
1

A Matching Algorithm for Measuring the Structural Similarity between
an XML Document and a DTD and its Applications∗

Elisa Bertinoa, Giovanna Guerrinib and Marco Mesitia

aDipartimento di Informatica e Comunicazione, Università degli Studi di Milano. Via Comelico 39/41,
20135 Milano - Italy. {bertino,mesiti}@dico.unimi.it
bDipartimento di Informatica, Università degli Studi di Pisa. Via Buonarroti 2, 56127 Pisa - Italy.
guerrini@disi.unige.it

In this paper we propose a matching algorithm for measuring the structural similarity between an XML doc-
ument and a DTD. The matching algorithm, by comparing the document structure against the one the DTD
requires, is able to identify commonalities and differences. Differences can be due to the presence of extra el-
ements with respect to those the DTD requires and to the absence of required elements. The evaluation of
commonalities and differences gives raise to a numerical rank of the structural similarity. Moreover, in the paper,
some applications of the matching algorithm are discussed. Specifically, the matching algorithm is exploited for
the classification of XML documents against a set of DTDs, the evolution of the DTD structure, the evaluation of
structural queries, the selective dissemination of XML documents, and the protection of XML document contents.

Key words: Structural similarity, XML document handling and querying, document classification, structure evo-
lution, structural queries, selective dissemination of documents, document protection.

1. Introduction

Similarity plays a crucial role in many research
fields. Similarity serves as an organization prin-
ciple by which individuals classify objects, form
concepts, and make generalization [30]. Similar-
ity can be computed at different layers of abstrac-
tion: at data layer (i.e. similarity between data),
at type layer (i.e. similarity between types – also
referred to as schema, models, or structures, de-
pending on the application domain) or between
the two layers (i.e. similarity between data and
types). Evaluating similarity among data is rel-
evant for creating clusters of information related
to the same topic and for ranking them. For ex-
ample, in the image field, the similarity measure
can be exploited for grouping together images
containing the same subject. Evaluating simi-
larity between types is relevant for the integra-

∗A preliminary version of this paper appeared in Proc. of
13th International Syposium on Methodologies for Intel-
ligent Systems, 2002, with the title “Matching an XML
Document against a Set of DTDs”.

tion of schema describing the same kind of infor-
mation but using different structures [2] and for
schema clustering [19]. Evaluating similarity be-
tween data and types is relevant for identifying
a data generator, and thus, applying to data the
properties specified for the type. Orthogonally
to this classification, similarity can be focused on
contents or on the structures of data involved.

In the XML [32] arena, the possibility of eval-
uating similarity has been receiving a lot of at-
tention because more and more information ex-
changed on the Web is adhering to this format
and applications need to retrieve, access, and
handle XML documents imposing relaxed con-
ditions and returning approximate results. At
the data layer, many approaches have been de-
veloped for measuring the similarity among XML
documents in order to cluster together docu-
ments dealing with the same topic. Standard
approaches consider the textual content of the
documents [1], whereas, recently, some new ap-
proaches consider also the structure of docu-

2

ments [12,22]. For what concerns structural sim-
ilarity, many approaches rely on the hierarchi-
cal structures of documents exploiting evaluation
functions based on the tree edit distance [25]. At
the type layer, other approaches have been devel-
oped for the integration of schemas that represent
the same kind of data [9,10,20] and for schema
clustering [19].

Despite this huge activity at data and type
layers and the attractive potential applications
in many fields, no efforts have been devoted to
the computation of structural similarity between
an XML document (the data) and a schema (the
type). In this paper we introduce a matching al-
gorithm for computing the structural similarity
between an XML document and a DTD, which is
the simplest means by which structural properties
of an XML document can be specified.

In matching a document against a DTD, some
attributes and subelements specified for an ele-
ment in the DTD can be missing from the cor-
responding element of the document, and, vice
versa, the document can contain some additional
attributes and subelements not appearing in the
DTD. Moreover, since we are focusing on data-
centric documents, elements/attributes in the
document can follow a different order w.r.t. the
one specified in the DTD. Finally, document and
DTD tags may not be exactly the same, provided
they are stems or are similar enough according
to a given Thesaurus. Therefore, tag similarity
rather than tag equality is supported. In match-
ing a document against a DTD the goal is then
to quantify, through an appropriate measure, the
structural similarity between the document and
the DTD. Though our technique handles all fea-
tures of XML documents, in the paper we focus
on the most meaningful core of the approach, thus
we restrict ourselves to a subset of XML docu-
ments and to tag equality. We refer the interested
reader to [6,21] for the general case.

Many applications can be devised for the
matching algorithm. For example, in the ex-
change of XML documents on the Web it is not
always possible to force a database to adhere or
to integrate its schema with other schemas de-
scribing the same kind of data. Therefore, the
matching algorithm can be employed for com-

puting the similarity between documents arriving
at a given XML database and the local schema.
As another example, the possibility to exploit
the structure of documents for their retrieval is
pushing the need for query engines able to evalu-
ate structural queries (i.e. queries in which con-
ditions are imposed on the structure of the re-
quired documents). The query engines can em-
ploy the matching algorithm for evaluating the
similarity between a document (possible answer
of the query) and a structural query represented
as a schema plus content conditions. By means of
this, the query engine can filter and rank answers
to the query.

In this paper we focus on five applications of
the algorithm: (1) the classification of XML doc-
uments against a set of DTDs; (2) the genera-
tion of a new schema for a DTD by extracting
structural information during the classification
of XML documents; (3) the development of an
XML-based search engine able to answer approx-
imate structural queries; (4) the selective dissem-
ination of XML documents; (5) the protection of
the contents of documents classified against a set
of DTDs of a database, by propagating the au-
thorization policies specified at DTD level.

The remainder of the paper is organized as fol-
lows. Section 2 presents our tree representation
for XML documents and DTDs. Section 3 dis-
cusses the basic principles underlying the behav-
ior of the matching algorithm. Section 4 discusses
in details the matching algorithm, whereas Sec-
tion 5 presents the matching algorithm applica-
tions. Section 6 discusses related work, and, fi-
nally, Section 7 concludes the work and outlines
future research directions.

2. Documents and DTDs as Trees

A key feature of XML is represented by the var-
ious options one has available when modeling doc-
ument subelements. We illustrate those options
by means of the document and DTD reported re-
spectively in Figures 1 and 2. The DTD in the
figure shows that for each subelement it is possi-
ble to specify whether it is optional (‘?’), whether
it may occur several times (‘*’ for 0 or more times,
and ‘+’ for 1 or more times), whether some subele-

3

<product>
<name>Deliver</name>
<urls>
<download> http://.../deliver.tgz </download>
<homepage> http://.../index.html </homepage>

</urls>
<description>Mail... </description>
<author>
<fName>Chip</fName>
<lName>Salzenberg</lName>

</author>
<version>2.1.13</version>

</product>

Figure 1: An example of XML document

ments are alternative with respect to each other
(‘|’) or are grouped in a sequence (‘,’). We focus
on a subset of XML documents. Specifically, we
only consider elements (that can have a nested
structure) disregarding attributes (that can be
seen as a particular case of elements). Since we
disregard attributes, we only consider nonempty
elements. However, empty elements can be sim-
ply handled as #PCDATA elements with the con-
straint to have a null content.

In the matching process, we represent both
DTDs and XML documents through labeled
trees. The document representation is compli-
ant with the tree representation of DOM [31]. By
contrast, the DTD representation makes easy the
description of the algorithms.

2.1. Tree Representation of Documents
An XML document is represented as a labeled

tree. This representation only relies on informa-
tion determined from the structure of the doc-
ument. Our definition is based on the classical
definition of labeled tree. We recall that, given a
set N of nodes, a tree is defined by induction as
follows: v ∈ N is a tree; if T1, . . . , Tn are trees,
then (v, [T1, . . . , Tn]) is a tree.2 Let N(T) ⊆ N
denote the set of nodes of a tree T , and given
a set A of labels, a labeled tree is a pair (T, ϕ),
where T is a tree, and ϕ is a labeling function s.t.
∀v ∈ N(T), ϕ(v) ∈ A. In our representation of

2In the remainder of the paper, for sake of simplicity, we
denote with C the subtrees of T (i.e. C = [T1, . . . , Tn])
when it is only relevant to know that T is an internal
subtree of a DTD.

<!DOCTYPE product[

<!ELEMENT product(name,urls+,description,

(author*|vendor),version?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT urls(download*, homepage)>
<!ELEMENT description ANY>
<!ELEMENT author (fName, mName?, lName)>
<!ELEMENT vendor (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT download (#PCDATA)>
<!ELEMENT homepage (#PCDATA)>
<!ELEMENT fName (#PCDATA)>
<!ELEMENT mName (#PCDATA)>
<!ELEMENT lName (#PCDATA)>] >

Figure 2: An example of DTD

documents each node represents an element tag
or a value. The labels used to label the tree be-
long to a set of element tags (EN) and to a set of
values that the data contents of an element can
assume (V). In each tree representing a docu-
ment the label of the root belongs to EN (it is
the name of the document element). Moreover,
leaves of the tree are labeled by values in V.

Definition 1 (XML document). An XML docu-
ment is a labeled tree (D, ϕD) defined on the set
of labels EN ∪ V with the following properties:

1. D = (v, C) with ϕD(v) ∈ EN ;

2. for each subtree (v, C) of D, ϕD(v) ∈ EN ;

3. for each (leaf) subtree v of D, ϕD(v) ∈ V.2

For the sake of simplicity, in the graphical
representation we omit the explicit direction of
edges. All edges are oriented downward. Fig-
ure 3 shows the tree representation of the XML
document in Figure 1.

2.2. Tree Representation of DTDs
A DTD is also represented as a labeled tree.

In the tree representation, in order to represent
optional elements, repeatable elements, sequence
and alternative of elements, the set of operators
OP = {?, *, +, AND, OR} is introduced. The AND
operator represents a sequence of elements, the
OR operator represents an alternative of elements
(exactly one of the alternatives must be selected),

4

urls

"http://..." "ftp://..." "Chip" "Salzenberg"

product

version

"2.1.13"

name

"Deliver"

homepage fName lName

author
description

"..."
download

Figure 3: Tree representation of the XML docu-
ment in Figure 1

the ? operator represents an optional element,
whereas the * and + operators represent repeat-
able elements (0 or more times, 1 or more times,
respectively). In the matching process we do not
consider sequences of unary operators (that is, ?,
*, +) because a concise and equivalent represen-
tation with a single operator always exists.

In our representation of DTDs each node cor-
responds to an element, or to an element type,
or to an operator. In each tree representing a
DTD the label of the root belongs to EN (it is
the name of the main element of documents de-
scribed by the DTD) and there is a single edge
outgoing from the root. Moreover, there can be
more than one edge outgoing from a node, only
if the node is labeled by AND or OR. Finally, all
nodes labeled by types are leaves of the tree. Let
ET be the set of possible basic types for elements
(ET = {#PCDATA, ANY}).

Definition 2 (DTD). A DTD is a labeled tree
(T, ϕT) defined on the set of labels EN ∪ET ∪OP
with the following properties:

1. T is of the form (v, [T ′]) with ϕT (v) ∈ EN ;

2. for each subtree (v, C) of T , ϕT (v) ∈ EN ∪
OP;

3. for each (leaf) subtree v of T , ϕT (v) ∈ ET ;

4. for each subtree (v, C) of T , if ϕT (v) ∈
{OR, AND}, then C=[T1, . . . , Tn], n > 1;

5. for each subtree (v, C) of T , if ϕT (v) ∈
{?, ∗, +} ∪ EN , then C = [T ′]. 2

We remark that the introduction of operators
OP = {AND, OR, ?, ∗, +} allows us to represent

*

download

#PCDATA

homepage

#PCDATA

#PCDATA

vendor

OR

#PCDATA

version

?
description

ANY

AND

product

#PCDATA

name

+

urls

AND

#PCDATA

mName

?

author

*

AND

#PCDATA

fName

#PCDATA

lName

Figure 4: Tree representation of DTD of Fig. 2

the structure of all kinds of DTDs. The intro-
duction of the AND operator is required in order
to distinguish between an element containing an
alternative between sequences (e.g. <!ELEMENT
a(b|(c1,c2))>) and an element containing the
alternative between all the elements in the se-
quence (e.g. <!ELEMENT a(b|c1|c2)>). The two
different tree representations are shown in Fig-
ure 5(a,b). The document in Figure 5(c) is valid
with respect to the DTD (b) but it is not valid
with respect to the DTD (a).

3. Principles in Matching an XML Docu-
ment against a DTD

In this section we introduce by means of some
examples the behavior of the matching algorithm
for the evaluation of the similarity between an
XML document and a DTD. In particular we dis-
cuss the most relevant issues in this kind of match
and how the algorithm addresses them.

We remark that we have chosen simple exam-
ples that allow us to focus on the behavior of
the algorithm in common cases. The matching
algorithm is complete enough to be used in the
similarity evaluation of arbitrary documents and
DTDs, characterized by any combination of the
features discussed in this section.

3.1. Matching a Document against a set of
Documents

Two different approaches can be devised for
measuring the structural similarity between an
XML document and a DTD: the DTD can be ex-
ploited either as a generator of document struc-

5

......

...
c2c1

b AND

OR

a

(a)

b c2
OR

a

c1

...

(b)

a

c1

...

(c)

Figure 5: Example of DTDs motivating the in-
troduction of AND labeled nodes

tures (extensional approach) or as a set of rules
constraining the content of each element (inten-
sional approach). According to the extensional
approach, the set of possible document structures
of documents valid for the DTD is considered.3

By considering a document structure at a time,
existing algorithms for measuring the structural
similarity between XML documents [12,22] can
be applied. The match resulting in the highest
similarity value is considered as the best match
and its evaluation as the structural similarity de-
gree between the document and the DTD. Ac-
cording to the intensional approach, by contrast,
the structural similarity measure is computed by
means of a matching algorithm that compares the
document structure to the DTD. The rules con-
straining the element contents are exploited for
determining the best match. The set of docu-
ment structures the DTD describes is not com-
puted. Rather, the best structure for an element
specification, for elements containing alternatives
or repetitions, is locally determined as soon as
the structure of its subelements in the document
is known.

Since the extensional approach can result in ex-
ponential complexity even for very common cases,
we present a matching algorithm based on the
intensional approach. Note that also the inten-
sional approach has, in the general case, exponen-
tial complexity. However, in a significant subset
of cases, the most common in practice, the algo-
rithm is polynomial as we show in Section 4.4.

3Note that this set can be infinite. Taking the document
being matched against the DTD into account allows one
to consider only a finite, though potentially big, set of
document structures.

3

b

9

f

5 7

c d

a

(a)

#PCDATA #PCDATA

c
b

g h

a

AND

#PCDATA#PCDATA

(b)

b
c

d g h
i

AND
a

#PCDATA
#PCDATA

#PCDATA

#PCDATA
#PCDATA

#PCDATA

(c)

Figure 6: Identification of plus, minus and com-
mon elements

3.2. Common, Plus, and Minus Elements
The matching algorithm relies on the identifica-

tion and proper evaluation of: elements appearing
both in the document and in the DTD, referred to
as common elements; elements appearing in the
document but not in the DTD, referred to as plus
elements; elements appearing in the DTD but not
in the document, referred to as minus elements.

Example 1 Consider the document D in Fig-
ure 6(a) and DTDs Tb, Tc in Figure 6(b,c), re-
spectively. The matching algorithm identifies that
D and Tb have the same tag for the document el-
ement but some of the subelements are different.
In particular, D and Tb share elements b and c,
whereas D contains elements d and f not appear-
ing in Tb, and Tb contains elements g and h not
appearing in D. Thus, the algorithm detects that
the two structures have two common elements,
two minus elements, and two plus elements.

Consider now the DTD Tc. The matching al-
gorithm determines that D and Tc share elements
b, c, and d, whereas D contains element f not ap-
pearing in Tc, and Tc contains elements g, h and
i not appearing in D. Thus, the two structures
have three common elements, one plus element,
and three minus elements. ©

In the two examples the identified common,
plus and minus elements have to be properly eval-
uated in order to identify the best DTD between
Tb and Tc. Obviously, to achieve the best similar-
ity, plus and minus elements should be minimized

6

and common elements should be maximized. If
we consider the absence of an element equivalent
to the presence of an additional element, D is
more similar to Tc because they have more com-
mon elements. However, there are situations in
which plus and minus elements cannot be con-
sidered equivalent. For this reason we introduce
α and β, two real numbers greater than 0, that
allow us to properly weight plus and minus ele-
ments as we will discuss in Section 4.

The evaluation of such elements is performed
by taking into account two main factors. First,
the matching algorithm assigns a weight accord-
ing to the level in which common elements are
detected in the hierarchical structure of the two
tree representations. Elements at higher levels in
the document structure are more relevant than
subelements deeply nested in the document struc-
ture. Then, the evaluation takes into account the
structure of plus and minus elements. Complex
elements have a greater impact on the evaluation
than simpler ones.

In the remainder of the section we discuss how
the matching algorithm determines the number
of levels of a document/DTD, and the function
Weight used for determining the structural com-
plexity of an element.

3.2.1. Level of an Element
The similarity measure catches the intuition

that elements at a higher level in a document are
more relevant than elements at a lower level.

Example 2 Consider the documents and the
DTD in Figure 7. Element f, subelement of
element d, is missing in the document in Fig-
ure 7(b). By contrast, element b, subelement of
element a, is missing in the document in Fig-
ure 7(c). The document in Figure 7(b) is more
similar to the DTD in Figure 7(a). ©

We thus introduce the notion of level of an el-
ement, related to the depth of the correspond-
ing tree. Given a tree T , representing a docu-
ment, the level of T is its depth as a tree, that
is, the number of nodes along the longest maxi-
mal path (that is, a path from the root to a leaf)
in T . By contrast, given a tree T , representing a
DTD, its level is the number of nodes, not labeled

AND

a

OR

c

b

#PCDATA
AND

d

#PCDATA

f

#PCDATA

e
#PCDATA

(a)

1

b

3

e

d

a

(b)

5

e

7

f

d

a

(c)

Figure 7: Documents and DTD of Example 2

by an operator, along the longest maximal path
in T . This is because edges labeled by operators
in DTD trees only influence the breadth of the
corresponding document trees, not their depths.
These notions are formalized by the following def-
inition.

Definition 3 (Function Level). Let T = (v, [T1,
. . . , Tn]) be a subtree of a document or a DTD.
Function Level is defined as follows:

Level(T) =

{
1 + maxn

i=1Level(Ti) if ϕ(v) ∈ EN
maxn

i=1Level(Ti) if ϕ(v) ∈ OP
0 otherwise 2

Example 3 Let T denote the DTD in Figure 4,
then Level(T) = 3. ©

In computing the level of a tree leaves are not
considered. This is because we are interested in
the number of nested elements and leaves only
have data contents. Now, the matching algorithm
can assign a different weight to elements at dif-
ferent levels of the tree. Let l = Level(T) be the
level of a document/DTD T and γ be the factor
of relevance of a level with respect to the under-
lying level, the root of T will have weight γl, and
the weight is then divided by γ when going down
a level to its children. Thus, for a generic level
i of T , γl−i is the corresponding weight. Such
weight is multiplied for the number of common,

7

b

a

5

(a)

AND

c

AND

a

?

i

AND

gf

OR

h
#PCDATA

#PCDATA

#PCDATA

#PCDATA #PCDATA

d

b

(b)

b

5

7

d

9

f

c
a

(c)

#PCDATA

b

#PCDATA

c

#PCDATA

f

?

d

OR
AND

a

(d)

Figure 8: Documents and DTDs of Example 4

plus and minus elements identified at that level
in order to take also the level into account in the
match of the two structures.

3.2.2. Weight of an Element
In the evaluation of plus and minus elements

the matching algorithm considers their struc-
tures, as shown in the following example.

Example 4 Consider the documents and DTDs
in Figure 8. If we match the document in Fig-
ure 8(a) against the DTD in Figure 8(d), we can
see that the document lacks element c and the
corresponding #PCDATA value. By contrast, if we
match the document in Figure 8(a) against the
DTD in Figure 8(b), we can see that the docu-
ment lacks element c and the corresponding sub-
tree. The lack of element c must be evaluated
differently, since in the first case it has a sim-
ple data content, whereas in the second one it has
a complex substructure. Consider now the docu-
ment in Figure 8(c) and the DTD in Figure 8(d).
The DTD specifies a #PCDATA content for element
c, whereas in the document element c has a more
complex substructure. ©

The example above shows that the matching
algorithm should take into account the structure
of plus and minus elements. In case of minus el-
ements, however, the structure is not fixed. Con-
sider element c in Figure 8(b): it has an optional
subelement (element tagged d) and an alterna-
tive of subelements (element tagged f or element
tagged g). Our idea is to consider, as structure of
the minus elements, the simplest document struc-
ture that can be generated from that portion of
DTD. Thus, the measure should not take into ac-
count optional or repeatable elements and, in case
of alternative elements, the measure should take
into account only one of the alternative elements
(reasonably the one with the simplest structure).
We thus introduce function Weight to evaluate a
subtree of a document or of a DTD.

Definition 4 (Function Weight). Let T be a
subtree of a document or a DTD (D, ϕ), and wl

be the weight associated with the level of T in
D. Function Weight is defined as follows:4

Weight(T, wl) =





wl if label(T) = V ∪ ET
0 if label(T) ∈ {∗, ?}
Weight(T ′, wl) if label(T) = + and

T = (v, [T ′])
n∑

i=1

Weight(Ti, wl) if label(T) = AND and

T = (v, [T1, . . . , Tn])
minn

i=1Weight(Ti, wl) if label(T) = OR and
T = (v, [T1, . . . , Tn])

n∑
i=1

Weight(Ti,
wl

γ
) + wl otherwise, where

T = (v, [T1, . . . , Tn]) 2

Given a subtree of the document and a weight
wl, function Weight multiplies the number of ele-
ments in each level for the weight associated with
the level. The weight of the level is wl for the
first level, wl/2 for the second level, wl/4 for the
third level, and so on. The resulting values are
then summed. Given a subtree of the DTD and
a weight wl, function Weight works as on a doc-
ument, but it takes into account only mandatory
elements in the DTD. That is, the function does

4Given T = v or T = (v, C), label(T) = ϕ(v).

8

c

5

c

9

a

c

7

(a)

#PCDATA

d

#PCDATA

b

#PCDATA

c

AND

*

a

(b)

Figure 9: Document and DTD of Example 6

not consider optional elements or repeatable ele-
ments labeled by *. Moreover, in case of OR la-
beled nodes, the weights associated with the pos-
sible alternatives are evaluated and the minimal
value is chosen. The choice of the minimal value
corresponds to selecting the subtree with the sim-
plest structure.

Example 5 Let T be the DTD in Fig. 4, and
assume γ = 2, Weight(T, 8) = 27. Note that, in
this case, the weight 8 is 23, where 3 is the num-
ber of levels of T . Moreover, the elements that
contribute to the weight of T are the mandatory
name, and description elements and the urls
element because it is repeatable from 1 to many
times (thus an occurrence is mandatory). The
total weight of these elements is 19. The others
do not contribute because they are optional or re-
peatable from 0 to many times. Note that, the
OR subtree does not contribute to the weight be-
cause one of the alternatives it bounds is repeat-
able from 0 to many times. The weight of the root
is 8, therefore the total weight is 27. ©

3.3. Optional and Repeatable Elements
In case of repeatable elements, the similarity

measure must identify the best number of repe-
titions, that is, the one that maximizes common
elements and minimizes plus and minus elements.
Note that a higher number of repetitions can re-
sult in every element in the document to match
with an element in the DTD (no plus) but, by
contrast, it can increase the number of unmatched
elements in the DTD (minus). Optional elements
can be considered as special cases of repeatable

repetitions common plus minus
0 0 3 0
1 1 2 2
2 2 1 4
3 3 0 6
4 3 0 9

Table 1
Measuring the similarity between the document
and the DTD of Example 6

elements with a constraint on the maximal num-
ber of repetitions.

Example 6 Consider the document D and the
DTD T in Figure 9. The possibility of repeating
an arbitrary number of times the sequence of ele-
ments (b, c, d) allows us to map each element c
in D to a corresponding element in T . However,
since D contains three c elements, the sequence
in T must be repeated three times, resulting in a
total of nine elements: three present in D (three
c elements) and six missing from D (three d and
three b elements). If, by contrast, we had repeated
the sequence twice, we would have obtained two
common elements and four minus elements. The
situation is summarized in Table 1. ©

The matching algorithm handles repeatable el-
ements in the following way. The algorithm
matches all the elements (at the current level)
against the repeatable element in order to deter-
mine the evaluation of common, minus, and plus
elements. After that, it determines the best num-
ber of repetitions by applying the evaluation func-
tion and choosing the maximal value. The eval-
uation is more complicated when a sequence or
alternative of elements should be handled. The
behavior of the algorithm in these situations is
shown in the following section.

3.4. Sequences and Alternatives of Ele-
ments

The evaluation of sequences of elements is per-
formed in two steps. The first step identifies the
presence or absence of single elements of the se-
quence (i.e. it identifies the minus and common
elements). Minus and common elements are eval-
uated as described above. Then, the sequence of

9

elements is evaluated by summing up the eval-
uations obtained for the single minus and com-
mon elements. The evaluation is more compli-
cated when the sequence is repeatable. In this
situation, indeed, the algorithm should identify
the possible repetitions of the sequence. The
evaluation of each sequence corresponds to the
sum of the evaluation of common and missing el-
ements and the best number of repetitions of the
sequence is determined by exploiting the evalua-
tion function.

Example 7 Consider the document and the
DTD of Example 6. In the evaluation of the AND
operator (which is repeatable), the algorithm first
finds that element c in the DTD has 3 matches
in the document, whereas elements b and d in
the DTD have no match in the document. Tak-
ing into account the evaluation obtained for the
single elements, the possible repetitions of the se-
quence are computed. Zero repetitions of the se-
quence means that the three c elements are plus,
and there are no common and minus elements.
One repetition of the sequence means that one of
the three c elements is common, the other two
c elements are plus, and b and c elements are
minus. The other repetitions of the sequence are
computed in a similar way. Note that, a new rep-
etition of the sequence is considered till a com-
mon element has to be matched. Therefore, in
this case four repetitions are considered. The best
one is then selected by means of the evaluation
function. ©

The matching algorithm handles alternatives in
a similar way. However, in this case the evalu-
ations obtained are not summed up, rather the
best one, that is the evaluation corresponding to
the best alternative among the possible ones, is
chosen.

3.5. Role and Setting of Parameters
The behavior and results of the matching al-

gorithm rely on some parameters previously out-
lined and reported in Table 2.

A user sets these parameters depending on the
application domain in which the matching algo-
rithm is used. Some examples will be shown in

Parameter Description
α weight of plus elements (α ≥ 0)
β weight of minus elements (β ≥ 0)
γ relevance factor of a level (γ ∈ IN)

Table 2
Parameters of the matching algorithm

Section 5 when we discuss some applications of
the matching algorithm.

Depending on the values assigned to α and β,
the matching algorithm gives more relevance to
plus elements with respect to minus elements, or
vice-versa. For example, if α = 0 and β = 1 plus
elements are not taken into account in measuring
similarity. Therefore, a document with only ex-
tra elements with respect to the ones specified in
the DTD has a similarity degree equal to 1. By
contrast, if α = 1 and β = 0 the minus elements
are not taken into account in the similarity mea-
sure. In the following examples we assume that
α = β = 1, thus giving the same relevance to plus
and minus elements.

Depending on the value assigned to γ ∈ IN, the
matching algorithm gives more relevance to com-
mon elements at higher levels in the document
with respect to others at lower levels. By taking
γ = 1 all the information is considered equally
relevant, and thus the fact that elements appear
at different levels in the nested structure is not
taken into account. By contrast, taking γ = 2
elements at a given level have double relevance
with respect to their children. In what follows,
we consider γ = 2.

4. The Matching Algorithm

In the previous section we have outlined the
behavior of the matching algorithm in the most
relevant cases. In this section we point out some
details of the developed algorithm.

4.1. Evaluation Function
In order to obtain the best match between the

two structures, common elements must be max-
imized, whereas plus and minus elements must
be minimized. However, we want to obtain a nu-
meric value that quantifies the similarity between

10

the document and the DTD. Thus, we assume
plus, minus, and common elements to be evalu-
ated to three natural values p,m, c, taking into
account the levels and the weights, as discussed
in Section 3. These three values are combined
through an evaluation function for determining
an overall similarity evaluation. The evaluation
function we choose is function E , formally de-
fined in the following, which is based on the ratio
model [30]. This function computes the ratio be-
tween the evaluation c of the common elements
between the two structures (i.e., elements in the
“intersection” between the two structures) and
the evaluation p+m+ c of all the elements in the
two structures (i.e., elements in the “union” of
the two structures). The evaluation of plus and
minus elements are weighted according to α and
β parameters. The obtained similarity value is a
real number in the range [0,1].

Definition 5 (Function E). Let (p,m, c) be a
triple of natural numbers and α, β be real num-
bers s.t. α, β ≥ 0. Function E is defined as:

E(p,m, c) =
{

0 if (p, m, c) = (0, 0, 0)
c

αp+c+βm otherwise 2

Relying on function E , an order relationship ¹
has been defined. This order is exploited for se-
lecting among a set of matches (represented as
(p,m, c) triples) the optimal ones (i.e. the maxi-
mal triple). Details on the ¹ order can be found
in [6].

Example 8 Consider the document and the
DTD in Figure 10. Since the document only con-
tains element b1, if we choose the right branch
of the OR we have one common element and 39
missing elements. By contrast, if we choose the
left branch of the OR, we have no common ele-
ments, but only a plus and a minus element. ©

4.2. A Sketch of the Matching Algorithm
An algorithm, named Match, that allows one

to assign a (p,m, c) triple to a pair of trees
(document,DTD) has been defined. Such algo-
rithm is based on the idea of locally determining
the best structure for a DTD element, for ele-
ments containing alternatives or repetitions, as

#PCDATA #PCDATA

b40b1

c AND

OR

a

#PCDATA
...

(a)

a

b1

5

(b)

Figure 10: Tree representations of document and
DTD of Example 8

soon as the information on the structure of its
subelements in the document are known.

The algorithm is general enough to evaluate the
similarity between any kind of XML documents
and DTDs. In this paper, however, we focus on
the most meaningful core of the algorithm, based
on the assumption that, in the declaration of an
element, two subelements with the same tag are
forbidden. That is, element declarations such as
<!ELEMENT a (b*, (c|b))> are not considered.
Details on the general version of the algorithm
can be found in [6,21].

Given a document D, and a DTD T , algorithm
Match first checks whether the root labels of the
two trees are equal. If not, then the two struc-
tures do not have common parts, and a null triple
is returned. If the root labels are equal, the max-
imal level l between the levels of the two struc-
tures is determined, and the recursive functionM
is called on:

1. the root of the document,

2. the first (and only) child of the DTD,

3. the level weight (γl−1) taking into account
that function M is called on the second
level of the DTD structure,

4. a flag indicating that the current element
(the root element) is not repeatable.

Function M recursively visits the document
and the DTD, at the same time, from the root to
the leaves, to match common elements. Specifi-
cally, two distinct phases can be distinguished:

11

3

f

e

5

d

a

m

7

(a)

#PCDATA

#PCDATA

#PCDATA

d

OR

a

AND

AND

AND

*

e

f

*

c
#PCDATA

g

#PCDATA

b

(b)

f: [(0,0,3)]

*: [(0,3,3)]

e:[(0,3,7)]

[(0,0,0)]c:

[(0,0,0)]*:

[(0,6,0)]b: AND:[(0,3,13)]

AND:[(0,9,13)]

[(6,9,21)]a:

[(0,0,0)]g:

AND: [(0,3,3)]

#PCDATA

#PCDATA

#PCDATA

#PCDATA:[(0,0,2)]

[(0,0,6)]d:

OR: [(0,0,6)]

#PCDATA:[(0,0,1)]

(c)

Figure 11: Execution of function M

1. in the first phase, moving down in the trees
from the roots, the parts of the trees to visit
through recursive calls are determined, but
no evaluation is performed;

2. when a terminal case is reached, on return
from the recursive calls and going up in the
trees, the various alternatives are evaluated
and the best one is selected.

Intuitively, in the first phase the DTD is used
as a “guide” to detect the common elements be-
tween the document and the DTD, disregarding
the operators that bind together subelements of
an element. In the second phase, by contrast, the
DTD operators are considered in order to verify
which elements are bound as prescribed by the
DTD, and to define an evaluation of the missing
or exceeding parts of the document with respect
to the DTD. Terminal cases are the following: a
leaf of the DTD is reached, or an element of the
DTD not present in the document is found. In
these cases a (p,m, c) triple is returned. Then,
the second phase starts and the evaluation of in-
ternal nodes is performed, driven by their labels.

4.3. An Illustrative Example
We now illustrate the behavior of function M

on the document and the DTD in Figure 11(a,b).
For sake of clarity, in the discussion of the algo-
rithm, we denote the element of the document
labeled by a as aD, and the element of the DTD
labeled by a as aT .

During the first phase, function M, driven by
the label of the current DTD node, is called on
subtrees of the document and the DTD. For ex-
ample, on the first call of M on (aD, ANDT), re-
cursive calls on aD and all the subtrees of ANDT

are performed (i.e., on (aD, bT), and (aD, ANDT)).
Recursive calls are performed disregarding the op-
erators in the DTD and moving down only when
an element declared in the DTD is found in the
document as child of the current node. Moreover,
in such cases, the weight level is divided by γ in
order to determine the level weight of the under-
lying level. Figure 11(a,b) shows the performed
recursive calls. An edge (v, v′) of the tree is bold
if a recursive call of functionM has been made on
the subtree rooted at v′. Note that no recursive
calls have been made on bT , cT , and gT because
such elements are missing in the document. Note
also that mD has not been visited by function M,
because this element is not required in the DTD.

When a terminal case is reached, a (p,m, c)
triple is produced. For example, when function
M is called on (fD, #PCDATAT), the triple (0, 0, 1)
is generated, because the DTD requires a data
content for fD and, actually, such element has
a textual content. By contrast, when function
M is called on (aD, bT), the triple (0, 6, 0) is
generated, because the DTD requires an element
tagged b, but such element is missing in the docu-
ment. Therefore, function Weight is called on bT

and, since the current level weight is 4, the value
6 is returned as weight of the missing subtree.

12

On return from the recursive calls, the opera-
tors and the repeatability of the node are consid-
ered in order to select the best choice among the
possible ones for binding together subelements.
For example, returning from the evaluation of
subtrees of the OR element, which is not repeat-
able, the triples (0, 0, 0) and (0, 0, 6) obtained for
the evaluation of subtrees are considered. The
best one is selected relying on the E evaluation
function. By contrast, returning from the evalu-
ation of subtrees of an AND element, which is not
repeatable, the obtained evaluations are summed
in order to determine the evaluation of the se-
quence of elements. The behavior of the algo-
rithm is much more articulated when elements
are repeatable. In such cases, indeed, not only a
triple is generated, but a list of triples. The lists
of triples are then combined in order to evaluate
internal nodes.

The intermediate evaluations are reported in
Figure 11(c). If an edge is bold the label is fol-
lowed by the (p,m, c) triple obtained from the
evaluation of the corresponding subtree. If an
edge is not bold, but the label is followed by a
(p,m, c) triple, it represents the evaluation of mi-
nus elements of the subtree.

The triple associated with the main element of
the DTD (i.e. (6, 9, 21)) is obtained by theMatch
algorithm summing up the evaluation returned
by function M ((0, 9, 13)), the evaluation of the
plus element m ((6, 0, 0)) and the identification of
common root label ((0, 0, 8)).

4.4. Algorithm Complexity
The running time of the Match algorithm de-

pends on the running time of function M. Let
M be the number of nodes of the document, N
be the number of nodes of the DTD, and Γ the
maximal number of edges outcoming from a node
of the document, the running time of function M
is O(Γ2 ·(N +M)) [6]. This complexity deeply de-
pends on the assumption we started with. That
is, the assumption that in the declaration of an
element, two subelements with the same tag are
forbidden.

Relying on this assumption, in the first phase
of the algorithm, recursive calls are performed
only until common elements between the struc-

tures are detected. In this phase of the algorithm
no “wrong matches” are determined, because at
most one match is possible between an element of
the document and an element of the DTD. There-
fore, this phase has a running time linear in the
number of nodes of the two structures. Then, in
the second phase, the matching algorithm eval-
uates the DTD operators. For each common el-
ement, this phase has a running time quadratic
in the number of edges outcoming from the node
of the document. Combining the two results, the
above complexity is obtained.

In the general version of the algorithm [6] the
above assumption has been removed. In such a
case, “wrong matches” can arise during the first
phase. For example, consider an element of the
document that matches with n elements with the
same tag in the DTD. In order to identify the best
match, the second phase should be performed n
times. Each time the element of the document
is considered in common with one of the n ele-
ments of the DTD, and, at the end, the match
that maximizes the evaluation function is chosen.
It is easy to understand that, when the numbers
of elements with the same tag either in the docu-
ment or in the DTD increases, the complexity of
the general version of function M changes from
polynomial to exponential.

We would like to remark, however, that the
presence in the DTD of elements with the same
tag is often due to a wrong design of the DTD.
However, in [6] some techniques have been pro-
posed for reducing the execution time of the
matching algorithm, even if, in the worst case,
the complexity is still exponential.

4.5. Similarity Measure
The similarity measure between a document

and a DTD is defined as follows.

Definition 6 (Similarity Measure). Let D be a
document and T a DTD. The similarity measure
between D and T is defined as follows:

S(D,T) = E(Match〈D,T 〉) 2

Example 9 Let D and T be the document and
the DTD in Figure 11(a,b). Their similar-
ity degree is S(D, T) = E(Match〈D, T 〉) =
E(〈6, 9, 21〉)=0.58. ©

13

The following proposition states the relation-
ship between the notion of validity and our simi-
larity measure.

Proposition 1 Let D be a document, T a DTD,
and α, β the parameters of function E. If α, β 6= 0
the following properties hold:

• If D is valid with respect to T , then
S(D, T) = 1;

• If S(D, T) = 1, then D is valid with respect
to T , disregarding the order of elements. 4

Sketch of Proof of Proposition 1. The first
assertion follows from the fact that if a document
D is valid for a DTD T , this means that its struc-
ture is exactly one of the structures described by
the DTD. Thus, the document neither contains
elements not appearing in the DTD (thus, plus =
0), nor it misses elements required by the DTD
(thus, minus = 0). Therefore, when function E is
applied, the ratio between c and 0+0+ c is com-
puted, thus obtaining 1. The second assertion
holds since the similarity value can be 1 only if
the two values of which we compute the ratio are
equal. Since α and β are not null, and the p, m, c
values are natural, thus, non negative, this can
happen only if p = m = 0. This means that the
document neither contains elements not appear-
ing in the DTD, nor it misses elements required
by the DTD. Thus, according to the notion of
validity, if we disregard the order of elements, the
document is valid for the DTD. 4

5. Applications

In this section we discuss applications of the
matching algorithm we are investigating.

5.1. Classification of Documents
A first application of the matching algorithm

is for the classification of XML documents gath-
ered from the Web against a set of DTDs declared
in an XML database. The scenario we refer to
is characterized by a number of heterogeneous
databases of XML documents able to exchange
documents among each other. Each database

year

actor

*

#PCDATA

#PCDATA
#PCDATA

AND

film

production

AND

OR

director

film

#PCDATA *

actor

#PCDATA

#PCDATA

title

year

producer

production

film

1997
La vita e’ bella

title

G. Braschi

0.62 > 0.52

Figure 12: Classification of a document

stores and indexes the local documents accord-
ing to a set of local DTDs. An XML document
entering a database is matched, by means of the
matching algorithm, against the local DTDs. If a
DTD exists to which the document conforms ac-
cording to the usual notion, then the document
is accepted as valid for this DTD. Otherwise, the
proposed algorithm is used for selecting the DTD,
among the ones in the database, that best de-
scribes the structure of the document. In this
scenario, a similarity threshold should be fixed.
Such threshold represents the minimal degree of
similarity required for binding an XML document
to a DTD. Obviously, the DTD for which the sim-
ilarity degree is the highest, and above the fixed
threshold, is selected. Whenever the similarity
degree is not above the threshold for any DTD
of the database, the document is considered “un-
classified” and stored in a repository of unclassi-
fied documents. For the retrieval, protection and
indexing of such documents none of the facilities
specified at DTD level can be applied.

Example 10 Consider the document D and the
two DTDs T1 and T2 in Figure 12. The similar-
ity degree between D and T1 is S(D,T1) = 0.62,
whereas the similarity degree between D and T2 is
S(D,T2) = 0.52. Document D is more similar to
DTD T1 than to T2, because S(D, T1) > S(D, T2).

If we set the similarity threshold to 0.6, docu-
ment D is classified in T1. By contrast, if we set

14

the similarity threshold to 0.8, document D can-
not be classified in T1, and, thus, it is stored in
the repository of unclassified documents. ©

Several experiments have been carried on in
order to assess the similarity measure and the
matching algorithm both from the correctness
and from the efficiency viewpoint. First, we con-
sidered both real and synthetic data and clas-
sified them against a set of DTDs in order to
verify that the algorithm correctly ranks docu-
ments according to the similarity measure. In
both the experiments, we obtained that for each
document D, and for each pair of DTDs T1, T2

such that D is not valid neither for T1 nor for
T2, whenever S(D,T1) > S(D, T2), D actually is
more similar to T1 than to T2 [6]. Then, some
performance evaluations have been carried on in
order to show that the matching algorithm is rea-
sonably efficient to be used in practice. Note
that this is a crucial issue as similarity checks are
supposed to be performed frequently and online.
The execution time of the algorithm varies from
few milliseconds for simple XML documents and
DTDs, to few seconds for very huge documents
and DTDs (i.e. whose size is in the order of 4-5
Mbytes).

5.2. Evolution of DTD Structures
After having classified a certain number of doc-

uments, the documents instances of a DTD can
present some regularities that, if captured by the
DTD, would restrict the divergence between the
structure of documents as specified by the DTD
and the actual structures of documents instances
of the DTD. The goal of the evolution approach
is to capture these regularities thus adapting the
set of DTDs to the set of documents. Preliminary
results have been reported in [7].

The data flow of the evolution approach is
shown in Figure 13, in which rectangles denote
the main functional components of the approach,
cylinders denote data stores, thick arrows denote
the control flow, and thin arrows denote data
flow. Each time a document, created outside the
database, enters the database it is initially in-
serted in a queue of “to-be-processed” documents.
When it is then selected, it is associated with a
DTD of the database, that is, the one best de-

scribing its structure, through the classification
algorithm. If a document, matched against each
DTD, does not produce a similarity value above
the similarity threshold, it is inserted in the repos-
itory of unclassified documents. Otherwise, the
document is handled as an instance of the DTD
for which the evaluation produced the highest
similarity value.

Once the classification phase is completed (i.e,
the DTD of which the document is an instance
has been selected) some structural information
are extracted from the document. Specifically,
information about frequent “patterns” identified
in the elements of a document that are not valid
w.r.t the corresponding DTD declaration. A pat-
tern is a subset of the tags of subelements of a
non-valid element env of the document with re-
spect to a DTD. Patterns are used for identifying
groups of subelements of env frequently bound
together and, thus, to extract the new structure
of the DTD declaration of env. In the record-
ing phase this information is associated with the
DTD in a data structure referred to as extended
DTD. The use of this information avoids analyz-
ing again the document in the subsequent phases.
Moreover, this information is structural rather
than content information, and it is aggregate over
the whole set of analyzed documents, and thus
it does not require much storage space. These
activities are iterated till the evolution phase is
triggered.

The evolution phase is activated after a certain
number of documents have been classified. The
evolution phase has a high cost in terms of re-
writing the applications that are working on the
database. Therefore, it should be triggered when-
ever the DTD is not representative anymore of its
instances and such “update” improves the perfor-
mance of applications that work on them. The
event can depend on the access frequency to the
DTD instances, on the number of non-conforming
elements w.r.t the DTD, and on the number of
documents currently considered as instances of
the DTD. The check component is responsible to
determine whether the evolution phase should be
activated.

The evolution phase of the evolution process
is responsible for generating a new set of DTDs

15

…
Document queue

XML
document

Activation threshold

DTDs

XML
docs repository

XML database

Classification Recor ding Check Evolution

Similarity threshold

Classification
of repository
documents

Figure 13: Data flow of the evolution approach

and can work at different granularities, ranging
from a very coarse granularity, regenerating the
whole DTD, to a very fine granularity, regenerat-
ing the structure of a single element in the DTD.
By making use of the information collected in
the recording phase, some association rules are
extracted that represent relationships between
presence/absence of subelements of an element.
Based on such rules and on some heuristics we
have identified, the new DTD is generated. Fi-
nally, after the evolution phase, the documents in
the repository are classified again against the re-
structured set of DTDs in order to check whether
the similarity is now above the threshold for a
DTD of the database so that the document can
be considered as instance of such a DTD.

The evolution phase is based on three key prin-
ciples.

1. Use of data mining association rules [17,18]
for determining the most frequent patterns
in the structure of subelements of each el-
ement. For each element of the DTD, by
relying on the patterns stored in the data
structure, it is possible to determine ele-
ments that are always together (i.e. bound
by an AND operator), elements that are
never together (i.e. bound by an OR opera-

tor), elements, or groups of elements, that
are repeated the same number of times (i.e.
bound by a * or + operator), elements, or
groups of elements, that are optional (i.e.
bound by an ? operator).5 Moreover, in
order to establish when the presence of an
element implies the absence of another ele-
ment, association rules like “if element a is
absent then element b is present” have been
considered.

2. Incremental modification of the DTD. Ap-
proaches proposed in [13,16] for inferring
the “type” of a set of documents consider
all the documents at once. Therefore, when
a new documents is added to the set, in or-
der to determine a new “type”, the process
starts from scratch. By contrast, in our ap-
proach we incrementally store the relevant
information in the data structures and use
them during the evolution process.

3. Relevance of previous instances of the DTD.
Different relevance can be given to the cur-
rent structure of the DTD with respect to

5Note that the terms “always”, “never”, and “same num-
ber” should be considered in their statistical sense, i.e. in
most cases.

16

b

a

AND

c

#PCDATA #PCDATA

���

*

������	
�

a

b c

���

c b dd d

a

b c

_

c b cb e

_ _ _ _ _ ________

{b,c,d,e}

b

a

AND

c

#PCDATA #PCDATA

���

*

�����

����������

Figure 14: (a) DTD, (b) kind of documents classified against the DTD, (c) extended DTD

the documents classified against it since
last DTD evolution. If the DTD was a
dummy DTD generated from a training set
of documents or, for the particular applica-
tion area, the rule “more recent, more rel-
evant” holds, then the DTD evolution pro-
cess should forget the previous structure of
the DTD and deeply modify it in order to
obtain a new structure that closely repre-
sents the documents classified in the DTD
since last evolution. By contrast, if the
DTD structure is consolidated we want to
minimize the DTD modifications in order
to cover both the previous structure of the
documents and the new structure deduced
from the document classified since last evo-
lution.

Example 11 Let T be the DTD in Figure 14(a)
and D1 and D2 be two sets of documents whose
structures are reported in Figure 14(b). The la-
bel of root elements is a both for documents in
D1 and D2 and all documents contain a sequence
of b and c elements. However, this sequence in
documents in D1 is followed by a sequence of d el-
ements, whereas in documents in D2 it is followed
by an e element. Documents in both sets are not
valid with respect to T. Figure 14(c) presents a
sketch of the extended DTD. Element a is associ-
ated with the set {b, c, d, e} of element tags found
in the documents classified against T . Moreover,
{b, c} forms a group since elements b and c are
repeated the same number of times and element d
is marked as repeatable and optional (some docu-
ments do not contain it).

Suppose that according to the “more recent,
more relevant” rule, we decide to update the DTD
structure. The evolution algorithm, by means of a
set of policies, determines the new structure of the

DTD. We do not detail the heuristic policies de-
veloped and simply outline the behavior of the al-
gorithm in this specific example by means of Fig-
ure 15.

The evolution algorithm first determines that
elements b and c appear always together (i.e., the
presence of b implies the presence of c, and vice
versa), and they have the same number of occur-
rences (i.e., they form a group). Therefore, the
new tree (1) in Figure 15 is obtained. Then, the
evolution algorithm determines that elements d
and e are complementary (i.e., the presence of
d implies the absence of e, and the absence of e
implies the presence of d), and d is repeatable.
Therefore, the new tree (2) in Figure 15 is ob-
tained. Trees (1) and (2) in Figure 15 are, fi-
nally, combined together (tree (3) in Figure 15)
by means of the AND operator in order to obtain
the final new DTD structure reported as tree (4)
in the figure. ©

5.3. Structural Queries
Recent approaches to the retrieval of XML doc-

uments exploit the structure of documents for
improving both accuracy and efficiency. Such
queries are referred to as structural queries.
Moreover, several of those approaches have the
capability of returning ranked answers, in the
spirit of Information Retrieval.

Structural queries are normally expressed as la-
beled trees, representing either structural or con-
tent constraints on the documents which are pos-
sible answers to the query. By means of a match
between the tree representation of the structural
query and an XML document it is possible to
verify whether the document is an answer to the
query, to compute their degree of similarity, and
to extract the parts of the document that the
query should return.

17

{ b, c, d, e}

P1

{ b, c}

P4

{ d, e}

+ e

d

OR

b

AND

c

*

P13

• d → e
• e → d
• d ����������

� b → c
� c → b
�	b, c
���
��

b

AND

c

+
e

d

OR

AND

a

�������

*

b

AND

c

+ e

d

OR

AND

*

#PCDATA #PCDATA
#PCDATA#PCDATA

(1)

(3)

(4)

(2)

Figure 15: Application of the evolution algorithm

In our context, a structural query can be repre-
sented as a DTD, in which some additional con-
straints on the value of data content elements
have been posed.6 Therefore, a query is mod-
eled as a labeled tree representing the structural
and content constraints a document should verify
in order to be considered an answer to the query.
Then, the matching algorithm can be exploited
for evaluating the degree of similarity between
the two structures. If such a degree is above a
given threshold, the document is added to the set
of answers for the query (query answer set). The
query answer set is ranked relying on the similar-
ity degree.

Two different interpretations can be given to
a structural query expressed as a labeled tree.
First, it can represent a template of the docu-
ments we are looking for. Second, it can repre-
sent the minimal constraints a document should
meet in order to belong to the query answer set.
According to this interpretation, a document can
contain other elements with respect to those of
the query in which some conditions have been
specified.

With a small extension of the matching al-
gorithm we developed (in order to handle con-

6Note that by exploiting the DTD operators it is possible
to express structural queries more powerful than the ones
possible with current approaches. The ? operator, for ex-
ample, can be exploited for expressing optional conditions.

tent conditions) both the interpretations are sup-
ported. The first one is obtained without any
effort. Actually, this corresponds to the applica-
tion of the classification approach in which some
additional constraints have been added for the
data content elements. By contrast, the second
one is obtained by setting α to 0. In this way
all the plus elements found in the document are
not considered in the evaluation. Therefore, only
elements required by the query but not present
in the document are taken into account for prop-
erly evaluating the similarity degree between the
document and the query.

Example 12 Consider the following query ex-
pressed through the Xpath [33] notation:

/film[director=“Fellini”]
AND

/film[date > “1974”]

By exploiting the structure of the document de-
duced by the query formulation, the tree represen-
tation in Figure 16 can be generated.

Consider now the documents in the lower side
of Figure 16. Assuming the interpretation of a
query as a document template the similarity de-
grees the matching algorithm returns are used to
rank the documents. ©

Some experiments have been carried on for
testing the approach. The obtained results are

18

���

�����	
� ��	�

�

������

�

����

����

�����	
�

������

��	�

����

����

�����	
�
�������

��	�

����

�����	
�

������

����

��	�

�
�	� ����

����� ����

��� �� !���� ��� �

����

Figure 16: Evaluation of a structural query

similar to those for the classification of XML doc-
uments against a set of DTDs.

5.4. Selective Dissemination of XML Doc-
uments

As the amount of XML data available online
and the number of pervasive applications that
take advantages of these data increase, systems
that support selective dissemination of informa-
tion (called SDI systems) are more and more pop-
ular [29].

A selective dissemination system manages user
preferences as well as a stream of incoming docu-
ments. For each incoming document, the system
searches for the set of user preferences that match
it in order to identify the users to whom the docu-
ment should be broadcasted. Users can set their
preferences when they connect the first time to
the system (by filling up a form) or the prefer-
ences can be dynamically discovered by monitor-
ing the documents users frequently access. A key
capability of a SDI system is the effective filter-
ing of a continuous stream of XML documents
according to user preferences. Indeed, a too selec-
tive filter may not send any documents to users,
while a too liberal filter may spam users with ir-
relevant documents. Another key capability of a
SDI system is the adaptability of user profiles to
the new user preferences. In a dynamic world as
the Web, it is not possible to assume that the
preferences of users do not change.

Our classification and evolution approaches can
be employed for enhancing a SDI system in or-
der to provide such key capabilities. Specifically,

USERS

Profiles

Classification

Monitor

Evolution

SDI

Figure 17: Integration of the classification and
evolution approaches in a SDI

our classification approach can be used to filter
XML documents based on their structure and
content. A user profile could be expressed as
a DTD, in which some constraints on the value
of data content elements have been posed. This
DTD could initially be specified by the user or au-
tomatically inferred from documents previously
deemed valuable by the user, by means of docu-
ment clustering [22,29] and structure extraction
techniques [13]. A selective dissemination of in-
formation can then be implemented by matching
each document in the continuous incoming data
stream against the DTD(s) modeling the user
profile, and distributing the document to a user
if it is similar enough, according to our measure,
to her profile. Moreover, our evolution approach
can be exploited for automatically adapting a set
of DTDs to the actual set of documents classi-
fied against the user profiles. The evolution of
the user profiles allows users to receive documents
they actually are interested in. During the clas-
sification of the incoming documents against the
user profiles, some structural and content proper-
ties can be extracted and used for the evolution
of the profiles to the new preferences the users
express by accessing such documents.

Figure 17 shows how our classification and evo-
lution approaches can be integrated in a SDI
system. A SDI system receives a continuous

19

stream of XML documents and, by classifying
them against the user profiles, filters out the users
that are not interested in the documents. Then,
documents are broadcasted only to the interested
users. A Monitor can check the documents users
normally access in order to generate the initial
user profiles and also the documents, among those
broadcasted to a user, that she actually accesses.
In this way, a weight can be associated with the
documents actually accessed and used during the
execution of the evolution process in order to give
more relevance to these documents.

5.5. Protection of XML Documents
XML security has become a relevant research

topic due to the widespread use of XML as the
language for information representation and ex-
change on the Web. In [3] a suitable access con-
trol model has been defined that addresses all
the fundamental requirements for access protec-
tion of XML documents: varying granularity lev-
els of protection ranging from a single element
of a document to a set of documents; the pres-
ence into a database of both valid and well-formed
documents; hierarchical inter-linked structure of
XML documents; releasing of documents relying
on subject properties (specified by means of cre-
dentials) instead of subject identity. Moreover, a
prototype, called Author-X [4], has been devel-
oped. Author-X provides facilities for enforcing
the security policies and for helping the Security
Officer in his work to protect the sensitivity infor-
mation contained in huge amount of documents
gathered from the Web.

In this field the matching algorithm has been
exploited for the protection of new, well-formed
XML documents that enter the database. Indeed,
an important issue is the definition of access con-
trol policies to such documents. Because it is
most likely the case that authorization policies
are specified in terms of DTDs (i.e. at schema
level), it is important to discover whether a well-
formed document conforms to an existing DTD.
In such a case, the document can be totally or
partially covered by the policies defined for this
DTD, and a DTD-based policy can be adopted.
Otherwise, only document-based policies can be
adopted to specify all required authorizations di-

rectly on the well-formed document.
The use of the matching algorithm has two

main advantages. First, the matching algorithm
is used for the classification of the documents
against the set of DTDs. Then, it is used for iden-
tifying the parts of the document that are covered
(or not) by the DTD. The DTD policies are di-
rectly propagated to the covered parts. Moreover,
some propagating options can be exploited for as-
sociating an authorization policy to the parts of
the document that are not covered by the DTD.

Example 13 Suppose to have an XML docu-
ment that is valid with respect to the DTD in Fig-
ure 2 with the exception of element author. Ele-
ment author is not valid because it contains the
subelement affiliation which is not required by
the DTD. According to the downward propaga-
tion option, if an access control policy has been
specified for the author element, such policy can
be propagated to the affiliation subelement. ©

In this context, then, the matching algorithm
is used for identifying the DTD that best covers a
document. Therefore it is more relevant to mini-
mize the number of plus elements rather than the
minus one. This behavior can be enforced by set-
ting the β parameter to zero and, thus, disregard-
ing minus elements and giving more relevance to
plus elements in the evaluation of the structural
similarity.

The presence of the matching algorithm and of
the propagation options offer a different degree
of automation and support to the Security Offi-
cer. The Security Officer can exploit such facil-
ities for automatically protecting the content of
documents entering the database, or for identify-
ing the policies that could be associated with the
new documents and then decide whether the au-
tomatic policies should be enforced, or it is better
to enter new specific policies.

6. Related Work

In this section we review related work for mea-
suring the structural similarity at document layer,
at schema layer, and between the two layers, and
compare the different approaches with ours.

20

6.1. Structural Similarity among Docu-
ments

Some approaches have been proposed [12,22] to
quantify the structural similarity between XML
documents. The main application of these pro-
posals is for structural clustering. As cluster-
ing [26] assembles together documents with sim-
ilar terms, structural clustering assembles to-
gether documents with a similar structure. Two
relevant fields of application of structural clus-
tering are the integration of semi-structured data
and structural analysis of Web sites [12]. Indeed,
grouping structurally similar documents can help
in recognizing sources containing the same kind
of information and in presenting the information
provided by a site. Both approaches only focus
on the structure of the documents, disregarding
their content, that is, values of data content ele-
ments.

In [22] Nierman and Jagadish measure the
structural similarity among XML documents.
Since XML documents are modeled as ordered la-
beled trees, they suggest to measure the distance
between two ordered labeled trees relying on the
notion of tree edit distance [27,34,35]. However,
two XML documents produced from the same
DTD can have very different sizes due to optional
and repeatable elements. Any tree edit distance
that permits changes to only one node at a time
will necessarily find a large distance between such
a pair of documents, and consequently will not
recognize that these documents should be clus-
tered together as being derived by the same DTD.
Thus, they develop an edit distance metric that
is more indicative of this notion of structural sim-
ilarity. Specifically, in addition to insert, delete,
and relabel operations, they also introduce the
insert subtree and delete subtree editing opera-
tions, allowing the cutting and pasting of whole
sections of a document. Then, both for compu-
tational reasons and for improving their results
in the XML domain, they restrict themselves to
“allowable sequences” of edit operations.

Flesca et al. in [12], by contrast, do not rely on
graph matching algorithms. They represent the
structure of an XML document as a time series in
which each occurrence of a tag corresponds to a
given impulse. Thus, they also take into account

the order in which tags appear in the documents.
Then, by analyzing the frequencies of the corre-
sponding Fourier transform, they can state the
degree of similarity between document structures.

These approaches measure the structural sim-
ilarity between two XML documents, thus their
goal is the same of the tree-to-tree transformation
problem, and is substantially different from ours,
which measures the structural similarity between
a tree (the document) and a set of trees, inten-
sionally represented as a DTD. Thus, as discussed
above, these approaches could be adopted to mea-
sure the structural similarity between a document
and a DTD through the extensional approach de-
scribed in Section 3.

6.2. Structural Similarity among Schemas
The issue of measuring the structural similarity

between two schemas has been extensively inves-
tigated in the context of heterogeneous data inte-
gration [2,11,23,28] and, recently, in the context
of clustering of XML DTDs [19].

The problem of heterogeneous data integration
is that of identifying corresponding components
in different schemas, keeping into account both
the names and the structure of schema elements.
Thus, the need arises also in that context of ana-
lyzing structure similarity.

A recent survey on automatic schema match-
ing proposed a taxonomy of solutions differentiat-
ing between schema-and-instance level, element-
and-structure level, and language-and-constraint-
based matching approaches [8,24]. Furthermore,
the distinction between hybrid and composite
combination approaches is introduced. An hy-
brid approach consists in the integration of many
matching approaches in the taxonomy in an in-
tegrated system, whereas a composite approach
exploits different matching approaches and com-
bines their results in a single evaluation. Cu-
pid [20], LSD [10], and COMA [9] are pro-
totypes of data integration systems supporting
XML schema matching.

Cupid [20] is an hybrid approach that consid-
ers both tag names and hierarchical structures of
schema. The similarity between an element of the
first schema and an element of the second schema
relies on the similarity of their components hereby

21

emphasizing the name and data type similari-
ties present at the finest granularity level (leaf
level). LSD (Learning Source Description) [10]
is a composite approach based on machine learn-
ing techniques. The application of such a system
requires a training phase which can incur a sub-
stantial manual effort. Finally, COMA [9] is a
composite approach, which provides an extensible
library for the application of different approaches
and supports various ways for combining match-
ing results.

Despite their differences these approaches map
a schema (expressed through a DTD or an XML
schema) into an internal schema. This internal
schema is more similar to a data guide for semi-
structured data [14] than to a DTD. Therefore,
constraints on the occurrences of an element or
group of elements are not considered in perform-
ing the structural match. In our matching al-
gorithm, by contrast, we consider both optional
and repeatable elements as well as alternative of
elements. Moreover, our matching algorithm dif-
fers from them because it consider the match be-
tween a value (i.e. the document) and a type (i.e.
a DTD) and the presence of the ANY and EMPTY
types.

In [19] the authors propose XClust, an inte-
gration strategy that involves the clustering of
DTDs. A matching algorithm based on the se-
mantics, immediate descendent and leaf-context
similarity of DTD elements is developed. The
matching algorithm analyzes element by element
in order to identify possible matches among direct
subelements, considering the cardinality of the el-
ements (optional, repeatable or mandatory) and
the similarity of their tags. The internal repre-
sentation of DTDs is more sophisticated than the
integration systems presented above. However,
they do not consider DTDs that specify alterna-
tive elements as our matching algorithm does.

6.3. Structural Similarity among Data and
Schema

To the best of our knowledge, almost no ap-
proach has been developed to measure structure
similarity, despite the practical relevance of the
problem, both from a data modeling and a query-
ing perspective. The only approaches we are

aware of are by Grahne and Thomo in [15] and
by us in [5].

In [15] the problem of determining whether
semi-structured data, represented as edge-labeled
graphs, approximately conform to a data guide
is mentioned. The focus of this approach is,
however, on approximate querying: starting from
a regular path query and a regular transducer7

specifying the allowed sequences of elementary
“distortions”, the answers that are within an ap-
proximation of the original query are determined.
The transducer also defines a function for the
distance from the original query. That paper
also discusses how the approach can be used for
detecting whether data instances approximately
satisfy a schema such as a data guide. A ba-
sic assumption in such work is that users spec-
ify a distortion transducer, through which they
can distort the data guide through allowed ele-
mentary distortions and then test if the database
conforms to the distorted data guide. A notion of
k-satisfaction is also introduced meaning that k is
the bound of the distance between the database
and the data guide, thus providing a quantita-
tive measure of approximate satisfaction. The
main difference between that approach and the
one we propose in this paper is that the former is
based on the assumption that the possible devi-
ations from the original schema specification and
their importance (weight) are specified by users
through the distortion transducer, whereas we as-
sume no a-priori knowledge of possible deviations.
Moreover, the approach in [15] has not been de-
veloped for XML documents and DTDs, but for
generic semi-structured data and data guides rep-
resented as edge-labeled graph. A data guide,
however, is simpler than a DTD since it does not
contain constraints on the repeatability or alter-
nativeness of elements. Finally, no experimental
results assessing the practical effectiveness and ef-
ficiently of the approach have been reported.

In [5] we proposed an approach to automatic
object classification. This approach is based on
an object-oriented data model whose type sys-

7A transducer (S, I, O, τ, s, F) is a finite set of states S, an
input alphabet I, an output alphabet O, a starting state
s, a set of final states F , and a transition-output function
τ from finite subsets of S × I∗ to finite subsets of S ×O∗.

22

tem has been extended to handle semi-structured
data, for instance with union types. In this ap-
proach a predefined database schema exists but
objects are allowed to be created without asso-
ciating them with a class of the schema. For
these objects, the class that most closely describes
the object structure is automatically determined.
The notion of membership is weakened in weak
membership, only requiring that the components
in the object state be a subset of the components
of the class. Since an object can be weak member
of several classes, two measures are employed to
determine the most appropriate class for an ob-
ject, among the ones of which the object is a weak
member. The conformity degree measures the
similarity degree between the type of the semi-
structured object and the type of the class, and
the heterogeneity degree of the class measures how
much the extension of the class is heterogeneous.
Besides the differences resulting from the different
underlying models (an ad-hoc object data model
for semi-structured data rather than XML8), the
main differences between that approach and the
one described in this paper are that in [5] only
minus elements are considered (weak member-
ship does not allow plus elements) and that tag
similarity is not considered (weak membership re-
quires that attribute names be identical).

7. Concluding Remarks

In this paper we have proposed a matching al-
gorithm for measuring the structural similarity
between an XML document and a DTD. More-
over, some applications of the matching algorithm
have been presented for the classification of XML
documents against a set of DTDs, the evolution
of DTD structures, the evaluation of structural
queries, the selective dissemination of XML doc-
uments, and the protection of document contents.

We are currently investigating some extensions
of the matching algorithm along different direc-
tions. For what concerns the matching algorithm,
we are extending it for taking into account the

8A relevant difference is that collection values are explic-
itly described in the object type system, whereas in XML
no explicit collection value is given and thus they need to
be discovered.

new features of XML schema with respect to
DTDs (definition of subtypes, constraints on the
repetition of elements, a richer set of types, etc.).
Moreover, for what concerns applications we are
developing a tool which integrates all the features
illustrated in the paper. Finally, we are currently
exploiting the similarity measure as an alterna-
tive approach for clustering XML documents.

REFERENCES

1. R. Baeza-Yates and B. Ribeiro-Neto. Mod-
ern Information Retrieval. Addison-Wesley,
1999.

2. C. Batini, M. Lenzerini, and S. Navathe. A
Comparative Analysis of Methodologies for
Database Schema Integration. ACM Com-
puting Surveys, 18(4):323–364, 1986.

3. E. Bertino, S. Castano, E. Ferrari, and
M. Mesiti. Specifying and Enforcing Access
Control Policies for XML Document Sources.
World Wide Web Journal, 3(3), 2000.

4. E. Bertino, S. Castano, E. Ferrari, and
M. Mesiti. Protection and Administration of
XML Data Sources. Data and Knowledge En-
gineering, 43(3):237–260, 2002.

5. E. Bertino, G. Guerrini, I. Merlo, and
M. Mesiti. An Approach to Classify Semi-
Structured Objects. In Proc. of 13th Eu-
ropean Conf. on Object-Oriented Program-
ming (ECOOP), LNCS(1628), pages 416–
440, 1999.

6. E. Bertino, G. Guerrini, and M. Mesiti. Mea-
suring the Structural Similarity among XML
documents. Technical Report DISI-TR-02-
02, University of Genova, 2001. Submitted
for publication.

7. E. Bertino, G. Guerrini, M. Mesiti, and
L. Tosetto. Evolving a Set of DTDs Accord-
ing to a Dynamic Set of XML Documents.
In XML-Based Data Management and Multi-
media Engineering - EDBT 2002 Workshop
Revised Papers, LNCS(2490), pages 45–66,
2002.

8. H.-H. Do, S. Melnik, and E. Rahm. Com-
parison of Schema Matching Evaluations. In
Web, Web-Services, and Database Systems,
LNCS(2593), pages 221–237, 2003.

23

9. H.-H. Do and E. Rahm. COMA - A System
for Flexible Combination of Schema Match-
ing Approaches. In Proc. of 28th Int’l Conf.
on Very Large Databases (VLDB), pages 610–
621, 2002.

10. A. Doan, P. Domingos, and A. Y. Halevy.
Reconciling Schemas of Disparate Data
Sources: a Machine-Learning Approach.
SIGMOD Record, 30(2):509–520, 2001.

11. A. K. Elmagarmid and C. Pu. Guest Editors’
Introduction to the Special Issue on Heteroge-
neous Databases. ACM Computing Surveys,
22(3):175–178, 1990.

12. S. Flesca, G. Manco, E. Masciari, L. Pon-
tieri, and A. Pugliese. Detecting Structural
Similarities between XML Documents. In
Proc. of 5th Int’l Workshop on the Web and
Databases, 2002.

13. M. N. Garofalakis, A. Gionis, R. Rastogi,
S. Seshadri, and K. Shim. XTRACT: A Sys-
tem for Extracting Document Type Descrip-
tors from XML Documents. In Proc. of Int’l
Conf. on Management of Data (SIGMOD),
pages 165–176, 2000.

14. R. Goldman and J. Widom. Dataguides: En-
abling Query Formulation and Optimization
in Semistructured Databases. In Proc. of
23rd Int’l Conf. on Very Large Data Bases
(VLDB), pages 436–445, 1997.

15. G. Grahne and A. Thomo. Approximate
Reasoning in Semi-structured Databases. In
Proc. of 8th Int’l Workshop on Knowledge
Representation meets Databases, volume 45 of
CEUR Workshop Proceedings, 2001.

16. J. Hammer, H. Garcia-Molina, J. Cho,
R. Aranha, and A. Crespo. Extracting
Semistructured Information from the Web.
In Proc. of Workshop on Management of
Semistructured Data, Tucson, 1997.

17. J. Hipp, U. Guntzer, and G. Nakhaeizadeh.
Algorithms for Association Rule Mining- a
General Survey and Comparison. SIGKDD
Explorations, 2(1):58–64, 2000.

18. G. Lee, K. Lee, and A. Chen. Effi-
cient Graph-Based Algoritms for Discovering
and Maintaining Association Rules in Large
Databases. Knowledge and Information Sys-
tem, 3(3):338–355, 2001.

19. M. Lee, L. Yang, W. Hsu, and X. Yang.
XClust: Clustering XML Schemas for Effec-
tive Integration. In Proc. of 11th Int’l Conf.
on Information and Knowledge Management
(CIKM), pages 292–299, 2002.

20. J. Madhavan, P. Bernstein, and E. Rahm.
Generic Schema Matching with Cupid. In
Proc. of 27th Int’l Conf. on Very Large
Databases (VLDB), pages 49–58, 2001.

21. M. Mesiti. A Structural Similarity Measure
for XML Documents: Theory and Applica-
tions. PhD thesis, University of Genova,
Italy, 2002.

22. A. Nierman and H. Jagadish. Evaluating
Structural Similarity in XML Documents. In
Proc. of 5th Int’l Workshop on the Web and
Databases, 2002.

23. C. Parent and S. Spaccapietra. Issues
and Approaches of Database Integration.
Communications of the ACM, 41(5):166–178,
1998.

24. E. Rahm and P. A. Bernstein. A Survey of
Approaches to Automatic Schema Matching.
VLDB Journal, 10(4):334–350, 2001.

25. S. V. Rice, H. Bunke, and T. A. Nartker.
Classes of Cost Functions for String Edit Dis-
tance. Algorithmica, 18(2):271–280, 1997.

26. G. Salton, C. Yang, and C. Yu. A Theory of
Term Importance in Automic Text Analysis.
Journal of the American Society for Informa-
tion Sciences, 26(1):33–44, 1975.

27. S. M. Selkow. The Tree-to-Tree Editing
Problem. Information Processing Letters,
6(6):184–186, 1977.

28. A. P. Sheth and J. A. Larson. Federated
Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases.
ACM Computing Surveys, 22(3):183–236,
1990.

29. I. Stanoi, G. Mihaila, and S. Padmanabhan.
A Framework for the Selective Dissemination
of XML Documents based on Inferred User
Profiles. In Proc. of 19th Int’l Conf. on Data
Engineering, 2003.

30. A. Tversky. Features of Similarity. Journal of
Psychological Review, 84(4):327–352, 1977.

31. W3C. Document Object Model (DOM),
1998.

24

32. W3C. Extensible Markup Language (XML),
1998.

33. W3C. XML Path Language (Xpath), 1999.
34. K. Zhang and D. Shasha. Simple Fast Al-

gorithms for the Editing Distance between
Trees and Related Problems. SIAM Journal
of Computing, 18(6):1245–1262, 1989.

35. K. Zhang, R. Statman, and D. Shasha. On
the Editing Distance Between Unordered La-
beled Trees. Information Processing Letters,
42(3):133–139, 1992.

