recalling expression~4! for the dynamic structure factor on
immediately realizes that the master equation given in
~3! can be written in terms of the dynamic structure fac
and exactly exhibits a Lindblad structure provided the d
namic structure factor evaluated at the arithmetic mean op
and p8 equals the geometric mean of its values at the t
points. This identity holds true without approximations in t
case of expression~22! for a Boltzmann gas in the Brownia
limit considered in Ref.@7#. In the general case this facto
5-3
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ization relies on an approximation linked to the quasidia
nality of the statistical operator. Keeping the linear relati
betweenE andp into account, the approximation necessa
in order to retain complete positivity can be most meani
fully written

SS q,
E1E8

2 D'AS~q,E!AS~q,E8! ~12!

and will depend on the smoothness of the energy depend
of S in the relevant energy region~note that the neglecte
terms are at least quadratic in the energy difference!. Exploit-
ing Eq. ~12!, Eq. ~5! can be cast in the following Lindblad
structure granting positivity of the time evolution

d%̂

dt
52

i

\
F p̂2

2M
,%̂G1

2p

\
~2p\!3nE d3qu t̃ ~q!u2

3Fe( i /\)q• x̂ASB/F~q,p̂!%̂ASB/F~q,p̂!e2( i /\)q• x̂

2
1

2
$SB/F~q,p̂!,%̂%G , ~13!

which may be also written in a more manifest Lindblad fo

d%̂

dt
52

i

\
@Ĥ0 ,%̂#1

2p

\
~2p\!3nE d3qu t̃ ~q!u2

3FLB/F~q,p̂,x̂!%̂LB/F
† ~q,p̂,x̂!

2
1

2
$LB/F

† ~q,p̂,x̂!LB/F~q,p̂,x̂!,%̂%G , ~14!
06611
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introducing the following generator depending on the ope
tors x̂ and p̂

LB/F~q,p̂,x̂!5e( i /\)q• x̂ASB/F~q,p̂!. ~15!

This is a remarkably simple result sinceLB/F only depends
on the generator of translations in momentum space and
operator valued dynamic structure factor. Let us note t
equation ~13! or equivalently Eq.~14! is invariant under
translation and rotation and in particular, a statistical ope
tor of the canonical form%̂}e2b(p̂2/2M ), is a stationary solu-
tion @18#. If instead of a free gas one considers a more g
eral medium characterized by a dynamic structure fac
S(q,p), provided the interaction between particle and m
dium still satisfies translation invariance as in Eq.~2! and an
approximation of the form~12! holds, the master equatio
~1! still has the form~13! or equivalently~14! with L(q,p̂,x̂)
given by

L~q,p̂,x̂!5e( i /\)q• x̂AS~q,p̂!

and therefore retains a Lindblad structure. To prove this
go back to Eq.~1!, which in the case of a homogeneou
system using Eq.~2! can be written

d%̂

dt
52

i

\
@Ĥ0 ,%̂#1L~ %̂ ! ~16!

with
L~ %̂ !5
2«

\ (
lj

(
k f

(
hg

upf&
(
hm

dph1pf ,pk1pm
t̃ ~ upm2phu!^lubh

†bmuj&

Ek2Ef1Ej2El1 i«

3^pku%̂uph&pj

(
h8m8

dph81pg ,ph1pm8
t̃ * ~ upm82ph8u!^jubm8

† bh8ul&

Eh2Eg1Ej2El2 i«

2
«

\ (
lj

(
k

(
f g

$upf&^pgu,%̂%

(
hm

dph1pk ,pg1pm
t̃ ~ upm2phu!^lubh

†bmuj&

Ef2Ek1Ej2El2 i«

3pj

(
h8m8

dph81pk ,pf1pm8
t̃ * ~ upm82ph8u!^jubm8

† bh8ul&

Eg2Ek1Ej2El1 i«
. ~17!

We now introduce the momentum transferq5pm2ph , q85pm82ph8 and the Fourier transformrq of the density operator
given by Eq.~9!, so that relabeling the indexes~17! becomes
5-4
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L~ %̂ !5
2«

\ (
lj

(
pp8

(
qq8

8 t̃ ~q! t̃ * ~q8!e( i /\)q• x̂up&^pu%̂up8&^p8ue2( i /\)q8• x̂
1

Ep2Ep1q1Ej2El1 i«

3
1

Ep82Ep81q81Ej2El2 i«
^lurquj&pj^jurq8

† ul&2
«

\ (
lj

(
p

(
qq8

8 t̃ ~q! t̃ * ~q8!$up&^pu,%̂%

3
1

Ep2Ep1q1Ej2El2 i«

1

Ep2Ep1q81Ej2El1 i«
^lurquj&pj^jurq8

† ul&, ~18!

where the primed sum overq andq8 means that the contribution forq5q850 is left out, since in this case the two terms canc
out. To proceed further, we express the denominators in terms of a Laplace transform, according to

~a6 i«!2157
i

\E0

`

dt e6( i /\)(a6 i«)t,

thus obtaining

L~ %̂ !5
2«

\ (
pp8

(
qq8

8 t̃ ~q! t̃ * ~q8!e( i /\)q• x̂up&^pu%̂up8&^p8ue2( i /\)q8• x̂
1

\2E
0

`

dt e2(«/\)tE
0

`

dt8e2(«/\)t8

3exp@2~ i /\!DEq~p!t#exp@1~ i /\!DEq8~p8!t8#^rq8
† rq~t2t8!&2

«

\ (
p

(
qq8

8 t̃ ~q! t̃ * ~q8!$up&^pu,%̂%

3
1

\2E
0

`

dt e2
«
\ tE

0

`

dt8e2~«/\!t8exp@2( i /\)DEq(p)t#exp@1~ i /\!DEq8~p!t8#^rq8
† rq~t2t8!&,

where ^ . . . & denotes the ensemble average over%m, rq(t) the Heisenberg operatore1( i /\)Hmtrqe2( i /\)Hmt, and the more
compact notationDEq(p)5Ep1q2Ep for the energy transfer has been used. Since the system is supposed to be homog
the correlation function selects the contributions for whichq5q8, and exploiting the identity

15E dt d~ t2@t82t#!5E dt E dE

2p\
exp@~ i /\!E~ t2@t82t#!#

we have

L~ %̂ !5
2«

\ (
pp8

(
q

8 u t̃ ~q!u2e( i /\)q• x̂up&^pu%̂up8&^p8ue2( i /\)q• x̂
1

\2E
0

`

dte2(«/\)tE
0

`

dt8e2(«/\)t8E dE

3exp$2~ i /\!@DEq~p!2E#t%exp$1~ i /\!@DEq~p8!2E#t8%
1

2p\E dt e( i /\)Et^rq
†rq~ t !&

2
«

\ (
p

(
q

8 u t̃ ~q!u2$up&^pu,%̂%
1

\2E
0

`

dt e2(«/\)tE
0

`

dt8e2(«/\)t8

3E dEexp$2 i /\@DEq~p!2E#t%exp$1 i /\@DEq~p!2E#t8%
1

2p\E dt e( i /\)Et^rq
†rq~ t !&.

We can now meaningfully undo the Laplace transform, coming to

L~ %̂ !5
2«

\ (
pp8

(
q

8 u t̃ ~q!u2e( i /\)q• x̂up&^pu%̂up8&^p8ue2( i /\)q• x̂

3E dE
«

p

1

E2DEq~p!1 i«

1

E2DEq~p8!2 i«

1

2p\E dt e( i /\)Et^rq
†rq~ t !&2

«

\ (
p

(
q

8 u t̃ ~q!u2$up&^pu,%̂%

3E dE
«

p

1

E2DEq~p!2 i«

1

E2DEq~p!1 i«

1

2p\E dt e( i /\)Et^rq
†rq~ t !&.
066115-5
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If we now exploit the quasidiagonality of%̂, linked to its slow variability, thus substituting in the denominators of the first te
p, p8 with the symmetric expression12 (p1p8), we obtain the expression

L~ %̂ !5
2p

\ (
pp8

(
q

8 u t̃ ~q!u2e( i /\)q• x̂up&^pu%̂up8&^p8ue2( i /\)q• x̂
1

2p\E dt e( i /\)DEq@(p1p8!/2]t^rq
†rq~ t !&

2
p

\ (
p

(
q

8 u t̃ ~q!u2$up&^pu,%̂%
1

2p\E dt e( i /\)DEq(p)t^rq
†rq~ t !&. ~19!
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The correlation functions appearing in Eq.~19! are exactly
the dynamic structure factor multiplied byN and evaluated
for a momentum transferq and energy transfersDEq@(p
1p8)/2# andDEq(p), respectively, as can be seen by co
parison with Eq.~10!. To see under which conditions th
obtained master equation~16! takes a Lindblad structure, w
consider an approximation of the form~12!, which will gen-
erally depend on the smoothness of the energy depend
of the dynamic structure factor, but is actually less dema
ing than it might seem, since in the expression~19! one has
to consider a sum overp and p8 with the matrix elements

^pu%̂up8& of the statistical operator. In the continuum limit w
therefore obtain the master equation

d%̂

dt
52

i

\
@Ĥ0 ,%̂#1L~ %̂ !

52
i

\
F p̂2

2M
,%̂G1

2p

\
~2p\!3nE d3qu t̃ ~q!u2

3Fe( i /\)q• x̂AS~q,p̂!%̂AS~q,p̂!e2( i /\)q• x̂

2
1

2
$S~q,p̂!,%̂%G , ~20!

which still has the form~13!, but is much more general sinc
now the dynamic structure factor does not necessarily
scribe a free gas. This result allows for the extension of
usefulness of the master equation to cases in which the
relation function cannot be directly evaluated, but a suita
phenomenological model is available, e.g., determined
terms of scattering experiments.

III. QUANTUM BROWNIAN MOTION AND QUANTUM
STATISTICS

We are now interested in the Brownian limita5m/M
!1, considering the dynamics of a free particle interact
through collisions with a gas of much lighter particles. Ha
ing an expression valid for both a Fermi or Bose gas, i
particularly interesting to evaluate the correction brou
about by quantum statistics to the typical models of quan
Brownian motion. In the limita!1, expressions~6! and
~11! become, respectively,
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SB/F~q,p,a!1!57
1

~2p\!3

2pm2

nbq

1

12eb[q2/2M1q•p/M ]

3 logF17ze2(b/8m)q2
e2(b/2)[q2/2M1q•p/M ]

17ze2(b/8m)q2
e1(b/2)[q2/2M1q•p/M ] G

~21!

SMB~q,p,a!1!5
1

~2p\!3

2pm2

nbq
ze2(b/8m)q2

3expH 2~b/2!F q2

2M
1

q•p

M G J , ~22!

or expressed in terms of momentum and energy transfer

SB/F~q,E,a!1!57
1

~2p\!3

2pm2

nbq

1

12ebE

3 logF17ze2(b/8m)q2
e2(b/2)E

17ze2(b/8m)q2
e1(b/2)EG

SMB~q,E,a!1!5
1

~2p\!3

2pm2

nbq
ze2(b/8m)q2

e2(b/2)E,

still satisfying the principle of detailed balance@16#. In the
Boltzmann case, as mentioned above, expression~22! ex-
actly fulfills ~12! and the generator in Eq.~15! takes the
particularly simple formLB/F(q,p̂,x̂)}e( i /\)q• x̂e2(b/4M )q•p̂, so
that one obtains for an isotropic medium the master equa
given in @7#

d%̂

dt
52

i

\
@Ĥ0 ,%̂#1z

4p2m2

b\ E d3q
u t̃ ~q!u2

q
e2(b/8m)q2

3Fe( i /\)q• x̂e2(b/4M )q•p̂%̂e2(b/4M )q•p̂e2( i /\)q• x̂

2
1

2
$e2(b/2M )q•p̂,%̂%G . ~23!

To recover the equation describing quantum Brownian m
tion, one goes over to small momentum transfer, stron
favored by the kinematics of the collisions, consideri
terms up to second order inq or equivalently bilinear inx̂
and p̂, thus obtaining an equation in close analogy to t
5-6
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classical description, with a friction force proportional to v
locity. The result for a Boltzmann gas is

d%̂

dt
52

i

\
@Ĥ0 ,%̂#2z(

i 51

3 H Dpp

\2
†x̂i ,@ x̂i ,%̂#‡

1
Dxx

\2
@ p̂i ,@ p̂i ,%̂##1

i

\
g@ x̂i ,$p̂i ,%̂%#J ~24!

with

Dpp5
2

3

p2m2

b\ E d3qu t̃ ~q!u2qe2(b/8m)q2
,

Dxx5~b\/4M !2Dpp , g5~b/2M !Dpp , ~25!

and has the particular feature that it can be written in Lin
blad form in terms of a single generator@7,19#. Starting from
Eq. ~21! one can perform the same limit of small momentu
transfer corresponding through the physical interpretation
the dynamic structure factor to the macroscopic, lon
wavelength properties of the system, thus calculating the
rection due to quantum statistics to the master equation
scribing quantum Brownian motion. To do this one consid
the Taylor expansion of the logarithms in Eq.~21!, leading to
the following compact expression as a power series in
fugacity z

SB/F~q,E,a!1!

5SMB~q,E,a!1!

3F11 (
k51

`

~6 !k
zk

k11
e2k(b/8m)q2

e2k(b/2)E(
n50

k

enbEG ,

~26!

which has to be substituted in Eq.~13!, keeping terms up to
second order inq. The result one obtains is actually remar
ably simple; the operator structure is not changed, nor
simple generator feature, but the fugacity appears thro
the expressionz/(17z) rather than linearly. For a Bose o
Fermi gas at finite temperature one has

d%̂

dt
52

i

\
@Ĥ0 ,%̂#2

z

17z (
i 51

3 H Dpp

\2
@ x̂i ,@ x̂i ,%̂##

1
Dxx

\2
@ p̂i ,@ p̂i ,%̂##1

i

\
g@ x̂i ,$p̂i ,%̂%#J , ~27!

where the coefficientz/(17z) at finite temperature is actu
ally well defined becausez is in the range 0<z,1 for Bose
particles and positive for Fermi particles.

Equation~27!, expressing the correction due to quantu
statistics in the equation describing quantum Brownian m
tion, together with Eq.~20!, giving a completely positive
time evolution for a particle interacting with a macroscop
system at equilibrium in terms of a momentum displacem
operator and the dynamic structure factor of the system,
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the main results of this paper. Comparing Eqs.~27! with ~24!
one sees that the friction coefficient given in the Boltzma
case by

gMB5z
b

2M
Dpp5z

1

3

p2m2

M\ E d3qu t̃ ~q!u2qe2(b/8m)q2

~28!

is now substituted by

gB/F5
gMB

17z
, ~29!

enhanced or suppressed according to statistics. Both
~24! and ~27! retain the property of complete positivity sa
isfied by Eq.~14!, are invariant under translation and rot
tion, and admit a stationary solution of the canonical fo
%̂}e2b(p̂2/2M ). The single generator feature is due to the fa
that the coefficients satisfy the relationshipDppDxx
5\2g2/4.

IV. SUMMARY AND OUTLOOK

We have considered the problem of the motion of a t
particle interacting through collisions with a fluid, followin
the approach outlined in Refs.@14,20,21#, which has already
been successfully applied to the case of neutron optics@22#.
The microscopic derivation allows some insights into t
conditions under which a master equation of the Lindb
type, driving a completely positive time evolution, can
obtained, thus giving a concrete physical example contrib
ing to the debate on the relevance of complete positiv
@13#. Provided the statistical operator is sufficiently diagon
in momentum representation with respect to the energy
pendence of the dynamic structure factor, the master eq
tion ~20! is obtained, where only quantities of physical inte
est appear; the scattering cross section for the single t
body collisions, given by the square of theT matrix; the
generator of translations in momentum space, and the
namic structure factor, keeping the statistical properties
the medium into account, combined through the express

L(q,p̂,x̂)5e( i /\)q• x̂AS(q,p̂). This structure is remarkably
simple and describes a dynamics in which the motion of
test particle is linked through this particular two-point corr
lation function to the spectrum of spontaneous fluctuations
the system. Starting from this general structure and explic
calculating the dynamic structure factor for the case of a f
gas, one can consider the particularly relevant case
Brownian motion, when the test particle is much heav
than the particles making up the gas. In the case of a Bo
mann gas one recovers, for small momentum transfer, a t
cal structure of generator of quantum Brownian motio
given by Eq.~24!, in which all coefficients are determine
and the dissipative part of the generator depends linearly
the fugacity. The case of a quantum gas is also conside
and in this case the generator has the structure~27!, with the
5-7
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dissipative part depending on the fugacityz through the ex-
pressionz/(17z), thus giving the connection~29! between
the friction coefficients in the different cases.

We hope that this fundamental study on the general
tures of a master equation describing the motion of a
particle in a gas, putting in major evidence the dynam
structure factor and showing the relationship between
structure and the equation, analogous to the Fokker-Pla
equation, describing quantum Brownian motion, could b
sound starting point for future extensions and applicatio
especially in connection with degenerate regimes at very
temperatures, where the dynamic structure factor is now
s

.
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ing intensively studied both at an experimental@23# and the-
oretical level@24#.
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