PHYSICAL REVIEW B, VOLUME 64, 045119

Ab initio pseudopotential calculation of the equilibrium structure of tin monoxide
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We present amb initio pseudopotential calculation of the structural properties of stannous oxide SnO. We
discuss the delicate balance of different contributions to the cohesion of this material, and compare the
monoxide to the dioxide SnOWe point out how different choices concerning the pseudopotential of tin may
dramatically influence the resulting equilibrium structure of SnO, and show that the physically most appropri-
ate choice leads to excellent agreement with experiment.
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[. INTRODUCTION erties feasible. Since here we concentrate on cohesion and
valence band features, it is reasonable to treat the inner shells
Among the different tin oxides, the most frequently stud-of the atoms only approximately, and hence to use norm-
ied one is the stannic oxide Sp(due to its technological conserving pseudopotentials and a plane-wave basis set. Tin
importance based on possible applications in chemical gasxides area priori not the easiest materials to treat in this
sensors, transparent electrodes, for heat reflection, angay. First, it is well known that thep component of the
catalysis-? There are different ways of preparing Sn®f- oxygen potential is very attractive, due to the lack of a re-
ten related to an oxidation of tin passing through the monpulsive component in the core. A relatively large basis of
oxide SnO, which frequently leads to a coexistence of botlplane waves is hence necessary to correctly describe the oxy-
oxides in the sample. Also an oxygen loss associated witlyen. This problem can partially be overcome by the use of
the reduction of Sn@may lead to a mixture of SnO and soft® or ultrasoft* pseudopotentials. Second, the tin atom
SnO,, and one extensively studied problem is in fact thewith its 50 electrons is relatively large, which means tfiat
distinction between the two oxides by spectroscopic meanselativistic effects have to be taken into account, éndthe
The standard technique to obtain information on the oxidaeuter shells of electrons are relatively loosely bound, which
tion stage would be x-ray photoemission spectroscopy, but implies that the charge density of the atom can be easily
has been shown that this technique is not efficient in the casdistorted by an external perturbation. Moreoviérn), the 4d
of the tin oxides, since the change in the free-ion potentiakhell has a strong overlap with the &nd 5 states, and may
between S#H" and SH" is canceled by the change in the be considered as a semicore level. This last kind of difficulty
Madelung potential at tin sites between the two latticesalso shows up in more frequently studied, smaller atoms, like
Hence, the question is rather approached by detailed studiegllium, and the exhaustive discussion about how the gal-
of the valence band regiotf. High-quality experimental re- lium 3d level should be treated iab initio calculation of,
sults are available, especially for Spy@nd also theoretical e.g., gallium nitride is a good illustration for the complexity
studies have mostly concentrated on $ri€ee, for example, of this problem®®
Refs. 4—10, whereas only very few works on SnO exist. The problem(i) is easily solved by including scalar rela-
SnO, moreover, is an interesting material to study fromtivistic corrections in the pseudopotentials. In the present
the theoretical point of view, especially in comparison withwork, we will show that the difficulty(iii) can in fact be
SnO,. Both oxides have a tetragonal structure at room temevercome for the tin oxides, whereas it is extremely impor-
perature and normal pressure, but whereas,Se¥Dibits a  tant to properly take into account poifit). We illustrate
strong degree of isotropy, with an alternation of tin and oxy-how drastically the equilibrium geometry can be affected by
gen planes, SnO has a layered structure, with two planes @n improper treatment of this effect, and demonstrate how
tin atoms facing each other. The cohesion of the Soi@stal  appropriate choices in the generation and application of the
is hence easy to understand qualitatively on the basis of eletin pseudopotential lead to excellent agreement with experi-
trostatic arguments, whereas this is at first sight not true foment for the ground-state properties of both $ra@d SnO.
SnO. The paper is organized as follows. In Sec. Il we present
It is therefore worthwhile to perform a detailed study of the structure of SnO and SpQOand the computational ap-
the electronic structure, and the resulting crystal structure, gbroach with its technical details used throughout the calcula-
SnO and compare to results obtained on §nO tions. In Sec. Ill we raise the question of the cohesion of
Recent advances @b initio calculations, mostly density- SnO, and present a discussion based on the analysis of its
functional theory local-density approximatidiDFT-LDA) charge density, comparing also to Sn@his will lead us to
applications, allow to determine the ground-state propertiesonsider in Sec. IV some subtleties concerning the choices
and the Kohn-Sham electronic structtfréor even compli- that have been made for the tin pseudopotential.
cated systems. An efficient scheme has however to be chosé&mally, Sec. V contains the conclusions that can be drawn
in order to make the calculation of the desired material propfrom our results.
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separabl® pseudopotentials. For oxygen, they are created
according to the scheme proposed by Troullier and
Martins*® with a core radius of 1.45 bohr for theand p
component, and the atom in its ground state. plampo-

nent is used as the local reference component. For tin, we use
a potential of the Hamann type(called PP in the follow-
ing), with the s, p and d component created in an excited
state with configuration Kr]4d%4 01585085 025 (the
motivation for this rather complicated choice will be dis-
cussed in Sec. I/ The 4d electrons are frozen in the core,
but nonlinear core corrections are applfédrhe s compo-

nent is used as the local reference component. These choices
allow us to work at a plane-wave cutoff of 60 Ry. Increasing
the cutoff to 80 Ry yields a difference of 100 meV per mol-
ecule for the absolute value of the total energy, and leaves
the lattice constants virtually unchanged, whereas a further
increase to 90 Ry changes the total energy by less than 10
meV. In fact, the final results have been obtained at 80 Ry.

FIG. 1. Crystal structure of Sn@eft) and SnQ (right). The ~ We use two special points in the irreducible Brillouin zone

bottom panels show a projection on tft@10 plane. The dashed _(”32) for the Calculati0n§ on SnPand eight specidl points
lines of pane|s(a) and (b) he|p to visualize the pyramid&no, in the IBZ for SnO. This set of parameters guarantees that

panel (a)] and oxygen octahedrofSn0,, panel(b)]. The dashed the results are not biased by incomplete convergence.
lines of panels ¢ and d help to visualise the O and Sn planes.

Il. METHODOLOGY Ill. COHESION

The crystalline structures of SnO and Snée tetragonal Using the above parameters, we have minimized the total
at room temperature and normal pressifig. 1) and belong energy of SnO and SnOwith respect to the electronic de-
to space groupdD), (P4nmm) and D} (P4,/mnm), grees of freedom, and with respect to the internal lattice pa-
respectively:®~*® The difference between SnO and Sni®@  rameteru, at fixeda andc. We have performed this calcula-
essentially an additional oxygen plane in Sn@hich is in-  tion for fourteen different configurationsa(c/a). We have
serted between two tin planes in the layered SnO crystallinéhen fitted the resulting curves with a polynomial of order
structure[see the projections shown in panég and(d) of  three, which allowed us to determine the geometrical equi-
Fig. 1]. As a result Sn@is a more densely packed crystal librium structure. The resulting dependence of the total en-
where each tin atom is surrounded by a slightly distortecergy on the crystal volume has then yielded the bulk modu-
oxygen octahedrofFig. 1(b)] while in SnO the tin atoms sit |us. The theoretical results are shown in Table. I. For SnO,
on the vertices of pyramids with an oxygen square b the comparison of the structural parameters with the experi-
1(a)]. These edge-sharing pyramids form the layers of thenental daté is very good, the largest error being ofa,
SnO structure with tin vertices lying alternatively above andwhich is underestimated by less than 3%. The theoretical
below them. The layers are stacked perpendicularly tacthe cohesive energy turns out to be 9.6 eV/molecule SnO, show-
crystallographic axis with tin atoms facing each otheig.  ing the ususal overestimation of an LDA calculation with
1(c)]. Both crystals are hence described by two parameters respect to the experimental value of 8.6 eV/molecule. The
andc for the unit cell(see Fig. 1, and one internal parameter experime&‘ntal bIU||_< mO?ULuslha_S been determingd frodm the

; ) 1 measured evolution of the lattice parametarand c under
Y tTe 1atoms being located at: 0(10’0%0—'?)’ pressureP given in Ref. 18 according t8=—V,dP/dV,
Sn(0z,u;2,0-u) for SnO and @(u,u,0iu2, 3-U.2).  whereV, is the equilibrium volume. One findBey,= 48
Sn(0,0,03,3,3) for SNO,, in units (@, a, c). +5 GPa. The theoretical valid5 GPa is obtained directly

In order to obtain the theoretical equilibrium geometry, from the relationB=V,d?E/dV?. For SnQ, the agreement
these parameters are determined via total energy minimizaf the calculated structural parameters is even better, the
tions in DFT-LDA. We use norm-conservifg® fully  largest error being less than 2%till on c/a). As for the

TABLE |. Ground-state properties of SnO and Sn@ parenthesis, the experimental values from Refs.
18(Sn0O, structural propertigs23 (SnQ, structural propertigs27 (SnO and Sng cohesive energyand 28
(SnG,, B). For the experimental value & of SnO, see text.

a(A) c/a u E. (eV) B (GP3
SnO 3.76(3.799 1.238(1.2706 0.244 9.6(8.6) 45 (48+5)
Sno, 4.74(4.737 0.66(0.673 0.307(0.30% 15.5(14.9 218 (208
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SO B L LI R m B s p =3.799 A andc/a=1.1074, which leads to a distance of the
B 7 Sn atom with respect to the next oxygen planezsn)
B 7 =1.0912 A. This purely geometric curve is then given by
i i dsn.si= V2(a/2)°+ (c—2z(Sn))?. It deviates from the curve
42 7] that one actually observes when the position of the tin atom
z(Sn) is allowed to vary during the minimizatioitfull
circles. In fact, since the tin atoms repel each other this
latter curve shows a smaller slope than the purely geometric
one: this attempt to maximize the distance between tin atoms
4 is obviously favorable for electrostatic reasons. Sdif},.sniS
i at all distances considerably smaller than the distance be-
- tween the second-neighbor tin and oxygen atoms, i.e., be-
© tween a tin atom and the next oxygen atom in the plane
- facing the tin atom. This distanag,,.o, which includes a
. minimization with respect to the internal parametérence
— the equivalent to the full circles in the case &, .g,), is
7 given by the filled squares. For decreasing values df,,.s,,
and dg,.o get closer, but for the interplane distances in the
range of interestlg,.g,is always smaller thamlg,o. In a
naive approach, neighboring layers should hence repel each
other. This is of course not the case, but it is clear that the
interlayer binding must be a delicate balance with a resulting
Y0 R N T T N TN T T N N T T B relatively weak force. Indeed we find that the compressibility
4.2 4.4 4.6 4.8 perpendicular to the planes is almost one order of magnitude
c (A) smaller than the one we optain in t'he ir!-p'lane directipn.
In order to examine this situation, it is worthwhile to
FIG. 2. Second-neighbor interatomic distances in SnO as a funcstudy the charge distribution in SnO, and to compare it to the
tion of ¢, the lattice parameter controlling the interlayer distance.charge distribution of Sn© The three-dimensional3D)
The dot-dashed line represents the purely geometrical curve oilensities of charge, calculated at the experimental atomic
tained if the internal atomic position of Sn is not allowed to change.configuration, are plotted in Fig. 3. One level is used in each
figure, and its intensity for SnO and Sp@3 chosen such that
cohesive energy, we obtain a value of 15.5 eV/moleculehe ratio between the two intensities is the same as the ratio
SnQ,, to be compared with the experimental value of 14.4pbetween the average densities of SnO and,SnO
eV/molecule. Also the calculated bulk moduluB,e, A simple look at the charge-density distribution of SO
=218 GPa is in good agreement with the valueBY, in the [010] direction[Fig. 3(@] shows that its cohesion is
=208 GPa, which can be extracted from the measured elagasy to understand in terms of electrostatics. For SnO, a
tic constantsC;; via the relation B=(C4,C33+C1,C33  closer look at the graphs is necessary. The left panel in Fig.
—2053)/(2C33+ C11+C1,—4C;y3). This relation, appropri- 3(b) shows in fact an isotropic distribution, because we are
ate for our case of | symmetry, results from the compress- looking at a projection on #01) plane, i.e., on top of a
ibility «=1/B.?* This agreement is also consistent with otherlayer. In the right panel in Fig.(8) we are looking perpen-
findings in the literatur&?® dicularly to the layers, and this projection on(@L0) plane
We can now look in detail at the cohesion of SnO. Thisshows clearly the difference with Sp@n Fig. 3(a). In fact,
oxide has a markedly layered structure, and it is worthwhilewe can see the tin atoms facing each other on a diagonal. The
to study the nature of the binding between the layers. It caninteresting fact is that “hats” of charge covering the Sn at-
not be understood by simple electrostatic arguments, sinoems appear, which screen the Sn ions and decrease the re-
two layers of positively charged tin atoms are facing eachpulsive forces. This effect can be better illustrated when
other. Figure 2 shows the evolution of the second-neighbolooking at a projection on a (D) plane, and compressing
distances in SnO, as a function of the lattice parameter pethe material perpendicular to the planes, at a fixed value of
pendicular to the layerss. Sn and O atoms are next neigh- This is done in Fig. &): the right panel has been calculated
bors in thesameplane, but regarding the interlayer cohesionat the experimental atomic configuration, whereas the left
we are rather interested in distances between atoms on neighanel has been obtained by decreasitry about 13%. The
boring planes. In fact, in this case the shortest distance iShats” show a tendency to be more intense for the smaller

always between two tin atoms, for all values®fThe dot- interplane distance, in order to increase the screening effect,
dashed line in Fig. 2 gives the evolution of these Sn-Sn diswhich allows for interlayer cohesion.

tancesdg,,.s, in function of ¢, which one would obtain by

freezing the atomic positions of the atoms in each layer andy, peTa s OF THE PSEUDOPOTENTIAL APPROACH

by simulating the compression only through a variation of

the distance between the two layers. The starting configura- One might wonder whether the visibly very strong distor-
tion chosen is the one that minimizes the total energyafor tion of the charge density close to the tin ions has any con-

40
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FIG. 3. Charge-density isosurfaces  for  SnO % e =3
(0.069 electrons/bofy (a) and SnO (0.044 electrons/bdhi(b) & o 1 2
and (c)]. 3D surfaces are projected along the indicated crystallo-% . -
graphic directions. In part c, the left panel correspondsdtaaatio & ] _5;
reduced by about 13%see text The dark grey spheres correspond 22 —105 &
to oxygen(larger onesand tin(smaller ones ] =
sequences for the calculations. In order to quantify this dis- 24 bttt EfanerT i a Lol
tortion, we have projected the wave functions of the crystal ) ! 20 25 3.0 3.5
onto contributions of given angular momentum contained in r (bohr)

spheres centered on the tin atoms. The results can then be .
compared to those of a free tin atom where, for our choice or FIG. 4. Panelda) and(b) refer to SnO and Snprespectively.

the core-valence separation, angular momenta highergthan n ea_lch panel, right part: contributions to the valence charge density
. coming from angular momentums,p,d,f) decomposed wave
do not contribute at all.

N A functions of the crystal, plotted versus the radius of a sphere cen-
The results are shown in Fig. 4, where the contributions tci y P P

. . o ered on the tin atom. On the left part, the differenbmponents of

the valence charge de_:nsny coming from the projections o, pseudopotential are shown.
the crystal wave functions witk, p, d, andf symmetry are
shown on the right part of the graphs. They are representeltigher angular momenta gain in importance with increasing
as a function of the radius of the integration sphere. Fosphere size. The important point is, however, that at a radius,
comparison, on the left vertical axis tise p-, andd-radial ~ which is physically meaningful, like =3 bohr, the contri-
components of the tin pseudopotential are also shown. Figurgution of thef component is already significant. This might
4(a) refers to SnO, and Fig.(B) to SnG. have consequences for the pseudopotential calculation. In

When observing the projections it turns out that obviouslyfact, if the f component is important, the potential acting on
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that component becomes important, too. A look at thethe KB transformation, and much less attention is paid to the
pseudopotential components drawn in the same figure showsoblem of how well this component reproduces the higher
that indeed at distances aroung 3 bohr thes, p, andd  angular momenta.
components are still different, which means that they may In the case of the tin atom, and with the creation scheme
give different contributions to the total energy when they aredescribed in Sec. I, the choice of the reference component is
chosen as the local reference componete beloy, and  @lso suggested by KB problems, since a lod@omponent
hence implicitly applied to a state 6symmetry. yields logarithmic derivatives that are of bad quality in the
We shall therefore have a closer look at the importance of2nge of the empty states not too far from the Fermi level.
the local reference component used for the pseudopotenti!i‘owever’ this is not t_he only problem "”k?d to the reference
of the tin atom. component, as we will show in the following.

. . We have in fact also carried out calculations using an-
Very often, one starts with a calculation that can be calledOther pseudopotentigtalled HB in the following, created

“standard”: one creates the pseudopotential freezing th%sing the Hamann scheme and according to the following
core in its ground state for all componerieven those cre- prescription: thes and p components are created in the

ated in an excited stgteand uses the component with the ground state, and theé component is created in the excited
largestl to be the local reference component, i.e.,drehan- configuration proposed in Ref. 19, namely
nel for the case of tin. Taking the “largest component as [Kr]4di95 5% 755,25 The default core radii of 1.1, 1.3,
local reference component has the obvious advantage thatihq 2.0 pohr for the, p, andd component, respectively, are
simplifies the calculations. It has however to be justified. Let ,saq. The core charge, with a model core radius of 0.75 bohr,
us therefore recall the basic ideas involved in the choice of % frozen in the ground-state configuration. Figufe) Shows
local reference component. _ the logarithmic derivatives for that pseudopotential, using
The pseudopotential as obtained from the atomic calculag,q ¢ component as the local reference component. The
tion is in principle built up by an infinite sum of projections 5greement between the all-electron result, the semilocal
onto angular momenta: pseudopotential result and the separable KB one in the en-
ergy range of interest around the Fermi level is very good
VPS= >0 VPS(n)[1)(]] (1)  concerning the semilocal form, and also acceptable concern-
! ing the separable one. In order to complete the illustration of
Making use of the facts that the radial componerft§(r) the quality of thig pseudopotential', we havg performeq cal-
become equal to each other starting from some distance culations of the glgenvalqes of_an |solat_ed tin atom in differ-
that atomic wave functions of increasing angular momentung"t Strongly excited configurations, which are described by
are centered increasingly far from the atom, and that morethe quantum numbers and occupations listed in the first three
over even in the solid close to the atoms higher angular mgE0lumns of Table II. The fourth column shows the results of
menta are less important than the ones that are present in tAU-electron calculations, performed with a frozen core that is

atomic ground state, one can choose an angular momentufptained from a grour!d-state calculation. These are the re-
| such that/PS(r) =\V/'°¢ for everyl >| The sum over sults that should be directly compared to the results of the
max | - max-

: HB pseudopotential, shown in column 5, which has been
Eqg. (1) can hence be rewritten as . ’ ’
a- (D created with the same coréor the sake of completeness,

I max o we show the same comparison also for the PP pseudopoten-
VPS= D0 VPS(H)|[INI|+ Ve D || (2)  tial used throughout the calculations, in Table Il. In that
1=0 =Imaxt1 case, in the all-electron calculations the core is frozen in the

excited state used to create the pseudopotentik agree-
ment between the all-electron frozen core and both pseudo-
Lmax potential results is good. We have also explicitly checked
VPS=\/1oc( 1) + 2 AVPS(H)|1)(| 3) that the_at_omlc eigenvalues calculated using the KB forr_n are
=0 close(within less than 10 meMo the ones using the semilo-
. DS/ N\ /DS loc cal pseudopotential. Moreover, for the HB and similar
with AVP(r) =V I(r)—V (r). Of course, the local refer- seydopotentials, we have performed calculations on the sol-
ence componen °“(r) must be chosen such that it repro- igs with and without using the separable form proposed by
duces the scattering properties of the potential fot,in Kleinman and Bylande?® and did not find significant differ-
an optimum way. ences concerning total energies. Absolute values of the total
Very often, and also in our case, the nonlocal part of thesnergies have in fact changed by less than 100 meV.
pseudopotential, s AVP(r)|1)(l| is further modified by We should hence expect that using the HB potential the
transforming it into the fully separable form proposed byseparable form of the pseudopotential should not introduce a
Kleinman and ByIande(rKB).20 This requires additional care relevant dependence of the results on the choice of the ref-
in the choice of the reference component, since the latteerence component. However, theseindeed a significant
determines the nonlocal part of the potential that is to benfluence of the reference component on the results: using
transformed. A bad choice may strongly degrade the resultshe HB pseudopotential, we obtaiat various fixed geom-
and even lead to the appearance of unphysical ghost $tatesetries a difference in total energy of the order of 3 eV,
Since this problem is well known, generally the choice of thebetween the results obtained with a losabr with a locald
reference component is made on the basis of the quality afomponent. This is of course unacceptable, since changes in

and using the completeness relat®fL | ){(I|=1, one has
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— all-electron . separable TABLE II. Tin atom eigenvalues in different excited configura-
——~ semilocal ¥ reference state tions: comparison between all electron calculations, with the core
oo : \ frozen (AE-CF) in the ground state, and the HB pseudopotential.
! |
0.0 { i ;@ n | Occupation AE-FQeV) HB(eV)
s | Confl 5 0 2 -10.8150  —10.8150
8 ool 5 1 2 —3.8737 —3.8737
§ oof o 5 0 1.00 —28.2263  —28.1730
B 100 - Conf2 5 1 0.75 —19.5376 —19.5091
@ 5 2 0.25 —9.5960 —9.5953
| 100 - 5 0 1.00 —28.6702 —28.6050
0'0 L . 5 1 0.75 —19.9457 —19.9095
_10'0 | Conf3 5 2 0.10 —9.9278 —9.9240
’ 6 O 0.10 —10.2050 —10.2260
. 4 3 0.10 —5.0792 —4.8085
@) E (hartree) 5 0 0.85 ~283047 —28.3151
allelectron  <---- separable Conf4 5 1 0.85 —-19.5722  —19.6009
——— semilocal ¥—7 reference state 5 2 0.25 —9.5952 —9.6297
10.0 \
0.0 d
100 ﬁ the total energy due to a different reference component are
= not canceled by a change in the total energy of the pseudoa-
E 100 tom, and remain hence as errors on physical quantities like
E 0.0 R the cohe_siye energy. Thi_s facp confirms a finding of a preyi-
2 0 ﬁ = ous p(ellmlnary study 01_‘ tin oxides, where we had been using
o ' .. a similar pseudopotential and a lochtomponent, and ob-
a tained large errors on the equilibrium geometry, in particular
an underestimation af by as much as 11% That pseudo-
§ potential(called BHS in the followingwas the one proposed
in the original paper of Bachelet, Hamann, and Swlt? It
is very similar to the HB one, and we have in fact checked
(b) E (hartree) that it yields total energy differences, which are very close to
those obtained with the latter. “Very close” means here that
— all-electron  ~ ----- separable . .
——— semilocal v ¥ reference state when we calculate total energy differenceE,,,, either be-
. - tween two different geometries or between two different ref-
10.0 I \\ erence components, the BHS and HB pseudopotentials yield
0.0 i ~~~~~~~ d
-10.0 ﬁ i TABLE Ill. Tin atom eigenvalues in different excited configu-
) : - - rations: comparison between the PP pseudopotential and all-
8 100 \ electron calculations, with the core frozen in the configuration used
5 00 b to create PP.
£ 00 ﬁ .
@ . n I Occupation AE-FQeV) PReV)
° 10.0 Confl 5 0 2 —10.6786 —10.6999
0.0 s 5 1 2 —3.8316 —3.8454
-10.0 5 0 1.00 —27.9361 —27.9363
Conf2 5 1 0.75 —19.3462 —19.3474
© 5 2 0.25 —9.5354 —9.5399
5 0 1.00 —28.3731 —28.3627
5 1 0.75 —19.7473 —19.7419
FIG. 5. (a) Logarithmic derivatives of the tin HB pseudopoten- Conf3 5 2 0.10 —9.8613 —9.8636
tial (see text using thed component as local reference potential. 6 0 0.10 —10.1632 —10.1839
Full line: all-electron; long-dashed line: semilocal pseudopotential; 4 3 0.10 —5.0731 —5.0731
dashed: separable KB pseudopotential. The black arrows indicate 5 0 0.85 —28.0156  —28.0156
the energy of the reference state used in the Hamann sciidélje.  Conf4 5 1 0.85 —19.3818 —19.3818
Same, for the “hard” pseudopotential of Silicotg): same, for the 5 2 0.25 —9.5360 —9.5360

“soft” pseudopotential of silicon(see text and caption of Fig).6
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3.0 — T T T T T T The difference of the logarithmic derivatives is such that
it would be very hard to deduce any significant influence on
the transferability of the pseudopotential, in particular for
ground-state calculations, with a slight preference for the op-
tion “soft.” The overall results are qualitatively very similar

to those of the tin atom. However, performing total energy
calculations for bulk silicon with the hard pseudopotential
we have found that changing the reference component from
d to sleaves the lattice constant unchanged, and increases the
absolute value of the total energy by only 50 meV. In fact,
there is a major difference with tin oxide: a look at the hard
pseudopotential in Fig. (6) shows that already ar

=2 bohr the different components are indistinguishable;
second, at this distance the analysis of angular momentum
contributions in bulk silicon reveals no significant presence
of thef channel yet. This explains why bulk silicon with this
pseudopotential is not sensitive to a change in the reference
component, but SnO is indeed. Instead, a situation similar to
the one of SnO is reproduced when we use the soft pseudo-
potential. Figure @) shows that the components are now
different up tor=2.8 bohr. In fact, the total energy calcu-
lations on the solid yield results, which differ by as much as
0.5 eV when changing the reference component feaimd,

and which also show a change in the lattice constant of 1.3%
due to the change of the reference component. The problem
does hence also exist in silicon when a qo#. rather stan-
dard pseudopotential is used, although to a much lesser ex-
tent than in SnO.

One could be tempted to explain the strdrapntribution
around the tin atom in SnO with the particularly nonisotropic
structure of this material. However, this hypothesis is easily
“0.0 1.0 2.0 3.0 eliminated by an analysis of the charge density of §nO

r (bohr) which is a very isotropic material. The result is shown in Fig.
4(b). It turns out that the behavior is very similar to that of

FIG. 6. Silicon pseudopotential created with the HamannSnO In particular, also in SnOat distances around
schemé! and using the standard configuration proposed in Ref. 19._3 .bohr thef Com’ponent starts to be visible. Hence. for

The core radi fo‘f thes, P an.dd.componems are 1.0, 1.3, and 0.96 both oxides the choice of the reference component should be
bohr in panela “hard,” while in panel (b) r4 has been increased

apft important.

to 1.5 bohr “soft. This is in fact the case: performing a ground-state calcu-
lation for SnQ with thed component as the local reference,
resultsAEL® andAE(? , where| AERTS— AE[Y| is atleast  the results are still reasonable when compared to the experi-
one order of magnitude smaller thavE,,, itself. Our de- mental values, but significantly different from the results
tailed analysis for the HB pseudopotential should hence alstisted in Table I: in particular, the theoretical equilibrium
apply to the BHS one, which confirms again that indeed theparametera turns out to change froma=4.74 A to
choice of the reference component is critical and can lead ta=5.05 A, whereas the ratio/a is stable.
very bad results as those of Ref. 11, even when there is no It would of course not be very satisfactory to conclude
problem with the KB separation. that the “best” reference component is simply the one yield-

These findings are not in contradiction with the generallying the best agreement between theoretical and experimental
good results that are obtained on other materials using amgsults. However, more evidence is given by performing cal-
“good” (i.e., without problems due to the KB schemef-  culations on the isolated tin atom. Using the code of Ref. 26,
erence component. In order to illustrate this point, we havave have studied total energies, eigenvalues and pseudo-wave
created two pseudopotentials for silicon. They are created ifunctions of the tin atom in different excited states including
the Hamann scheme, and using the configuration proposed oundf states, using a pseudopotential with four components
Ref. 19 for the various components. The first “hard” one (s to f). The last component was either a tfueomponent
has core radirs=1.0, r,=1.3, andry=0.96 bohr, and the created according to the scheme of Ham#nmith the atom
second “soft” one hag=1.0,r,=1.3, andry=1.5 bohr. inits ground state and a core radius of 1.8 bohr, or one of the
The two pseudopotentials are shown in Figa)6and &b),  other three lower components. In that way, we can simulate
respectively, and their logarithmic derivatives are shown inthe role of the reference component in the solid. We have
Fig. 5b) and Fc). verified that, whereas using the trieomponent as the “ref-

V(r) (hartree)

V(r) (hartree)

(b)
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erence” component yields generally very good eigenvaluesave in fact performed a first set of calculations on the solid
for the f level (which simply means that the pseudopotentialby using a pseudopotential created with the core frozen in its
is transferablg this is not always true for the other choices ground state. We have then analyzed the charge distribution
for the forth component. In particular, thé component in the solid, by projecting the states on the components of the
yields the worst results, whereas the choice af the “ref-  different angular momenta within spheres around each atom.
erence” component yields results that are the closest to th#&/e have chosen the spheres such that the radius of the
ones obtained with thecomponent. Of course, these tests onsphere around an oxygen atom is roughly half of the distance
the isolated atom will have a tendency to overestimate thetween neighboring oxygen atoms, and that the total charge
effects, and cannot give any quantitative insight concerningontained in the spheres around the tin and oxygen atoms
the solid, but we believe that they well illustrate the tenden-equa|s the number of valence electrons. This prescription
cies, and that we can in fact conclude thatéfoemponentis yields a radius of 2.5 bohr for the sphere around an oxygen
the best substitute for the trieomponent. We have verified atom, and for the sphere around a tin atom 2.5 bohr in,SnO
this fact further by performing calculations on Sp@t vari- 3 75 phohr in SnO. The resulting total charges on the tin at-
ous geometries, using tr& p, d, or f component as local g are—1.15 electrons in SnO ane-2.0 electrons in
ret:ierencel colmpor:r?nt.nV\ﬁ f'ir\'/d thfr‘]t f(?r allltex\;a\llmlnhed rget%m'SnQ, which is a reasonable estimate. In detail, in $w@
€lries a locals component gives the resuits ch are 1€, ptain 0.85, 0.85, 0.25, and 0.1 for the valence electrons of
closest to the ones obtained with a lodatomponent(a inof s b d andf symmetrv. respectively. whereas the cor-
typical error on the absolute total energy is of the order 01‘I ' P G, y Y, P Y,
. responding results for SnO are 1.33, 1.17, 0.25, and 0.1.
0.3 eV, and energy differences are well reproducetiereas : :
It has turned out that the relaxation of the core in such a
the performance of the component as the local reference . X S o
S . fixed configuration is not critical at all for the results. In
one is slightly worse, and a locdicomponent yields results X . . o
particular, calculations performed with a core frozen in its

that are different by up to 5 eV, ground state yield lattice parameters that differ from the ones

These numerical results add to the fact thatit is rea- . . . :
sonable to assume that, when the potential adapted to theobtalned with the pseudopotential used in the present work

. : ; . (and which is, in fact, the one calculated in the configuration
orbitals is not available, the component best simulates a deduced from the analysis of SgCby less than 1% . From
sort of spherical average, right as in tight binding calcula-a” those results, we ca)r/1 estima?e tgat it is reasonable to treat
tions ans® orbital can replace the set dforbitals and that the 4d eIectrons7 as core electrons for the calculations of this
(ii) as pointed out already in Ref. 19, since theomponent kind of structural properties, thus validitating the results that
refers to a state that is not bound in the ground state of the h dp' F’Eh' ’ K 9
atom, it bears the biggest arbitrariness. In the case of s;ilicorYye ave exposed n this work.
it turns out that this arbitrariness induces changes in a region
close to the core, that is not relevant for cohesion, whereas

this is not true for the tin oxides. V. CONCLUSIONS
The above discussion and comparison with experiments |, conclusion, we have performetb initio calculations of

draw validity from the assumption that thel £lectrons can e ground-state properties of tin monoxide. We have shown
in fact be treated as core electrons. This choice is of coursg st the cohesion of SO can be understood in terms of in-
strongly suggested by practical reasons, especially in view Qrjayer screening. In spite of the resulting relatively weak
the fact that treating the electrons of a given sheth as  jyieraction between the layers, we do not find particular
valence electrons may impose to treat also iseandnp  nroplems linked to the use of the local-density approxima-
electrons as valence electrons, which is generally not feasibigy, Instead, we have discussed the importance of the choice
in a plane-wave calculation without making compromises Oryf the |ocal reference component of the tin pseudopotential.
the numerical quality of the results. On the other hand, sevyy emerges that, whereas it is a general finding that the local
eral studies on tin oxidé have shown that there is only ¢omponent should be chosen with care even when no prob-
very few hybridization of the Sndk states with other states. |ems Jinked to fully separable potentials arise, in the case of
Nevertheless, the question whether the only loosely boun&no a pad choice for the reference component can be the
Sn 4d electrons can really be frozen in the core should bgeason for big discrepancies with experiment. With a care-

treated with care. Tests on the isolated Sn atom suggest yjly constructed pseudopotential on the other hand, excel-

perturbed, as it will be the case in the solid. This becomes
clear from a comparison of the all-electron results of Table Il
and Table lll, respectively. The only difference between
these results is the excitation of the core. The differences are
significant. Again, it would be an exaggeration to extrapolate We thank Martin Fuchs for helpful discussions. This work
results from the tests on the isolated atom to quantitativevas supported in part by the European Community program
results for the solid, but these findings suggest that the relax*Human Capital and Mobility” through Contract No. ERB
ation of the Sn 4 states may haveomeinfluence on the CHRX CT930337. Computer time on therAY c98 was
results. In order to include this fact as much as possible igranted by IDRISProject No. CP9/970544Credit is given
our calculations, we have tried to simulate the perturbatiorio John Shelley who has kindly provided his graphics movie
of the Sn 4d states in the solid via the pseudopotential: weode.
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