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In the last decade, several neuroprotective therapies have been proposed for Parkinson's disease and rasagi-
line was indicated as one of the most promising candidates by preclinical studies. The drug has already been
tested in phase III clinical studies (the ADAGIO study). The mechanism underlying rasagiline-dependent neu-
roprotection is complex and almost unknown. Here, we show that rasagiline is involved in the regulation of
the molecular composition of the postsynaptic density of glutamatergic synapses. In hippocampus as well as
in striatum, rasagiline induces a significant reduction of synaptic levels of NR2A-containing NMDA receptors
and in hippocampal slices it also significantly decreases synaptic levels of GluR1-containing AMPA receptors.
This capability of rasagiline to modulate ionotropic glutamate receptors composition at synaptic sites
strengthens the rationale for its clinical use to slow the progression of Parkinson's disease.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Despite extensive studies performed both in vivo on animal
models and ex vivo on postmortem brains from patients, Parkinson's
disease etiology is still largely unknown (Lees et al., 2009). Nonethe-
less, neurotoxic events as mitochondrial dysfunction, increased oxi-
dative stress, excitotoxicity and inflammation are thought to have a
role in the neurodegenerative process (Schapira, 2008).

Agents, able to target these events, can become neuroprotective
and/or disease modifying therapies. In this frame, rasagiline, an inhib-
itor of monoamine oxidase type B (MAO-B), is one of the most prom-
ising candidates (Chen et al, 2007). Rasagiline exerts its
neuroprotective activity against neurotoxins both in cell cultures
and in animal models of Parkinson's disease and this protection is de-
pendent on the intervention of ‘intrinsic’ mitochondrial apoptotic
cascade and on the induction of prosurvival antiapoptotic Bcl-2 and
of other neurotrophic factors (Bar-Am et al., 2005; Naoi and Mar-
uyama, 2009; Weinreb et al.,, 2009a,b). Interestingly, comparison of
structure-activity assays among rasagiline and other classical MAO-
B inhibitors, i.e. selegiline, demonstrated that, in all compounds, the
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N-propargyl moiety is responsible for neuronal survival via a similar
neuroprotective mechanism (Bar-Am et al., 2004, 2005). However,
several preclinical studies suggested a higher neuroprotective poten-
cy of rasagiline compared to selegiline, which is probably related to
their different metabolites (Chen and Ly, 2006; Chen et al., 2007).
Rasagiline efficacy for Parkinson's disease treatment was further
confirmed by clinical trials, whose results led to its authorization for
use in early and advanced Parkinson's disease stages (Weinreb et
al., 2010). The symptomatic benefits induced by rasagiline were
mainly attributed to MAO-B inhibition but other mechanisms seem
to be involved (Naoi and Maruyama, 2009; Weinreb et al., 2010):
rasagiline neuroprotective activity can be observed at concentrations
below MAO-B inhibition threshold, suggesting that it cannot be
completely ascribed to MAO-B inhibition (Weinreb et al., 2010).
Even novel delayed start clinical studies, including the large phase
[II ADAGIO trial (Olanow et al., 2008, 2009), suggested that rasagiline
may have an effect in slowing Parkinson's disease progression, which
is considered additional - if not independent - to MAO-B inhibition.
Interestingly, MAO-B inhibitors have been shown to partially protect
neurons against overactivation of NMDA receptors without interfer-
ing with their physiological function (Niittykoski et al., 2003).
This is intriguing since NMDA receptor is altered in experimental par-
kinsonism (Dunah and Standaert, 2001; Paillé et al., 2010), during de-
velopment of L-DOPA induced dyskinesia (Gardoni et al., 2006)
and in patients (Calon et al., 2003). In addition, synaptic localization
of NMDA receptor subunits, namely NR2A and NR2B, and their func-
tional interactions with scaffolding elements of the PSD-MAGUK
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protein family have been shown to be crucial to the pathogenesis of
Parkinson's disease and to the development of L-DOPA induced dyski-
nesia (Gardoni et al., 2006; Picconi et al., 2004). In a rat model of early
Parkinson's disease, normalization of the aberrant synaptic localiza-
tion of NR2A subunits rescued the motor symptoms (Paillé et al.,
2010).

Here we show that treatment of corticostriatal slices with rasagi-
line specifically reduces NR2A subunit localization in the postsynaptic
compartment without affecting the synaptic localization of any other
tested protein. Similarly, treatment of hippocampal slices with rasagi-
line reduces NMDA receptor NR2A subunit but also affects AMPA re-
ceptor GluR1 subunit levels in the postsynaptic compartment.

2. Material and methods
2.1. Preparation of acute slices

Acute hippocampal and corticostriatal slices were prepared from
adult rats as previously described (Gardoni et al., 2001). All experi-
ments were approved by institutional ethics committee. Animal han-
dling and surgical procedures were carried out with care to minimize
discomfort and pain to treated animals in accordance with ethical
regulations and guidelines of the European Communities Council (Di-
rective of November 24, 1986, 86/609/EEC). Briefly, brains were re-
moved and placed into chilled (4 °C) oxygenated Krebs' buffer. After
removal of meninges, hippocampal slices (450 pm) were prepared
quickly using a Mcllwain tissue chopper and placed in custom-made
chambers equilibrated continuously with 0O, 95%-C0O, 5% (v/v). Corti-
costriatal slices have been obtained similarly by using a vibratome
(450 pm).

Slices were then equilibrated (0, 95%-CO, 5%) at room tempera-
ture for 30 min. After the equilibration time, slices were incubated
with rasagiline (5 min, 30 min, 2 h; 0.1-1-10 uM) or with vehicle
alone. After incubation, slices were quickly transferred into the ho-
mogenization chamber. In experiments performed in corticostriatal
slices, before homogenization striatum were carefully separated
from the cortex and subsequently homogenized.

2.2. Subcellular fractionation

Triton-Insoluble postsynaptic Fraction (TIF) was purified from
blind samples of control and rasagiline treated slices using a previ-
ously validated biochemical fractionating method (Gardoni et al.,
2006). Briefly, slices were homogenized in ice-cold sucrose 0.32 M
containing Hepes 1 mM, MgCl, 1 mM, EDTA 1 mM, NaHCO3 1 mM,
PMSF 0.1 mM, at pH 7.4 in presence of a complete set of protease in-
hibitors (Complete™, Roche Diagnostics, Basel, Switzerland) and
phosphatase inhibitors (Sigma-Aldrich). The homogenized tissue
was centrifuged at 1000xg for 10 min. The resulting supernatant
(S1) was centrifuged at 13,000 x g for 15 min to obtain a crude mem-
brane fraction (P2 fraction). The pellet was re-suspended in Hepes
1 mM + Complete™ in a glass-glass potter and centrifuged at
100,000 x g for 1 h. The pellet (P3) was resuspended in buffer con-
taining 75mM KCl and 1% Triton-X 100 and centrifuged at
100,000 x g for 1 h. The supernatant was stored and referred as Triton
soluble fraction (S4, TSF). The final pellet (P4) was homogenized in a
glass-glass potter in 20 mM Hepes. Then, an equal volume of glycerol
was added and this fraction, referred to as Triton insoluble fraction
(TIF), was stored at — 80 °C until processing. TIF fraction was used in-
stead of the classical postsynaptic density (PSD) because of the limit-
ed amount of starting material. Similar protein yield (~100 pg) was
obtained in TIF purified from hippocampal and striatal slices for
both experimental groups. Protein composition of this preparation
was tested for absence of presynaptic synaptic vesicle marker synap-
tophysin (Gardoni et al., 2001) and enrichment in the PSD proteins
(Gardoni et al., 2006).

2.3. Western blot analysis

Western blot analysis was performed as described before with
minor modifications (Gardoni et al., 2006). Samples (10 pg) were ap-
plied to SDS-PAGE and electroblotted. After blocking non specific pro-
tein interactions with 5% albumin in Tris-buffered saline (TBS), the
nitrocellulose membranes were incubated for 2 h at room tempera-
ture with the following primary antibodies: NR2A (1:1000, Zymed,
San Francisco, CA, USA), NR2B (1:1000, Zymed), GluR1 (1:1500, Millipore,
USA), PSD-95 (1:2000, Affinity BioReagents, Golden, CO, USA), SAP97
(1:1000, Affinity BioReagents), SAP102 (1:2000, Neuromab, Davis, CA,
USA), aCaMKII (1:3000; Millipore, USA), a-Tubulin (1:5000; Sigma) in
3% albumin in TBS. After extensive rinsing in TBS/0.1% Tween 20,
the nitrocellulose papers were incubated with horseradish peroxidase-
conjugated secondary antibodies. Finally, the antigen-antibody complex
was revealed by enhanced chemiluminescence (ECL, GE Healthcare, Little
Chalfont, UK).

2.4. Quantification and statistical analysis

Quantification of Western blot analysis was performed by means
of computer-assisted imaging (Quantity-One®, BioRad) after normal-
ization on tubulin levels and values were expressed as mean + S.E.M.
For each homogenate and TIF preparation three independent experi-
ments were run. Student's t test was used to compare results from
control and rasagiline-treated slices.

3. Results

3.1. Effect of rasagiline on molecular composition of glutamatergic
synapses in striatum

In a first set of experiments, acute corticostriatal slices were trea-
ted for 2 h with rasagiline (10 uM). After treatment, slices were lysed
and the triton insoluble postsynaptic fraction (TIF) was purified. TIF is
a highly purified postsynaptic fraction (Gardoni et al., 2001, 2006),
the ideal compartment to study the role of rasagiline in modulation
of the molecular composition of postsynaptic compartment. The ef-
fect of rasagiline treatment was tested on ionotropic glutamate recep-
tor subunits as well as on the main PSD-structural elements by
western blot analysis. In particular, western blot was performed for
NR2A and NR2B subunits of NMDA receptor, for GluR1 and GluR2
subunits of AMPA receptor (Fig. 1, upper panels), for all main PSD-
MAGUK members (PSD-95, SAP97 and SAP102) and for aCaMKII
(Fig. 1, lower panels).

As shown in Fig. 1, levels of NMDA receptor subunit, NR2B, of
GluR1 and GIuR2 subunits of AMPA receptor, of PSD-95, SAP97 and
SAP102, members of PSD-MAGUK protein family, and of aCaMKII
were not altered in striatal TIF obtained from rasagiline-treated corti-
costriatal slices (2 h, 10 uM) compared to control. Interestingly, treat-
ment with rasagiline specifically reduced synaptic levels of NMDA
receptor subunit, NR2A (—43.2 +15.1, P<0.05; n=5).

3.2. Effect of rasagiline on molecular composition of glutamatergic
synapse in hippocampus

The above described western blot experiments were performed
also on acute hippocampal slices after treatment with rasagiline
(2h, 10 uM). As shown in Fig. 2, levels of NMDA receptor subunit,
NR2B, of GIuR2 subunit of AMPA receptor, of PSD-95, SAP97,
SAP102 and of aCaMKII were not modified in TIF of rasagiline-treated
hippocampal slices (2 h, 10 uM) compared to control. Notably, in hip-
pocampal slices treatment with rasagiline not only reduced synaptic
levels of NMDA receptor subunit NR2A (—22.14+6.5, P<0.05; n=5)
but also significantly decreased levels of AMPA receptor subunit
GIuR1 (—40.9 £8.8, P<0.05; n=5).
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proteins was loaded in each lane. Rasagiline treatment does not affect the expression
of any tested protein.

In parallel experiments, western blot analyses were performed for
the same proteins in homogenate fractions from control and rasagiline-
treated corticostriatal (Fig. 3) and hippocampal (Fig. 4) slices. No 3.3. Concentration-response curve of rasagiline effect on molecular
differences in any tested protein were detected nor in corticostriatal composition of glutamatergic synapses
(Fig. 3) neither in hippocampal slices (Fig. 4), suggesting that the
observed decrease of NR2A and GluR1 at synaptic levels was not In vitro studies indicated that the neuroprotective activity of rasa-
consequent to alterations of protein expression in total homogenate giline can be observed at concentrations below the MAO-B inhibition
but probably to modifications of trafficking/clustering at synaptic sites. threshold (Weinreb et al., 2010), mainly between 0.1 and 10 pM
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(Bar-Am et al., 2005; Dimpfel and Hoffmann, 2011; Weinreb et al,,
2007). On these bases, we treated acute corticostriatal and hippo-
campal slices with rasagiline 0.1 and 1 puM for 2 hours. Treatment
with rasagiline 1pM gave the same results as concentration of
10 pM: NR2A synaptic levels were reduced in both corticostriatal
(—15.84+3.7%, P<0.05; n=5) and hippocampal slices (—20.8 4+ 5.5%,
P<0.05; n=5) while GIuR1 was significantly decreased just in hippo-
campus (—29.3 +5.8%, P<0.05; n=>5) (Fig. 5A and B). No effects were
observed on synaptic composition after treatment with rasagiline
0.1uM for 2h either in hippocampal or in corticostriatal slices
(Fig. 5A and B).

3.4. Time-course of rasagiline effects on molecular composition of
glutamatergic synapses

1 uM is the lowest rasagiline concentration able to induce a signif-
icant modification of the molecular composition of glutamatergic syn-
apses. Accordingly, this concentration was used to study the time
course of rasagiline effect on NR2A levels. In particular, we evaluated
whether shorter treatments with rasagiline (5 and 30 min) were suf-
ficient to alter the molecular composition of glutamatergic synapses.
Fig. 6 shows that 5 and 30 minute treatments of corticostriatal
(Fig. 6A) or hippocampal (Fig. 6B) slices with rasagiline do not modify
synaptic levels of AMPA or NMDA receptor subunits.

4. Discussion

In the last few years, several preclinical studies have shown
that rasagiline has a broad neuroprotective activity in both cultured
neuronal cells and animal models of neurodegenerative diseases
(Weinreb et al., 2009a,b). Rasagiline-mediated neuroprotective mecha-
nisms include suppression of the cell death cascade initiated by Bcl-2
family and by caspase-3, prevention of the decline in mitochondrial
membrane potential as well as of nuclear translocation of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and of DNA
fragmentation (Weinreb et al., 2009a,b). In addition, a recent study
demonstrated that, in rat midbrain, rasagiline increases expression of
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various genes including neurotrophic factors, neuroactive ligand recep-
tors, antioxidant and metabolic enzymes, while it downregulates genes
associated with neurodegenerative diseases (Weinreb et al., 2009a,b).

Here we add further information to the mechanisms responsible
for rasagiline-dependent neuroprotection, showing that rasagiline
modifies the molecular composition of glutamatergic synapses.

Molecular composition and, consequently, structure of the post-
synaptic compartment of excitatory synapses are intimately involved
not only in the regulation of physiological processes, such as synaptic
plasticity, but also in the dynamic response to different excitotoxic in-
sults (Gardoni et al.,, 2009). Given that NMDA receptors mediate the
rise in postsynaptic Ca%*, neuronal firing pattern and synaptic plas-
ticity, the dynamic regulation of the number and composition of syn-
aptic NMDA receptor is expected to have profound implications for
neuronal activity and survival (Lau and Zukin, 2007).

In particular, our results indicate that rasagiline reduces synaptic
levels of NR2A-containing NMDA receptors in both hippocampus
and striatum. In addition, in hippocampal - but not in corticostriatal
slices - rasagiline also decreases synaptic GluR1-containing AMPA re-
ceptors. These effects start at very low concentrations (1 pM), in
agreement with in vitro studies investigating rasagiline neuroprotec-
tive activity (Bar-Am et al., 2005; Weinreb et al., 2007). Moreover,
time course experiments indicate that this rearrangement of gluta-
matergic synapses is not a fast event implying a prompt trafficking/
endocytosis of receptor subunits.

Our results showing a concomitant NR2A and GluR1 reduction in
hippocampal slices treated with rasagiline confirm previous data
demonstrating that, in mature hippocampal neurons, the surface ex-
pression of GluR1 subunit of AMPA receptor is supported by the pres-
ence of NR2A-containing NMDA receptors (Kim et al., 2005).
Interestingly, here we show that this event does not take place in
the striatum where a decrease of NR2A synaptic levels is not paral-
leled by a concomitant decrease of GluR1.

In striatal neurons, hyperfunction of NMDA receptors is suggested
to contribute to parkinsonian symptoms and to treatment-induced
motor complications, including L-DOPA-induced dyskinesia in Par-
kinson's disease (Nash and Brotchie, 2002; Verhagen Metman,
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Fig. 5. Western blot analysis of the TIF fraction obtained from control (n=5) and rasagiline (n=>5; 0.1 uM or 1 uM, 2 h)-treated acute corticostriatal (A) and hippocampal (B) slices.

The same amount of proteins was loaded in each lane.
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2002). In particular, subcellular redistribution of NR2A and NR2B
subunits of NMDA receptor, leading to an increased NR2A/NR2B
ratio at synaptic sites, is a key element in the complex modifications
of glutamatergic synapses which occur both in experimental parkin-
sonism and in L-DOPA induced dyskinesia (Gardoni et al., 2006;
Picconi et al., 2004). Normalization of NR2A subunit localization at
synapses in a rat model of early Parkinson's disease is sufficient to
improve motor behavior and to rescue corticostriatal synaptic plastic-
ity (Paillé et al., 2010). Here we show that rasagiline can directly
modulate NMDA receptor composition at synapse and, consequently,
its function, by decreasing NR2A at synaptic sites. This is confirmed by
avery recent report describing significant decreases of glutamate recep-
tors-mediated signaling in hippocampus, following treatment with
rasagiline at similar concentrations (Dimpfel and Hoffmann, 2011).
Moreover, recent data reported a critical functional role for NR2A-
containing NMDA receptors — and a less crucial role for NR2B-contain-
ing NMDA receptors - in the depression of glutamatergic synaptic
transmission and evoked dopamine release in striatum (Schotanus
and Chergui, 2008; Schotanus et al., 2006). In this frame, rasagiline-de-
pendent reduction of NR2A-containing NMDA receptor levels could
unmask this NR2A-dependent effect and could modulate both glutama-
tergic and dopaminergic transmission at striatal level.

These novel effects of rasagiline on molecular composition of gluta-
matergic synapses in striatum and hippocampus are likely to occur in-
dependently from MAO-B inhibition, which was considered as the
main cause of rasagiline beneficial effects on Parkinson's disease symp-
toms. Therefore, our observations suggest an additional mechanism for
rasagiline disease-modifying action that could explain the positive re-
sults obtained by rasagiline in clinical trials for Parkinson's disease.
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