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Time-Domain Simulation of Electronic Noises
Alberto Pullia and Stefano Riboldi

Abstract—In this paper, a procedure is proposed to computer
simulate the electronic noise of ionizing-radiation spectrometers.
The viewpoint of the simulator is the output of the preamplifier,
with or without an anti-aliasing filter, just in front of the ADC. Ex-
amples are given for the case of segmented high purity Germanium
detectors (HPGe). The method makes use of the fractional calculus
basics. A software procedure provides the noisy waveform as a
function of the fundamental electrical-physical parameters of the
system, including: detector capacitance, detector leakage current,
feedback resistor, 1 -noise coefficient of the input transistor, tem-
perature of the preamplifier input devices.o The ADC quantization
noise is also included in the simulation.

Index Terms—Electronic noise, ionizing radiation detectors,
noise simulation.

I. INTRODUCTION

THE new generation of cylindrical HPGe detectors for
-ray spectroscopy is characterized by 25- to 36-fold

segmentation of the electrode located on the outer cylin-
drical-hexagonal surface of the crystal [1], [2]. Segmentation is
needed to enhance the detector granularity and permits to esti-
mate the incidence angle of the gamma photon trajectories. The
three-dimensional (3-D) coordinates of the interaction points
of the -photons inside the detector can be estimated with an
accuracy of a few mm’s through sophisticated algorithms of
pulse shape analysis (PSA). Such algorithms take into account
both the shape of the charge signal seen on the collecting
electrode and that seen on the adjacent segments (induced
charge signals). Currently the best results have been obtained
using genetic or neural algorithms, which (i) require a training
phase, (ii) are nonlinear, and (iii) are mostly developed in the
time domain [3]. In order to test such algorithms efforts have
been made to simulate the charge signals seen at the segment
electrodes versus the position of the interaction points, consid-
ering different geometries of the detector and the electrodes
[4], [5], but little or no effort has been made to simulate the
fundamental electronic noise superimposed to such signals, i.e.
the shot noise of the detector leakage current, the thermal, ,
and Lorentzian noises of the preamplifier input transistor, the
thermal noise of the feedback resistor. This work is intended
to fill such a gap. It hopefully opens the way to a complete
simulation of the noisy detector signals and should permit to
get more realistic figures about the effectiveness of the PSA
algorithms. Even if other approaches are possible, we believe
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that the simplest way to study the effect of the electronic noise
on so-complex algorithms consists of simply adding it and then
run suitable tests. A computer program has been written in the
matlab environment, that provides a noisy waveform referred
to the preamplifier output versus a pattern of fundamental
electrical-physical parameters of the system.

II. THEORETICAL BACKGROUND

The noise of a detector-preamplifier setup for X- and -ray
spectroscopy is always colored. As referred to the detector input
current, its power spectral density includes typically (i) a white
component, (ii) a component proportional to , being the
frequency, and (iii) a component proportional to [6]. Other
components, such as Lorentzian-noise packets or higher order

components, can be present. Such a noise pattern
propagates through the preamplifier transfer function and ap-
pears after such a “shaping” network at the preamplifier output,
or the observation point of our context. One has to consider
that the charge preamplifier has a finite bandwidth or a finite
intrinsic risetime. It can hence be modeled by a transfer func-
tion with one pole in the origin (integration of the detector cur-
rent upon its feedback capacitance) and a pole due to its finite
risetime, typically 10 to 40 ns. All of the noise components (i),
(ii), and (iii) can be referred to the preamplifier output by mul-
tiplying their power spectra by the squared absolute value of
such a transfer function. Input noise components (i), (ii), and
(iii) can be modeled in the time domain in terms of a Poissonian
sequence of given core pulses of fixed amplitude and shape but
random sign. However a computer representation of such core
pulses is not possible because they contain -Dirac-like com-
ponents or, stricly speaking, they are not functions but distribu-
tions. A further complication arises because the -noise rep-
resentation is obtained through 1/2-order integration [7]–[9] of
-Dirac pulses. However this is only a practical complication

and poses no conceptual limitation to a straightforward devel-
opment of the model. It is worth noting that the spectral con-
taint of all -Dirac-like core pulses keeps finite when the fre-
quency is pushed to infinity, whereas no known physical phe-
nomenon is such. The difficulty to translate -Dirac-like compo-
nents into a computer representation can be removed if they are
made band-limited by the transfer function of a physical system.
Note that in this framework the physical system is the pream-
plifier itself. The physical reasons why the native noise should
itself be of band-limited nature could be investigated. However
we can observe that the band limit of the charge-preamplifier
transfer function is surely at a lower frequency than other fun-
damental and quanto-mechanical phenomena limiting the input
noise band. So we can reasonably affirm that the noise wave-
form obtained by filtering the mathematical model of the input
noise through the preamplifier transfer function is a realistic rep-
resentation of the noise actually seen at the preamplifier output.
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Fig. 1. Detector-preamplifier-ADC chain. The anti-aliasing filter interposed between the preamplifier and the ADC is modeled as an n-pole transfer function.

III. METHOD

Fig. 1 shows the simplified schematic diagram of a typical
detector-preamplifier-ADC setup. The detector delivers current
signals of the form being Q the charge collected at
its output electrode and a unit-area function modeling
the charge induction transient. [4] The operational amplifier
is assumed ideal apart from the noise and, in conjunction
with , is configured as a charge amplifier. Resistor is
used to continuously reset the charge accumulated onto .
The finite bandwidth of the charge preamplifier is fictitiously
introduced by means of a functional block containing a pole
with time constant , which is
a good approximation for stable systems with feedback pole
smaller than 1/4 of the gain-bandwidth product. In the event
the stability condition is no longer true, the system response
would show an overshoot and the functional block should be
changed inherently. However, we will not consider this case
for the sake of simplicity. Eventually a functional block with
unit-area impulse response is used to model the antialiasing
filter. The gain shown in Fig. 1 can be conveniently used as
a normalization term, making the following cases:

(1)

(2)

(3)

where is the electronic charge and [eV/pair] is the en-
ergy/charge conversion coefficient of the detector (e.g.

for germanium and for silicon).
In case (1) the reading of waveforms or is in volts,
in case (2) in coulombs, in case (3) in eV.

The principal input-referred noise sources are put into
evidence in Fig. 1 and a picture of their mathematical models
[8] is also shown. The used mathematical model for the white
noise components is a Poissonian sequence of -like pulses,
each having area and random sign, occurring at an average
rate . It can be shown (Appendix I) that the (two-sided) power
spectral density of such a noisy waveform is

(4)

Note that (4) does not depend on frequency, as expected for a
white noise. From (4) it can be seen that, given the (two-sided)
spectral density of a white noise and an arbitrary average
rate of incoming pulses , one can derive the area of each
pulse, or

(5)

The model for the noise is a little more complicated.
To visualize it we have to use a bit of mathematics to write
conveniently its two-sided power spectral density , or

(6)
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where is the imaginary unit, is frequency, is angular fre-
quency, does not depend on frequency. Noise density (6)
may be obtained by passing a fictitious white noise with spec-
tral density through a circuit with transfer func-
tion . The fictitious white noise can be modeled, as
stated before, as a Poisson sequence of -like pulses occurring
at an arbitrary rate , each of which has random sign and area

given by (5), or

(7)

Each of such pulses passes through transfer function , which
corresponds in the time domain to a mathematical linear op-
erator called “1/2-order integration”, normally written with the
symbol . 1/2-order integral of a pulse centered
at and with area has been solved in literature, or

(8)

Putting (7) into (8) we eventually obtain the core pulse of the
noise, or

(9)

Our model of the noise consists of a sequence of core
pulses (the sign is random) occurring Poissonianly at
times with an average rate , as also sketched in Fig. 1.

The model for the Lorentzian noise is pretty similar. The two-
sided power spectral density of a Lorentzian noise is

(10)

Noise density (10) may again be obtained by passing a fictitious
white noise with spectral density through a circuit
with transfer function , i.e. a passive net-
work having time constant . It is worth recalling that the
network is an imperfect integrator, which makes this case pretty
similar to the previous one. Again the fictitious white noise con-
sists of a Poisson sequence of pulses occurring at an arbitrary
rate , each of which has random sign and area given by
(5), or

(11)

Each of such pulses gets “integrated” by the RC network and
appears at its output in the form

(12)

being the arrival time of the corresponding pulse. So, our
model of the Lorentzian noise consists of a sequence of core
pulses occurring Poissonianly at times with an av-
erage rate , as also sketched in Fig. 1.

In the next Sections we will determine more precisely the am-
plitude of the core pulses of the input noises vs the key elec-
trical-physical parameters of the system and propagate them to
the preamplifier output.

IV. INPUT NOISE CORE PULSES

Input noises and are uncorrelated and have the fol-
lowing (two-sided) power spectral densities [10]:

(13)

(14)

where parameters , , , and do not depend on frequency.
“ ” is the white component of the series noise of the preampli-
fier input transistor. “ ” includes the shot noises of the detector
leakage current and the preamplifier input bias current plus the
thermal noise of the reset resistor. Namely,

(15)

(16)

where is the Boltzmann constant, is absolute temperature.
For an input FET where is its transconduc-
tance and is a constant factor 2/3 [11], and for an input BJT

where is the base spreading resistor.
is the sum of the detector leakage current and the input tran-

sistor bias current (the latter is typically negligible for an FET
cooled to cryogenic temperatures), is the feedback resistor.

and are the amplitude and time parameters of an individual
Lorentzian (or trapping) noise source. We do not consider the
case of a packet of Lorentzian noise sources for the sake of sim-
plicity. Substituting (15) and (16) in (13) and (14), and using (5)
we derive the area

(17)

for the series white noise core pulses, and the area

(18)

for the parallel white noise core pulses. and are the areas
of the pulses that we shall use to correctly model the series and
parallel white noises. The noisy waveforms and are built
as Poissonian sequences of such pulses, each pulse taken with
random sign.

In Table I, the core pulses of all considered noise components
are shown in a mathematical form. It is worth pointing out that
the average rates of incoming pulses , , , i.e. the
occurrence rate of each of the Poisson time sequences , , ,

, can be chosen arbitrarily. Note, however, that they appear in
the relations of Table I into terms , , , as shown by
(17), (18), (7), (11), and always in the denominator. In fact the
lower the rate of incoming pulses, the higher the weight of each
noise pulse (and viceversa) to keep the noise intensity constant.

V. OUTPUT-NOISE CORE PULSES

We now want to propagate the input noise waveforms to the
preamplifier output. Let us begin with the series noise . It is
easily found that in the circuit of Fig. 1 the frequency domain
relationship

(19)
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TABLE I
CORE PULSES OF NOISE COMPONENTS

holds, where , and
. is typically in the range from 200 to 2 ms, and is

very large compared to the processing time of the signals (both
in pulse-shape analysis and in pulse-height analysis), which is
typically in the range between 200 ns and 20 . So, in (19) we
can make the approximation

(20)

and, being

(21)

Substituting (20) and (21) in (19) we obtain

(22)

and, after the anti-aliasing filter

(23)

being the transfer function of the antialiasing filter.
Using a similar procedure for the parallel noise again

looking at the circuit of Fig. 1, we obtain the relationship

(24)

and, after the anti-aliasing filter,

(25)

We have now to find the time domain counterparts of (22), (23),
(24) and (25). We can do this for single input core pulses (of
the noisy waveforms and ) centered at (Table I with

).

A. Series White Noise

With these assumptions, putting a core pulse of the series
white noise centered at (see first row, right column of
Table I with ) into (22) in place of and solving the in-

verse Fourier transform one obtains the time domain core pulse
of the series white noise as seen at the preamplifier output, or

(26)

where is given by (17) and and is given by (1), (2) or
(3), depending on whether the reading is in volts, coulombs or
eV. Note that in cases (2) and (3) the dependence of on

gets canceled out. In fact in these cases is normalized
in terms of detector charge or event energy, which by no means
depend on .

Using (23) and (26) one easily obtains the time domain core
pulse of the series white noise as seen at the anti-aliasing filter
output, or

(27)

where is the unit-area impulse response of the anti aliasing
filter and the star stands for time convolution. Time convolution
(27) could be solved in closed form for simple antialiasing filters
but in practice it is convenient to solve it numerically for any
simple or complex .

B. Parallel White Noise

Putting a core pulse of the parallel white noise centered at
(see second row, right column of Table I with ) into

(24) in place of and solving the inverse Fourier transform one
obtains the time domain core pulse of the parallel white noise
as seen at the preamplifier output, or

(28)

where is given by (18) and and is given by (1), (2) or (3).
From (25) and (28) one obtains the time domain core pulse of
the parallel white noise as seen at the anti-aliasing filter output,
or

(29)

Time convolution (29) can be again solved numerically for any
.

C. Series Noise

Putting a core pulse of the series noise centered at
(see third row, right column of Table I with ) into (22)
in place of and solving the inverse Fourier transform one
obtains the time domain core pulse of the series noise as
seen at the preamplifier output, or

(30)

where is the well known error function for real values
of , or its analytical continuation for complex values of . is
given by (7), is given by (1), (2), or (3).

Using (20) and (30) one can now obtain the time domain core
pulse of the series noise as seen at the anti-aliasing filter
output, or

(31)
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Fig. 2. Core pulses (27), (29), and (31) of the series, parallel and 1=f noises
as seen at the preamplifier output and plotted vs normalized time x = t=� .

Time convolution (31) can be again solved numerically for any
.

D. Series Lorentzian (Trapping) Noise

Putting a core pulse of the series Lorentzian noise centered at
(see fourth row, right column of Table I with ) into

(22) in place of and solving the inverse Fourier transform
one obtains the time domain core pulse of the series Lorentzian
noise as seen at the preamplifier output, or

(32)

Equation (32) holds if . The probability that
is very low. However it can be shown that in such case (32)
becomes

(33)

From (25) and (32) one obtains the time domain core pulse of
the parallel white noise as seen at the anti-aliasing filter output,
or

(34)

Time convolution (34) can be again solved numerically for any
.

In Fig. 2 the noise core pulses seen at the preamplifier output,
i.e. (26), (28) and (30), (32) are graphically shown. Note that the
preamplifier transforms the input noise core pulses into plain
functions with no -like components or local divergencies.

VI. EXAMPLE

A simple software procedure has been written, that builds
a noisy waveform (referred to the preamplifier output) as
described in the previous Sections. The input parameters of the
procedure are: (absolute temperature), (input-transistor
noise resistor), (feedback resistor), (detector leakage
current), (total capacitance at the preamplifier input),
( -noise two-sided power spectral density at 1 Hz). The

Fig. 3. In graph (a) a simulation of the noise is depicted, where the
electrical-physical parameters shown in the text are used. In picture (b) the
noise is superimposed to the signal (122 keV event) simulated for a truly
coaxial germanium detector (inner radius = 0:5 cm, outer radius = 3 cm,
interaction� point radius = 0:9 cm).

Fig. 4. Power spectral density (two sided) of the simulated noise shown in
Fig. 3. The �40 dB/dec drop at high frequencies is due to the finite bandwidth
of the preamplifier (� ). fn is 1/4 of the Nyquist frequency.

noise provided by the software procedure is in terms of charge
(coulomb) or in terms of energy (eV). In this latter case the
energy-to-charge conversion factor of the detector must be
specified. In Figs. 3 and 4 an example is given, with the typical
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Fig. 5. A picture of the realized graphical user interface. The physical system
parameters as well as the preferred readout units are easily introduced.

parameters of an HPGe segmented detector, or ,
, , , ,

, . No anti-aliasing filter is
included . A picture of the realized graphical user
interface (GUI) is shown in Fig. 5.

VII. EXPERIMENTAL VALIDATION

Accurate estimation of model parameters is mandatory in
order to generate truthful time domain simulations of noise
signals from HPGe detectors. Because of the unavoidable
discrepancies between the supposed and the actual values of
system parameters, e.g. preamplifier and detector capacitance,
FET trans-conductance, etc. realistic noise simulations for a
given measurement set-up can be obtained only by acquiring
a large collection of noise pulses and subsequently tuning the
noise simulator model to fit the experimental data.

In order to prove the effectiveness of the adopted noise
simulation model in a realistic condition, experimental signals
have been acquired from the MARS coaxial HPGe detector
(90 mm long, with and

) and the resulting noise power spectral density function
has been plotted in Fig. 6. Note that the experimental noise
density function is consistent with the one obtained from the
simulated noise (see Fig. 4), apart from a slight difference
in noise level. That is because the actual noise parameters
describing the experimental signals: , ,

, , , ,
, derived from a fitting procedure (see Fig. 6) are

somehow different from the first guess values used for the
noise simulator.

Fig. 6. Noise power spectral density function calculated from the acquired
signals (jagged curve) and the corresponding fitting function as a function of
noise parameters (smooth curve). The lower frequency limit is imposed by the
finite acquisition time for the experimental signals, while the upper boundary
has been set to 1/4 of the Nyquist frequency to avoid aliasing effects.

APPENDIX I

Let us transmit a Poissonian sequence of pulses, each
having area and random sign, through an RC network
(assume ), i.e. a linear system with transfer function

(35)

Each input impulse appears at the output as an exponential
decay function with decay time constant , or

(36)

where the sign is random.
The output process is a Poissonian sequence of pulses of the

type (36). The variance of such a process can be obtained
using the Campbell’s theorem, or

(37)

where is the average event rate.
We can also obtain with a frequency-domain approach,

assuming a white spectral density (two-sided) for the input
noise, or

(38)

Comparing (37) and (38) we obtain , as expected
from Carson’s theorem. The fact that the input noise is white is
rather intuitive. In fact the correlation function apparently tends
to vanish anywhere except that in the origin. This yields noise
whiteness.
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