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A model for resistance welding including
phase transitions and Joule heating

Dietmar Hömberga‡ and Elisabetta Roccab*†§

Communicated by W. Sprößig

In this paper, we introduce a new model for solid–liquid phase transitions triggered by Joule heating as they arise in the
case of resistance welding of metal parts. The main novelties of the paper are the coupling of the thermistor problem with
a phase-field model and the consideration of phase-dependent physical parameters through a mixture ansatz.

The PDE system resulting from our modeling approach couples a strongly nonlinear heat equation, a non-smooth equa-
tion for the the phase parameter (standing for the local proportion of one of the two phases) with a quasistatic electric
charge conservation law. We prove the existence of weak solutions in the three-dimensional (3D) case, whereas the reg-
ularity result and the uniqueness of solution is stated only in the two-dimensional case. Indeed, uniqueness for the 3D
system is still an open problem. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

This paper is concerned with the analysis of the initial BVP for the following PDE system:

�t C `�t � div.�.� ,�/r�/D �.� ,�/jr'j2 in�� .0, T/, (1.1)

div .�.� ,�/r'/D 0 in�� .0, T/, (1.2)

�t � ���C ˇ.�/C 	.�/ 3
`

#2
c
� in�� .0, T/, (1.3)

coupled with the following initial-boundary conditions:

n � �.� ,�/r� C ˛� D ˛#ext, @n�D 0 on
 � .0, T/, (1.4)

n � �.� ,�/r' D u on
N � .0, T/, (1.5)

' D 0 on
D � .0, T/, (1.6)

n � �.� ,�/r' D 0 on
 n .
N [ 
D/� .0, T/, (1.7)

�.0/D #0, �.0/D �0 in�. (1.8)

This PDE system describes phase transitions phenomena triggered by Joule heating, occurring in a bounded, connected domain
� � RN (N � 3), with Lipschitz continuous boundary 
 :D @� (
D, 
N � 
 ; 
D, 
N ¤ ;), during a time interval Œ0, T�. The state
variables are the relative temperature � of the system, the electrical potential ', and the order parameter �, standing for the local pro-
portion of one of the two phases. In the melting-solidification process, we shall have � D 0 in the solid phase and � D 1 in the liquid
phase.
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The particular application we have in mind is the resistance welding of metal. Figure 1 depicts the special case of resistance spot
welding. Here, two sheet metals are pressed together by two electrodes, the so-called welding tongs. Then, electric current is trans-
mitted through electrodes and sheet metals. Owing to a significantly higher resistivity in the contact area of the two sheet metals, this
region is heated up quickly, which was caused by the Joule effect. In turn, a weld nugget develops and starts to grow. After the current
is switched off, the weld nugget solidifies, leading to a lasting weld joint between both parts.

In our model, we describe the parts to be joined as one workpiece �. The effect of higher resistivity at the contact surface is taken
care of by assuming an explicit dependence of the electrical conductivity � on the space variable (cf. Hypothesis 3.1 (ii)). The temper-
ature evolution is governed by the internal energy balance equation (1.1), where � is the Laplace operator (with respect to the space
variables); � and � (both depending on the space variable x and on � and �) represent the (positive) thermal and electrical conductiv-
ity, respectively; ` stands for the latent heat of the phase change process and #c for the critical temperature. Equation (1.2), ruling the
evolution of the electrical potential ', is the conservation equation of the electrical charge, whereas Equation (1.3) rules the evolution
of the variable �, and it is derived from a particular choice of the free-energy functional (cf. formula (2.1) in Section 2).

In particular, � is a positive interfacial energy coefficient, and the potential W D b̌Cb	 in (1.3) is given by the sum of a smooth non
convex functionb	 , whose derivative is denoted by 	 , and of a convex function b̌possibly with bounded domain, ˇ D @b̌ stands for its
subdifferential in the sense of convex analysis (cf., e.g., [1]). The inclusion sign in (1.3) accounts for the fact that ˇ may be multivalued.
Typical examples of functionals, which we can include in our analysis, are the logarithmic potential

W.r/ :D r ln.r/C .1� r/ ln.1� r/� c1r2 � c2r � c3 8 r 2 .0, 1/, (1.9)

where c1 and c2 are positive constants, as well as the sum of the indicator function IŒ0,1� with a non convexb	 . According, for example,
to [2, 3], (1.9) is particularly relevant in the case of solid–liquid phase transitions in metals.

Regarding the boundary conditions, we linearize the radiative heat transfer taking place in reality by choosing a third type boundary
condition for � , where ˛ stands for the (non-negative) surface heat transfer coefficient, and #ext represents the surrounding tempera-
ture. We impose Neumann homogenous boundary conditions on �, as usual, while, having in mind the welding application, we choose
mixed type boundary conditions on ', with 
D, 
N � 
 , 
D,
N ¤ ;.

The state system turns out to be highly nonlinear and non-standardly coupled. In the rest of the paper, we first derive the PDE system
from the basic principles of thermodynamics. Next, we will prove the existence of at least a solution for a suitable formulation of the
three-dimensional (3D) problems (1.1)–(1.8) in case of a general potential W (possibly also multivalued). Then, we will use the regularity
results for parabolic and elliptic equations obtained in [4, 5] to prove further regularity properties of our solutions (in particular the
continuity of the � and � components), as well as continuous dependence of solutions with respect to the data u, �0, �0, which could
be fundamental, for example, in the study of optimal control problems associated to our system.

Unfortunately, these regularity results are up to now available only in the two-dimensional (2D) case (ND 2) and in case of a regular
potential W (e.g., the standard double well potential W.�/D .�2 � 1/2=4).

An early approach to model resistance welding based on an enthalpy formulation of the Stefan problem but disregarding the Joule
heating part can be found in [6]. It is impossible to review the vast literature on Joule heating without phase transitions. In [7], the ther-
mistor problem with temperature-dependent heat conductivities and for the 3D case is studied, but the authors do not allow for mixed
boundary conditions and non-smooth domains. Periodic solutions of the thermistor problem are discussed in [8], and [9] is devoted
to the investigation of state constrained optimal control of the thermistor problem. Finally, we quote a recent paper accounting for a
coupling of the thermistor problem with viscoelastic effects but also disregarding phase transitions [10]. In [11], the enthalpy formula-
tion of the Stefan problem is considered in combination with Joule heating. The literature related to phase-field models without Joule

Figure 1. Sketch of resistance spot welding.
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effects (cf. (1.1), (1.3) in caser' D 0) is also very wide. Without any attempt to be exhaustive, we can quote here the book [12] (and the
references therein) and the pioneering modeling and analytical works of [13], [14], and [15].

Finally, our aim here was to establish a new model of solid–liquid phase transitions triggered by Joule heating. Its main novelties are
twofold. To our knowledge, this is the first study of a coupling of Joule heating with a phase-field approach. Moreover, we can allow
for phase-dependent physical quantities through a mixture ansatz (� D �.x, � ,�/ and � D �.x, � ,�/, cf. Hypothesis 3.1). We prove the
existence of weak solutions for the corresponding PDE system and study the problem of regularity and uniqueness of solutions. The
main mathematical difficulties here are concerned with the presence of the quadratic contribution in the gradient of the electric field
' in the heat equation. The regularity of ' (whose evolution is ruled by the quasistatic Equation (1.2)) does not allow us to prove the
existence of strong solutions in the 3D case. Uniqueness in this framework is also an open problem. Only in the 2D case, indeed, were
we able to prove the existence of more regular solutions, applying the regularity results of [4, 5] to (1.2), which lead to the proof of
uniqueness of solutions.

Plan of the paper. The paper is organized as follows: after deriving PDEs from the basic principles of thermo-mechanics in Section 2,
the system is discussed in Section 3, where existence of weak solutions for a suitable formulation of system (1.1)–(1.8) is proved in the
3D case (ND 3), and in case of more regular data and for ND 2, regularity results for the associated solutions as well as their uniqueness
are obtained.

2. The model

In this section, we derive from the basic law of thermodynamics and then by linearization the PDE system (1.1)–(1.8) with which we
deal in the present contribution.

The thermistor problem. The heat produced in a conductor by an electrical current leads to the so-called thermistor problem (cf. [7]),
which couples Equations (1.1) and (1.2). These two equations follow from the conservation laws

divI D 0, Et C divQD I � E ,

where E stands for the internal energy of the system; I , the current density; Q, the heat flux; and E , the electric field. Note that, by
standard Helmoltz relations, we have that E D FC #S, F, and S being, respectively, the local free energy and the entropy of the system
and # the absolute temperature of the system. Note that F and S are linked to each other by the classical relation

SD�
@F

@#
.

We choose now the form of the local free energy functional in agreement, for example, with [12] (cf. also [16] for another approach to
phase transitions)

FŒ# ,��D cV#.1� log#/C #

�b̌.�/Cbj.�/C � jr�j2
2

�
C `�, (2.1)

with b̌ andbj being the two nonlinear and possibly non-smooth functions (the sum of the two can have the form of a double well
potential); cV , the specific heat, which we will take equal to 1 in the following for simplicity. This leads to the following form for E and S:

SD log# � b̌.�/�bj.�/� � jr�j2
2

, E D # C `�. (2.2)

Moreover, using the Ohm and Fourier laws, respectively,

I D�Q�.# ,�/r', (2.3)

QD�Q�.# ,�/r# , (2.4)

we obtain a PDE system similar to (1.1)–(1.2), where the quadratic contribution on the right-hand side in (1.1) is due to Joule effect. Note
that in this framework it seems meaningful to consider a � dependence in the electrical and thermal conductivities Q� and Q�, which can
be considerably different in the two phases.

Figure 2 depicts the temperature-dependent thermal and electrical conductivities of a low-alloy steel (chemical composition in wt%:
Fe 97.56, Cr 0.55, Mn 1.55, Si 0.24, C 0.1) in the liquid and in the high-temperature solid phase austenite, taken from the database of the
software JMATPRO (Sente Software Ltd, Surrey, UK) (for details, we refer to [17]). In addition to the thermal dependence, both curves
show a discontinuity at the melting point. Although this is no problem in sharp interface models, in the phase-field approach, this
eventually leads to ambiguities in the two-phase region. A typical way to cope with this problem in materials science is to describe the
respective quantities in the two-phase region by a mixture ansatz (see, e.g., [18]). In this spirit, a model choice for Q� and Q� is given by

Q�.# ,�/D � Q�1.#/C .1� �/ Q�2.#/, Q�.# ,�/D � Q�1.#/C .1� �/ Q�2.#/,

with possibly different Q�1, Q�2 and Q�1, Q�2.

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 2077–2088
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Figure 2. Thermal (left) and electrical (right) conductivities for a typical low-alloy steel.

The phase equation. The order parameter dynamics is assumed in the form

�.#/�t 2 �ı�F Œ# ,�� , (2.5)

with a factor �.#/ > 0, where we denote

F Œ# ,�� D

Z
�

F.# ,�/dx ,

and where ı�F stands for the variational derivative of F with respect to the variable �. The inclusion sign in (2.5) accounts for the fact
that F may contain components that are not Fréchet differentiable, but convex, and the derivative can be interpreted as the subdiffer-
ential, which may be multivalued. Condition (2.5) is based on the assumption that the system tends to move towards local minima of
the free energy with a speed proportional to 1=�.#/. Using (2.1), and choosing �.#/ D # (in agreement with [12], [19], and [20]), we
can rewrite (2.5) as

�t � ���C ˇ.�/C j.�/C
`

#
3 0 in�� .0, T/, (2.6)

where j denotes here the derivative ofbj.
Finally, in order to deduce (1.3) from (2.6), we observe that we are considering a material which at the equilibrium temperature #c is

converted from a lower temperature phase into a higher one or vice versa. Hence, we can introduce the quantity � D # � #c as new
state variable and linearize the kinetic equation (2.6) with respect to � . In this way, we obtain

�t � ���C ˇ.�/C j.�/C
`

#c

�
1�

�

#c

�
3 0 in�� .0, T/,

which corresponds exactly to our inclusion (1.3) with the choice 	.�/D j.�/C `
#c

. Finally, we define

�.� ,�/ D Q�.� C #c,�/,

�.� ,�/ D Q�.� C #c,�/

to arrive at (1.1)–(1.3). The PDE system coupling (1.1) and (1.3), with constant ', is well known in the literature as the Caginalp phase-
field system (cf. [13]). The reader can refer to [14,15] for the analytical results related to its well-posedness. Although the Caginalp model
is often used to describe the melting and solidification of metals, we would like to point out that the temperature range covered by
resistance welding is more than 1000ıC. Hence it seems questionable if the linearization leading to the Caginalp model is valid in this
case. Indeed, let us note that more sophisticated models could be employed here, like the Penrose–Fife model of phase transitions (cf.
[21]). This choice would lead to a singular (in # ) phase equation (cf. (2.6)), which cannot be directly handled with our analysis. The main
difficulties would come from both the singular parts (in # ), from the presence of a non-constant conductivity � and from the quadratic
nonlinearity on the right-hand side of (1.1). This is still an open and interesting problem. We can quote here the recent contribution
[22] in which the case of a nonlocal phase-field model with non-constant heat conductivity and specific heat has been treated. In [22],
the existence of solutions has been proved for a system where no electrical current ' is present and the model is nonlocal because the
Laplacian of � in the phase equation has been substituted by a nonlocal operator.

3. Well-posedness

In this section, we will first give a rigorous formulation of the PDE system (1.1)–(1.8), and we will list our assumptions on the data. Then,
we will state our main results concerning existence and uniqueness of solutions as well as their continuous dependence on the data.
Finally, in the last subsection, we will detail the proofs.
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3.1. Main results

In this subsection, we introduce a suitable variational formulation of our PDE system as well as our precise assumptions on the data in
order to state our main existence-uniqueness result.

Let us first introduce some notation: denote with the symbol B.X ; Y/ the space of linear and bounded operators from X into Y , with
X and Y being the two generic Banach spaces, with the convention B.X ; Y/ D: B.X/ in case Y D X . We consider a bounded domain
��RN with sufficiently regular boundary, ND 1, 2, 3, T > 0 is a fixed final time, and for t 2 .0, T�, we denote Qt D�� .0, t/. Let 
N be
an open part (of positive measure) of 
 :D @� and 
D a closed part (of strictly positive measure) of 
 such that 
N and 
D are disjoint
sets. In addition, the set 
 n 
D \ 
D is finite, and no connected component of 
D consists of a single point. Moreover, let the symbol

H1
D.�/ denote the closure of

˚
 j� :  2 C10 .RN/, supp. /\ 
D D ;

�
in H1.�/, and for q 2 .2,C1/, let W1,q

D .�/ denote the closure

of f j� :  2 C10 .RN/, supp. / \ 
D D ;g in W1,q.�/. We use the notation W2,p
n D f
 2 W2,p.�/ j n � r
j@� D 0g, k � kp for the

norms in Lp.�/, p 2 Œ1,C1�. Finally, we denote by h�, �i the duality product between H1.�/ and its dual or by H1
D.�/ and H�1

D .�/.
The following assumptions on the data are supposed to hold.

Hyphothesis 3.1
Assume that there exist positive constants L� , �0, �1, L� , �0, and �1 such that

(i) �.x, � ,�/ : � �R �R! B.RN/ is bounded and measurable with respect to x for all � ,� 2 R and Lipschitz continuous with
respect to � and � for a.a. x 2�, and for alle� , � ,e�,� 2R, it holds true

k�.x,e� ,e�/� �.x, � ,�/kB.RN/ � L�
�
je� � � j C je�� �j� .

Moreover, for all � , � 2R and a.a. x 2�, � is a symmetric matrix satisfying

inf
� ,�2R

ess inf
x2�

NX
i,jD1

�ij.x, � ,�/�i�j � �0k�k
2
RN 8� 2RN ,

sup
� ,�2R

k�.x, � ,�/kL1.�;B.RN// � �1;

(ii) �.x, � ,�/ : � �R �R! B.RN/ is bounded and measurable with respect to x for all � ,� 2 R and Lipschitz continuous with
respect to � and � for a.a. x 2�, and for alle� , � ,e�,� 2R, it holds true

k�.x,e� ,e�/� �.x, � ,�/kB.RN/ � L�
�
je� � � j C je�� �j� .

Moreover, for all � , � 2R and a.a. x 2�, � is a symmetric matrix satisfying

inf
� ,�2R

ess inf
x2�

NX
i,jD1

�ij.x, � ,�/�i�j � �0k�k
2
RN 8� 2RN ,

sup
� ,�2R

k�.x, � ,�/kL1.�;B.RN// � �1;

(iii) b̌ : R!R[ fC1g is a proper, convex, and lower semicontinuous function, and D.b̌/ denotes its domain;
(iv) b	 2 C1,1.R/, W :D b̌Cb	 ;
(v) #ext 2 L1.0, T ; L1.
//;

(vi) ˛ 2 L2.
/with
R
� ˛

2 ds > 0 and ˛ � 0 a.e. on 
 ;
(vii) �0 2 L2.�/;

(viii) �0 2 H1.�/, b̌.�0/ 2 L1.�/.

We continue stating a precise formulation of the systems (1.1)–(1.8) and the definition of the associated weak solutions. Hence, we
define, for every coefficient function � 2 L1.�;B.RN//, the operator�div.�r/ : H1

D.�/! H�1
D .�/ as

h�div.�rw/, zi :D

Z
�
�rwrz dx , w, z 2 H1

D.�/. (3.1)

Moreover, let us denote by ę the L2.
/ function ˛#ext.t/, whereas the function u 2 L1.0, T ; L2.
N// will be interpreted as an elementeu 2 L1.0, T ; H�1
D .�// by setting

heu.t/, 
i :D

Z
�N

u.t/
 ds, 
 2 H1
D.�/ ,

for almost all t 2 .0,C1/. Finally, we introduce the realization of the Laplace operator with homogeneous Neumann boundary
conditions as

A : H1.�/! .H1.�//0, hAu,
i :D

Z
�
ru � r
 dx for u, 
 2 H1.�/. (3.2)

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2011, 34 2077–2088
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We are now in the position to give a precise definition of weak solutions to (1.1)–(1.8) in which we take `D #c D 1 for simplicity and
without any loss of generality. We will use in what follows the auxiliary variable � standing for a selection of the maximal monotone
operator ˇ D @b̌ (cf. Hypothesis 3.1 (iii)), where @ denotes the subdifferential of convex analysis (cf. [1, p. 21]).

Definition 3.2
Let u be a given function in L1.
N � .0, T//. We define as a weak solution of (1.1)–(1.8) the triple .� ,',�/ and the selection � satisfying

� 2 H1.0, T ; .H1.�//0/\ L2.0, T ; H1.�//\ C0.Œ0, T�; L2.�//; (3.3)

' 2 L1.0, T ; H1
D.�//\ L1.0, T ; L1.�//; (3.4)

� 2 H1.0, T ; L2.�//\ L2.0, T ; H2.�//\ C0.Œ0, T�; H1.�//; (3.5)

� 2 L2.QT /, (3.6)

and the equations

h�t C �t , vi C

Z
�
�.x, � ,�/r�rv dxC

Z
�
˛�v dsD

Z
�
ęv dsC

Z
�N

u'v ds (3.7)

�

Z
�
�.x, � ,�/'r' � rv dx 8v 2 H1.�/ and a.e. in .0, T/,

� div .�.x, � ,�/r'/Deu in H�1
D .�/ and a.e. in .0, T/, (3.8)

�t C A�C � C 	.�/D � a.e. in QT , (3.9)

where

� 2 ˇ.�/ a.e. in QT , (3.10)

coupled with the following initial conditions:

�.0/D �0, �.0/D �0 in�. (3.11)

The main results we will prove in the next sections are the following.

Theorem 3.3
Let Hypothesis 3.1 hold true and suppose that u is given in the space L1.
N � .0, T//. Then, there exists at least a solution of (1.1)–(1.8)
in the sense of Definition 3.2.

Theorem 3.4
Let Hypothesis 3.1 hold true and u be given in L1.
N � .0, T//, �0,�0 2 C.�/. Suppose that the spatial dimension is ND 2. Then, there
exists a solution of (1.1)–(1.8) in the sense of Definition 3.2 and an index q 2 .2, 4/ such that the following regularity properties hold
true:

� 2 H1.0, T ; H�1,q
�

.�//\ L2.0, T ; W1,q.�// ,! C0.�� Œ0, T�/; (3.12)

' 2 L1.0, T ; W1,q
D .�//; (3.13)

� 2 C0.�� Œ0, T�/. (3.14)

Let, moreover, W satisfy the following assumption:

W 2 C2
loc.R/, jW00.r/j � cLip 8r 2 B.R/ . (3.15)

Then, such a solution is also unique and depends continuously on the data u, �0, and �0. Finally, let Hypothesis 3.1 hold true, N D 2, u
be given in the space L1.
N � .0, T//, and assume that there exists an index �0 2 .5,C1/ such that

�0 is Hölder continuous in�; (3.16)

�0 2 ŒL
	0.�/, W2,	0

n .�/�1�1=	0,	0
, (3.17)

then there exists a sufficiently small � > 0 such that the solution has the further regularity properties:

� 2 C0,	.Œ0, T�; C0,	.�//; (3.18)

� 2 C0,	.Œ0, T�; C0,	.�// . (3.19)

2
0
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3.2. Proofs

In this section, we give the proofs of our Theorems 3.3 and 3.4. We will denote the positive constants hereafter by the same symbol Ci ,
iD 1, 2, : : : . We will specify their dependence on the problem data any time that it will be necessary.

Let us note that in order to perform the Shauder fixed point argument (cf. the following (3.31)), we should approximate the maxi-
mal monotone graph ˇ by a Lipschitz continuous regularization (e.g., the Yosida approximation ˇ", cf. [1, p. 28]). However, as all the
estimates we perform are independent of " (cf. the following (3.25), (3.26)–(3.27) and rely only on the monotonicity of ˇ, we can then
easily, by standard methods, pass to the limit as "& 0 in the approximated problem recovering a solution of the original one (cf. also
[23] for more details on this technique). Hence, in the following, let us denote by W0 DW0" D ˇ" C 	 and we will point out in the proof
where it is important to assume the Lipschitz continuity of W0" at " fixed.

3.2.1. Proof of Theorem 3.3. In order to prove the existence of weak solutions (in the sense of Definition 3.2), we first recall the following
preliminary results. The first theorem we state turns out to be a particular case of [23, Theorem 2.1] (cf. also [14] and [15]).

Theorem 3.5
Let f 2 L2.0, T ; .H1.�/0/, and Hypothesis 3.1 (i), (iii)–(iv), and (vi)–(viii) hold true. Let Nk 2 L1.QT / be such that 0 < �0 � Nk � �1 a.e.
Then, there exists a unique couple .� ,�/ and a selection � satisfying the regularity properties (3.3), (3.5), and (3.6), and the relations
(3.9)–(3.10) and the equation

h�t C �t , vi C

Z
�

Nk.x, t/r�rv dxC

Z
�
˛�v dsD hf , vi 8v 2 H1.�/, a.e. in .0, T/. (3.20)

Moreover, there exists a positive constant C1 depending on the data of the problem, but not on f , such that the following estimate
holds true for all t 2 Œ0, T�:

k�.t/k2
2C

Z t

0
k�.s/k2

H1.�/
dsC

Z t

0
k�t.s/k

2
2 dsCk�.t/k2

H1.�/
(3.21)

� C1

�
1C

Z t

0
k�.s/k2

2 dsC

Z t

0
k�tk

2
L2.0,s;L2.�//

dsC

Z t

0
hf .s/, �.s/ids

�
.

In [24, Sections 8.1 and 8.2 and notes at p. 215], it is possible to find a proof for the following result.

Theorem 3.6
Let .v, w/ 2 L2.QT / � L2.QT /, u 2 L1.0, T ; L2.
N// and assume Hypothesis 3.1 (ii). Then, there exists a unique ' complying with the
regularity property (3.4) and the equation

� div.�.x, v, w/r'/Deu in .H1.�//0, a.e. in .0, T/. (3.22)

Moreover, there exists a positive constant C2, depending on the data of the problem, but not on .v, w/, such that

k'.t/kL1.�/Ck'.t/kH1
D.�/
� C2 for a.a. t 2 Œ0, T�. (3.23)

It is clear that, given .v, w/ 2 .L2.QT //
2, for all � 2 H1.�/,

hf , �i D

Z
�N

u'� ds�

Z
�
�.x, v, w/'r' � r� dx (3.24)

defines an element f 2 L2.0, T ; H�1
D .�//. Let us proceed (in the spirit of [7]) considering the following map F carrying .L2.QT //

2 into
itself, which associates to the couple .v, w/ the solution .� ,�/ to (3.9), (3.20) (given by Theorem 3.5) with datum f defined as above and
NkD �.x, v, w/. In the following, we would like to apply a Schauder fixed point argument to F.

First, by (3.21), we have

k�.t/k2
2C

Z t

0
k�.�/k2

H1.�/
d� C

Z t

0
k�t.�/k

2
2 d� Ck�.t/k2

H1.�/

� C1

�
1C

Z t

0
k�.�/k2

2 d� C

Z t

0
k�tk

2d
L2.0,
 ;L2.�//

� C

Z t

0

Z
�N

u'� ds d�

C

Z t

0

Z
�
�.x, v, w/'r' � r� dx d�

�
.

By using the Schwarz and Young inequalities, Hypothesis 3.1 (ii), and the boundedness of ' (inferred by Theorem 3.6), we deduce

k�.t/k2
2C

Z t

0
k�.s/k2

H1.�/
dsC

Z t

0
k�t.s/k

2
2 dsCk�.t/k2

H1.�/

� C1

�
1C

Z t

0
k�.s/k2

2 dsC

Z t

0
k�tk

2
L2.0,s;L2.�//

dsCkuk2
L1.�N�.0,T//

Z t

0
k'.s/k2

L2.�N/
ds

C

Z t

0
kr'.s/k2

2 ds

�
.
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Using estimate (3.23) together with a standard Gronwall lemma (cf. [1, Lemma A4, p. 156]), we obtain

k�kL1.0,T ;L2.�//\L2.0,T ;H1.�// Ck�kH1.0,T ;L2.�//\L1.0,T ;H1.�// � C3, (3.25)

for some positive constant C3, depending on the data of the problem, but not on .v, w/. Hence, from (3.20), we easily deduce (note
that Nkr� 2 L2.QT /)

k�tkL2.0,T ;.H1.�//0/ � C4 . (3.26)

Testing now (3.9) by ˇ.�/ and using the monotonicity of ˇ and the previous estimates, we deduce that

kˇ.�/kL2.0,T ;L2.�// � QC4 . (3.27)

Moreover, applying standard regularity results for elliptic equations, we also obtain

k�kL2.0,T ;H2.�// � C5 . (3.28)

Hence, taking R sufficiently large, F maps the ball BR in .L2.QT //
2 of center 0 and radius R in itself. Moreover, the space

f.� ,�/ 2 .L2.0, T ; H1.�///2 : .�t ,�t/ 2 .L
2.0, T ; .H1.�//0//2g

is compactly embedded in .L2.QT //
2 (cf. [25, Cor. 4, Sec. 8]). Hence, in order to employ a Schauder fixed point argument, we only need

to prove the continuity of F in .L2.QT //
2. Consider a sequence .vn, wn/ in BR converging to .v, w/ in .L2.QT //

2 as n tends toC1. Define
'n as in (3.22) and fn as in (3.24). Let .�n,�n/D F.vn, wn/. We have to show that

.�n,�n/! .� ,�/D F.v, w/ in BR asn%1 . (3.29)

In order to prove that, let us consider the difference between Equations (3.20) and (3.20) with �n in place of � . Test it by .� � �n/. Take
the difference between Equations (3.9) and (3.9) with �n in place of �. Test it by .� � �n/t . Sum up the two resulting equations and
integrate the result over .0, t/, t 2 .0, T�. In this way, one obtains

k.� � �n/.t/k
2
2C

Z t

0
k.� � �n/.�/k

2
H1.�/

d� Ckr.�� �n/.t/k
2
2C

Z t

0
k.�� �n/t.�/k

2
2 d� (3.30)

� C6

� Z t

0
h.f � fn/.�/, .� � �n/.�/id�

�

Z t

0

Z
�
.W0.�/.�/�W0.�n/.�//.�� �n/t.�/dx d�

C

Z t

0

Z
�
.�.x, v, w/� �.x, vn, wn//r�r.� � �n/dx d�

�
.

Let us start from the second integral on the right-hand side of (3.30). We use here Hypothesis 3.1 (iv), obtaining

� C2

Z t

0

Z
�
.W0.�/.�/�W0.�n/.�//.�� �n/t.�/dx d� (3.31)

�
1

2

Z t

0
k.�� �n/t.�/k

2
2 d� C C7

Z t

0
k.�� �n/.�/k

2
2 d� .

Here we have used the assumption that W0 DW0" is Lipschitz continuous for fixed " > 0. Regarding the first integral on the right-hand
side of (3.30), we use (3.24) to obtain

C6

Z t

0
h.f � fn/.�/, .� � �n/.�/id� (3.32)

D C6

Z t

0

Z
�
.�.x, v, w/'r' � �.x, vn, wn/'nr'n/r.�n � �/dx d�

C

Z t

0

Z
�N

u.' � 'n/.� � �n/ds d�

�
1

2

Z t

0
k.� � �n/.�/k

2
H1.�/

d�

C C8

Z t

0

�
k.�.x, v, w/'r' � �.x, vn, wn/'nr'n/.�/k

2
2Ck.' � 'n/.�/k

2
L2.�N/

�
d� .2

0
8

4
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Following [7, pp. 1132–1133], we can prove that the last integral in (3.32) tends to 0 when n%1. Indeed, we can rewrite the first part
of it as Z t

0
k.�.x, vn, wn/'nr'n � �.x, v, w/'r'/.�/k2

2 d�

�

Z t

0
k.�.x, vn, wn/'nr'n � �.x, vn, wn/'nr'/.�/k

2
2 d�

C

Z t

0
k.�.x, vn, wn/'nr' � �.x, vn, wn/'r'/.�/k

2
2 d�

C

Z t

0
k.�.x, vn, wn/'r' � �.x, v, w/'r'/.�/k2

2 d�

D I1C I2C I3 .

Then, using Hypothesis 3.1 (ii) and Theorem 3.6, we obtain

I1 � C9

Z t

0
kr.'n � '/.�/k

2
2 d� ;

I2 � C10

Z t

0

Z
�
j.'n � '/.�/j

2jr'j2 dx d� ;

I3 � C11

Z t

0

Z
�
k.�.x, vn, wn/� �.x, w, v//.�/k2

B.RN/
jr'.�/j2 dx d� .

Using (3.23) and the fact that .wn, vn/ is contained in a relative compact set of BR, which implies that, at least for a subsequence of n,
which we do not relabel for the reader’s convenience, .vn, wn/! .v, w/ a.e. in QT , we obtain, by means of the Lebesgue theorem, that
I3! 0. Next, using (3.22), we deduceZ

�
�.x, vn, wn/r'n � r.'n � '/dx D

Z
�
�.x, v, w/r' � r.'n � '/dx

and Z
�
�.x, vn, wn/r.'n � '/ � r.'n � '/dx D

Z
�
.�.x, v, w/� �.x, vn, wn//r' � r.'n � '/dx ,

which entails, together with Hypothesis 3.1 (ii),

I1 � C12

Z t

0

Z
�
k.�.x, v, w/� �.x, vn, wn//.�/k

2
B.RN/

jr'.�/j2 dx d� ! 0 . (3.33)

By means of Poincaré inequality, this implies (cf. (3.1))

Z t

0
k.'n � '/.�/k

2
2 d� ! 0

and so, up to a subsequence of n %1, 'n ! ' a.e. in QT and also the last term
R t

0 k'n � 'k
2
L2.�N/

d� in (3.32) tends to 0 as n %1.

Then, the Lebesgue theorem gives the desired convergence I2 ! 0. Finally, we can treat the last integral on the right-hand side of
(3.30) as follows: Z t

0

Z
�
.�.x, v, w/� �.x, vn, wn//r�r.� � �n/dx d� �

1

2

Z t

0
k�n � �k

2
H1.�/

d�

C C

Z t

0
k.�.x, vn, wn/� �.x, v, w//jr� jk2

2d�

�
1

2

Z t

0
k�n � �k

2
H1.�/

d�

C C

Z t

0

Z
�
k�.x, vn, wn/� �.x, v, w/k2

B.RN/
jr� j2 dx d�

and the last integral tends to zero as n%1 because jr� j2 2 L1.QT / and

k�.x, vn, wn/� �.x, v, w/k2
B.RN/

! 0 a.e.
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because .vn, wn/ ! .v, w/ a.e. in QT , and we obtain the result by applying the Lebesgue theorem. Collecting estimates (3.30)–(3.33),
using a standard Gronwall lemma (cf. [1, Lemma A4, p. 156]), we obtain the desired convergence .�n,�n/! .� ,�/ in .L2.QT //

2. Accord-
ing to Theorems 3.5 and 3.6, the limit is independent of the extracted subsequences; hence, the convergence holds for the whole
sequence .�n,�n/.

Note that all the estimates (3.25)–(3.28) performed are independent of ", and we can pass to the limit when "! 0 using the max-
imal monotonicity of ˇ and the previous estimates. The passage to the limit in the Yosida approximation just follows from the strong
convergence of �", the weak convergence of ˇ".�/, and the standard monotonicity result [1, Prop. 2.5, p. 27]. In particular, the strong
convergences of � and # entail (due to the assumptions on � and �) that we can pass to the limit in the terms containing � and � and
also in the quadratic term inr' on the right-hand side of the # equation (cf. (3.33)).

This completes the proof of Theorem 3.3.

3.2.2. Proof of Theorem 3.4. In this subsection, we proceed by proving Theorem 3.4.

Proof of the regularity results (3.12)–(3.14). Using [9, Lemma 3.9], we immediately obtain ' 2 L1.0, T ; W1,q
D .�// for some q 2 .2, 4/,

which is exactly the desired regularity property (3.13). Then, applying the maximal regularity results for parabolic equations to (3.7), we
obtain (3.12), whereas (3.14) just follows from (3.5) by applying, for example, [26, Ch. III, Thm. 4.10.2] (cf. also [9, Rem. 3.15, Lemma 3.17,
p. 3457]).

Proof of uniqueness. We continue now by proving the uniqueness of solutions and the Lipschitz continuous dependence of the
solutions from the data. In order to perform this estimate, we need the following inequalities. The first one is a particular case of the
well-known Gagliardo–Nirenberg inequality (cf. [27, p. 125]), which, in dimension ND 2, reads as

kwk2q=.q�2/ � CGLkwk1�.2=q/
2

�
kwk2

2Ckrwk2
2

�1=q
8w 2 H1.�/, 8q > 2 , (3.34)

and for some positive constant CGL, whereas the second one is the following Young inequality

ab� �aq=2C C�bq=.q�2/ 8a, b, � > 0. (3.35)

Take now two solutions .�i ,'i ,�i/, i D 1, 2 of (3.7)–(3.11) in the sense of Definition 3.2, enjoying the regularity properties (3.12)–(3.14)
(cf. Theorem 3.4), and corresponding to the data ui 2 L1.0, T ; L2.
N//, � i

0,�i
0 2 C0. N�/ and to the same datum Q̨ in (3.7). Use the

following notation:

N� D �1 � �2, N' D '1 � '2, N�D �1 � �2 .

Take the differences of Equations (3.7)–(3.9) written for the two solutions and test them, respectively, by N� , N', N�t , sum up the resulting
equations, and integrate the result between 0 and t 2 .0, T�. Add to both sides the term

1

2
k N�.t/k2

2 �
1

2
k�1

0 � �
2
0k

2
2C

Z t

0

Z
�
j N�t N�jdx ds�

1

2
k�1

0 � �
2
0k

2
2C

1

4

Z t

0
k N�tk

2
2 dsC

Z t

0
k N�k2

2 ds.

In this way, we obtain

1

2
k N�.t/k2

2C

Z t

0

Z
�
˛ N�2 dx dsC

Z t

0

Z
�
�.x, �2,�2/r N' � r N' dx dsC

3

4

Z t

0
k N�tk

2
2 ds (3.36)

C
1

2
k N�.t/k2

H1.�/
�

9X
iD4

Ii C
1

2
k�1

0 � �
2
0 k

2
2C

1

2
k�1

0 � �
2
0k

2
H1.�/

C

Z t

0
k N�k2

2 ds

where the Ii ’s are estimated as follows: using Hypothesis 3.1 (ii) and (3.13), (3.34), and (3.35), we have the following inequalities

I4 :D

Z t

0

Z
�
.�.x, �1,�1/� �.x, �2,�2//r'1 � r'1 N� dx ds (3.37)

� C13

Z t

0

�
k N�k2

2q=.q�2/Ck N�k
2
2q=.q�2/

�
kr'1k

2
q ds

� C13

Z t

0
k N�k

2.q�2/=q
2

�
k N�k2

2Ckr
N�k2

2

�2=q
ds

C C13

Z t

0
k N�k

2.q�2/=q
2

�
k N�k2

2Ckr N�k
2
2

�2=q
ds

�
�0

6

Z t

0
kr N�k2

2 dsC C14

Z t

0

�
k N�k2

2Ck N�k
2
H1.�/

�
ds.2

0
8

6
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Using Hypothesis 3.1 (ii) and (3.13), (3.34), and (3.35), we obtain, similarly to (3.37),

I5 :D

Z t

0

Z
�
�.x, �2,�2/ .r'1 � r'1 �r'2 � r'2/ N� dx ds (3.38)

�
�0

6

Z t

0
kr N'k2

2 dsC C15

Z t

0
k N�k2

2q=.q�2/ ds

�
�0

6

Z t

0
kr N'k2

2 dsC
�0

6

Z t

0
kr N�k2

2 dsC C16

Z t

0
k N�k2

2 ds,

I6 :D

Z t

0

Z
�
.�.x, �1,�1/� �.x, �2,�2//r'1 � r N' dx ds (3.39)

� C17

Z t

0

�
k N�k2q=q�2Ck N�k2q=q�2

�
kr'1kqkr N'k2 ds

�
�0

6

Z t

0
kr N'k2

2 dsC
�0

6

Z t

0
kr N�k2

2 dsC C18

Z t

0

�
k N�k2

2Ck N�k
2
H1.�/

�
ds.

Moreover, using Schwarz and Poincaré inequality together with boundary conditions (1.6) (cf. also (3.1)), we obtain

I7 :D

Z t

0
hQu1 � Qu2, N'ids�

�0

6

Z t

0
kr N'k2

2 dsC C19kQu1 � Qu2k
2
L2.0,t;H�1

D .�//
. (3.40)

Invoking (3.14) together with assumption (3.15), we obtain

I8 :D�

Z t

0

Z
�
.W0.�1/�W0.�2// N�t dx ds� C20

Z t

0
k N�k2k N�tk2 ds (3.41)

�
1

4

Z t

0
k N�tk

2
2 dsC C21

Z t

0
k N�k2

2 ds.

Finally, the last integral in (3.36) can be estimated using Hypothesis 3.1 (i), (3.12), (3.34), and (3.35) as follows:

I9 :D�

Z t

0

Z
�
.�.x, �1,�1/r�1 � �.x, �2,�2/r�2/r.�1 � �2/dx ds (3.42)

D�

Z t

0

Z
�

�
�.x, �1,�1/r N� C .�.x, �1,�1/� �.x, �2,�2//r�2

�
r N� dx ds

� �

Z t

0

Z
�
�.x, �1,�1/r N� � r N� dx dsC

Z t

0

�
k N�k2q=q�2Ck N�k2q=q�2

�
kr�2kqkr N�k2 ds

� �

Z t

0

Z
�
�0jr N� j

2 dx dsC
�0

6

Z t

0
kr N�k2

2 ds

C C22

Z t

0

�
k N�k2

2q=q�2Ck N�k
2
2q=q�2

�
kr�2k

2
q ds

� �

Z t

0

Z
�
�0jr N� j

2 dx dsC
�0

3

Z t

0
kr N�k2

2 dsC C23

Z t

0
.k N�k2

2Ck N�k
2
H1.�/

/ds .

Collecting (3.36)–(3.42), using Hypothesis 3.1 to obtain a lower bound for the second and the third integral in (3.36), and a standard
Gronwall lemma (cf. [1, Lemma A4, p. 156]), we obtain the desired continuous dependence (of solutions with respect to data) estimate:

k N�.t/k2
2C

Z t

0
k N�k2

H1.�/
dsC

Z t

0
kr N'k2

2 dsC

Z t

0
k N�tk

2
2 dsCkr N�.t/k2

2

� C24

�
k�1

0 � �
2
0 k

2
2Ckr.�

1
0 � �

2
0/k

2
2CkQu1 � Qu2k

2
L2.0,t;H�1

D .�//

�
,

entailing also uniqueness of solutions.

Proof of the regularity (3.18)–(3.19). We use the fact that � jr'j2 is bounded at least in Lq=2.QT / in (3.7), assumptions (3.16), and
apply, for example, the regularity result [28, Lemma 3.3], obtaining the desired estimate

j� jC0,�.Œ0,T�;C0,�.�//
� C25 ,

for some � 2 .0, 1/. The same argument applies to the � component (satisfying (3.9)). Using assumptions (3.15)–(3.17), we obtain the
same estimate on �, that is,

j�jC0,�.Œ0,T�;C0,�.�//
� C26 ,
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for some � 2 .0, 1/. These are classical results: the case of the Dirichlet boundary conditions can be found in the monograph by
Ladyzhenskaya et al. [29, Chapter V, Theorem 1.1], and the proof adapted to the Neumann boundary conditions is given by DiBenedetto
[30, Chapter III, Theorem 1.3 and Remark 1.1]. This concludes the proof of Theorem 3.4.
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