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The least absolute shrinkage and selection operator (LASSO) is a widely used statis-
tical methodology for simultaneous estimation and variable selection. It is a shrink-
age estimation method that allows one to select parsimonious models. In other
words, this method estimates the redundant parameters as zero in the large sam-
ples and reduces variance of estimates. In recent years, many authors analyzed this
technique from a theoretical and applied point of view. We introduce and study the
adaptive LASSO problem for discretely observed multivariate diffusion processes.
We prove oracle properties and also derive the asymptotic distribution of the LASSO
estimator. This is a nontrivial extension of previous results by Wang and Leng (2007,
Journal of the American Statistical Association, 102(479), 1039–1048) on LASSO
estimation because of different rates of convergence of the estimators in the drift
and diffusion coefficients. We perform simulations and real data analysis to provide
some evidence on the applicability of this method.

1. INTRODUCTION

Model selection is an important issue in applied econometric analysis. For
example, general regression models are used extensively by practitioners, and
these are useful as long as the set of parameters (or covariates) is correctly spec-
ified. Therefore, correct model selection is crucial in the subsequent step of es-
timation. Model selection consists in setting some of the parameters to zero. As
Caner (2009) noticed, models do not need to be nested, but one can rather con-
struct a single large parametric model merging two orthogonal models and let the
selection method choose one of the two models. A typical application is structural
change models as explained in Andrews and Lu (2001).

Variable selection is particularly important when the true underlying model
has a sparse representation. Correctly identifying significant predictors will
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improve the prediction performance of the fitted model (for an overview of feature
selection, see Fan and Li, 2006).

The least absolute shrinkage and selection operator (LASSO) is a useful and
well-studied approach to the problem of model selection, and its major advantage
is the simultaneous execution of both parameter estimation and variable selec-
tion (see Tibshirani, 1996; Knight and Fu, 2000; and Efron, Hastie, Johnstone,
and Tibshirani, 2004). The LASSO method could allow the dimensionality of the
parameter space to change with the sample size; this is the main advantage of
the LASSO approach over the classical information criterions (AIC, BIC, etc.).
The LASSO method usually consists of the minimization of an L2 norm under
L1 norm constraints on the parameters. Thus it usually implies a least squares
or maximum likelihood approach plus constraints. The important property stat-
ing that the correct parameters are set to zero by the LASSO method under the
true data generating model is called the oracle property (Fan and Li, 2001). As
shown by Zou (2006), since the classical LASSO estimator uses the same amount
of shrinkage for each parameter, the resulting model selection could be inconsis-
tent. To overcome this drawback, it is possible to consider an adaptive amount of
shrinkage for each parameter.

Originally, the LASSO procedure was introduced for linear regression prob-
lems, but in recent years this approach has been applied to time series analysis by
several authors, mainly in the case of autoregressive models. For example, Wang,
Li, and Tsai (2007) consider the problem of shrinkage estimation of regressive
and autoregressive coefficients, while Nardi and Rinaldo (2011) consider penal-
ized order selection in an AR(p) model. Furthermore, Caner and Knight (2010)
show that econometricians can use a Bridge estimator to differentiate stationarity
from unit root type of nonstationarity and select the optimal lag in autoregression
(AR) series as well. The vector autoregression (VAR) case was considered in Hsu,
Hung, and Chang (2008). Furthermore, Caner (2009) studied the LASSO method
for general generalized method of moments (GMM) estimator also in the case of
time series, and Knight (2008) extended the LASSO approach to nearly singu-
lar designs. More recently, Liao (2010) introduced a set of nuisance parameters in
possibly misspecified moment conditions. The author shows that the LASSO-type
techniques can simultaneously achieve consistent moment selection and efficient
estimation in GMM with weakly dependent data. In the reduced rank error cor-
rection model, Liao and Phillips (2010) use the LASSO-type approach to perform
cointegration rank selection, lagged differences selection, and efficient estima-
tion simultaneously. They show that consistent cointegration rank selection can
be achieved even if the parameters of the model are inconsistently estimated due
to the weakly dependent innovations.

In this paper we consider the LASSO approach for discretely observed diffu-
sion processes solution to stochastic differential equations. In recent years, there
has been increasing interest around continuous time models specified by stochas-
tic differential equations in economics. In particular, the econometric literature for
these models evolves accordingly in order to produce correct statistical inference.
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Multivariate diffusion models like the ones considered in this paper have been
proposed in finance (Sundaresan, 2000), macroeconomics (Bergstrom, 1990;
McCrorie and Chambers, 2006), and macro-finance (Piazzesi, 2009).

In the context of discretely observed diffusion processes, the likelihood func-
tion is not usually known in closed form. In this paper we use the quasi likeli-
hood Gaussian approximation as proposed by many authors (e.g., Yoshida, 1992;
Genon-Catalot and Jacod, 1993; Kessler, 1997).

For diffusion processes, the LASSO method requires some additional care be-
cause the rates of convergence of the estimators of parameters in the drift and
the diffusion coefficient are different. We point out that the usual model selec-
tion strategy based on AIC (see Uchida and Yoshida, 2005) usually depends on
the properties of the estimators but also on the method used to approximate the
likelihood. Indeed, Akaike information criteria (AIC) requires a very precise cal-
culation of the likelihood function to avoid bias (see Iacus, 2008). In contrast, the
present LASSO approach depends solely on the properties of the estimator and
so the problem of likelihood approximation is not particularly compelling. It is
worth mentioning that model selection for continuous time diffusion processes
was considered earlier in Uchida and Yoshida (2001) by means of information
criteria.

The paper is organized as follows: Section 2 introduces the model and the reg-
ularity assumptions and states the problem of LASSO estimation for discretely
sampled diffusion processes. Section 3 proves consistency and oracle properties
of the LASSO estimator. Section 4 contains a Monte Carlo analysis and one
application to real financial data. The conclusions of this work are summarized
in Section 5. Proofs are collected in Section 6.

2. THE LASSO PROBLEM FOR DIFFUSION MODELS

We begin by introducing the reference model and the basic notations. Let Xt ,
t ∈ [0,T ], 0 < T < ∞, be a d-dimensional diffusion process solution of the mul-
tivariate stochastic differential equation

dXt = b(α, Xt )dt +σ (β, Xt )dWt , X0 = x0, (2.1)

where α = (α1, ...,αp)′ ∈ $p ⊂ Rp, p ≥ 1, β = (β1, ...,βq)′ ∈ $q ⊂ Rq , q ≥ 1,
are p × 1 and q × 1 vectors, respectively, b : $p ×Rd → Rd , σ : $q ×Rd →
Rd ×Rm , and Wt , t ∈ [0,T ], is a standard Brownian motion in Rm . We assume
that the functions b and σ are known up to the parameters α and β. We denote by
θ = (α,β) ∈ $p × $q = $ the (p + q) × 1 parametric vector and with
θ0 = (α0,β0) its unknown true value. For a matrix A, we denote by A−1 the
inverse of A and by |A|2 = tr(AA′), i.e., the sum of squares of the elements
of A. Furthermore we use the notation &(β, x) = σ (β, x)σ (β, x)′. The sam-
ple path of Xt is observed only at n + 1 equidistant discrete times ti , such that
ti − ti−1 = 'n < ∞ for 1 ≤ i ≤ n (with t0 = 0 and tn = T ). We denote by
Xn = {Xti }0≤i≤n our random sample with values in R(n+1)×d .
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The asymptotic scheme adopted in this paper is T = n'n → ∞, 'n → 0 and
n'2

n → 0 as n → ∞. This asymptotic framework is called rapidly increasing
design, and the condition n'2

n → 0 means that 'n shrinks to zero slowly.
We need some assumptions on the regularity of the process Xt , t ∈ [0,T ].

Assumption 1. There exists a constant C such that

|b(α0, x)−b(α0, y)|+ |σ (β0, x)−σ (β0, y)| ≤ C |x − y|.
Assumption 2. infβ,x det(&(β, x)) > 0.

Assumption 3. The process Xt , t ∈ [0,T ], is ergodic for θ = θ0 with invariant
probability measure µθ0 .

Assumption 4. If the coefficients b(α, x) = b(α0, x) and σ (β, x) = σ (β0, x)
for all x (µθ0 -almost surely), then α = α0 and β = β0.

Assumption 5. For all m ≥ 0 and for all θ ∈ $, supt E|Xt|m < ∞.

Assumption 6. For every θ ∈ $, the coefficients b(α, x) and σ (β, x) are five
times continuously differentiable with respect to x and the derivatives are bounded
by a polynomial function in x , uniformly in θ .

Assumption 7. The coefficients b(α, x) and σ (β, x) and all their partial deriva-
tives with respect to x up to order 2 are three times continuously differentiable
with respect to θ for all x in the state space. All derivatives with respect to θ are
bounded by a polynomial function in x , uniformly in θ .

We observe that Assumption 1 ensures the existence and uniqueness of a
solution to (2.1) for the value θ0 = (α0,β0) of θ ∈ $, while Assumption 4 is
the identifiability condition. Hereafter, we assume that Assumptions 1–7 hold.
These conditions are equivalent to the ones in Uchida and Yoshida (2005) and
Kessler (1997) for what concerns the regularity of the model. In order to intro-
duce the LASSO problem, we consider the negative quasi-loglikelihood function
Hn : R(n+1)×d ×$ → R,

Hn(Xn,θ) = 1
2

n

∑
i=1

{
logdet(&i−1(β))+ 1

'n
('Xi −'nbi−1(α))′&−1

i−1(β)

× ('Xi −'nbi−1(α))

}
, (2.2)

where 'Xi = Xti − Xti−1 , &i (β) = &(β, Xti ), and bi (α) = b(α, Xti ). This
quasi-likelihood has been used by, e.g., Yoshida (1992), Genon-Catalot and Jacod
(1993), and Kessler (1997) to estimate stochastic differential equations because
the true transition probability density for Xt , t ∈ [0,T ], does not have a closed
form expression. The function (2.2) is obtained by discretization of the continu-
ous time stochastic differential equation (2.1) by Euler-Maruyama scheme, that is,

Xti − Xti−1
∼= b(α, Xti−1)'n +σ (β, Xti−1)(Wti − Wti−1),
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and the increments (Xti − Xti−1) are conditionally independent Gaussian random
variables for i = 1, ...,n.

We denote by Ḣn(Xn,θ) the vector of the first derivatives with respect to θ and
by Ḧn(Xn,θ) the Hessian matrix. Let θ̃n :R(n+1)×d → $ be the quasi-maximum
likelihood estimator (QMLE) of θ ∈ $, based on (2.2), that is

θ̃n = (α̃n, β̃n) = argmin
θ
Hn(Xn,θ).

We consider the matrix

ϕ(n) =
(

1
n'n
Ip 0

0 1
n Iq

)

,

where Ip and Iq are respectively the identity matrix of order p and q. This ma-
trix plays the role of the rate of convergence in the estimation problem for the
stochastic differential equation (2.1).

The regularity conditions of Assumptions 1–7 imply the following fundamental
results, which have a crucial role in the proofs.

LEMMA 1 (see, e.g., Kessler, 1997). Let )n(θ) = ϕ(n)1/2Ḧn(Xn,θ)ϕ(n)1/2.
Under Assumptions 1–7, the following two properties hold true.

(i) )n(θ0)
p→ I(θ0), sup

||θ ||≤εn

|)n(θ + θ0) − )n(θ0)| = op(1), for εn → 0 as

n → ∞;
(ii) θ̃n is a consistent estimator of θ0 and asymptotically Gaussian with rate

of convergence given by ϕ(n)−1/2; i.e.,

ϕ(n)−1/2(θ̃n − θ0)
d→ N (0,I(θ0)

−1),

where I(θ0) is the positive definite and invertible Fisher information matrix
at θ0 given by

I(θ0) =




+α = [Ik j

b (α0)]k, j=1,...,p 0

0 +β = [Ik j
σ (β0)]k, j=1,...,q





where

Ik j
b (α0) =

∫ (
∂b(α0, x)

∂αk

)′
&−1(β0, x)

(
∂b(α0, x)

∂αj

)
µθ0(dx),

Ik j
σ (β0) = 2

∫
tr
[
∂&(β0, x)

∂βk
&−1(β0, x)

∂&(β0, x)

∂βj
&−1(β0, x)

]
µθ0(dx).

The classical adaptive LASSO objective function, in this case, should be given
by

Hn(Xn,θ)+
p

∑
j=1

λn, j |αj |+
q

∑
k=1

γn,k |βk |, (2.3)
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where λn, j and γn,k assume real positive values representing an adaptive amount
of the shrinkage for each element of α and β. The LASSO estimator is the min-
imizer of the objective function (2.3). Usually, this is a nonlinear optimization
problem under L1 constraints, which might be numerically challenging to solve.
Nevertheless, using the approach of Wang and Leng (2007), we can consider a
different objective function with respect to (2.3). Indeed, we define the adaptive
LASSO-type estimator θ̂n : R(n+1)×d → $ as the solution of

θ̂n = (α̂n, β̂n) = argmin
θ
F(θ), (2.4)

where

F(θ) = (θ − θ̃n)′Ḧn(Xn, θ̃n)(θ − θ̃n)+
p

∑
j=1

λn, j |αj |+
q

∑
k=1

γn,k |βk |. (2.5)

Then, (2.5) leads to a minimum distance criterion plus the penalty terms and it
is much easier to solve numerically than (2.3); nevertheless, the solutions of the
two objective functions are equivalent. Although the asymptotic properties of the
LASSO-type estimator have been established in Wang and Leng, the extension
to discretely observed diffusion processes is nontrivial because the estimators for
the drift and diffusion parameters have two different rates of convergence. For this
reason, in the objective function (2.5), two sets of L1 constraints and weighting
sequences (λn, j and γn,k) are required to take into account the different rates of
convergence.

Remark 1. The approach adopted by Wang and Leng (2007) also holds when
the diffusion process (2.1) has the same parametric vector θ in both drift and
diffusion coefficients. In this context, we use the objective function

(θ − θ̃n)′Ḧn(Xn, θ̃n)(θ − θ̃n)+
p

∑
j=1

λn, j |θj |,

where Hn can represent the quasi-likelihood function as well as an alternative
contrast function (see, e.g., Aı̈t-Sahalia, 2002, and Kessler and So/rensen, 1999).
In order to establish the properties of the LASSO estimator, we have to con-
sider a slightly different hypotheses and asymptotic setting; for example, the mesh
'n = ' is fixed and n → ∞.

3. ORACLE PROPERTIES

As argued by Fan and Li (2001), a good selection procedure should have the so-
called oracle properties:

(i) consistently estimates null parameters as zero and vice versa;
(ii) has the optimal estimation rate and converges to a Gaussian random vari-

able N (0,&), where & is the covariance matrix of the true subset model.
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The aim of this section is to prove that the adaptive LASSO-type estimator θ̂n has
good behavior in the oracle sense.

As shown by Zou (2006), the classical LASSO estimation cannot be as efficient
as the oracle, and the selection results could be inconsistent, whereas its adaptive
version has the oracle properties. Without loss of generality, we assume that the
true model, indicated by θ0 = (α0,β0), has parameters α0 j and β0k equal to zero
for p0 < j ≤ p and q0 < k ≤ q , while α0 j ,= 0 and β0k ,= 0 for 1 ≤ j ≤ p0 and
1 ≤ k ≤ q0. To study the asymptotic properties of the LASSO-type estimator θ̂n ,
we consider the following conditions.

Condition 1. µn√
n'n

→ 0 and νn√
n → 0, where µn = max{λn, j ,1 ≤ j ≤ p0} and

νn = max{γn,k,1 ≤ k ≤ q0};
Condition 2. κn√

n'n
→ ∞ and ωn√

n → ∞, where κn = min{λn, j , j > p0} and
ωn = min{γn,k,k > q0}.

Condition 1 implies that the maximal tuning coefficients µn and νn for the
parameters αj and βk , with 1 ≤ j ≤ p0 and 1 ≤ k ≤ q0, tend to infinity slower than√

n'n and
√

n, respectively. Analogously, we observe that Condition 2 means
that the minimal tuning coefficients for the parameter αj and βk , with j > p0 and
k > q0, tend to infinity faster than

√
n'n and

√
n, respectively.

THEOREM 1. Under Assumptions 1–7 and Condition 1, one has that

|α̂n −α0| = Op

(
(n'n)−1/2

)
and |β̂n −β0| = Op

(
n−1/2

)
.

For the sake of simplicity, we denote by θ∗ = (α∗,β∗) the vector correspond-
ing to the nonzero parameters, where α∗ = (α1, ...,αp0)

′ and β∗ = (β1, ...,βq0)
′,

while θ◦ = (α◦,β◦) is the vector corresponding to the zero parameters, where
α◦ = (αp0+1, ...,αp)′ and β◦ = (βq0+1, ...,βq)′. Therefore, θ0 = (α0,β0) =
(α∗

0 ,α◦
0,β∗

0 ,β◦
0 ) and θ̂n = (α̂∗

n , α̂◦
n, β̂∗

n , β̂◦
n ), θ̃n = (α̃∗

n , α̃◦
n, β̃∗

n , β̃◦
n ).

THEOREM 2. Under Assumptions 1–7 and Conditions 1–2, we have that

P(α̂◦
n = 0) → 1 and P(β̂◦

n = 0) → 1. (3.1)

From Theorem 1, we can conclude that the estimator θ̂n is consistent. Further-
more, Theorem 2 says that all the estimates of the zero parameters are correctly
set equal to zero with probability tending to 1. In other words, the model selec-
tion procedure is consistent and the true subset model is correctly indentified with
probability tending to 1.

To complete our program, we derive the asymptotic distribution of θ̂∗
n = (α̂∗

n ,

β̂∗
n ). Hence, we indicate by I0(θ∗

0 ) the (p0 +q0)× (p0 +q0) submatrix of I(θ0);
that is,

I0(θ
∗
0 ) =

(
+∗∗

α = [Ik j
b (α0)]k, j=1,...,p0 0

0 +∗∗
β = [Ik j

σ (β0)]k, j=1,...,q0

)

,
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and introduce the rate of convergence matrix

ϕ0(n) =
(

1
n'n
Ip0 0

0 1
n Iq0

)

.

The next result establishes that the estimator θ̂∗
n is efficient as well as the oracle

estimator.

THEOREM 3 (Oracle property). Under Assumptions 1–7 and Conditions 1–2,
we have that

ϕ0(n)−1/2(θ̂∗
n − θ∗

0 )
d→ N (0,I−1

0 (θ∗
0 )). (3.2)

Clearly, the theoretical and practical implications of our method rely on the
specification of the tuning parameter λn, j and γn,k . As observed in Wang and
Leng (2007), these values could be obtained by means of Bayes information crite-
ria (BIC) instead of other model selection criteria like generalized cross-validation
(GCV) or Akaike information criteria (AIC). As observed in Wang et al. (2007),
GCV and AIC are asymptotically equivalent and are inconsistent in terms of
model selection. Unfortunately, this solution is computationally heavy and then
impracticable. Therefore, the tuning parameters should be chosen as in Zou (2006)
in the following way,

λn, j = λ0|α̃n, j |−δ1 , γn,k = γ0|β̃n, j |−δ2 , (3.3)

where α̃n, j and β̃n,k are the unpenalized estimators of αj and βk , respectively,
δ1,δ2 > 0 and usually taken unitary. Since α̃n, j and β̃n,k are consistent estimators
(see Lemma 1), we have that under the conditions

λ0√
n'n

→ 0, (n'n)
δ1−1

2 λ0 → ∞, and
γ0√

n
→ 0, n

δ2−1
2 γ0 → ∞

as n → ∞, Conditions 1 and 2 hold. Then the asymptotic results listed in the
above theorems are valid.

4. PERFORMANCE OF THE LASSO METHOD FOR SMALL SAMPLE
SIZE

In this section we perform a small Monte Carlo analysis to check whether the
LASSO method is able to select a specified model also in small samples. We also
apply the method to a benchmark data set often used in the literature of model
selection. The asymptotic framework of this paper is not completely realized in
the simulated and real data experiments (i.e., 'n is not so small and T does not di-
verge), nevertheless we test what happens outside the theoretical framework. The
simulations are done using the sde package (see Iacus, 2008) for the R statistical
environment.
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As Wang, Phillips, and Yu (2011) pointed out, when estimating the drift param-
eters, bias may arise even for large samples and for linear diffusions. Although
our simulation setup considers these aspects, when reading the results one should
keep in mind that estimates of the drift parameters are necessarily more biased
than estimates of the diffusion parameters.

In both cases, we do not pretend to give extensive analysis of the method, be-
cause the previous theorems already prove the asymptotic validity of the LASSO
approach for diffusion processes. Instead, we just want to show some evidence on
simulated and real data to give the feeling of the applicability of the method.

To solve the LASSO problem, we make use of the “L-BFGS-B” optimizer by
Byrd, Lu, Nocedal, and Zhu (1995), which allows for box constrained optimiza-
tion. Indeed, we use a zero lower bound in the “L-BFGS-B” optimizer, and often
the solution results in some coefficients estimated exactly as zero.

4.1. A Simulation Experiment: One-Dimensional Case

We reproduce the experimental design similar to Uchida and Yoshida (2005).
Therefore, we consider a parametric diffusion process solution of the stochastic
differential equation

dXt = (θ1 − θ2 Xt )dt + (θ3 + θ4 Xt )
θ5 dWt , X0 = 1 . (4.1)

We simulate 1,000 trajectories of this process with true parameter vector
θ = (θ1 = 1,θ2 = 0.1,θ3 = 0,θ4 = 2,θ5 = 0.5) using the second Milstein scheme,
i.e., the data are simulated according to

Xti+1 = Xti +
(

b − 1
2
σσx

)
'n +σ Z

√
'n + 1

2
σσx'n Z2

+'3/2
n

(
1
2

bσx + 1
2

bxσ + 1
4
σ 2σxx

)
Z +'2

n

(
1
2

bbx + 1
4

bxxσ
2
)

,

with Z ∼ N (0,1), bx and bxx (resp. σx and σxx ) are the first and second par-
tial derivatives in x of the drift (resp. diffusion) coefficients (see Milstein, 1978).
This scheme has weak second-order convergence and guarantees good numerical
stability.

In order to get as close as possible to the asymptotic scheme of this paper, we
consider the following simulation setup: for a given number n of observations, we
set T = n1/3 (time horizon) and 'n = T/n. Then, choosing n = 100, we obtain
'n = 0.046, while for n = 1,000, we have that 'n = 0.01.

We perform both QMLE and LASSO estimation using the objective function
F(θ), the quasi-likelihood estimator, and the Hessian matrix obtained by the func-
tion (2.2), particularized for the present model (4.1). For the penalization terms,
we set λ0 = γ0 to 1 and 5 and δ1 = δ2 equal to 1 and 2 in (3.3).

Table 1 reports average values of quasi-maximum likelihood (QML) and
LASSO estimates over 1,000 Monte Carlo replications as well as the Monte Carlo
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TABLE 1. LASSO and QML estimates of the model (4.1) for different sample
sizes and penalization terms

θ1 θ2 θ3 θ4 θ5 % θ3 = 0
True 1.0 0.1 0.0 2.0 0.5

Sample size: n = 100

QMLE: 2.58 1.04 0.27 1.89 0.75
(1.47) (0.91) (0.57) (1.10) (0.87)

LASSO: λ0 = γ0 = 1, δ1 = δ2 = 1 1.92 0.69 0.17 1.69 0.78 78%
(1.10) (0.84) (0.41) (0.92) (0.93)

LASSO: λ0 = γ0 = 1, δ1 = δ2 = 2 1.32 0.47 0.22 1.74 0.68 80%
(0.68) (0.30) (0.12) (0.51) (0.19)

LASSO: λ0 = γ0 = 5, δ1 = δ2 = 1 0.70 0.11 0.14 1.30 0.79 87%
(0.56) (0.38) (0.37) (0.80) (0.96)

LASSO: λ0 = γ0 = 5, δ1 = δ2 = 2 0.74 0.15 0.19 1.80 0.64 87%
(0.54) (0.14) (0.05) (0.46) (0.12)

Sample size: n = 1,000

QMLE: 2.07 0.56 0.11 1.90 0.52
(1.25) (0.52) (0.27) (0.37) (0.06)

LASSO: λ0 = γ0 = 1, δ1 = δ2 = 1 1.74 0.42 0.07 1.94 0.51 84%
(1.01) (0.49) (0.25) (0.35) (0.06)

LASSO: λ0 = γ0 = 1, δ1 = δ2 = 2 1.30 0.29 0.06 1.97 0.51 92%
(0.46) (0.16) (0.03) (0.16) (0.03)

LASSO: λ0 = γ0 = 5, δ1 = δ2 = 1 0.93 0.11 0.05 1.94 0.51 91%
(0.47) (0.29) (0.22) (0.33) (0.08)

LASSO: λ0 = γ0 = 5, δ1 = δ2 = 2 0.90 0.10 0.04 2.00 0.50 96%
(0.40) (0.07) (0.01) (0.15) (0.02)

Notes: Average values over 1,000 Monte Carlo replications. In parentheses: Monte Carlo standard errors. The column
% θ3 = 0 represents the number of times, in percentage over 1,000 replications, that the parameter θ3 is exactly
estimated as zero.

standard deviations. As emerges from Table 1, on average the estimates get bet-
ter as the sample size increases and the shrinkage of the parameters, for a given
sample size, is higher for higher values of λ0 and γ0 but particularly as δ1 = δ2
increases. This is also expected from the theory.

Figures 1 and 2 report the density estimation of the estimates of the parameters
θi , i = 1, . . . ,5 against their theoretical true values for n = 100 (top) and n = 1,000
(bottom). These distributions are obtained using the estimates obtained from the
1,000 Monte Carlo replications. Figures 1 and 2 indicate that all parameters are
correctly estimated most of the time and, in particular, the parameter θ3 is often
estimated as zero (Table 1 also reports the percentage of times θ3 is estimated as
zero). Notice that, as expected, the precision of the estimates grows with sample
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FIGURE 1. Density estimation of the LASSO-type estimates of the parameters of the
process dXt = (θ1 − θ2 Xt )dt + (θ3 + θ4 Xt )θ5 dWt over 1,000 Monte Carlo replications.
True values (θ1 = 1,θ2 = 0.1,θ3 = 0,θ4 = 2,θ5 = 0.5) represented as vertical dotted lines.
Upper panel: sample size of n = 100. Bottom panel: sample size n = 1,000. Penalization
in both cases: λ0 = γ0 = 1, δ1 = δ2 = 1.

FIGURE 2. Density estimation of the LASSO-type estimates of the parameters of the
process dXt = (θ1 − θ2 Xt )dt + (θ3 + θ4 Xt )θ5 dWt over 1,000 Monte Carlo replications.
True values (θ1 = 1,θ2 = 0.1,θ3 = 0,θ4 = 2,θ5 = 0.5) represented as vertical dotted lines.
Upper panel: sample size of n = 100. Bottom panel: sample size n = 1,000. Penalization
in both cases: λ0 = γ0 = 1, δ1 = δ2 = 2.
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size as well as the smoothness of the estimated density. From Figures 1 and 2 one
can see that, for small sample sizes, the estimated densities present bimodality
for some parameters. A similar effect has been noticed previously by Leeb and
Potscher (2005, Fig. 2). The explanation for this bimodality effect seems to be re-
lated to the fact that the convergence result to the Gaussian limit is only pointwise
for each fixed vector of the parameter space, and this convergence is not uniform,
not even locally. Thus, for certain values of the parameters the convergence to
the Gaussian limit is slower and hard to obtain in finite samples. In our case, the
effect is highly reduced when δ1 = δ2 move from 1 (Figure 1) to 2 (Figure 2).
We think that the comparison of these two plots is very instructive to understand
the behavior of the LASSO estimates for different penalizations and against the
quasi-maximum likelihood estimates.

4.2. A Simulation Experiment: Multidimensional Case

We consider this two-dimensional geometric Brownian motion process solution
to the stochastic differential equation

(
dXt
dYt

)
=
(

1−µ11 Xt +µ12Yt
2+µ21 Xt −µ22Yt

)
dt +
(

σ11 Xt −σ12Yt
σ21 Xt σ22Yt

)(
dWt
dBt

)
, (4.2)

with initial condition (X0 = 1,Y0 = 1) and Wt , t ∈ [0,T ], and Bt , t ∈ [0,T ], are
two independent Brownian motions. Model (4.2) is a classical model for pric-
ing of basket options in mathematical finance. We assume that α = (µ11 = 0.9,
µ12 = 0,µ21 = 0,µ22 = 0.7)′ and β = (σ11 = 0.3,σ12 = 0,σ21 = 0,σ22 = 0.2)′,
θ = (α,β).

We consider the same simulation scheme as in the previous section. Notice
that we have eight parameters in the model but only four are nonzero. Table 2
shows good behavior of the LASSO-type estimator even in the multidimensional
case.

As before, as sample size increases the estimators get better and better and the
oracle property for sparse system reveals as well; i.e., the LASSO estimate is able
to shrink toward zero the parameters µ12, µ21, σ12, and σ21. Table 2 also reports
the number of times each coefficient is estimated as zero by the LASSO method.
Again, on average we notice better performance when δ1 = δ2 passes from 1 to 2
for a given sample size n and constants γ0,λ0.

In this particular experiment, we also test the post-LASSO estimation as in
Belloni and Chernozhukov (2011). This means that we run the QMLE procedure
on the model selected by the LASSO method, which is the true model. Table 2
shows the performance of the QML estimator in this case for sample sizes n = 100
and n = 1,000. It is quite clear that the QML estimator gains in perfomance,
suggesting that the post-LASSO approach is a reasonable one.
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TABLE 2. LASSO and QML estimates of the model (4.2) for sample sizes of 100
and 1,000 and penalization terms

µ11 µ12 µ21 µ22 σ11 σ12 σ21 σ22
True 0.9 0.0 0.0 0.7 0.3 0.0 0.0 0.2

Sample size n = 100

QMLE: 0.96 0.05 0.25 0.81 0.30 0.04 0.01 0.20
(0.08) (0.06) (0.27) (0.15) (0.03) (0.05) (0.02) (0.02)

LASSO: λ0 = γ0 = 1, δ1 = δ2 = 1 0.86 0.00 0.05 0.71 0.30 0.02 0.01 0.20
(0.12) (0.00) (0.13) (0.09) (0.03) (0.05) (0.02) (0.02)

% of times θi = 0 0.0 99.9 80.2 0.0 0.3 67.2 66.7 0.1

LASSO: λ0 = γ0 = 1, δ1 = δ2 = 2 0.86 0.00 0.03 0.70 0.30 0.00 0.00 0.20
(0.10) (0.00) (0.05) (0.08) (0.02) (0.00) (0.00) (0.01)

% of times θi = 0 0.4 100.0 92.0 0.0 0.0 99.4 99.1 0.1

LASSO: λ0 = γ0 = 5, δ1 = δ2 = 1 0.82 0.00 0.00 0.66 0.29 0.01 0.00 0.20
(0.12) (0.00) (0.00) (0.09) (0.03) (0.03) (0.01) (0.02)

% of times θi = 0 0.0 100.0 99.9 0.0 0.4 86.9 89.7 0.2

LASSO: λ0 = γ0 = 5, δ1 = δ2 = 2 0.81 0.00 0.00 0.66 0.29 0.00 0.00 0.19
(0.10) (0.00) (0.00) (0.07) (0.02) (0.00) (0.00) (0.01)

% of times θi = 0 0.0 100.0 100.0 0.0 0.5 99.5 99.4 0.5

Post-LASSO QMLE: 0.88 – – 0.70 0.35 – – 0.22
(0.16) – – (0.10) (0.04) – – (0.02)

Sample size n = 1,000

QMLE: 0.95 0.03 0.21 0.79 0.30 0.04 0.01 0.20
(0.07) (0.04) (0.25) (0.13) (0.03) (0.06) (0.02) (0.02)

LASSO: λ0 = γ0 = 1, δ1 = δ2 = 1 0.88 0.00 0.08 0.73 0.30 0.02 0.01 0.20
(0.08) (0.00) (0.16) (0.09) (0.03) (0.05) (0.01) (0.02)

% of times θi = 0 0.0 99.7 72.1 0.0 0.1 67.5 66.6 0.1

LASSO: λ0 = γ0 = 1, δ1 = δ2 = 2 0.88 0.00 0.05 0.71 0.30 0.00 0.00 0.20
(0.07) (0.00) (0.06) (0.06) (0.02) (0.00) (0.00) (0.01)

% of times θi = 0 0.0 100.0 86.4 0.0 0.3 99.7 98.9 0.3

LASSO: λ0 = γ0 = 5, δ1 = δ2 = 1 0.86 0.00 0.00 0.68 0.29 0.01 0.00 0.20
(0.09) (0.00) (0.01) (0.06) (0.03) (0.04) (0.01) (0.02)

% of times θi = 0 0.0 100.0 99.4 0.0 0.2 87.8 89.9 0.2

LASSO: λ0 = γ0 = 5, δ1 = δ2 = 2 0.86 0.00 0.00 0.68 0.29 0.01 0.00 0.19
(0.07) (0.00) (0.00) (0.04) (0.02) (0.00) (0.00) (0.01)

% of times θi = 0 0.0 100.0 99.9 0.0 0.3 99.7 99.6 0.3

Post-LASSO QMLE: 0.89 – – 0.70 0.35 – – 0.22
(0.11) – – (0.07) (0.04) – – (0.02)

Notes: Average values over 1,000 Monte Carlo replications. In parentheses: Monte Carlo standard errors.
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FIGURE 3. U.S. interest rate monthly data from 06/1964 to 12/1989.

4.3. An Example of Use in the Problem of Identification of the Term
Structure of Interest Rates

In this section we reanalyze the U.S. interest rates monthly data from 06/1964
to 12/1989 for a total of 307 observations (see Figure 3). These data have been
analyzed by many authors, including Aı̈t-Sahalia (1996), Nowman (1997), and
Yu and Phillips (2001), to mention a few. We do not pretend to give the definitive
answer on the subject, but just to analyze the effect of the model selection via the
LASSO in a real application.

The data used for this application were taken from the R package Ecdat by
Croissant (2006). The different authors all try to fit a version of the so-called
CKLS model (from Chan, Karolyi, Longstaff, and Sanders, 1992) that is the so-
lution Xt of the stochastic differential equation

dXt = (α +β Xt )dt +σ Xγ
t dWt .

This model encompasses several other models depending on the number of non-
null parameters, as Table 3 shows. This makes clear why the model selection on
the CKLS model is quite appealing.

Our application of the LASSO method is reported in Table 4, along with the
results from Yu and Phillips (2001) just for comparison.

Although we have proven that asymptotically the LASSO provides consistent
estimates with the oracle properties, for finite sample size this is not always the
case, as mentioned by several authors. In this application, we estimate the param-
eters using quasi-likelihood method (QMLE in the table) in the first stage, then
set the penalties as in (3.3) and run the LASSO optimization. We estimate the
CKLS parameters via the LASSO using mild penalties (i.e., λ0 = γ0 = 1 in (3.3))
and strong penalties (i.e., λ0 = γ0 = 10). Very strong penalties suggest that the
model does not contain the term β, and in both cases the LASSO estimation sug-
gests γ = 3/2 for δ1 = δ2 = 1 and therefore a model quite close to Cox, Ingersoll,
and Ross (1980). For δ1 = δ2 = 2 we obtain γ = 1.79, which is different from
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TABLE 3. The family of one-factor short-term interest rate models seen as special
cases of the general CKLS model

Reference Model α β γ

Merton (1973) dXt = αdt +σdWt 0 0
Vasicek (1977) dXt = (α +β Xt )dt +σdWt 0
Cox, Ingersoll, and Ross (1985) dXt = (α +β Xt )dt +σ

√
Xt dWt 1/2

Dothan (1978) dXt = σ Xt dWt 0 0 1
Geometric Brownian motion dXt = β Xt dt +σ Xt dWt 0 1
Brennan and Schwartz (1980) dXt = (α +β Xt )dt +σ Xt dWt 1

Cox, Ingersoll, and Ross (1980) dXt = σ X3/2
t dWt 0 0 3/2

Constant elasticity variance dXt = β Xt dt +σ Xγ
t dWt 0

CKLS (1992) dXt = (α +β Xt )dt +σ Xγ
t dWt

TABLE 4. Model selection on the CKLS model for the U.S. interest rates data

Model Estimation method α β σ γ

Vasicek MLE 4.1889 −0.6072 0.8096 –

CKLS Nowman 2.4272 −0.3277 0.1741 1.3610

CKLS Exact Gaussian 2.0069 −0.3330 0.1741 1.3610
(0.5216) (0.0677)

CKLS QMLE 2.0822 −0.2756 0.1322 1.4392
(0.9635) (0.1895) (0.0253) (0.1018)

CKLS QMLE + LASSO 1.5435 −0.1687 0.1306 1.4452
with mild penalization δ = 1 (0.6813) (0.1340) (0.0179) (0.0720)

CKLS QMLE + LASSO 0.5412 0.0001 0.1178 1.4944
with strong penalization δ = 1 (0.2076) (0.0054) (0.0179) (0.0720)

CKLS QMLE + LASSO 0.7982 −0.0009 0.1145 1.5139
with mild penalization δ = 2 (0.2164) (0.0110) (0.0181) (0.0726)

CKLS QMLE + LASSO 0.7465 −0.0001 0.0431 1.7941
with strong penalization δ = 2 (0.2106) (0.0038) (0.0181) (0.0726)

CIR(’80) Post-LASSO QMLE 0.8072 – 0.1297 1.4555
(0.2959) – (0.0241) (0.0994)

Notes: Table taken from Yu and Phillips (2001) and updated with LASSO results. Standard errors in parentheses
when available.

any known model in Table 3. Still, in most cases, the parameter β is estimated as
zero, indicating that the LASSO method suggests a lack of mean reversion term as
expected from the plot of the time series (see Figure 3). The post-LASSO estima-
tion seems to confirm the exponent γ of about 1.5. Being a shrinkage estimator,
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the LASSO estimates have very low standard error compared to the other cases.
As said, this application has been done to show the applicability of the LASSO
method, and we do not pretend to draw in-depth conclusions from this empirical
evidence, which is out of our competence.

5. CONCLUSIONS

In this paper, for multivariate diffusion processes defined by stochastic differential
equations, we introduce the LASSO methodology, which permits us to perform
model selection and estimation simultaneously. This approach is particularly use-
ful because it leads us to discard the redundant parameters overcoming the AIC
drawbacks. Indeed, AIC requires a very precise calculation of the likelihood func-
tion to avoid bias. Furthermore, we show that the LASSO estimator enjoys the
oracle property, that is, it selects the true subset model and estimates the nonre-
dundant parameters efficiently, as if the true model was known. We point out that
in our case the LASSO procedure is not a trivial extension of the classical LASSO
one because there are two different rates of convergence for the estimators of drift
and diffusion coefficients. In regard to this fact, the objective function has two
different constraints on the vector parameters α and β.

In view of the growing importance of multivariate diffusion processes in econo-
metrics, we believe that the technique analyzed in this paper is useful for applied
researchers. For example, restricting the attention to a model with few and no-
redundant parameters, one may be able to improve the predictive performance of
the estimated model.

6. PROOFS

Proof of Theorem 1. Following Fan and Li (2001), the existence of a con-
sistent local minimizer is implied by that fact that for an arbitrarily small ε > 0,
there exists a sufficiently large constant C , such that

lim
n→∞ P

{
inf

z∈Rp+q :|z|=C
F
(
θ0 +ϕ(n)1/2z

)
> F(θ0)

}
> 1− ε, (6.1)

with z = (u,v) where u = (u1, ...,up)′ and v = (v1, ...,vq)′. After some calcula-
tions, we obtain that

F
(
θ0 +ϕ(n)1/2z

)
−F(θ0) = z′ϕ(n)1/2Ḧn

(
Xn, θ̃n

)
ϕ(n)1/2z

+ 2z′ϕ(n)1/2Ḧn(Xn, θ̃n)ϕ(n)1/2ϕ(n)−1/2(θ0 − θ̃n
)

+
(

p

∑
j=1

λn, j

∣∣∣∣α0 j + uj√
n'n

∣∣∣∣−
p

∑
j=1

λn, j
∣∣α0 j
∣∣
)

+
(

q

∑
k=1

γn,k

∣∣∣∣β0k + v j√
n

∣∣∣∣−
q

∑
j=1

γn,k |β0k |
)
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= z′ϕ(n)1/2Ḧn
(
Xn, θ̃n

)
ϕ(n)1/2z

+ 2z′ϕ(n)1/2Ḧn
(
Xn, θ̃n

)
ϕ(n)1/2ϕ(n)−1/2(θ0 − θ̃n

)

+
(

p

∑
j=1

λn, j

∣∣∣∣α0 j + uj√
n'n

∣∣∣∣−
p0

∑
j=1

λn, j
∣∣α0 j
∣∣
)

+
(

q

∑
k=1

γn,k

∣∣∣∣β0k + v j√
n

∣∣∣∣−
q0

∑
j=1

γn,k |β0k |
)

≥ z′ϕ(n)1/2Ḧn
(
Xn, θ̃n

)
ϕ(n)1/2z

+ 2z′ϕ(n)1/2Ḧn
(
Xn, θ̃n

)
ϕ(n)1/2ϕ(n)−1/2(θ0 − θ̃n

)

+
p0

∑
j=1

λn, j

(∣∣∣∣α0 j + uj√
n'n

∣∣∣∣−
∣∣α0 j
∣∣
)

+
q0

∑
k=1

γn,k

(∣∣∣∣β0k + v j√
n

∣∣∣∣−γn,k |β0k |
)

≥ z′ϕ(n)1/2Ḧn
(
Xn, θ̃n

)
ϕ(n)1/2z

+ 2z′ϕ(n)1/2Ḧn
(
Xn, θ̃n

)
ϕ(n)1/2ϕ(n)−1/2(θ0 − θ̃n

)

−
[

p0
µn√
n'n

|u|+q0
νn√

n
|v|
]

= 41 +42 −43.

Now, it is clear that from Condition 1 that one has 43 = op(1). Furthermore, by
Lemma 1, being that |z| = C , 41 is uniformly larger than τmin(ϕ(n)1/2Ḧn(Xn, θ̃n)
ϕ(n)1/2)C2 and

τmin

(
ϕ(n)1/2Ḧn

(
Xn, θ̃n

)
ϕ(n)1/2

)
C2 p→ C2τmin(I(θ0)),

where τmin(A) is the minimal eigenvalue of A. Moreover, Lemma 1 implies that
∣∣∣ϕ(n)1/2Ḧn

(
Xn, θ̃n

)
ϕ(n)1/2ϕ(n)−1/2(θ0 − θ̃n

)∣∣∣= Op(1),

and then 42 is bounded and linearly dependent on C . Therefore, for C sufficiently
large, F(θ0 +ϕ(n)1/2z)−F(θ0) dominates 41 +42 with arbitrarily large prob-
ability. This implies (6.1) and the proof is completed by noticing that F(θ) is
strictly convex, which implies that the consistent local minimum is the consistent
global one. Then the statements of Theorem 1 hold. n

Proof of Theorem 2. Theorem 2 is proved using contradiction. Let us assume
that for some j = p0 + 1, . . . , p and k = q0 + 1, . . . ,q there are α̂n, j ,= 0 and
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β̂n, j ,= 0. In view of the Karush-Kuhn-Tucker (KKT) optimality conditions, we
have that

1√
n'n

∂F(θ)

∂αj

∣∣∣∣
θ=θ̂n

= 2
1√
n'n

Ḧ( j)
n
(
Xn, θ̃n

)
ϕ(n)−1/2ϕ(n)1/2(θ̂n − θ̃n

)

+ λn, j√
n'n

sgn(α̂n, j ) = 0, (6.2)

where Ḧ( j)
n denotes the j th row of Ḧn . The first term of (6.2) is Op(1), while

λn, j√
n'n

≥ κn√
n'n

→ ∞. By taking into account the proof of Theorem 1, we have that

θ̂n is a minimizer of F(θ), and this leads to a contradiction. Therefore, P(α̂n, j =
0) → 1. Similarly for the estimators of the coefficients βk, k = q0 + 1, ...,q. In-
deed, by KKT optimality conditions we have that

1√
n

∂F(θ)

∂βk

∣∣∣∣
θ=θ̂n

= 2
1√
n
Ḧ(k)

n
(
Xn, θ̃n

)
ϕ(n)−1/2ϕ(n)1/2(θ̂n − θ̃n

)

+ λn, j√
n

sgn
(
β̂n, j
)

= 0.

By the same arguments adopted above, we get that P(β̂n,k = 0) → 1. n

Proof of Theorem 3. Before starting the proof, it is necessary to introduce
some notations. Let

Ḧn(θ̃n) =





+̂∗∗
α +̂∗◦

α +̂∗∗
αβ +̂∗◦

αβ

+̂◦∗
α +̂◦◦

α +̂◦∗
αβ +̂◦◦

αβ

+̂∗∗
βα +̂◦∗

βα +̂∗∗
β +̂∗◦

β

+̂∗◦
βα +̂◦◦

βα +̂◦∗
β +̂◦◦

β




,

where

• +̂∗∗
α is the p0 × p0 matrix with elements [Ḧn]hi , h, i = 1, ..., p0,

• +̂∗◦
α is the p0 × (p − p0) matrix with elements [Ḧn]hi , h = 1, ..., p0,

i = p0 +1, ..., p, and +̂◦∗
α = (+̂∗◦

α )′,

• +̂◦◦
α is the (p − p0) × (p − p0) matrix with elements [Ḧn]hi , h, i = p0 +

1, ..., p,

• +̂∗∗
β is the q0 ×q0 matrix with elements [Ḧn]hi , h, i = p +1, ..., p +q0,

• +̂∗◦
β is the q0 × (q −q0) matrix with elements [Ḧn]hi , h = p + 1, ..., p +q0,

i = p +q0 +1, ..., p +q, and +̂◦∗
β = (+̂∗◦

β )′,

• +̂◦◦
β is the (q −q0)× (q −q0) matrix with elements [Ḧn]hi , h, i = p +q0 +

1, ..., p +q,
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• +̂∗∗
αβ is the p0 × q0 matrix with elements [Ḧn]hi , h = 1, ..., p0, i = p +

1, ..., p +q0,

• +̂∗◦
αβ is the p0 × (q − q0) matrix with elements [Ḧn]hi , h = 1, ..., p0, i =

p +q0 +1, ..., p +q,

• +̂◦◦
αβ is the (p− p0)×(q −q0) matrix with elements [Ḧn]hi , h = p0 +1, ..., p,

i = p +q0 +1, ..., p +q,

• +̂◦∗
αβ is the (p − p0) × q0 matrix with elements [Ḧn]hi , h = p0 + 1, ..., p,

i = p +1, ..., p +q0,

and finally,

(
+̂∗∗

βα +̂◦∗
βα

+̂∗◦
βα +̂◦◦

βα

)

=
(

+̂∗∗
αβ +̂∗◦

αβ

+̂◦∗
αβ +̂◦◦

αβ

)′
.

Furthermore, by Lemma 1,

1
n'n

(
+̂∗∗

α +̂∗◦
α

+̂◦∗
α +̂◦◦

α

)
p→ +α =

(
+∗∗

α +∗◦
α

+◦∗
α +◦◦

α

)

,

where

• +∗∗
α = [Ik j

b (α0)]k, j , is a p0 × p0 matrix, with k, j = 1, . . . , p0,

• +∗◦
α = [Ik j

b (α0)]k, j , is a p0 × (p − p0) matrix, with k = 1, . . . , p0; j = p0 +
1, . . . , p, and +◦∗

α = (+∗◦
α )′,

• +◦◦
α = [Ik j

b (α0)]k, j , is a (p− p0)×(p− p0) matrix, with k, j = p0 +1, . . . , p,

and

1
n

(
+̂∗∗

β +̂∗◦
β

+̂◦∗
β +̂◦◦

β

)
p→ +β =

(
+∗∗

β +∗◦
β

+◦∗
β +◦◦

β

)

,

where

• +∗∗
β = [Ik j

σ (β0)]k, j , is a q0 ×q0 matrix, with k, j = 1, . . . ,q0,

• +∗◦
β = [Ik j

σ (β0)]k, j , is a q0 × (q − q0) matrix, with k = 1, . . . ,q0; j = q0 +
1, . . . ,q, and +◦∗

β = (+∗◦
β )′,

• +◦◦
β = [Ik j

σ (β0)]k, j , is a (q −q0)× (q −q0) matrix, with k, j = q0 +1, . . . ,q.

Finally, by Lemma 1 we have that

1
n
√

'n

(
+̂∗∗

αβ +̂∗◦
αβ

+̂◦∗
αβ +̂◦◦

αβ

)
p→
(

0 0
0 0

)
. (6.3)
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From Theorem 2 and (2.4), it follows that estimator θ̂∗
n globally minimizes the

objective function

F0(θ
∗) =
(
α∗ − α̃∗

n ,−α̃◦
n,β∗ − β̃∗

n ,−β̃◦
n
)′Ḧn
(
θ̃n
)(

α∗ − α̃∗
n ,−α̃◦

n,β∗ − β̃∗
n ,−β̃◦

n
)

+
p

∑
j=1

λn, j |αj |+
q

∑
k=1

γn,k |βk |

=
(
α∗ − α̃∗

n
)′

+̂∗∗
α

(
α∗ − α̃∗

n
)
−2
(
α∗ − α̃∗

n
)′

+̂∗◦
α α̃◦

n

+
(
α̃◦

n
)′

+̂◦◦
α α̃◦

n +
p

∑
j=1

λn, j |αj |

+2
(
β∗ − β̃∗

n
)′

+̂∗∗
βα

(
α∗ − α̃∗

n
)
−2
(
β̃◦

n
)′

+̂∗◦
βα

(
α∗ − α̃∗

n
)

+2
(
β̃◦

n
)′

+̂◦◦
βαα̃◦

n +
(
β∗ − β̃∗

n
)′

+̂∗∗
β

(
β∗ − β̃∗

n
)
−2
(
β∗ − β̃∗

n
)′

+̂∗◦
β β̃◦

n

+
(
β̃◦

n
)′

+̂◦◦
β β̃◦

n +
q

∑
k=1

γn,k |βk |−2
(
β∗ − β̃∗

n
)′

+̂◦∗
βαα̃◦

n .

Hence, the following normal equations hold:

0 = 1
2

∂F0(θ)

∂α∗

∣∣∣∣
θ∗=θ̂∗

n

= +̂∗∗
α

(
α̂∗

n − α̃∗
n
)
− +̂∗◦

α α̃◦
n

+ +̂∗∗
αβ

(
β̂∗

n − β̃∗
n
)
− +̂∗◦

αββ̃◦
n + A

(
α̂∗

n
)
, (6.4)

0 = 1
2

∂F0(θ)

∂β∗

∣∣∣∣
θ∗=θ̂∗

n

= +̂∗∗
β

(
β̂∗

n − β̃∗
n
)
− +̂∗◦

β β̃◦
n

+ +̂∗∗
βα

(
α̂∗

n − α̃∗
n
)
− +̂◦∗

βα α̃◦
n + B

(
β̂∗

n
)
, (6.5)

where A(α̂∗
n) and B(β̂∗

n ) are, respectively, p0 and q0 vectors with j th and kth
components given by 1

2λn, j sgn(α̂∗
n, j ) and 1

2γn,ksgn(β̂∗
n, j ). From (6.4), by simple

calculations, we have that

√
n'n
(
α̂∗

n −α∗
0
)
=
√

n'n
(
α̃∗

n −α∗
0
)
+
(

1
n'n

+̂∗∗
α

)−1 1
n'n

+̂∗◦
α

(√
n'nα̃

◦
n
)

−
(

1
n'n

+̂∗∗
α

)−1( 1
n
√

'n
+̂∗∗

αβ

)√
n
(
β̂∗

n − β̃∗
n
)

+
(

1
n'n

+̂∗∗
α

)−1( 1
n
√

'n
+̂∗◦

αβ

)(√
nβ̃◦

n
)

−
(

1
n'n

+̂∗∗
α

)−1 A(α̂∗
n)√

n'n
.
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By Condition 1 we have that A(α̂∗
n )√

n'n
= op(1), and (6.3) leads to 1

n
√

'n
+̂∗◦

αβ = op(1)

and 1
n
√

'n
+̂∗∗

αβ = op(1). Thus, we can write via Theorems 1 and 2,

√
n'n(α̂∗

n −α∗
0) =

√
n'n(α̃∗

n −α∗
0)

+
(

1
n'n

+̂∗∗
α

)−1( 1
n'n

+̂∗◦
α

)(√
n'nα̃

◦
n

)
+op(1).

Notice that

+−1
α =




(
+∗∗

(αα)

)−1 −
(
+∗∗

(αα)

)−1
+∗◦

α

(
+◦◦

α

)−1

−
(
+◦◦

α

)−1
+◦∗

α

(
+∗∗

(αα)

)−1 (
+◦◦

α

)−1 +
(
+◦◦

α

)−1
+◦∗

α

(
+∗∗

(αα)

)−1
+∗◦

α

(
+◦◦

α

)−1



,

where
(
+∗∗

(αα)

)−1=
(
+∗∗

α −+∗◦
α

(
+◦◦

α

)−1+◦∗
α

)−1, then
(
+∗∗

(αα)

)−1+∗◦
α =−

(
+∗◦

α

)−1
+◦◦

α .

Therefore, since
(

1
n'n

+̂∗∗
α

)−1(
1

n'n
+̂∗◦

α

) p→
(
+∗∗

(αα)

)−1
+∗◦

α , we have that

√
n'n
(
α̂∗

n −α∗
0
)

=
√

n'n
(
α̃∗

n −α∗
0
)
−
(
+∗◦

α

)−1
+◦◦

α

(√
n'nα̃◦

n
)
+op(1),

and by means of Lemma 1(ii), we derive that

√
n'n
(
α̂∗

n −α∗
0
) d→ N

(
0,
(
+∗∗

(αα)

)−1)
.

Similarly, from (6.5) we obtain that

√
n
(
β̂∗

n −β∗
0
)

= √
n
(
β̃∗

n −β∗
0
)
+
(

1
n
+̂∗∗

β

)−1(1
n
+̂∗◦

β

)√
nβ̃◦

n +op(1),

and then
√

n
(
β̂∗

n − β∗
0
)

converges in distribution to N
(
0,
(
+∗∗

(ββ)

)−1), with
(
+∗∗

(ββ)

)−1 =
(
+∗∗

β −+∗◦
β

(
+◦◦

β

)−1
+◦∗

β

)−1. This concludes the proof. n
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