# Effect of Temperature on the $\mathrm{p}_{50}$ Value for Human Blood 

M. Samaja, ${ }^{1}$ D. Melotti, ${ }^{1}$ E. Rovida, ${ }^{2}$ and L. Rossi-Bernardi ${ }^{1}$

We investigated the effect of temperature ( $19,30,37$, and $43^{\circ} \mathrm{C}$ ) on the $\mathrm{p}_{50}$ value for normal human blood at $\mathrm{p}_{\mathrm{CO}_{2}}=$ $5.72 \mathrm{kPa}(43 \mathrm{mmHg})$, at various pHs (range 7.0 to 7.6 ) and molar ratios of [2,3-diphosphoglycerate]/[ $\left[\mathrm{Hb}_{4}\right]$ (range 0.4 to 2.4). The $d\left(\log \mathrm{p}_{50}\right) / \mathrm{d}(\mathrm{pH})$ coefficient varied from 0.39 at $19^{\circ} \mathrm{C}$ to 0.35 at $43^{\circ} \mathrm{C}$. The relationship between $\log$ $p_{50}$ and $1 / T$ ( $T=$ degrees Kelvin) was linear under the experimental conditions used, and the $d\left(\log p_{50}\right) / d(1 / T)$ coefficient varied between -2138 at pH 7.0 and -2162 at pH 7.6 , independent of the concentration of 2,3 -diphosphoglycerate. Assuming that the effect of $\mathrm{P}_{\mathrm{CO}_{2}}$ on the $\mathrm{p}_{50}$ value is the same at 19,30 , and $43^{\circ} \mathrm{C}$ as at $37^{\circ} \mathrm{C}$, one can use the reported coefficients to calculate the $p_{50}$ value for normal human blood under conditions of temperature, $\mathrm{pH}, \mathrm{PCO}_{2}$, and 2,3-diphosphoglycerate concentrations prevailing under physiological and pathological conditions. The $p_{50}$ value calculated by empirical equations, taking into account the effect of temperature, correlated well with the values for $p_{50}$ determined experimentally $(y=0.9774 x+$ $0.453 ; r=0.998 ; n=60$ ), with an SD of $52 \mathrm{~Pa}(0.39$ mmHg ).

Addilional Keyphrases: blood gases - variation, source of - tonometry

Earlier, we described (1) a new method for tonometering small amounts of blood with a known gas phase, which allowed the study of the effect of 2,3 -diphosphoglycerate ( 2,3 -DPG), $\mathrm{H}^{+}$, and $\mathrm{CO}_{2}$ on the $\mathrm{p}_{50}$ value [the $\mathrm{p}_{\mathrm{O}_{2}}$ at which hemoglobin $\left(\mathrm{Hb}_{4}\right)$ is half saturated with oxygen] for normal human blood at $37{ }^{\circ} \mathrm{C}$. We derived empirical equations and a nomogram, which made it possible to calculate the value of $p_{50}$ from known values of $\mathrm{P}_{\mathrm{CO}_{2}}, \mathrm{pH}$, and the $[2,3-\mathrm{DPG}] /[\mathrm{Hb} 4]$ molar ratio.

Here we extend the study of the effect of 2,3-DPG and pH on the $\mathrm{p}_{50}$ value for normal human blood to the temperature range 19 to $43^{\circ} \mathrm{C}$. Whereas the simple effect of temperature on the $p_{50}$ value for normal, fresh, unmodified blood has already been investigated (see Discussion), no description of the separate effect of $2,3-$ DPG and pH on the value of $\mathrm{p}_{50}$ at various temperatures has yet been reported. Because the effect of $\mathrm{p}_{\mathrm{CO}_{2}}$ on $\mathrm{p}_{50}$ can be assumed to be constant within the considered temperature range, and similar to that found at $37^{\circ} \mathrm{C}$, the data we report here allow calculation of the value for normal human blood under various conditions of temperature, $\mathrm{pH}, \mathrm{p}_{\mathrm{CO}_{2}}$ and 2,3-DPG concentration.

## Materials and Methods

Blood samples. About 30 to 40 mL of blood collected from a healthy, nonsmoking man was used for all experiments, which were done within 8 h . When not in use, the blood was stored in an ice bath. Blood pH and 2,3-DPG concentration were varied as already described (1).

[^0]Flasks. We used $60-\mathrm{mL}$ flasks (1) so as to obtain a larger surface of contact between the blood and the gas phase and between the flasks and the tonometer block. We used 0.40 mL of blood for each run.
Tonometer. The tonometer previously described (1) was modified to allow blood samples to be equilibrated with the gas phase at temperatures other than $37^{\circ} \mathrm{C}$. Two Plexiglas coils were applied to the side walls, and water was pumped through them from an external water bath. The temperature in the core of the block was measured with a thermal sensor inserted into a thin, deep hole in the block and calibrated against a National Bureau of Standards certified mercurybulb thermometer. The circulating water at the exit of the tonometer was used to maintain the temperature of the pH electrode (IL 213; Instrumentation Laboratory, Lexington, MA 02173). Heat dispersion was prevented by thermal insulation of tubings.
We selected three operating temperatures: 43, 30 , and $19^{\circ} \mathrm{C}$. The time required to tonometer the blood at the various temperatures was determined by equilibrating a blood sample with nitrogen containing $\mathrm{CO}_{2}(63.1 \mathrm{~mL} / \mathrm{L})$ and measuring the hemoglobin saturation for oxygen $\left(S_{0_{2}}\right)$ at 5 -min intervals.
Measurement of $\mathrm{S}_{\mathrm{O}_{2}}$. The method for measuring $\mathrm{S}_{\mathrm{O}_{2}}$ previously reported (2) was modified as follows. We used an anaerobic, stainless-steel, $1-\mathrm{mL}$ cuvette, with an oxygen electrode in contact with the liquid, similar to that described (2) but without optical windows. After filling the cuvette with sodium tetraborate buffer (2), we added $10 \mu \mathrm{~L}$ of blood to the buffer, and determined the amount of deoxygenated hemoglobin as described (2). We then added to the blood-buffer solution $5 \mu \mathrm{~L}$ of $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{K} 3 \mathrm{Fe}(\mathrm{CN})_{6}$ dissolved in $2.75 \mathrm{~mol} / \mathrm{L}$ $\mathrm{H}_{3} \mathrm{PO}_{4}$, to oxidize the oxyhemoglobin, and measured the $\mathrm{p}_{\mathrm{O}_{2}}$ of the solution. The oxygen capacity was calculated by use of the following equation:

$$
\begin{equation*}
\mathrm{O}_{2} \text { capacity }=\alpha \times \Delta p_{\mathrm{O}_{2}} /\left(v_{\mathrm{c}}-v_{\mathrm{f}}\right) \tag{1}
\end{equation*}
$$

where $v_{c}$ is the volume of the cuvette, $v_{f}$ is the volume of the $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}-\mathrm{H}_{3} \mathrm{PO}_{4}$ solution, $\Delta p_{\mathrm{O}_{2}}$ is the $p_{\mathrm{O}_{2}}$ difference before and after addition of the oxidant, and $\alpha$ is the solubility coefficient of oxygen in aqueous solutions. The value of $\alpha$ at the required temperature was that of Roughton and Severinghaus (3). The $S_{\mathrm{O}_{2}}$ of the blood sample was calculated from:

$$
\begin{equation*}
S_{\mathrm{O}_{2}}=\left(\mathrm{O}_{2} \text { capacity - deoxygenated } \mathrm{Hb}\right) / \mathrm{O}_{2} \text { capacity } \tag{2}
\end{equation*}
$$

Calculation of the $p_{50}$. The $p_{\mathrm{O}_{2}}$ in the blood sample at the end of tonometry was calculated as previously described (2). Because in separate experiments at $t=19,30$, and $43^{\circ} \mathrm{C}$ the value of the Hill coefficient ( n ) was $2.7 \pm 0.2$, the $\mathrm{p}_{50}$ value was calculated from the $p_{\mathrm{O}_{2}}$ and $\mathrm{S}_{\mathrm{O}_{2}}$ by the Hill equation, assuming $n=2.7$ (4). This correction was applied only if $S_{\mathrm{O}_{2}}$ fell between 40 and $60 \%$. If the $S_{\mathrm{O}_{2}}$ was outside this range, the measurement was repeated at a more suitable $p_{\mathrm{O}_{2}}$.
Other measurements. At the end of the tonometry, the concentrations of hemoglobin, methemoglobin, and carboxyhemoglobin were measured as described (1). The concentration of 2,3-DPG was measured once every three to four runs. We calibrated electrodes for pH measurement at each temperature, using appropriate temperature-related values


Fig. 1. Decrease in the $\mathrm{p}_{\mathrm{CO}_{2}}$ in the flask (volume $=60 \mathrm{~mL}$ ) after the addition of 0.4 mL of $\mathrm{CO}_{2}$-free blood, as a function of temperature
for National Bureau of Standards certified phosphate buffers (5).
$\mathrm{P}_{\mathrm{CO}_{2}}$ values. The concentration of $\mathrm{CO}_{2}$ in the gas phase was the same for all the experiments; it derived from mixing the same binary gas mixtures ( $6.31 \% \mathrm{CO}_{2}$ /balance nitrogen, and $6.34 \% /$ balance air), giving a theoretical $p_{\mathrm{CO}_{2}}$ of $6.16 \mathrm{kPa}(46.3$ $\mathrm{mmHg})^{3}$ (1). Because we used closed tonometry flasks, the effective $p_{\mathrm{CO}_{2}}$ of the blood sample was somewhat lower ( 5.72 kPa , about 43 mmHg ), but was nearly the same for all temperatures investigated. Small differences in the $p_{\mathrm{CO}_{2}}$ were due to the different extent to which gaseous $\mathrm{CO}_{2}$ was dissolved in the liquid phase and to temperature-linked changes in the pK value for carbonic acid (6). Figure 1 shows how temperature changes affected the value of $p_{\mathrm{CO}_{2}}$ of the blood sample.

## Results

Tonometry. The special tonometric flasks used allowed a wide surface of contact between the blood sample and the aluminum block of the tonometer. The temperature gradient between the blood and the block never exceeded $0.05{ }^{\circ} \mathrm{C}$ in the investigated temperature range. Decreasing the temperature always increased the oxygen affinity of blood; consequently, the time to equilibrate a blood sample with a gas varied from a minimum of 15 min at $43^{\circ} \mathrm{C}$ to a maximum of 45 min at $19^{\circ} \mathrm{C}$.

Measurement of $\mathrm{S}_{\mathrm{O}_{2}}$. The new method to measure $\mathrm{S}_{\mathrm{O}_{2}}$ was fast and simple, requiring only one calibration before the analysis, i.e., calibration of the oxygen electrode with the value of atmospheric $p_{\mathrm{O}_{2}}$. The rate of oxidation of hemoglobin was high ( $>99 \%$ in 20 s ), owing to the acid environment ( $\mathrm{pH} \sim 6$ ) and the high concentration of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$, which increased the pseudo-first order rate (7).

We checked this method against the previously described method (2), measuring $\mathrm{SO}_{\mathrm{O}_{2}}$ on 111 samples equilibrated at $p_{\mathrm{O}_{2}}$ values between 0 and 20 kPa ( 0 and 150 mmHg ). The differences between the results obtained by the new method and those obtained by the reference method were not statistically significant ( $0.28 \pm 0.80 S_{\mathrm{O}_{2}}$ units, $t=-3.64,110 \mathrm{df}$ ). The reproducibility of the method was checked by determining the $\mathrm{S}_{\mathrm{O}_{2}}$ on 10 samples equilibrated at the same $p_{\mathrm{O}_{2}}$. Results (mean $\pm$ SD) were quite comparable with those of the previously reported method: $S_{\mathrm{O}_{2}}=54.4 \pm 0.6$ (CV 1.1\%) vs $54.6 \pm 0.7$ (CV $1.2 \%$ ), respectively, for the comparison method and for the new method.

Effect of temperature. We made 60 determinations of the $\mathrm{p}_{50}$ value: at five molar ratios of $[2,3-\mathrm{DPG}] /\left[\mathrm{Hb}_{4}\right] 0.4,0.6,0.8$, 1.9 , and 2.4 ), at three temperatures ( 19,30 , and $43^{\circ} \mathrm{C}$ ), and in the pH range 7.0 to 7.6. To determine the Bohr factor, $\mathrm{d}(\mathrm{log}$

[^1]

Fig. 2. Plots of $\log p_{50}$ vs $p H$, i.e., the Bohr effect, at $p_{\mathrm{CO}_{2}}=43$ $\mathrm{mmHg}(5.72 \mathrm{kPa})$ and five [2,3-DPG]/[ $\left.\mathrm{Hb}_{4}\right]$ molar ratios: approximately $2.4(\square), 1.9(\mathrm{O}), 0.8(\Delta), 0.6(\square)$, and $0.4(0)$ The regression lines shown are calculated by least-squares analysis
$\left.\mathrm{p}_{50}\right) / \mathrm{d}(\mathrm{pH})$, for each constant value of 2,3-DPG and temperature, we determined four $p_{50}$ values (Figure 2). The relationship between $\log \mathrm{p}_{50}$ and pH was linear in the range of temperature values and $[2,3-\mathrm{DPG}] /\left[\mathrm{Hb}_{4}\right]$ ratios investigated. The Bohr effect, $\mathrm{d}\left(\log \mathrm{p}_{50}\right) / \mathrm{d}(\mathrm{pH})$, decreased slightly for increasing temperatures (from $0.39 \pm 0.08$, mean $\pm \mathrm{SD}$, at $19^{\circ} \mathrm{C}$ to $0.35 \pm 0.03$ at $43^{\circ} \mathrm{C}$ ), confirming previous studies (8-10). Figure 3 shows the effect of $2,3-$ DPG on $\log p_{50}$ at various temperatures. Data at $37^{\circ} \mathrm{C}$ were obtained from equations previously reported (1). The Van't Hoff isochores were obtained for the extreme values of pH (Figure 4). The relationship between $\log p_{50}$ and $1 / T(T=$ degrees Kelvin) was linear under all the conditions used. The average ( $\pm \mathrm{SD}$ ) slopes of the lines were $-2138 \pm 57$ at pH 7.0 , and $-2162 \pm 67$ at pH 7.6 . The difference between the slopes at pH 7.0 and at pH 7.6 was not significant $(t=-0.63,7 \mathrm{df})$, but a small, although statistically poor, trend toward steeper lines could be seen for increasing concentrations of $2,3-\mathrm{DPG}$.

Our data, obtained from fresh unmodified blood, are in good agreement with those obtained by other authors under similar conditions. Figure 5 shows a comparison with the most recent data reported in the literature (10-12).

Calculating $p_{50}$ values at various tempcratures. Because the slopes of the lines shown in Figure 4 are practically the same with respect to pH and $2,3-\mathrm{DPG}$ concentration, the following equation may be applied to describe the data:

$$
\begin{equation*}
d\left(\log p_{50}\right) / d(1 / T)=-2149 \pm 56 \tag{3}
\end{equation*}
$$



Fig. 3. Effect of $2,3-$ DPG on $\log \mathrm{p}_{50}$ at the two extremes of the pH range and at four temperatures: ( $\mathbf{\Delta}$ ) 43, (ロ) 37, (■) 30, and (©) $19^{\circ} \mathrm{C}$

This equation can be used to calculate the $p_{50}$ value of human blood at any temperature in the range 19 to $43^{\circ} \mathrm{C}$, when its value at another temperature in the same range is known, and it is valid at $p_{\mathrm{CO}_{2}}=43 \mathrm{mmHg}(5.72 \mathrm{kPa})$, in the pH range 7.0 to 7.6 , and in the $[2,3-\mathrm{DPG}] /\left[\mathrm{Hb}_{4}\right]$ molar ratio range 0.4 to 2.5 . The $p_{\mathrm{CO}_{2}}$ correction from 43 mmHg to any other value of $p_{\mathrm{CO}_{2}}$ can be estimated at any temperature from 19 to $43^{\circ} \mathrm{C}$ by using as a first approximation the previously described nomogram (1). Figure 6 shows the correlation between the experimental $\mathbf{p}_{50}$ value and that obtained by the combined use of the nomogram (1) and equation 3 . The $p_{50}$ value was calculated with an SD of $52 \mathrm{~Pa}(0.39 \mathrm{mmHg})$.

## Discussion

The increase in the oxygen affinity of human blood with decreasing temperature was first described in 1909 (13). Since then, many investigations on its effect on the oxyhemoglobin dissociation curve in blood have been reported, but without full consideration of all the factors later discovered to affect the oxygen affinity of whole blood. More recently, some authors have investigated the effect of temperature on the $p_{50}$
value, the Bohr effect, and the Hill coefficient of normal human blood (10-12). However, in these reports the effect of 2,3-DPG was not investigated at various temperatures. To study the separate effects of the known allosteric regulators of the oxygen affinity of blood at different temperatures, we have adapted our recently reported method (1), which is suitable for the rapid determination of the $p_{50}$ value under defined conditions of $\mathrm{pH}, \mathrm{p}_{\mathrm{CO}_{2}}$, and 2,3-DPG concentration.
The average value for $\mathrm{d}\left(\log \mathrm{p}_{50}\right) / \mathrm{d}\left(t^{\circ} \mathrm{C}\right)=0.0229$, as determined on fresh, unmodified blood, is comparable (Table 1) with the values reported by other authors (10-19) under similar conditions. However, we found the coefficient d(log $\left.p_{50}\right) / \mathrm{d}(1 / T)$ more suitable to express the effect of temperature, the slopes of the lines of Figure 4 being practically independent of the concentration of $2,3-\mathrm{DPG}$ and of pH . We did not investigate the effect of $p_{\mathrm{CO}_{2}}$, and thus we did not calculate the $\mathrm{d}\left(\log \mathrm{p}_{50}\right) / \mathrm{d}\left(p_{\mathrm{CO}_{2}}\right)$ coefficient. However, $\mathrm{CO}_{2}$ is known to affect physiologically the oxygen affinity of blood, mainly through the alkaline Bohr effect. In the presence of 2,3-DPG, the effect of $\mathrm{CO}_{2}$ is greatly decreased, because 2,3-DPG and


Fig. 4. The Van't Hoff isochores at pH 7.0 and 7.6, and five molar ratios of [2,3-DPG]/[Hb ${ }_{4}$ ] labeled as in Fig. 2 The correlation coefficients varied between 0.995 and 0.999


Fig. 5. Comparison of our data with the most recent data available in the literature under similar conditions
$\Delta$, Astrup et al. (11), pH 7.4, $\mathrm{p}_{\mathrm{CO}_{2}}$ about 36 mmHg , [2,3-DPG]/[ Hb 4 ] unknown; D, Hlastala et al. ( 10), pH 7.4, p $\mathrm{CO}_{2}$ to neutralize the base excess, [2,3-DPG]$I\left[\mathrm{H}_{4}\right]=0.90 ; \mathrm{O}$, Reeves (12), pH 7.4, constant $\mathrm{CO}_{2}$ content, $[2,3-\mathrm{DPG}] /\left[\mathrm{H}_{4}\right]$ $=0.85 ;$, present work, $\mathrm{pH} 7.4, \mathrm{p}_{\mathrm{CO}_{2}}=43 \mathrm{mmHg},[2,3-\mathrm{DPG}] /\left[\mathrm{H}_{4}\right]=$ 0.80
$\mathrm{CO}_{2}$ compete for two of the four N -terminal amino groups of hemoglobin (20). Moreover, the effect of $\mathrm{CO}_{2}$ has already been found experimentally not to be significantly affected by temperature changes (12). We therefore assumed that the effect of $\mathrm{CO}_{2}$ (separated from the collateral effect of pH ) on the oxygen affinity of blood is small and of the same order of magnitude in the temperature range 19 to $43^{\circ} \mathrm{C}$ as is found at $37^{\circ} \mathrm{C}$.

As a result of the present study, one can now determine both the separate and the integrated effect of the three main allosteric regulators of the oxygen affinity of human blood as a function of temperature. In fact, the previously described equations (1) can be used to calculate the $p_{50}$ value as a function of the concentration of 2,3-DPG, pH , and $\mathrm{p}_{\mathrm{CO}_{2}}$ at $37^{\circ} \mathrm{C}$, whereas the effect of temperature at any value of pH , $p_{\mathrm{CO}_{2}}$, and 2,3-DPG concentration is described by equation 3 . A program for a Texas TI 59 calculator that requires less than 180 program steps is available upon request from the authors for the numerical solutions of the equations. Figure 6 shows the accuracy of this procedure and the homogeneity of the data obtained at three different temperatures.

| Table 1. Correction Factor, $\mathrm{d}\left(\log \mathrm{P}_{50}\right) / \mathrm{d}\left(\mathrm{t}^{\circ} \mathrm{C}\right)$, Reported for Normal, Fresh Human Blood |  |  |
| :---: | :---: | :---: |
| Authors | Yoar | Factor |
| Barcroft and King (13) | 1909 | 0.0283 |
| Brown and Hill (15) | 1923 | 0.0229 |
| Dill and Forbes (16) | 1941 | 0.0192 |
| Albers et al. (17) ${ }^{\text {a }}$ | 1958 | 0.0231 |
| Callaghan et al. (18) ${ }^{\text {b }}$ | 1961 | 0.0176-0.0228 |
| Astrup et al. (11) | 1965 | 0.0245 |
| Severinghaus (19) | 1966 | 0.0230 |
| Hlastala et al. (10) | 1977 | 0.0226 |
| Reeves (12) | 1980 | 0.0230 |
| Present work | 1982 | 0.0229 |
| ${ }^{-}$Using canine blood. ${ }^{\circ}$ Interpolated from figure. |  |  |



Fig. 6. Correlation between the experimental $p_{50}$ value and that calculated from the combined use of equation 3 and the nomogram (1)
Least-squares regression analysis: $y=0.453+0.9774 x, r=0.998, n=60$. Temperatures $43^{\circ} \mathrm{C}(\Delta), 30^{\circ} \mathrm{C}(\square)$, and $19{ }^{\circ} \mathrm{C}(\mathrm{O})$

This study was supported by a grant from the Consiglio Nazionale delle Ricerche, Rome, Italy.

## References

1. Samaja, M., Mosca, A., Luzzana, M., et al., Equations and nomogram for the relationship of human blood $p_{50}$ to 2,3-diphosphoglycerate, $\mathrm{CO}_{2}$, and $\mathrm{H}^{+}$. Clin. Chem. 27, 1856-1861 (1981).
2. Rossi-Bernardi, L., Perrella, M., Luzzana, M., et al., Simultaneous determination of hemoglobin derivatives, oxygen content, oxygen capacity, and oxygen saturation in $10 \mu \mathrm{l}$ of whole blood. Clin. Chem. 23, 1215-1225 (1977).
3. Roughton, F. J. W., and Severinghaus, J. W., Accurate determination of $\mathrm{O}_{2}$ dissociation curve of human blood above $98.7 \%$ saturation with data on $\mathrm{O}_{2}$ solubility in unmodified human blood from 0 to $37^{\circ} \mathrm{C}$. J. Appl. Physiol. 35, 861-869 (1973).
4. Roughton, F. J. W., Transport of oxygen and carbon dioxide. In Handbook of Physiology, Section 3, Vol. 1, W. O. Fenn and H. Rahn, Eds., American Physiological Society, Washington, DC, 1964, pp 767-825.
5. Bates, R. G., Electrometric pH Determinations, John Wiley, New York, NY, 1954.
6. Reeves, R. B., Temperature-induced changes in blood acid-base status: pH and $\mathrm{pCO}_{2}$ in a binary buffer. J. Appl. Physiol. 40, 752-761 (1976).
7. Antonini, E., Brunori, M., and Wyman, J., Studies on the oxida-tion-reduction potentials of heme proteins. IV. The kinetics of oxidation of hemoglobin and myoglobin by ferricyanide. Biochemistry 4, 545-551 (1965).
8. Rossi-Bernardi, L., and Roughton, F. J. W., The effect of temperature on the oxygen-linked ionizations of hemoglobin. J. Biol. Chem. 242, 784-792 (1967).
9. Antonini, E., Wyman, J., Brunori, M., et al., Studies on the relations between molecular and functional properties of hemoglobin. V. The influence of temperature on the Bohr effect in human and in horse hemoglobin. J. Biol. Chem. 240, 1096-1103 (1965).
10. Hlastala, M. P., Woodson, R. D., and Wranne, B., Influence of temperature on hemoglobin-ligand interaction in whole blood. $J$. Appl. Physiol. 43, 545-550 (1977).
11. Astrup, P., Engel, K., Severinghaus, J. W., et al., The influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood. Scand. J. Clin. Lab. Invest. 17, 515-523 (1965).
12. Reeves, R. B., The effect of temperature on the oxygen equilibrium curve of human blood. Respir. Physiol. 42, 317-328 (1980).
13. Barcroft, J., and King, W. O. R., The effect of temperature on the dissociation curve of blood. J. Physiol. (London) 39, 374-384 (1909).
14. Imai, K., and Yonetani, T., Thermodynamical studies of oxygen equilibrium of hemoglobin. J. Biol. Chem. 250, 7093-7098 (1975).
15. Brown, W. E. L., and Hill, A. V., The oxygen dissociation curve of blood and its thermodynamical basis. Proc. R. Soc. London 9, 297-334 (1923).
16. Dill, D. B., and Forbes, W. H., Respiratory and metabolic effects
of hypothermia. Am. J. Physiol. 132, 685-697 (1941).
17. Albers, C., Brendel, W., Hardewig, A., et al., Blutgase in hypothermie. Pfluegers Arch. 266, 373-377 (1958).
18. Callaghan, P. B., Lister, J., Paton, B. C., et al., Effects of varying carbon dioxide tension on the oxyhemoglobin dissociation curve under hypothermic conditions. Ann. Surg. 154, 903-910 (1961).
19. Severinghaus, J. W., Blood-gas calculator. J. Appl. Physiol. 21, 1108-1116 (1966).
20. Kilmartin, J. W., Fogg, J., Luzzana, M., et al., Role of the $\alpha$-amino groups of the $\alpha$ and $\beta$ chains of human hemoglobin in oxygen-linked binding of carbon dioxide. J. Biol. Chem. 248, 7039-7043 (1973).

[^0]:    ${ }^{1}$ Cattedra di Chimica Biologica, Università di Milano, c/o Ospedale San Raffaele, Via Olgettina 60, 20132 Milano, Italy.
    ${ }^{2}$ Centro Studi di Fisiologia del Lavoro Muscolare del C.N.R., Via Mangiagalli 32, 20133 Milano, Italy.

    Received May 10, 1982; accepted Sept. 2, 1982.

[^1]:    ${ }^{3} 1 \mathrm{mmHg} \simeq 133 \mathrm{~Pa}$.

