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Ab initio pseudopotential calculation of the equilibrium structure of tin monoxide
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We present anab initio pseudopotential calculation of the structural properties of stannous oxide SnO. We
discuss the delicate balance of different contributions to the cohesion of this material, and compare the
monoxide to the dioxide SnO2. We point out how different choices concerning the pseudopotential of tin may
dramatically influence the resulting equilibrium structure of SnO, and show that the physically most appropri-
ate choice leads to excellent agreement with experiment.
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I. INTRODUCTION

Among the different tin oxides, the most frequently stu
ied one is the stannic oxide SnO2, due to its technologica
importance based on possible applications in chemical
sensors, transparent electrodes, for heat reflection,
catalysis.1,2 There are different ways of preparing SnO2, of-
ten related to an oxidation of tin passing through the m
oxide SnO, which frequently leads to a coexistence of b
oxides in the sample. Also an oxygen loss associated w
the reduction of SnO2 may lead to a mixture of SnO an
SnO2, and one extensively studied problem is in fact t
distinction between the two oxides by spectroscopic mea
The standard technique to obtain information on the oxi
tion stage would be x-ray photoemission spectroscopy, b
has been shown that this technique is not efficient in the c
of the tin oxides, since the change in the free-ion poten
between Sn21 and Sn41 is canceled by the change in th
Madelung potential at tin sites between the two lattic
Hence, the question is rather approached by detailed stu
of the valence band region.3,4 High-quality experimental re-
sults are available, especially for SnO2, and also theoretica
studies have mostly concentrated on SnO2 ~see, for example
Refs. 4–10!, whereas only very few works on SnO exist.11

SnO, moreover, is an interesting material to study fr
the theoretical point of view, especially in comparison w
SnO2. Both oxides have a tetragonal structure at room te
perature and normal pressure, but whereas SnO2 exhibits a
strong degree of isotropy, with an alternation of tin and ox
gen planes, SnO has a layered structure, with two plane
tin atoms facing each other. The cohesion of the SnO2 crystal
is hence easy to understand qualitatively on the basis of e
trostatic arguments, whereas this is at first sight not true
SnO.

It is therefore worthwhile to perform a detailed study
the electronic structure, and the resulting crystal structure
SnO and compare to results obtained on SnO2.

Recent advances inab initio calculations, mostly density
functional theory local-density approximation~DFT-LDA!
applications, allow to determine the ground-state proper
and the Kohn-Sham electronic structure12 for even compli-
cated systems. An efficient scheme has however to be ch
in order to make the calculation of the desired material pr
0163-1829/2001/64~4!/045119~9!/$20.00 64 0451
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erties feasible. Since here we concentrate on cohesion
valence band features, it is reasonable to treat the inner s
of the atoms only approximately, and hence to use no
conserving pseudopotentials and a plane-wave basis set
oxides area priori not the easiest materials to treat in th
way. First, it is well known that thep component of the
oxygen potential is very attractive, due to the lack of a
pulsive component in the core. A relatively large basis
plane waves is hence necessary to correctly describe the
gen. This problem can partially be overcome by the use
soft13 or ultrasoft14 pseudopotentials. Second, the tin ato
with its 50 electrons is relatively large, which means that~i!
relativistic effects have to be taken into account, and~ii ! the
outer shells of electrons are relatively loosely bound, wh
implies that the charge density of the atom can be ea
distorted by an external perturbation. Moreover~iii !, the 4d
shell has a strong overlap with the 5s and 5p states, and may
be considered as a semicore level. This last kind of difficu
also shows up in more frequently studied, smaller atoms,
gallium, and the exhaustive discussion about how the g
lium 3d level should be treated inab initio calculation of,
e.g., gallium nitride is a good illustration for the complexi
of this problem.15

The problem~i! is easily solved by including scalar rela
tivistic corrections in the pseudopotentials. In the pres
work, we will show that the difficulty~iii ! can in fact be
overcome for the tin oxides, whereas it is extremely imp
tant to properly take into account point~ii !. We illustrate
how drastically the equilibrium geometry can be affected
an improper treatment of this effect, and demonstrate h
appropriate choices in the generation and application of
tin pseudopotential lead to excellent agreement with exp
ment for the ground-state properties of both SnO2 and SnO.

The paper is organized as follows. In Sec. II we pres
the structure of SnO and SnO2, and the computational ap
proach with its technical details used throughout the calcu
tions. In Sec. III we raise the question of the cohesion
SnO, and present a discussion based on the analysis o
charge density, comparing also to SnO2. This will lead us to
consider in Sec. IV some subtleties concerning the cho
that have been made for the tin pseudopotent
Finally, Sec. V contains the conclusions that can be dra
from our results.
©2001 The American Physical Society19-1
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II. METHODOLOGY

The crystalline structures of SnO and SnO2 are tetragonal
at room temperature and normal pressure~Fig. 1! and belong
to space groupsD4h

7 (P4/nmm) and D4h
14 (P42 /mnm),

respectively.16–18 The difference between SnO and SnO2 is
essentially an additional oxygen plane in SnO2, which is in-
serted between two tin planes in the layered SnO crysta
structure@see the projections shown in panels~c! and ~d! of
Fig. 1#. As a result SnO2 is a more densely packed cryst
where each tin atom is surrounded by a slightly distor
oxygen octahedron@Fig. 1~b!# while in SnO the tin atoms si
on the vertices of pyramids with an oxygen square basis@Fig.
1~a!#. These edge-sharing pyramids form the layers of
SnO structure with tin vertices lying alternatively above a
below them. The layers are stacked perpendicularly to thc
crystallographic axis with tin atoms facing each other@Fig.
1~c!#. Both crystals are hence described by two parametea
andc for the unit cell~see Fig. 1!, and one internal paramete

u, the atoms being located at: O(0,0,0;1
2 , 1

2 ,0),

Sn(0,12 ,u;1
2 ,0,-u) for SnO and O6(u,u,0;u1 1

2 , 1
2 -u,1

2 ),

Sn(0,0,0;12 , 1
2 , 1

2 ) for SnO2, in units (a, a, c).
In order to obtain the theoretical equilibrium geomet

these parameters are determined via total energy minim
tions in DFT-LDA. We use norm-conserving,13,19 fully

FIG. 1. Crystal structure of SnO~left! and SnO2 ~right!. The
bottom panels show a projection on the~010! plane. The dashed
lines of panels~a! and ~b! help to visualize the pyramids@SnO,
panel ~a!# and oxygen octahedron@SnO2, panel ~b!#. The dashed
lines of panels c and d help to visualise the O and Sn planes.
04511
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separable20 pseudopotentials. For oxygen, they are crea
according to the scheme proposed by Troullier a
Martins,13 with a core radius of 1.45 bohr for thes and p
component, and the atom in its ground state. Thep compo-
nent is used as the local reference component. For tin, we
a potential of the Hamann type21 ~called PP in the follow-
ing!, with the s, p and d component created in an excite
state with configuration@Kr#4d104f0.15s0.855p0.855d0.25 ~the
motivation for this rather complicated choice will be di
cussed in Sec. IV!. The 4d electrons are frozen in the core
but nonlinear core corrections are applied.22 The s compo-
nent is used as the local reference component. These ch
allow us to work at a plane-wave cutoff of 60 Ry. Increasi
the cutoff to 80 Ry yields a difference of 100 meV per mo
ecule for the absolute value of the total energy, and lea
the lattice constants virtually unchanged, whereas a fur
increase to 90 Ry changes the total energy by less than
meV. In fact, the final results have been obtained at 80
We use two specialk points in the irreducible Brillouin zone
~IBZ! for the calculations on SnO2, and eight specialk points
in the IBZ for SnO. This set of parameters guarantees
the results are not biased by incomplete convergence.

III. COHESION

Using the above parameters, we have minimized the t
energy of SnO and SnO2 with respect to the electronic de
grees of freedom, and with respect to the internal lattice
rameteru, at fixeda andc. We have performed this calcula
tion for fourteen different configurations (a,c/a). We have
then fitted the resulting curves with a polynomial of ord
three, which allowed us to determine the geometrical eq
librium structure. The resulting dependence of the total
ergy on the crystal volume has then yielded the bulk mo
lus. The theoretical results are shown in Table. I. For Sn
the comparison of the structural parameters with the exp
mental data18 is very good, the largest error being onc/a,
which is underestimated by less than 3%. The theoret
cohesive energy turns out to be 9.6 eV/molecule SnO, sh
ing the ususal overestimation of an LDA calculation wi
respect to the experimental value of 8.6 eV/molecule. T
experimental bulk modulusB has been determined from th
measured evolution of the lattice parametersa and c under
pressureP given in Ref. 18 according toB52V0dP/dV,
where V0 is the equilibrium volume. One findsBexp548
65 GPa. The theoretical value~45 GPa! is obtained directly
from the relationB5V0d2E/dV2. For SnO2, the agreement
of the calculated structural parameters is even better,
largest error being less than 2%~still on c/a). As for the
fs.
TABLE I. Ground-state properties of SnO and SnO2. In parenthesis, the experimental values from Re
18 ~SnO, structural properties!, 23 (SnO2, structural properties!, 27 ~SnO and SnO2, cohesive energy!, and 28
(SnO2 , B). For the experimental value ofB of SnO, see text.

a (Å) c/a u Ec ~eV! B ~GPa!

SnO 3.76~3.799! 1.238~1.2706! 0.244 9.6~8.6! 45 (4865)
SnO2 4.74 ~4.737! 0.66 ~0.673! 0.307~0.307! 15.5 ~14.4! 218 ~208!
9-2
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AB INITIO PSEUDOPOTENTIAL CALCULATION OF . . . PHYSICAL REVIEW B 64 045119
cohesive energy, we obtain a value of 15.5 eV/molec
SnO2, to be compared with the experimental value of 14
eV/molecule. Also the calculated bulk modulusBtheo
5218 GPa is in good agreement with the value ofBexp
5208 GPa, which can be extracted from the measured e
tic constants Ci j via the relation B5(C11C331C12C33

22C13
2 )/(2C331C111C1224C13). This relation, appropri-

ate for our case of D4h symmetry, results from the compres
ibility k51/B.24 This agreement is also consistent with oth
findings in the literature.8,9

We can now look in detail at the cohesion of SnO. Th
oxide has a markedly layered structure, and it is worthwh
to study the nature of the binding between the layers. It c
not be understood by simple electrostatic arguments, s
two layers of positively charged tin atoms are facing ea
other. Figure 2 shows the evolution of the second-neigh
distances in SnO, as a function of the lattice parameter
pendicular to the layers,c. Sn and O atoms are next neig
bors in thesameplane, but regarding the interlayer cohesi
we are rather interested in distances between atoms on n
boring planes. In fact, in this case the shortest distanc
always between two tin atoms, for all values ofc. The dot-
dashed line in Fig. 2 gives the evolution of these Sn-Sn
tancesdSn-Sn in function of c, which one would obtain by
freezing the atomic positions of the atoms in each layer
by simulating the compression only through a variation
the distance between the two layers. The starting config
tion chosen is the one that minimizes the total energy foa

FIG. 2. Second-neighbor interatomic distances in SnO as a f
tion of c, the lattice parameter controlling the interlayer distan
The dot-dashed line represents the purely geometrical curve
tained if the internal atomic position of Sn is not allowed to chan
04511
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53.799 Å andc/a51.1074, which leads to a distance of th
Sn atom with respect to the next oxygen plane ofz(Sn)
51.0912 Å. This purely geometric curve is then given
dSn-Sn5A2(a/2)21„c22z(Sn)…2. It deviates from the curve
that one actually observes when the position of the tin at
z(Sn) is allowed to vary during the minimization~full
circles!. In fact, since the tin atoms repel each other t
latter curve shows a smaller slope than the purely geome
one: this attempt to maximize the distance between tin ato
is obviously favorable for electrostatic reasons. Still,dSn-Snis
at all distances considerably smaller than the distance
tween the second-neighbor tin and oxygen atoms, i.e.,
tween a tin atom and the next oxygen atom in the pla
facing the tin atom. This distancedSn-O, which includes a
minimization with respect to the internal parameters~hence
the equivalent to the full circles in the case ofdSn-Sn!, is
given by the filled squares. For decreasing values ofc, dSn-Sn
and dSn-O get closer, but for the interplane distances in t
range of interestdSn-Sn is always smaller thandSn-O. In a
naive approach, neighboring layers should hence repel e
other. This is of course not the case, but it is clear that
interlayer binding must be a delicate balance with a result
relatively weak force. Indeed we find that the compressibi
perpendicular to the planes is almost one order of magnit
smaller than the one we obtain in the in-plane direction.

In order to examine this situation, it is worthwhile t
study the charge distribution in SnO, and to compare it to
charge distribution of SnO2. The three-dimensional~3D!
densities of charge, calculated at the experimental ato
configuration, are plotted in Fig. 3. One level is used in ea
figure, and its intensity for SnO and SnO2 is chosen such tha
the ratio between the two intensities is the same as the r
between the average densities of SnO and SnO2.

A simple look at the charge-density distribution of SnO2
in the @010# direction @Fig. 3~a!# shows that its cohesion i
easy to understand in terms of electrostatics. For SnO
closer look at the graphs is necessary. The left panel in
3~b! shows in fact an isotropic distribution, because we
looking at a projection on a~001! plane, i.e., on top of a
layer. In the right panel in Fig. 3~b! we are looking perpen-
dicularly to the layers, and this projection on a~010! plane
shows clearly the difference with SnO2 in Fig. 3~a!. In fact,
we can see the tin atoms facing each other on a diagonal.
interesting fact is that ‘‘hats’’ of charge covering the Sn a
oms appear, which screen the Sn ions and decrease th
pulsive forces. This effect can be better illustrated wh
looking at a projection on a (11̄0) plane, and compressin
the material perpendicular to the planes, at a fixed value oa.
This is done in Fig. 3~c!: the right panel has been calculate
at the experimental atomic configuration, whereas the
panel has been obtained by decreasingc by about 13%. The
‘‘hats’’ show a tendency to be more intense for the sma
interplane distance, in order to increase the screening ef
which allows for interlayer cohesion.

IV. DETAILS OF THE PSEUDOPOTENTIAL APPROACH

One might wonder whether the visibly very strong disto
tion of the charge density close to the tin ions has any c

c-
.
b-
.

9-3
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MEYER, ONIDA, PALUMMO, AND REINING PHYSICAL REVIEW B 64 045119
sequences for the calculations. In order to quantify this d
tortion, we have projected the wave functions of the crys
onto contributions of given angular momentum contained
spheres centered on the tin atoms. The results can the
compared to those of a free tin atom where, for our choice
the core-valence separation, angular momenta higher thp
do not contribute at all.

The results are shown in Fig. 4, where the contributions
the valence charge density coming from the projections
the crystal wave functions withs, p, d, and f symmetry are
shown on the right part of the graphs. They are represe
as a function of the radius of the integration sphere.
comparison, on the left vertical axis thes-, p-, andd-radial
components of the tin pseudopotential are also shown. Fig
4~a! refers to SnO, and Fig. 4~b! to SnO2.

When observing the projections it turns out that obviou

FIG. 3. Charge-density isosurfaces for SnO2

(0.069 electrons/bohr3) ~a! and SnO (0.044 electrons/bohr3) @~b!
and ~c!#. 3D surfaces are projected along the indicated crysta
graphic directions. In part c, the left panel corresponds to ac/a ratio
reduced by about 13%~see text!. The dark grey spheres correspon
to oxygen~larger ones! and tin ~smaller ones!.
04511
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higher angular momenta gain in importance with increas
sphere size. The important point is, however, that at a rad
which is physically meaningful, liker 53 bohr, the contri-
bution of thef component is already significant. This mig
have consequences for the pseudopotential calculation
fact, if the f component is important, the potential acting o

-

FIG. 4. Panels~a! and~b! refer to SnO and SnO2, respectively.
In each panel, right part: contributions to the valence charge den
coming from angular momentum (s,p,d, f ) decomposed wave
functions of the crystal, plotted versus the radius of a sphere c
tered on the tin atom. On the left part, the differentl components of
the pseudopotential are shown.
9-4
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AB INITIO PSEUDOPOTENTIAL CALCULATION OF . . . PHYSICAL REVIEW B 64 045119
that component becomes important, too. A look at
pseudopotential components drawn in the same figure sh
that indeed at distances aroundr 53 bohr thes, p, and d
components are still different, which means that they m
give different contributions to the total energy when they
chosen as the local reference component~see below!, and
hence implicitly applied to a state off symmetry.

We shall therefore have a closer look at the importance
the local reference component used for the pseudopote
of the tin atom.

Very often, one starts with a calculation that can be cal
‘‘standard’’: one creates the pseudopotential freezing
core in its ground state for all components~even those cre-
ated in an excited state!, and uses the component with th
largestl to be the local reference component, i.e., thed chan-
nel for the case of tin. Taking the ‘‘largestl ’’ component as
local reference component has the obvious advantage th
simplifies the calculations. It has however to be justified.
us therefore recall the basic ideas involved in the choice
local reference component.

The pseudopotential as obtained from the atomic calc
tion is in principle built up by an infinite sum of projection
onto angular momenta:

Vps5(
l

Vl
ps~r !u l &^ l u ~1!

Making use of the facts that the radial componentsVl
ps(r )

become equal to each other starting from some distancr,
that atomic wave functions of increasing angular moment
are centered increasingly far from the atom, and that mo
over even in the solid close to the atoms higher angular
menta are less important than the ones that are present i
atomic ground state, one can choose an angular momen
l max such thatVl

ps(r ).Vloc for everyl . l max. The sum over
Eq. ~1! can hence be rewritten as

Vps5(
l 50

l max

Vl
ps~r !u l &^ l u1Vloc (

l 5 l max11

`

u l &^ l u ~2!

and using the completeness relation( l 50
` u l &^ l u51, one has

Vps5Vloc~r !1(
l 50

l max

DVl
ps~r !u l &^ l u ~3!

with DVl
ps(r )5Vl

ps(r )2Vloc(r ). Of course, the local refer
ence componentVloc(r ) must be chosen such that it repr
duces the scattering properties of the potential forl . l max in
an optimum way.

Very often, and also in our case, the nonlocal part of
pseudopotential( l 50

l maxDVl
ps(r )u l &^ l u is further modified by

transforming it into the fully separable form proposed
Kleinman and Bylander~KB!.20 This requires additional car
in the choice of the reference component, since the la
determines the nonlocal part of the potential that is to
transformed. A bad choice may strongly degrade the res
and even lead to the appearance of unphysical ghost sta25

Since this problem is well known, generally the choice of t
reference component is made on the basis of the qualit
04511
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the KB transformation, and much less attention is paid to
problem of how well this component reproduces the hig
angular momenta.

In the case of the tin atom, and with the creation sche
described in Sec. II, the choice of the reference compone
also suggested by KB problems, since a locald component
yields logarithmic derivatives that are of bad quality in t
range of the empty states not too far from the Fermi lev
However, this is not the only problem linked to the referen
component, as we will show in the following.

We have in fact also carried out calculations using a
other pseudopotential~called HB in the following!, created
using the Hamann scheme and according to the follow
prescription: thes and p components are created in th
ground state, and thed component is created in the excite
configuration proposed in Ref. 19, name
@Kr#4d105s1.05p0.755d0.25. The default core radii of 1.1, 1.3
and 2.0 bohr for thes, p, andd component, respectively, ar
used. The core charge, with a model core radius of 0.75 b
is frozen in the ground-state configuration. Figure 5~a! shows
the logarithmic derivatives for that pseudopotential, us
the d component as the local reference component. T
agreement between the all-electron result, the semilo
pseudopotential result and the separable KB one in the
ergy range of interest around the Fermi level is very go
concerning the semilocal form, and also acceptable conc
ing the separable one. In order to complete the illustration
the quality of this pseudopotential, we have performed c
culations of the eigenvalues of an isolated tin atom in diff
ent strongly excited configurations, which are described
the quantum numbers and occupations listed in the first th
columns of Table II. The fourth column shows the results
all-electron calculations, performed with a frozen core tha
obtained from a ground-state calculation. These are the
sults that should be directly compared to the results of
HB pseudopotential, shown in column 5, which has be
created with the same core.~For the sake of completenes
we show the same comparison also for the PP pseudopo
tial used throughout the calculations, in Table III. In th
case, in the all-electron calculations the core is frozen in
excited state used to create the pseudopotential.! The agree-
ment between the all-electron frozen core and both pseu
potential results is good. We have also explicitly check
that the atomic eigenvalues calculated using the KB form
close~within less than 10 meV! to the ones using the semilo
cal pseudopotential. Moreover, for the HB and simi
pseudopotentials, we have performed calculations on the
ids with and without using the separable form proposed
Kleinman and Bylander,20 and did not find significant differ-
ences concerning total energies. Absolute values of the t
energies have in fact changed by less than 100 meV.

We should hence expect that using the HB potential
separable form of the pseudopotential should not introduc
relevant dependence of the results on the choice of the
erence component. However, thereis indeed a significant
influence of the reference component on the results: us
the HB pseudopotential, we obtain~at various fixed geom-
etries! a difference in total energy of the order of 3 eV
between the results obtained with a locals, or with a locald
component. This is of course unacceptable, since change
9-5
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FIG. 5. ~a! Logarithmic derivatives of the tin HB pseudopote
tial ~see text! using thed component as local reference potenti
Full line: all-electron; long-dashed line: semilocal pseudopoten
dashed: separable KB pseudopotential. The black arrows ind
the energy of the reference state used in the Hamann scheme.21 ~b!:
Same, for the ‘‘hard’’ pseudopotential of Silicon;~c!: same, for the
‘‘soft’’ pseudopotential of silicon~see text and caption of Fig. 6!.
04511
the total energy due to a different reference component
not canceled by a change in the total energy of the pseu
tom, and remain hence as errors on physical quantities
the cohesive energy. This fact confirms a finding of a pre
ous preliminary study of tin oxides, where we had been us
a similar pseudopotential and a locald component, and ob-
tained large errors on the equilibrium geometry, in particu
an underestimation ofc by as much as 11%.11 That pseudo-
potential~called BHS in the following! was the one propose
in the original paper of Bachelet, Hamann, and Schlu¨ter.19 It
is very similar to the HB one, and we have in fact check
that it yields total energy differences, which are very close
those obtained with the latter. ‘‘Very close’’ means here th
when we calculate total energy differencesDEtot, either be-
tween two different geometries or between two different r
erence components, the BHS and HB pseudopotentials y

l;
te

TABLE II. Tin atom eigenvalues in different excited configura
tions: comparison between all electron calculations, with the c
frozen ~AE-CF! in the ground state, and the HB pseudopotentia

n l Occupation AE-FC~eV! HB~eV!

Conf1 5 0 2 210.8150 210.8150
5 1 2 23.8737 23.8737
5 0 1.00 228.2263 228.1730

Conf2 5 1 0.75 219.5376 219.5091
5 2 0.25 29.5960 29.5953
5 0 1.00 228.6702 228.6050
5 1 0.75 219.9457 219.9095

Conf3 5 2 0.10 29.9278 29.9240
6 0 0.10 210.2050 210.2260
4 3 0.10 25.0792 24.8085
5 0 0.85 228.3047 228.3151

Conf4 5 1 0.85 219.5722 219.6009
5 2 0.25 29.5952 29.6297

TABLE III. Tin atom eigenvalues in different excited configu
rations: comparison between the PP pseudopotential and
electron calculations, with the core frozen in the configuration u
to create PP.

n l Occupation AE-FC~eV! PP~eV!

Conf1 5 0 2 210.6786 210.6999
5 1 2 23.8316 23.8454
5 0 1.00 227.9361 227.9363

Conf2 5 1 0.75 219.3462 219.3474
5 2 0.25 29.5354 29.5399
5 0 1.00 228.3731 228.3627
5 1 0.75 219.7473 219.7419

Conf3 5 2 0.10 29.8613 29.8636
6 0 0.10 210.1632 210.1839
4 3 0.10 25.0731 25.0731
5 0 0.85 228.0156 228.0156

Conf4 5 1 0.85 219.3818 219.3818
5 2 0.25 29.5360 29.5360
9-6
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resultsDEtot
BHS andDEtot

HB , whereuDEtot
BHS2DEtot

HBu is at least
one order of magnitude smaller thanDEtot itself. Our de-
tailed analysis for the HB pseudopotential should hence
apply to the BHS one, which confirms again that indeed
choice of the reference component is critical and can lea
very bad results as those of Ref. 11, even when there is
problem with the KB separation.

These findings are not in contradiction with the genera
good results that are obtained on other materials using
‘‘good’’ ~i.e., without problems due to the KB scheme! ref-
erence component. In order to illustrate this point, we h
created two pseudopotentials for silicon. They are create
the Hamann scheme, and using the configuration propose
Ref. 19 for the various components. The first ‘‘hard’’ on
has core radiir s51.0, r p51.3, andr d50.96 bohr, and the
second ‘‘soft’’ one hasr s51.0, r p51.3, andr d51.5 bohr.
The two pseudopotentials are shown in Fig. 6~a! and 6~b!,
respectively, and their logarithmic derivatives are shown
Fig. 5~b! and 5~c!.

FIG. 6. Silicon pseudopotential created with the Hama
scheme21 and using the standard configuration proposed in Ref.
The core radii for thes, p, andd components are 1.0, 1.3, and 0.9
bohr in panel~a! ‘‘hard,’’ while in panel ~b! r d has been increase
to 1.5 bohr ‘‘soft.’’
04511
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e
to
no
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in

n

The difference of the logarithmic derivatives is such th
it would be very hard to deduce any significant influence
the transferability of the pseudopotential, in particular f
ground-state calculations, with a slight preference for the
tion ‘‘soft.’’ The overall results are qualitatively very simila
to those of the tin atom. However, performing total ener
calculations for bulk silicon with the hard pseudopotent
we have found that changing the reference component f
d to s leaves the lattice constant unchanged, and increase
absolute value of the total energy by only 50 meV. In fa
there is a major difference with tin oxide: a look at the ha
pseudopotential in Fig. 6~a! shows that already atr
52 bohr the different components are indistinguishab
second, at this distance the analysis of angular momen
contributions in bulk silicon reveals no significant presen
of the f channel yet. This explains why bulk silicon with th
pseudopotential is not sensitive to a change in the refere
component, but SnO is indeed. Instead, a situation simila
the one of SnO is reproduced when we use the soft pse
potential. Figure 6~b! shows that the components are no
different up tor 52.8 bohr. In fact, the total energy calcu
lations on the solid yield results, which differ by as much
0.5 eV when changing the reference component froms to d,
and which also show a change in the lattice constant of 1.
due to the change of the reference component. The prob
does hence also exist in silicon when a soft~i.e. rather stan-
dard! pseudopotential is used, although to a much lesser
tent than in SnO.

One could be tempted to explain the strongf contribution
around the tin atom in SnO with the particularly nonisotrop
structure of this material. However, this hypothesis is ea
eliminated by an analysis of the charge density of Sn2,
which is a very isotropic material. The result is shown in F
4~b!. It turns out that the behavior is very similar to that
SnO. In particular, also in SnO2 at distances aroundr
53 bohr thef component starts to be visible. Hence, f
both oxides the choice of the reference component shoul
important.

This is in fact the case: performing a ground-state cal
lation for SnO2 with thed component as the local referenc
the results are still reasonable when compared to the exp
mental values, but significantly different from the resu
listed in Table I: in particular, the theoretical equilibrium
parameter a turns out to change froma54.74 Å to
a55.05 Å, whereas the ratioc/a is stable.

It would of course not be very satisfactory to conclu
that the ‘‘best’’ reference component is simply the one yie
ing the best agreement between theoretical and experime
results. However, more evidence is given by performing c
culations on the isolated tin atom. Using the code of Ref.
we have studied total energies, eigenvalues and pseudo-w
functions of the tin atom in different excited states includi
boundf states, using a pseudopotential with four compone
(s to f ). The last component was either a truef component
created according to the scheme of Hamann,21 with the atom
in its ground state and a core radius of 1.8 bohr, or one of
other three lower components. In that way, we can simu
the role of the reference component in the solid. We ha
verified that, whereas using the truef component as the ‘‘ref-

n
9.
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erence’’ component yields generally very good eigenval
for the f level ~which simply means that the pseudopotent
is transferable!, this is not always true for the other choice
for the forth component. In particular, thed component
yields the worst results, whereas the choice ofs as the ‘‘ref-
erence’’ component yields results that are the closest to
ones obtained with thef component. Of course, these tests
the isolated atom will have a tendency to overestimate
effects, and cannot give any quantitative insight concern
the solid, but we believe that they well illustrate the tende
cies, and that we can in fact conclude that thes component is
the best substitute for the truef component. We have verifie
this fact further by performing calculations on SnO2 at vari-
ous geometries, using thes, p, d, or f component as loca
reference component. We find that for all examined geo
etries a locals component gives the results which are t
closest to the ones obtained with a localf component~a
typical error on the absolute total energy is of the order
0.3 eV, and energy differences are well reproduced!, whereas
the performance of thep component as the local referenc
one is slightly worse, and a locald-component yields result
that are different by up to 5 eV.

These numerical results add to the fact that~i! it is rea-
sonable to assume that, when the potential adapted tof
orbitals is not available, thes component best simulates
sort of spherical average, right as in tight binding calcu
tions ans* orbital can replace the set ofd orbitals and that
~ii ! as pointed out already in Ref. 19, since thed component
refers to a state that is not bound in the ground state of
atom, it bears the biggest arbitrariness. In the case of silic
it turns out that this arbitrariness induces changes in a re
close to the core, that is not relevant for cohesion, wher
this is not true for the tin oxides.

The above discussion and comparison with experime
draw validity from the assumption that the 4d electrons can
in fact be treated as core electrons. This choice is of cou
strongly suggested by practical reasons, especially in view
the fact that treating thed electrons of a given shelln as
valence electrons may impose to treat also thens and np
electrons as valence electrons, which is generally not feas
in a plane-wave calculation without making compromises
the numerical quality of the results. On the other hand, s
eral studies on tin oxides6,7 have shown that there is onl
very few hybridization of the Sn 4d states with other states
Nevertheless, the question whether the only loosely bo
Sn 4d electrons can really be frozen in the core should
treated with care. Tests on the isolated Sn atom sugge
fact that the 4d electronsdo relax when the valence shell i
perturbed, as it will be the case in the solid. This becom
clear from a comparison of the all-electron results of Table
and Table III, respectively. The only difference betwe
these results is the excitation of the core. The differences
significant. Again, it would be an exaggeration to extrapol
results from the tests on the isolated atom to quantita
results for the solid, but these findings suggest that the re
ation of the Sn 4d states may havesomeinfluence on the
results. In order to include this fact as much as possible
our calculations, we have tried to simulate the perturbat
of the Sn 4d states in the solid via the pseudopotential:
04511
s
l

e

e
g
-

-

f

e

-

e
n,
n

as

ts

se
of

le
n
v-

d
e
in

s
I

re
e
e
x-

in
n
e

have in fact performed a first set of calculations on the so
by using a pseudopotential created with the core frozen in
ground state. We have then analyzed the charge distribu
in the solid, by projecting the states on the components of
different angular momenta within spheres around each at
We have chosen the spheres such that the radius of
sphere around an oxygen atom is roughly half of the dista
between neighboring oxygen atoms, and that the total cha
contained in the spheres around the tin and oxygen at
equals the number of valence electrons. This prescrip
yields a radius of 2.5 bohr for the sphere around an oxy
atom, and for the sphere around a tin atom 2.5 bohr in Sn2,
2.75 bohr in SnO. The resulting total charges on the tin
oms are21.15 electrons in SnO and22.0 electrons in
SnO2, which is a reasonable estimate. In detail, in SnO2 we
obtain 0.85, 0.85, 0.25, and 0.1 for the valence electron
tin of s, p, d, andf symmetry, respectively, whereas the co
responding results for SnO are 1.33, 1.17, 0.25, and 0.1

It has turned out that the relaxation of the core in suc
fixed configuration is not critical at all for the results. I
particular, calculations performed with a core frozen in
ground state yield lattice parameters that differ from the o
obtained with the pseudopotential used in the present w
~and which is, in fact, the one calculated in the configurat
deduced from the analysis of SnO2) by less than 1% . From
all those results, we can estimate that it is reasonable to
the 4d electrons as core electrons for the calculations of t
kind of structural properties, thus validitating the results th
we have exposed in this work.

V. CONCLUSIONS

In conclusion, we have performedab initio calculations of
the ground-state properties of tin monoxide. We have sho
that the cohesion of SnO can be understood in terms of
terlayer screening. In spite of the resulting relatively we
interaction between the layers, we do not find particu
problems linked to the use of the local-density approxim
tion. Instead, we have discussed the importance of the ch
of the local reference component of the tin pseudopoten
It emerges that, whereas it is a general finding that the lo
component should be chosen with care even when no p
lems linked to fully separable potentials arise, in the case
SnO a bad choice for the reference component can be
reason for big discrepancies with experiment. With a ca
fully constructed pseudopotential on the other hand, ex
lent results are obtained for both SnO and SnO2.
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