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SOMMARIO 

Il carcinoma renale (RCC) è la neoplasia più frequente tra quelle che colpiscono il rene in età adulta e 

rappresenta il 2-3% di tutti i carcinomi umani. Il carcinoma renale a cellule chiare (ccRCC) è l‟istotipo più 

frequente (75-80%), invasivo e metastatico tra i sottotipi di RCC. Il gene von Hippel-Lindau (VHL), che è il 

principale oncosoppressore coinvolto negli stadi iniziali della tumorigenesi dell‟RCC, è soggetto ad 

inattivazione completa, per effetto combinato di mutazioni, delezioni e metilazione del promotore, nella 

maggior parte dei ccRCC sporadici e in tutte le forme ereditarie. Definire la prognosi dei casi di carcinoma 

renale è importante per operare scelte cliniche riguardo il trattamento dei pazienti, ma a volte la diagnosi 

differenziale risulta piuttosto difficile perché gli istotipi di RCC possono avere caratteristiche istopatologiche 

sovrapponibili, risultando quindi indistinguibili all‟indagine microscopica. In questi ultimi anni, nell‟ambito di 

diverse patologie neoplastiche, i profili di espressione genica ottenuti tramite tecnologia microarray si sono 

rivelati un potente strumento per classificare meglio i sottotipi tumorali e identificare nuovi marcatori 

molecolari potenzialmente utili per applicazioni cliniche. Infatti, studiando il profilo trascrittomico del tumore si 

possono mettere in luce geni funzionalmente correlati al decorso clinico dei pazienti, alla risposta alla terapia 

e alla sopravvivenza. Recentemente è stato dimostrato che anche i microRNA (miRNA) sono coinvolti nella 

tumorigenesi, suggerendo che essi potrebbero funzionare sia come oncosoppressori che come oncogeni. I 

miRNA sono piccole molecole di RNA a singolo filamento non codificanti, che funzionano come regolatori 

post-trascrizionali negativi dell‟espressione genica in animali, piante e virus, e sono coinvolti in molti processi 

biologici, come il differenziamento delle cellule ematopoietiche, l'apoptosi, la proliferazione cellulare e lo 

sviluppo degli organi. I profili di espressione dei geni e dei miRNA sono strettamente correlati, in quanto essi 

lavorano cooperativamente per creare reti regolatrici. Pertanto, l‟approccio di analisi genomica integrata 

potrebbe essere un utile strumento per chiarire le complesse relazioni che stanno alla base di queste reti. 

Lo scopo del mio progetto di dottorato è stato quello di ricostruire reti di regolazione post-trascrizionale 

miRNA-geni coinvolte nella biologia del ccRCC, utilizzando i profili di espressione dei geni e dei miRNA, 

ottenuti tramite tecnologia microarray ad alta densità Affymetrix, di tre linee cellulari di carcinoma renale 

confrontati con quelli di una linea cellulare renale normale. Mediante un‟analisi di arricchimento funzionale, 

abbiamo individuato geni e miRNA espressi in modo differenziale che risultano associati all‟RCC e sono 

coinvolti in pathway rilevanti per questa patologia, come l'ipossia, il meccanismo di trasduzione del segnale 

mediato da p53, l‟adesione focale, l'angiogenesi e il pathway di mTOR. Mediante l'analisi integrata dei profili 

di espressione di geni e miRNA, abbiamo ricostruito reti di regolazione potenzialmente attive che 

coinvolgono miRNA e i loro geni bersaglio. Mediante PCR quantitativa, abbiamo validato i livelli di 

espressione di alcune coppie miRNA-gene, confermando così la loro anti-correlazione. 

I risultati di questo studio hanno dimostrato che le linee cellulari di carcinoma renale possono essere un 

buon modello in vitro per lo studio dell‟RCC, in quanto i profili di espressione di geni e miRNA di queste linee 

sono comparabili ai dati pubblici ottenuti su tessuti tumorali renali. In questo contesto, l‟approccio di analisi 

genomica integrata potrebbe aiutare ad identificare reti di regolazione post-trascrizionale e quindi potenziali 

marcatori funzionalmente rilevanti per la patologia. Ad ogni modo, chiarire il ruolo effettivo delle reti miRNA-

geni nel contesto della progressione dell‟RCC necessiterà sicuramente di ulteriori indagini. 
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ABSTRACT 

Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney, accounting for a total of 2-3% 

of adult neoplasias, and it arises from the renal epithelium. Clear cell renal cell carcinoma (ccRCC) is the 

most common, invasive and metastatic among RCC subtypes, representing 75-80% of kidney primary 

malignancies. The von Hippel-Lindau (VHL) gene, which is the main tumor suppressor gene involved in early 

steps of RCC tumorigenesis, undergoes complete inactivation by mutation, deletion, and promoter 

methylation in the majority of sporadic ccRCCs and in all inherited forms. Defining the prognosis for RCC 

cases is important for both decision-making and counseling patients, but sometimes the diagnosis is difficult 

because tumor subtypes have overlapping histo-pathological features, thus resulting undistinguishable by 

microscopy investigation. In recent years, in several human cancers, microarray gene expression profiling 

proved to be a powerful tool to better classify tumor subtypes and to identify novel molecular biomarkers 

potentially useful for clinical applications. In fact, tumor transcriptomic profiling may identify patterns of genes 

that are functionally related to patients‟ prognosis, response to therapy and overall survival. Recent 

evidences have shown that microRNA (miRNA) molecules are involved in tumorigenesis, indicating that 

miRNAs might function as both tumor suppressors and oncogenes, and their role in RCC pathogenesis is 

now emerging. miRNAs are small single-stranded non-protein-coding RNA molecules, that function as 

negative post-transcriptional gene regulators in animals, plants and viruses, and are involved in many 

biological processes, also including haematopoietic cell differentiation, apoptosis, cell proliferation and organ 

development. miRNA and gene expression patterns are closely related, since they cooperatively work to 

create gene regulatory networks. Therefore, integrative genomics approach might be a useful tool to 

elucidate the complex relationships underlying these networks. 

The aim of my PhD fellowship work was to reconstruct miRNA-gene post-transcriptional regulatory networks 

involved in RCC biology, using miRNA and gene expression profiles of three RCC cell lines compared to a 

normal one, obtained by Affymetrix high-density microarray technology. We calculated differentially 

expressed genes and miRNAs, and, by functional enrichment analysis, we identified genes and miRNAs that 

were already known to be associated with RCC and involved in relevant pathways for this pathology, such as 

hypoxia, p53 signaling, focal adhesion, angiogenesis and mTOR signaling. Through integrated analysis of 

miRNA-gene expression profiles, we reconstructed potentially active regulatory networks involving miRNAs 

and their predicted target genes. We validated some miRNA-gene pairs by quantitative PCR, thus confirming 

their anti-correlated expression levels. 

Our results demonstrated that RCC cell lines can be an useful in vitro model for RCC pathology, since they 

showed gene and miRNA expression profiles similar to renal tumoral tissues, as obtained by comparing our 

results with published data. The analysis of the correlations between gene and miRNA expression profiles 

using a genome-wide integrative approach could help the identification of both post-transcriptional regulatory 

networks and novel candidate markers functionally relevant for RCC pathology. However, further 

investigations are necessary to elucidate the actual role of miRNA-gene networks in the context of RCC 

progression and outcome. 
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1 INTRODUCTION 

1.1 Renal Cell Carcinoma 

1.1.1 Epidemiology 

Kidney cancer is one of the major human malignancies and leading cause of cancer mortality, with 

approximately 280,000 new cases diagnosed in worldwide in 2008 (Ferlay et al., 2010b; Ljungberg et al., 

2011). Renal cell carcinoma (RCC) is the most common type of kidney cancer (80-90%), accounting for a 

total of 2-3% of adult neoplasias (Cohen and McGovern, 2005a; Hansel, 2006). The incidence of kidney 

cancer is various, the highest rates are in Europe, North America and Australia, while rates are low in Japan, 

India, Africa and China. In the 27 European Union countries, the age-standardized kidney cancer incidence 

per 100,000 Europeans are 15,8 for males and 7,1 for females; in particular, in Italy the estimated incidence 

rate is 15,2 for males and 6,1 for females (Levi et al., 2008h). In regards to the mortality rates, there is the 

same tendency: the highest in North America, Europe, Australia/New Zealand, whereas the lowest rates are 

in Africa and Asia. Globally, in 2008, 116,000 deaths were reported, and specifically, the rates were about 

double in men than in women (Ferlay et al., 2010b). A male predominance exists (male:female ratio = 

1,6:1,0) and the peak incidence is in advanced age (60-70 years). Overall, approximately 2-3% of RCCs are 

familial, affecting patients at younger ages, while the most RCC are sporadic (Cohen and McGovern, 2005a; 

Ljungberg et al., 2011). The differences about the incidence of RCC among these populations may be due to 

differences in frequency of diagnostic imaging, genetic background, lifestyle and environmental risk factors. 

Established risk factors for RCC are tobacco (Hunt et al., 2005b; Parker et al., 2003a), overweight (Chow et 

al., 2000; Renehan et al., 2008), hypertension and use of antihypertensive medications (Chow et al., 2000), 

acquired renal cystic disease (Nouh et al., 2010), reproductive-related factors, among women, including the 

use of oral contraceptives and hormone replacement therapy (Kabat et al., 2007). Lifestyle, especially 

nutritional factors and diet, are very important in the RCC development, and, nevertheless RCC is not an 

occupational disease, some exposure might increase RCC risk, for example exposure to trichloroethylene, 

perchloroethylene and arsenic compounds (Kelsh et al., 2010; Ljungberg et al., 2011). These last factors 

have been implicated in renal cell cancer risk, but the evidence remains inconclusive. 

1.1.2 Clinical features 

The cases of RCCs are symptomatic, with a wide spectrum of symptoms, including flank pain, flank mass 

and hematuria. There are also nonspecific symptoms, such as fatigue, weight loss and abdominal pain. 

Occasionally, patients may present with paraneoplastic syndromes, such as hypercalcemia, gynecomastia, 

and polycythemia. Surgical excision (nefrectomy) of the tumor at a localized stage remains the mainstay for 

curative therapy, but a quarter of the patients present with advanced disease, including locally invasive or 

metastatic renal cell carcinoma, and die following the removal of a confined tumor (Hansel, 2006). The 

median survival period for a patient in advanced disease is about 13 months and a 5-year survival rate of 

less than 20% (Banumathy and Cairns, 2010; Cohen and McGovern, 2005a). Lung, bone, followed by 

regional lymphonodes, liver and brain are the most common sites of metastases. Unusual sites of 

metastases, including the thyroid gland, heart, spleen and pancreas may be involved many years after initial 

diagnosis (Hansel, 2006). 



2 

 

Defining the prognosis of RCC is important for both decision-making and counseling patients, but sometimes 

the diagnosis is difficult because tumor subtypes have overlapping microscopic characteristics. The actual 

renal tumor classification system is based on morphology and genetic differences, therefore, it‟s necessary 

to use molecular methods to optimize diagnosis and clinical management. Prognosis is closely related to the 

stage of disease, in fact, nowadays, the tumor stage at the presentation is the most available predictor of the 

post-operative clinical course of a localized RCC. To date the staging system used only for RCC is the TNM 

(tumor, node, metastasis) staging system developed by the Union for International Cancer Control (UICC) 

(Figure 1) (Guinan et al., 1997). The categories included in this system are: T, referred to the time of 

diagnosis (from T1 to T4 based on the increasing size of the primary tumor mass), N, related to the tumor 

spreading to regional lymph nodes (N0: no lymph node metastasis, N1-N3: increase number of regional 

lymph nodes), M, that is the presence of distant metastases (M0 and M1 indicate absence and presence of 

distant metastases, respectively). The American Joint Committee on Cancer (AJCC) defined four stages to 

classify RCC at the time of diagnosis using the TNM system: Stage I, small tumor (< 7 cm in diameter) 

limited to one kidney, no evidence of lymph node involvement nor metastatic disease; Stage II, larger tumor 

(> 7 cm in diameter) limited to one kidney, no evidence of lymph node involvement nor metastatic disease; 

Stage III, tumor invades major veins or adrenal gland, one regional lymph node involved, no distant 

metastases; Stage IV, large tumor that extend into surrounding tissues, more than one regional lymph node 

involved and/or metastases to distant locations (Guinan et al., 1997). After tumor stage, the second most 

important prognostic parameter is the nuclear differentiation grade, proposed by Fuhrman (Fuhrman et al., 

1982). Nuclear features are scored as follows: Grade I, small and uniform nuclei; Grade II, granular open 

chromatin without conspicuous nucleoli; Grade III, prominent nucleoli identified at 10x magnification; Grade 

IV, nuclear pleomorphism and macronucleoli. 
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Figure 1. Staging overview and 5-year survival rates for renal cancer. Survival data are based on the 1997 
tumor-node-metastasis (TNM) staging guidelines (Adapted from Cohen and McGovern, NEJM, 2005). 

1.1.3 Clinical cytogenetic and molecular characteristics of renal tumors 

RCC arises from the renal epithelium, it is a heterogeneus pathology, with several morphological subtypes, 

each subtype has morphologic and molecular features different from the others, and it‟s associated to a 

peculiar clinical course, malignant potential and response to therapy. The current World Health Organization 

(WHO) classification of RCC distinguishes five sporadic subtypes: clear cell (also called conventional, 75-

80%), papillary (10%), chromophobe (5%), oncocytoma (5%), collecting duct (<1%), and unclassified. This 

classification correlates with tumor progression, while the histologic type is very important to predict the 

clinical and biological features associated with the progression of RCC tumors (Thoenes et al., 1986). As 

mentioned above, RCC differential diagnosis is sometimes difficult due to heterogeneous histologic features 

and overlapped microscopic characteristics among subtypes, thus, the role of molecular diagnostics is very 

important in clinical management (Kovacs, 1993c). Generally, tumors with numerous chromosomal changes 

tend to be more aggressive than are those with a single abnormality. 

The classification system approved by the WHO distinguishes sporadic RCCs in the following major 

subtypes (Cohen and McGovern, 2005; Hansel, 2006; Meloni-Ehrig, 2002): 

Clear cell renal cell carcinoma (ccRCC) that is the most common, invasive and metastatic malignancy 

subtype, representing 75-80% of primary malignancies of the kidney. Primarily solitary lesion arises within 

the cortex of the kidney and the proximal renal tubule cell is the cell of origin. It can be familial, associated to 
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the von Hippel-Lindau (VHL) disease, or in most cases, sporadic. Gross examination reveals a rounded, 

fairly well-circumscribed yellow-orange lesion with multifocal hemorrhage and necrosis. Microscopic 

examination demonstrates a variety of growth patterns, including alveolar, solid and acinar patterns 

surrounded by thin-walled blood vessels. Cells tipically have a clear cytoplasm containing lipids and 

glycogen; occasionally, eosinophilic granular cytoplasm may be detected. The typical genomic signature of 

this histotype includes a deletion or unbalanced translocation involving the short arm of chromosome (chr) 3 

and resulting in loss of specific small regions, including 3p25-26, spanning the VHL gene, 3p21-22, and 

3p13-14. Deletions of chr 3p are highly specific for ccRCC and are not observed in any other subtypes. 

Additional loci affected by deletion are chromosomal arms 3p, 6q, 8p, 9p, 14q and by amplification are chrs 

5q and 7 (Cohen and McGovern, 2005; Hansel, 2006). Alteration of the VHL, which is a tumor suppressor 

gene, by mutation, loss of heterozygosity (LOH), and promoter methylation, occurs in a majority of sporadic 

ccRCCs and in all inherited forms (Gordan et al., 2008). During my PhD fellowship work, I focused my 

research activity on this hystologic subtype of RCC; 

Papillary renal cell carcinoma (pRCC), which is a malignant neoplasm that presents similarly to ccRCC and 

is primarily distinguished on a pathologic basis, arising from cells of the proximal renal tubule. It‟s frequently 

sporadic, but pRCC is rarely found as a component of hereditary papillary renal cancer, hereditary 

leiomyomatosis and RCC, and Birt-Hogg-Dubè syndrome. This subtype is more commonly multifocal and 

bilateral than other subtypes of RCC. On gross examination, pRCC appears well-circumscribed and yellow-

brown with multiple regions of hemorrhage and necrosis; commonly, cystic degeneration and papillary 

structures may be identified. Microscopic examination reveals papillary or tubopapillary growth patterns. 

Cells usually show reduced cytoplasm with granular chromatin. Frequently, foamy and hemosiderin-laden 

macrophages are observed within the papillae. In recent years, pRCC has been subdivided into type 1 and 

type 2 lesions, based on cellular morphology and patient outcome, although this classification remains 

somewhat controversial. Type 1 lesions contain a single layer of small cells with little cytoplasm that rest on 

the underlying fibrovascular cores, whereas type 2 lesions contain pseudostratified cells with abundant 

eosinophilic cytoplasm and nuclear atypia. Overall, type 2 lesions demonstrate poorer patient survival. The 

most common alterations are trisomy 7 and 17 and loss of chromosome Y Chromosome 7 harbors the MET 

proto-oncogene (hepatocyte growth factor receptor), that is duplicated in 75% of sporadic papillary cases; 

Chromofobe renal cell carcinoma (chRCC) has a mortality rate of less than 10% and only rare distant 

metastases. It arises from the intercalated cells of the renal collecting duct and may occur in association with 

Birt-Hogg-Dubè syndrome. Generally, chRCC presents with similar features to ccRCC. Gross examination 

reveals a slightly lobulated, light brown cut surface with small areas of hemorrhage. A distinguishing feature 

is the transition to a gray coloration of the lesion following fixation. Microscopic examination identifies 

compact growth pattern and tumor cells admixed with broad septa and thick-walled, hyalinized blood 

vessels. Cells appear as a mixture of large and polygonal elements, with pale cytoplasm and prominent cell 

membranes, and smaller ones, containing a granular, eosinophilic cytoplasm. Binucleated cells are 

occasionally seen. Nuclei commonly demonstrate a wrinkled appearance with perinuclear halos. A Hale‟s 

colloidal iron stain reveals a blue cytoplasmic staining pattern of the lesional cells and is helpful in the 

diagnosis. Despite the good prognosis generally associated with chromophobe RCC, these lesions 

demonstrate a surprisingly extensive loss of chromosomes, including chrs -1, -2, -6, -10, -13, -17, and -21, 
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resulting in strong hypodiploid DNA content. Additionally, mutations of p53, loss of heterozygosity (LOH) of 

10q23.3 in the region of PTEN (phosphatase and tensin homolog), and telomere shortening have been 

reported in these lesions; 

Oncocytoma is a benign neoplasm, arising from the intercalated cells of the kidney. This neoplasm occurs 

sporadically, as well as part of Birt-Hogg-Dubè syndrome. Similarly to other malignant renal neoplasms, 

these lesions occur in adulthood. On gross examination, it appears as a well-circumscribed, brown lesion 

with a central scar in one third of cases. On microscopic analysis, the lesion contains nests, acini or tubular 

structures, comprised of round or polygonal cells with dense eosinophilic cytoplasm filled with mitochondria. 

Genetic analysis reveals a mixture of cells with normal and abnormal karyotypes. Regarding genetic 

features, rarely, loss of chrs 1 and 14 and translocation between chromosomal arm 11q13 and other 

chromosomes (e.g. chr 5q35); 

Collecting-duct renal cell carcinoma accounts for less than 1% of all cases of RCC and is typically an 

aggressive tumor. It arises from the epithelium of the ducts of Bellini in the distal nephron. This tumor affects 

younger patients and has a survival time ranging from 7 to 18 months. Caused by their medullary localization 

and the associated hyperplastic and dysplastic epithelial lesions of collecting ducts in the vicinity of the 

tumor, papillary carcinomas have been classified as collecting-duct RCC. Cytogenetic studies have shown 

chromosome changes that differ from the ones seen in pRCC (i.e., chrs +7 and +17) as well as from those 

seen in nonpapillary renal tumors (i.e., del(3p)). 

1.1.3.1 Familial renal cell carcinoma 

Although the majority of RCCs occurs sporadically, approximately 1 to 4% of all RCCs diagnosed are familial 

forms. Generally, RCCs arising in the context of heritable syndromes occur at younger ages and are often 

bilateral and multiple, in contrast to the sporadic forms, which are often solitary. The genetic abnormalities 

underlying familial renal neoplasms are often distinct from those identified in sporadic forms, with the 

exception of 3p loss, which encompasses the VHL gene locus, in ccRCC. These familial cases have been 

very useful to understand genetic aspects at the origin of renal carcinogenesis. 

The major forms of familial renal cell carcinoma include VHL syndrome, hereditary clear cell renal carcinoma 

and hereditary papillary renal cell carcinoma. 

von Hippel-Lindau (VHL) syndrome: is the most frequent cause of familial RCC, with an incidence of 

approximately 1/36,000 live births. It‟s a rare, autosomal dominant, familial cancer syndrome, characterized 

by hemangioblastomas of the central nervous system and retina, clear cell RCC, renal cysts, pancreatic 

cysts and neuroendocrine tumors, and inner ear tumors. The risk of ccRCC in VHL disease is more than 

70% by the age of 60 years and is the most common cause of death in these patients (Maher and Kaelin, 

1997). This syndrome is caused by germline loss-of-function mutations of the VHL tumor suppressor gene 

on chr 3p25-26. Inactivating mutations of the VHL gene were observed in 100% of ccRCCs associated to the 

VHL disease and in 50-60% of sporadic ccRCC cases, thus suggesting its crucial role in the origin of this 

malignancy. Germline mutations of the VHL gene have been found in almost all families with VHL disease, 

and somatic inactivation of VHL by promoter methylation (5% to 19% cases) or mutation (33% to 66%) has 

been reported in up to 91% of patients with sporadic ccRCC (Choueiri et al., 2008; Linehan et al., 2010). 
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Loss of the remaining VHL allele (LOH) leads to decrease in functional VHL protein (pVHL) and, 

subsequently, to the induction of hypoxia-regulated genes including potent pro-angiogenic proteins. There 

are strong genotype-phenotype correlations in VHL disease. Distinct mutation events in hereditary VHL 

disease lead to four separate phenotypes, classified as follows: type 1, low risk of pheochromocytoma; type 

2, high risk of pheochromocytoma, and in particular, type 2A, low risk of RCC; type 2B, high risk of RCC; 

type 2C, familial pheochromocytoma without hemangioblastoma and ccRCC. Large deletion events with 

premature protein truncation or complete protein loss occur in type 1 patients, and missense mutations 

commonly occur in type 2 patients (Cowey and Rathmell, 2009). In all affected cases, inherited germline 

mutations affecting one VHL allele are followed by mutation, methylation, or loss of the remaining wild-type 

allele, according to Knudson‟s “two-hits model". Detection of VHL gene alterations proved that the vast 

majority of histologically confirmed ccRCC tumors possesses genetic or epigenetic alteration of the VHL 

gene and support the hypothesis that VHL alteration is an early event in ccRCC carcinogenesis. Thus, VHL 

mutations might have important implications for disease prognosis and as a potential predictive marker for 

response to therapy. 

1.1.3.1.1 VHL gene 

The VHL gene, cloned in 1993 by an international cooperative study (Latif et al., 1993b), lies on 

chromosome 3p26-p25 and encodes for a 213-aminoacids tumor suppressor protein (pVHL). This gene is 

composed by three exons of, respectively, 340, 123 and 179 bp, with two translation initiation sites resulting 

in two protein isoforms of 172 and 213 aminoacids, pVHL30 and pVHL19, both seeming to have tumor 

suppressor activity. While no alterations occur in the first half of exon 1, 50% of mutations mapped on the 

second half of exon 1, 31% in exon 2 and 19% in exon 3; frameshift mutations, due to deletions or insertions, 

are the most common alterations (68%), followed by missense and nonsense nucleotide substitutions. In the 

familial cases, germline mutations are followed by mutation, methylation, or loss of the remaining wild-type 

VHL allele in the tumor, and in sporadic cases, the biallelic loss-of-function occurs through a combination of 

somatic allele loss, mutation and/or methylation (Banks et al., 2006). 

This gene is an important regulator of the hypoxia pathway via the hypoxia-inducible factors (HIFs), which is 

vital to tumor survival in low-oxygen conditions. pVHL functions as part of an E3 ubiquitin ligase that 

ubiquitylates the family of HIFs proteins and targets them for degradation by the proteasome. Defective 

pVHL causes an accumulation of HIFs and the activation of the hypoxic pathway of gene expression (Cohen 

and McGovern, 2005a; Cowey and Rathmell, 2009; Gordan et al., 2008; Iwai et al., 1999). pVHL normally 

functions as the substrate recognition component of a multisubunit ubiquitin ligase complex that also 

contains elongin B, elongin C, Cul2, and Rbx1 (also called Roc1) (Figure 2). VHL is inactivated in most of 

the sporadic ccRCCs, explaining its high vascularity. Hypoxia-inducible factor has a main role in renal 

tumorigenesis by acting as a transcriptional factor for genes involved in angiogenesis, tumor cell 

proliferation, cell survival and progression, metastatic spread, apoptosis, and glucose metabolism. HIFs are 

heterodimeric basic helix-loop-helix/PAS proteins composed by an α subunit (HIF-1α, HIF-2α and also HIF-

3α subunits) and a β subunit (HIF-1β or ARNT, aryl hydrocarbon receptor nuclear translocator). HIF-1β is 

constitutively present, while the HIF-α members are highly instable, except under low oxygen concentrations. 
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Figure 2. Molecular mechanism of the development of clear cell renal carcinoma (ccRCC). Panel A shows 
the pathologic cooperativity between ccRCC cells and adjacent vasculature: HIF-α accumulation results in 
the over-expression of proteins that are normally inducible by hypoxia, such as TGF-α and TGF-β, VEGF, 
and PDGF-B. The over-expressed VEGF, PDGF-B, and TGF-β act on neighboring vascular cells to promote 
tumor angiogenesis. The augmented tumor vasculature provides additional nutrients and oxygen to promote 
the growth of tumor cells. TGF-α acts in an autocrine manner on the tumor cells by signaling through the 
epidermal growth factor receptor, which promotes tumor cell proliferation and survival. Panel B shows the 
role of VHL protein in ccRCC and in controlling the expression of the HIF-α transcription factors. Under 
normoxic conditions, HIF-α is hydroxylated on two proline residues by a proline hydroxylase and on an 
asparagine residue by an asparagine hydroxylase. Hydroxylation (OH) by proline hydroxylase permits 
binding of HIF-α to VHL protein, which promotes the ubiquitination (Ub) and destruction of HIF-α by the 
proteasome pathway. Hydroxylation by asparagine hydroxylase blocks the interaction of HIF-α with 
transcriptional coactivator p300. VHL protein, with elongin proteins C and B, binds Cul2 protein. Rbx1 serves 
as the ubiquitin transferase for the VHL skp-cullin-F-box protein (SCF) complex. In cells that lack functional 
pVHL or that are exposed to low oxygen (hypoxia), unhydroxylated HIF-α accumulates and is able to 
heterodimerize with HIF-β and activate transcription at hypoxia-response elements (HREs), which are found 
in genes such as VEGF. In hypoxic conditions, HIF-α is not hydroxylated and so cannot bind VHL protein 
(Adapted from Cohen and McGovern, NEJM, 2005). 
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Under normoxic conditions, HIF-α is hydroxilated by specific prolyl hydroxylases on two proline residues and 

on an asparagine residue by an asparagine hydroxylase. Hydroxylation by proline hydroxylase permits 

binding of HIF-α to VHL protein, which promotes the ubiquitination and destruction of HIF-α by the 

proteasome pathway. Hydroxylation by asparagine hydroxylase blocks the interaction of HIF-α with 

transcriptional coactivator p300. VHL protein, with elongin proteins C and B, binds Cul2 protein (a member of 

the cullin family of ubiquitin ligase proteins). RING-box protein Rbx1 serves as the ubiquitin transferase for 

the VHL skp-cullin-F-box protein (SCF) complex. Under hypoxic (low oxygen concentrations) conditions, HIF-

α hydroxylation is prevented and therefore unhydroxylated HIF-α accumulates in the cell. HIF-1α and HIF-2α 

translocate to the nucleus and are able to heterodimerize with HIF-β, activating transcription at hypoxia-

response elements (HREs), which are found in genes involved in angiogenesis (e.g., vascular endothelial 

growth factor, VEGF; platelet-derived growth factor, PDGF; erythropoietin, EPO; placental growth factor, 

PLGF; cyclooxygenase-2, COX-2), extracellular matrix formation and turnover (e.g., matrix metalloproteinase 

1, MMP1; lysyl oxidase, LOX), chemotaxis (e.g., stromal cell-derived factor 1, SDF1; and chemochine 

receptors, CXCR), cell proliferation and/or survival (e.g., transforming growth factor-α, TGF-α; insulin-like 

growth factor, IGF; epidermal growth factor receptor, EGFR), pH control (e.g., carbonic anhydrase IX, CAIX, 

and XII, CAXII), glucose uptake and metabolism (e.g., glucose transporters, GLUT-1; 6-phosphofructokinase 

1, PFKM; pyruvate dehydrogenase kinase, PDK1) (Baldewijns et al., 2010). Similar to hypoxia, VHL loss-of-

function leads, under aerobic conditions, to HIF-α-dependent metabolic reprogramming from oxidative to 

glycolytic metabolism, through increased glucose uptake, glycolysis, and lactate production accompanied by 

a reciprocal decrease in mitochondrial respiration (Warburg effect). Therefore, loss of pVHL function and 

HIF-α activation induce a transcriptional program that alters diverse aspects of cellular behaviour, including 

growth factor production, induction of angiogenesis, promotion of invasion and metastasis, adaptation of 

cellular metabolism, and possibly promotion of cancer stem cell activity (Frew and Krek, 2007; Godinot et al., 

2007). Distinct domains of pVHL are illustrated in Figure 3. 

HIF, may also be activated by interaction with reactive oxygen species (ROS), probably via inhibition of prolyl 

hydroxylases hydroxylation. Furthermore, recent studies have shown that HIF-1α degradation may occur in a 

VHL-independent manner (Baldewijns et al., 2010). 

However, VHL has also been implicated in a variety of other cellular processes including cell cycle 

regulation, extracellular matrix assembly, cytoskeleton stability, epithelial cell differentiation, reduction of 

matrix metalloproteases secretion and down-regulation of CXCR4 (i.e. a chemokine receptor implicated in 

metastatic spread), and there is evidence that some activities are HIF-independent (Baldewijns et al., 2010; 

Frew and Krek, 2007). 

Thus, HIF is the key regulator of the hypoxic response in organisms, while pVHL has a central role in oxygen 

sensing. 
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Figure 3. von Hippel–Lindau (VHL) gene and protein structure and function. (a) The VHL gene structure 
(nucleotides 1–4400) comprises three exons (blue). 5' and 3' untranslated regions (UTRs), and several 
transcription start sites (curved arrows), are shown. (b) The α- and β-domains structure of the VHL protein 
(codon numbers 1–213), and the two methionine (Met) start codons (at codons 1 and 54), are shown; the 
(GXEEX)8 region is a pentameric repeat motif with unknown functional significance. (c) Regions of the 
protein required for different functions are indicated. (Adapted from Richards, ERMM, 2001). 

1.1.3.1.2 Other genes implicated in ccRCC 

VHL loss alone is not sufficient for ccRCC tumorigenesis. The Catalogue Of Somatic Mutations In Cancer 

(COSMIC, http://www.sanger.ac.uk/genetics/CGP/CellLines/), that stores and displays somatic mutation 

information and related details and contains information relating to human cancers, reported that 37% 

(1,166) out of 3,149 primary kidney tissues analyzed show a mutated VHL. Furthermore, this database 

displays other genes associated to ccRCC (Figure 4). 

 

Figure 4. The most significantly mutated genes associated to ccRCC in COSMIC database are here 
reported. Percentages of mutated samples are given in parentheses (Adapted from COSMIC database). 

PBRM1 (polybromo 1) maps on chromosome 3p21, and is recently identified as the second mostly mutated 

gene in ccRCC samples, after VHL (Varela et al., 2011). This gene is involved in regulation of pathways 

associated with chromosomal instability and cellular proliferation. By exome sequencing, the authors found 

frequent mutations on PBRM1, including truncating mutations in 41% (92/227) of cases. Suggesting PBRM1 

as a second major ccRCC cancer gene (Varela et al., 2011). 

http://www.sanger.ac.uk/genetics/CGP/CellLines/
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Recently, it has been reported that inactivation of the histone H3 lysine 36 methyltransferase gene SETD2 

(SET domain containing 2), located on 3p21.31, is a common event in ccRCC cells. Aberrant expression of 

histone-modifying enzymes, such as SETD2, could result in altered chromatin configuration and disruption of 

normal transcriptional programs, driving the cell to cancer development, suggesting SETD2 as a new tumor 

suppressor gene involved in the development of ccRCC (Duns et al., 2010). Systematic sequencing revealed 

inactivating mutations in other two genes encoding enzymes involved in histone modification, i.e. JARID1C 

(lysine (K)-specific demethylase 5C), a histone H3 lysine 4 demethylase, and UTX (lysine (K)-specific 

demethylase 6A), a histone H3 lysine 27 demethylase (Dalgliesh et al., 2010). 

Mutations on p53 occur in about 50% of all human cancers, but, in RCC, this is a rare event. p53 is activated 

by cellular or genotoxic stress, functioning as a transcription factor to promote cell cycle arrest and DNA 

repair, or apoptosis if the normal cellular conditions are not restored. However, in cancers with rare p53 

mutations, p53/MDM2 (the negative regulator of p53) expression patterns could be related to disease 

progression/outcomes (Noon et al., 2010, 2011). 

Alterations of CDKN2A (cyclin-dependent kinase inhibitor 2A) on 9p21 through mutations and/or deletions 

have been reported in RCC cell lines and in primary ccRCCs, and chromosome 9p loss of heterozygosity 

was associated with short tumor-specific survival in ccRCC tumors. CDKN2A contributes to cell cycle arrest, 

but its role in RCC is still unclear (Schraml et al., 2001). 

PTEN, which is a tumor suppressor gene, maps on 10q23, a region of frequent genetic deletions in ccRCC. 

PTEN seems to be involved in tumor progression in several human cancers, including RCC (Velickovic et al., 

2002). 

Hereditary clear cell renal carcinoma: a familial disease that predisposes to develop multiple and bilateral 

ccRCCs, without additional systemic manifestations. This disease is also named “syndrome of constitutional 

chromosome 3 translocations”. Distinct from von Hippel-Lindau syndrome, familial clear cell renal cancer has 

been reported in patients with translocations of chromosome 3p at a fragile site at 3p14. The multiple genetic 

abnormalities underlying this syndrome are unified by heritable patterns of ccRCC associated with 

breakpoints along the p and q arms of chromosome 3 (Cohen et al., 1979d). Loss of the translocated chr 3p 

probably implicates VHL protein in the development of these tumors, nevertheless patients do not present 

systemic manifestations associated with the VHL syndrome. Additional translocations of chromosome 3 have 

been associated with ccRCC as well (Cohen and McGovern, 2005; Hansel, 2006). 

Hereditary papillary renal carcinoma (HPRC): is an autosomal dominant disorder associated with multifocal 

pRCC with type 1 histologic features. Activating mutations of the MET gene, which encodes a receptor 

tyrosine kinase that binds hepatocyte growth factor (HGF), underlie the pathogenesis of this disorder. MET is 

a proto-oncogene and lies on chromosome 7q31-34 (Schmidt et al., 1997). In HPRC, the MET receptor 

tyrosine kinase domain undergoes auto-activating aminoacid-substitution mutations, which promote cellular 

proliferation and cell migration in response to HGF. Subsequently, chromosome 7 harboring the MET 

mutation is duplicated, thus, increasing the gene dose. Mutations of the MET gene underlie progression and 

metastatic spread of numerous epithelial carcinomas, including breast and colon cancers (Jeffers et al., 

1997). Only a small percentage of the cases of the sporadic papillary type has MET mutations. Thus, the 

pathogenesis of HPRC is usually different from that of sporadic pRCC (Schmidt et al., 1997). 
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1.1.4 Clinical utility of molecular profiling in cancer 

A better understanding of the oncogenesis and basic biology of RCCs has helped to identify key molecular 

pathways and proteins underlying their development and growth. Furthermore, this facilitates the discovery 

of prognostic factors that can stratify patients and predictive biomarkers that can help individualize treatment 

selection and predict a patient‟s response to therapy. Morphologic and clinical parameters are not accurate 

enough for individualized clinical decisions, thus, molecular profiling of cancer has emerged as the solution 

for individualized diagnosis, prognosis and treatment. Molecular profiling can be established at multiple 

levels, such as genomic, transcriptomic, proteomic; and to do this, the development of biotechnology, such 

as microarray and bioinformatics, is very important. Tumor markers can be applied for screening, diagnosing, 

estimating prognosis, predicting therapeutic response, or monitoring recurrence and progression. As 

mentioned above, the differential diagnosis in RCC is very important, since each subtype shows a peculiar 

clinical course, malignant potential and response to therapy, and many tumors are histo-pathologically 

variegated (Ribal, 2011). According to guidelines, recently published, a tumor marker is only usefuf (1) if its 

results are appropriate precisely for the required application (i.e., risk assessment, screening, diagnosis, 

prognosis, prediction, or post-treatment monitoring), (2) if its results allow to separate patients into two or 

more categories that will become clinically relevant and different, and finally, (3) if the estimate of the 

separation in outcomes marker positivity and negativity is reliable. Because tumor markers are often used to 

monitor cancer patients for long time periods, assessment of long-term assay stability at other analyte 

concentrations is also advisable (Sturgeon et al., 2008a). The identification of diagnostic and therapeutic 

candidate biomarkers for RCC is the major goal of the RCC research. RCC is known to release several 

hormones and biologically active substances that induce syndromes and produce metabolic damage in the 

host. The detection of elevated levels of these substances may be useful in the diagnosis and follow-up of 

this malignancy. According to the definition by Mejean et al. (Mejean et al., 2003a), tumor markers are 

substances that may be found in the blood or urine of someone with RCC. 

The characteristics of an ideal marker include the following (Kashyap et al., 2005): 

 to be secreted by malignant cells; 

 to be detected when a tumour becomes active, i.e. well differentiated; 

 to be simple and detected by a simple method; 

 to have increased capability of diagnosis of tumours in the primary stage; 

 to detect the recurrence of a tumour; 

 to establish the success of the administered therapy; 

 to have a positive correlation with the clinical stage of a tumour; 

 to predict the outcome of the patients; 

 to be socially accepted with the least possible discomfort to patients; 

 to be independent of subjective factors such as methodology and examiner experience. 
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In RCCs, the prediction of metastasis via tumor prognostic markers remains the major problem. In addition, 

one of the most important challenges of cancer research is the prediction of the invasiveness and metastatic 

potential of the tumor at an early stage. Therefore, much effort is needed towards the identification of some 

reliable tumor markers for RCC. 

1.1.5 Gene expression studies 

Gene expression profiling is a promising approach, in fact expression microarrays can resolve certain tumors 

into diagnostic, prognostic and therapeutic subclasses. Transcriptional profiling can define a unique gene 

expression signature for each tumor that may prove useful for classification and prognosis (Chin et al., 

2011). For example, renal tumor subtypes can be classified diagnostically using microarrays, on the basis of 

distinct and reproducible gene expression profiles, as shown in many studies (Boer et al., 2001; Gieseg et 

al., 2002; Higgins et al., 2003b; Schuetz et al., 2005; Takahashi et al., 2003; Young et al., 2001). 

In the last few years, in several types of human cancer, gene expression profiles by microarray have been 

used as a tool to classify tumors and to identify novel molecular biomarkers (Schuetz et al., 2005). Tumor 

transcriptomic profiling may identify patterns of genes that are correlated to patients, prognosis, response to 

therapy and survival (Zhao et al., 2006f). To identify more effective biomarkers in RCC, gene expression 

profiling studies have been extensively performed; in particular, we will focus on ccRCC. In 2001, Takahashi 

et al. identified a gene signature that could classify tumors based on 5-year disease-specific survival, so 

gene expression studies could be used to predict outcome in ccRCC, unfortunately, the results have not 

been validated (Takahashi et al., 2001g). Two years later, Vasselli et al. examining 51 metastatic ccRCCs 

identified 45 survival genes, whose the most predictive was VCAM-1 (vascular cell adhesion molecule-1) 

(Vasselli et al., 2003). Subsequently, VCAM-1 undergone validation as a prognostic biomarker in two other 

studies (Shioi et al., 2006; Yao et al., 2008). Interestingly, high expression of VCAM-1 predicted for better 

overall survival in both clear cell and papillary tumors, suggesting that the expression of this molecule may 

generally indicate tumor cells with lower metastatic potential. Another study described a gene signature for 

RCC progression, including genes already associated to RCC aggression and/or survival, such as caveolin-1 

(CAV1), lysyl oxidase (LOX) and annexin A4 (ANXA4) (Jones et al., 2005c). Sültmann et al. hybridized 19 

ccRCCs that had metastasis at the time of diagnosis and 17 that did not have metastasis to cDNA 

microarrays containing 4,207 probes. They found 85 gene probes statistically significantly associated with 

metastasis (Sültmann et al., 2005). Kosari et al., examining 28 ccRCCs found 35 differentially expressed 

genes between non-aggressive and aggressive tumors (Kosari et al., 2005). The largest study included 177 

ccRCCs and identified 340 transcripts (including VCAM-1) that could be used to assign a risk score to a 

patient, with a significant correlation with stage, grade, and performance status. This group saw five different 

subgroups within two larger groups of ccRCC, with significant survival differences as well as predicted 

biological pathways distinctions (Zhao et al., 2006f). Gene expression analysis and also cytogenetics study 

on single nucleotide polymorphisms (SNPs) on 54 cases of sporadic ccRCC and 36 tumors from 12 patients 

with VHL disease demonstrated that ccRCC tumors, either sporadic and VHL disease, have overall similar 

profiles, but sporadic ccRCCs are more heterogeneous and contain a higher number of genetic events per 

tumor. This study didn‟t identify any biomarkers, neither for prognosis nor predictive, but probably VHL 

disease that induces ccRCC and sporadic ccRCCs might be targeted with the same treatments, since they 
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are so similar (Beroukhim et al., 2009). Another study was performed by Skubitz et al. to identify biologic 

differences of ccRCCs using 16 tumors, they found tumors with more highly over-expressed metabolic genes 

or more higly over-expressed extracellular matrix and cell adhesion genes (Skubitz et al., 2006). The aim of 

another study (Tun et al., 2010) was to define a biological pathway signature and a cellular differentiation 

program in ccRCC; stressing, however, that genes that don‟t seem differentially expressed at a statistically 

significant level may reveal biologically significant changes when studied in ontology groups. 

A large number of potential biomarkers have emerged from all these gene expression studies, but, surely, 

they require external validation in larger sample sizes before they can be implemented. 

VHL mutation might have important implications for disease prognosis. In fact, the presence and type of VHL 

mutations in tumors have been consistently considered as possible biomarkers (Cowey and Rathmell, 2009). 

When VHL is inactivated and HIF is constitutively expressed, a number of other genes is transcriptionally up-

regulated. One HIF target is VEGF, the vascular epithelial growth factor, that is significantly up-regulated in 

RCCs compared with its elevated expression in many other cancers (Gordan et al., 2007). It seems that 

VEGF may be predictive for response to VEGF-targeted therapy. Another HIF target is CAIX, its serum 

levels are elevated in ccRCC patients, with a significant association between CAIX serum levels and tumor 

size and occurrence of metastases (Zhou et al., 2010). CAIX, as a target of HIF transcriptional activation, 

may be an indicator of functional VHL loss, indicating VHL events that impart a significant failure of HIF 

suppression. There have been very few studies regarding VHL gene alteration as a potential predictive 

marker for response to therapy, so, further evaluations of the role of this gene as a biomarker may be 

needed (Cowey and Rathmell, 2009). 

Using unsupervised consensus clustering algorithms, Brannon et al. distinguished two distinct molecular 

subtypes of ccRCC (ccA and ccB), characterized by divergent biological pathways and a highly significant 

association with survival outcomes. In fact, ccA patients have a better prognosis respect to ccB patients, 

probably due to the over-expression of genes involved in hypoxia, angiogenesis, fatty acid metabolism and 

organic acid metabolism, while ccB patients showed the over-expression of genes related to EMT, cell cycle 

and wound healing. Thus, defining a tumor as ccA or ccB could be an important prognostic indicator for 

predicting outcome in patients affected by ccRCC (Brannon et al., 2010). Subsequently, in another study it 

has been reported that in ccA subset tumors two distinct subgroups emerged along gender lines, with 

males‟tumors which over-expressed many immune or inflammatory gene sets, whereas females‟tumors 

which over-expressed catabolic process-related genes. This gender disparity may provide additional disease 

informations (Brannon et al., 2011). 

1.1.6 Signaling pathways in renal cell carcinoma and therapy 

Kidney cancer comprises a number of different types of cancer that occur in the kidney, it‟s not a single 

disease. Each of these tumors has different histological features and clinical course, which respond 

differently to therapy and is often caused by mutation in different genes. It has been suggested to define 

renal cancer as a metabolic disease, in fact, each of the inherited kidney cancer syndromes caused by 

germline mutations in the kidney cancer genes identified to date represents disorders in metabolic pathways 

involved in oxygen, iron, nutrient and energy sensing. Thus, targeting the metabolic defects in these 

pathways might be a possible way to develop kidney cancer gene-specific therapies (Linehan et al., 2010). 
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Generally, RCC is highly resistant to conventional chemotherapy and radiation therapy. Recently, a number 

of drugs have been developed, they act by blocking critical signaling pathways involved in RCC, such as 

angiogenesis, PI3K/AKT/mTOR, Wnt/β-catenin, Epithelial to Mesenchymal Transition (EMT), which will be 

described below (Figure 5) (Banumathy and Cairns, 2010). 

Angiogenesis is due primarily to loss-of-function mutation of the VHL gene on chromosome 3. RCC tends to 

be a highly vascular tumor with high expression of VEGF, VEGF receptor (VEGFR), PDGF receptor 

(PDGFR), and basic fibroblast growth factor (bFGF) (Finley et al., 2011). In fact, kidney tumors are frequently 

characterized by hypoxic conditions, so, hypoxia and compensatory hyperactivation of angiogenesis are 

thought to be very important in RCC. In hypoxic conditions, in the absence of VHL, HIF-α proteins remain 

constitutively expressed thereby inducing VEGF and other HIF targets. Increased expression of many of the 

HIF target genes is implicating in promoting cancer, inducing both changes within the tumor (cell-intrinsic) 

and changes in the growth of adjacent endothelial cells to promote blood vessel growth. In particular, VEGF 

and PDGF, the most-studied HIF targets, are potential endothelial cell mitogens. The expression level of 

VEGF strongly correlates with microvessel density, that is a measure of the degree of angiogenesis. VEGFR 

and PDGFR are up-regulated on endothelial cells in angiogenesis (Kluger et al., 2008). Other HIF targets 

include genes involved in glucose metabolism (endoglin, ENG; GLUT-1), cell proliferation and survival (TGF-

α and epidermal growth factor receptor, EGFR) and metastasis (mucin 1, MUC1) (Semenza, 2010a). 

Another HIF-α target is the carbonic anhydrase IX (CAIX) gene, that has been extensively studied as a 

prognostic marker for RCC (Stillebroer et al., 2010a). Furthermore, also the miR-210 has been reported up-

regulated in hypoxia and its expression can be induced by both HIF-1α and HIF-2α (Huang et al., 2009b). 

PI3K/AKT/mTOR Pathway: protein kinase B (Akt) and mammalian target of rapamycin (mTOR) are hubs for 

key oncogenic processes including angiogenesis, cell proliferation and survival. Autocrine binding of VEGF 

and PDGF to their receptor tyrosine kinases (VEGFR, PDGFR, KIT) on RCC tumor cells activates PI3K, 

which promotes the generation of PIP3 (phosphatidylinositol-3,4,5-triphosphate). PIP3 recruits the 

cytoplasmic kinase AKT to the cell membrane, where it is activated by phosphorylation at two independent 

sites mediated by PDK1 and mTOR (TORC2), respectively (Linehan et al., 2010). AKT activation inhibits 

apoptosis, by inactivating proapoptotic proteins (e.g., the bcl2 family member BAD, procaspase-9, apoptosis 

signal regulating kinase 1 ASK1). AKT inactivates also GSK-3β (glycogen synthase kinase 3 beta), that 

normally phosphorilates and induces the degradation of cell cycle promoting proteins (e.g., cyclin D1, 

CCND1) and proliferation-promoting transcription factors (e.g., c-Myc, β-catenin, c-Jun, Notch). VEGF and 

PDGF activate mTOR through AKT (Banumathy and Cairns, 2010). mTOR is part of two distinct signaling 

complexes. The rapamycin-sensitive complex mTORC1 regulates cell growth and protein synthesis in 

response to growth factor stimulation by phosphorylating S6 kinase and the eukaryotic translation factor 4E-

binding protein 1 (4E-BP1) to modulate key regulators of messenger RNA (mRNA) translation. The other 

complex, mTORC2, regulates actin cytoskeleton organization through phosphorylation of protein kinase Cα 

and also phosphorylates the serine-threonine protein kinase Akt to activate the Akt-mTORC1 pathway. 

mTORC2 is insensitive to rapamycin (Linehan et al., 2010; Wullschleger et al., 2006). The PTEN negatively 

regulates numerous growth factor receptor-mediated signal transductions by dephosphorylating PIP3, that is 

a substrate of activated PI3K enzymes. Loss-of-function of PTEN leads to constitutive activation of PI3K 

downstream components including AKT and mTOR kinases (Dahinden et al., 2010b). 
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Wnt/β-catenin Signaling: Wnts are a family of secreted glycoproteins that regulate cell proliferation, 

differentiation and cell migration. The final effector of Wnt signaling is the β-catenin, a transcriptional 

coactivator. In normal quiescent cells, β-catenin is trapped in a highly processive enzyme complex 

containing casein kinase 1 (CK1), glycogen synthase kinase 3β (GSK-3β), adenomatosis polyposis coli 

protein (APC) and axin. β-catenin is phosphorylated at serine and threonine residues by this complex and 

targeted for proteosomal degradation (Barker and Clevers, 2006). Wnt positively regulates and stabilizes β-

catenin, inhibiting its phosphorylation, ubiquitination and degradation. Stabilized β-catenin translocates into 

the nucleus and, together with a member of the LEF-TCF (lymphoid enhancer-binding factor 1-T cell specific 

transcription factor 7) family of transcription factors, activates target genes such as the MYC oncogene 

(Furge et al., 2007). Wnt probably mediates its effect on cell growth and tumor promotion by activating the 

mTOR pathway through inhibition of GSK-3β (Inoki et al., 2006). Thus, Wnt induces transcription throygh 

activation of β-catenin and also stimulates translation and cell growth through activation of the mTOR 

pathway (Linehan et al., 2009a). 

Epithelial to Mesenchymal Transition (EMT): EMT is an essential process before metastasis can occur. 

Epithelial cell-cell adhesion is mediated by intercellular junctional complexes of tight junctions, adherens 

junctions and desmosomes. E-cadherin (CDH1) is the principal component of adherens junctions and 

desmosomes, and if it lost, cells acquire invasive and metastatic properties. VHL loss-of-function leading to 

HIF-1α gain-of-function, which induces the increased expression of the CDH1 repressors (e.g., SLUG, 

SNAIL, TCF3, ZEB1, ZEB2). These repressors bind the proximal promoter of CDH1, repressing its 

transcription, and induce the epithelial to mesenchymal transition (Krishnamachary et al., 2006). Noticeably, 

CDH1 is hypermethylated in 11% of primary RCC (Dulaimi et al., 2004). Thus, hypoxia is also involved in 

tumor metastasis. The kidney is mesenchymal in origin and develops through mesenchymal to epithelial 

transition (MET). In cancer this transition is reversed, resulting in EMT and dedifferentiation. Another 

interesting gene implicated in EMT is TGF-β, a multifunctional cytokine which plays different roles in normal 

and cancerous cells. In normal and pre-malignant cells TGF-β acts as a tumor suppressor, in malignant cells 

it‟s over-expressed because these tumor cells often become resistant to the growth inhibitor effects of TGF-

β. A different tumor microenvironment can induce TGF-β to function as a tumor promoter (Wendt et al., 

2009). 

Localized RCC can be successfully treated by surgical resection alone. Cytokine or the newer targeted 

therapies are used to treat patients with locally advanced or metastatic disease. Unfortunately, response 

rates are very low. Drug resistance may be due to the expression of the multidrug resistance transporter in 

proximal-tubule cells. Immunomodulatory therapies involve the use of cytokines, such as interferon α (IFNα) 

and interleukin-2 (IL-2), high dose of these cytokines work effectively only in a minority of ccRCC patients, 

and median overall survival with these agents ranges from 10 to 15 months (Biswas and Eisen, 2009b; 

Cohen and McGovern, 2005a; Motzer and Molina, 2009b). The current targeted therapies have focused on 

targeting the genes that are transcriptionally up-regulated by HIFs, such as VEGF, VEGFR, PDGFR, and the 

serine-threonine protein kinase mTOR. A number of drugs have recently been approved by the FDA (Food 

and Drug Administration) that target either the HIF targets or inhibit mTORC1 (Linehan et al., 2010). Briefly, 

bevacizumab is an antibody that targets VEGF; sorafenib is a small molecule multikinase inhibitor that 

targets VEGFR and PDGFR; sunitib also inhibits VEGFR and PDGFR, and is often used in advanced 
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ccRCCs; temsirolimus and everolimus inhibit mTORC1 complex. These therapies mainly inhibit 

angiogenesis and exhibit antitumor activity by blocking the supply of oxygen and nutrients to the tumor cells. 

 

Figure 5. Schematic representation of selected signaling pathways and the current targeted therapies related 
to RCC. Angiogenic and cell proliferating signaling cascades are up-regulated in RCC tumor cells. VEGF 
and other related growth factors secreted by tumor cells stimulate angiogenic signaling in the surrounding 
vascular endothelial cells. In response to growth factor signaling mediated through VEGF, PDGF and KIT 
receptors, PI-3-kinase and Ras effectors activate HIF transcription factors, which in turn switch on gene 
expression needed for angiogenesis and cell proliferation in endothelial cells. In addition to the angiogenic 
pathway, the Wnt and HGF pathways are also up-regulated in RCC tumor cells. While VEGF-targeted 
therapy for metastatic RCC is focused on blocking angiogenic signaling in vascular endothelial cells 
surrounding the tumor, mTOR inhibitors act directly on the tumor cells to suppress growth (Adapted from 
Banumathy and Cairns., Cancer Biology & Therapy, 2010). 
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1.2 MICRORNA 

1.2.1 microRNAs and mechanism of action 

MicroRNAs (miRNAs) are small single-stranded non-protein-coding RNA molecules, of about 22-25 

nucleotides in length, generated from endogenous hairpin-shaped transcripts (Ambros et al., 2003d; Cullen 

2004). At first, they were discovered in Caenorhabditis elegans, where they control the ontogenetic 

development and the differentiation (Lee et al., 1993). They function as negative post-transcriptional gene 

regulators in animals, plants and viruses (Ambros, 2003a; Lai, 2003). Recent evidences showed that miRNA 

expression has been implicated in tumorigenesis, indicating that miRNAs might function as tumor 

suppressors and oncogenes (Esquela-Kerscher and Slack, 2006). Many studies have revealed that miRNAs 

can regulate many pathways, also including haematopoietic cell differentiation, apoptosis, cell proliferation 

and organ development. They belong to a highly conserved class of RNA, in fact, some components of this 

system have been found in archaea and eubacteria (Ambros, 2004; Bartel, 2004f). miRNAs are believed to 

account for >3% of all human genes (Bentwich et al., 2005a), in fact, at now over 1,000 were identified in 

human species. These RNA molecules negatively regulate gene expression by recognizing and binding 

sequences within the 3' untranslated region (UTR) of target mRNAs: the degree of complementarity to 

miRNA seems to determine the fate of targets. Thus, partially complementarity leads to translational 

repression, while fully complementarity targets are directed to cleavage (Ambros, 2003a; Lai, 2003). The 

complementarity is usually restricted to 2-8 nucleotides present at the 5' end of miRNAs. These nucleotides 

form the so-called "miRNA seed" that binds the target, called "seed match". The 5' end seems to be 

important for stability and for the loading of the same miRNA in the RISC complex (Khvorova et al., 2003), 

and is also crucial to carry out biological function. The nucleotides of the "seed" can pair up not completely to 

the target, or in a non-canonical base-pair (e.g., pairing G:U) (Brennecke et al., 2005a; Doench et al., 2003). 

Using specific algorithms, it has been seen that a single miRNA can bind up to 200 target genes and that 

they may have different biological functions, such as transcription factors, receptors and transporters 

(Grosshans et al., 2005; Lewis et al., 2005a; Lim et al., 2003, 2005). This means that miRNAs can control 

the expression of approximately one third of human messengers. On the other hand, a few experiments have 

indicated possible target sites in the 5'UTR. Lee et al. reported that, based on both hybridization energy and 

sequence matches, many endogenous motifs within human 5'UTRs specific to the 3' ends of miRNAs exist. 

They showed combinatory interactions between a single miRNA and both end regions of a mRNA, based on 

the fact that many miRNAs contain significant interaction sites with mRNA 5'UTR and 3'UTR motifs through 

their 3' and 5' end sequences, respectively. Thus, a new miRNA target class has been proposed containing 

simultaneous 5' and 3' UTR interaction sites and that studies with full 5'UTR sequences may reveal further 

miRNA functions within this new targets class (Lee et al., 2009). 

A single miRNA can bind to and regulate many different targets and, conversely, several different miRNAs 

can bind to and cooperatively control a single mRNA target (Lewis et al., 2003). All metazoan eukaryotes 

encode miRNAs, which may be expressed in more than 1,000 copies per cell and many miRNAs have a 

tissue-specific and/or a stage-specific expression patterns (Bartel, 2004f). Different tissues have distinctive 

patterns of miRNome expression (defined as the full complement of miRNAs in a cell) with each tissue 

presenting a specific signature. By combining tissue-specific expression of miRNAs and their targets, a 



18 

 

complex network of interactions regulates cell-specific functions. It is therefore plausible that miRNA function 

may vary depending on cell type, because of differences in “cell-specific” gene targets (Liu et al., 2004). 

Defining cell-specific miRNA expression may be important in order to assess miRNA function. Over 250 

small RNA cDNA libraries obtained by cloning and sequencing from 26 distinct organ systems and cell types 

of human and/or rodents were analyzed. Results of this study demonstrated that the miRNA expression 

varied from highly specific to ubiquitous, and that very few miRNAs were exclusively found in individual 

tissues or cell types, and only a third of the analyzed miRNAs were expressed with a higher degree of tissue 

specificity (Figure 6) (Landgraf et al., 2007a). 

 

Figure 6. The 51 most specific miRNA precursor clusters for human are here illustrated. The total height of 
each bar represents the information content reflecting tissue specificity, while the relative heights for each of 
the tissues are proportional to the clones of a miRNA precursor cluster in a given tissue type relative to all 
tissue types (Adapted from Landgraf P., Cell, 2007a). 

Recently, the tissue-specificity of miRNAs has been demonstrated also in NCI-60 cell panel, composed by 

59 human cancer cell lines derived from 9 different tissues of origin: melanoma, leukemia, kidney, ovary, 

breast, lung, central nervous system, colon and prostate. A higher correlation between the cell line-specific 

signature has been observed, suggesting that cell line-specific miRNA profiles are robust. Data suggested 

also a strong and consistent tissue-specific signature in different tissues, in fact some miRNAs were 

preferentially expressed in cell lines originating from one tissue compared with the rest of cell lines. For 

example, the authors detected an interesting pattern in the expression of miR-200 in renal cell lines (Søkilde 

et al., 2011). 

1.2.2 Genomic localization 

Most miRNA genes are located in introns and/or exons, they may be in sense or antisense orientation. About 

30% of miRNA genes are located in intergenic regions. They are often located in critical chromosomal areas 

(Kim, 2005). Furthermore, many miRNA genes are transcribed as independent transcriptional units (Lau et 

al., 2001, Lagos-Quintana et al., 2001), but it has been observed that about 50% of known miRNAs is 

located near other miRNAs. It is assumed that these clusters may be transcribed as a single polycistronic 
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transcriptional unit (Lau et al., 2001; Mourelatos et al., 2002). The genes that encode for miRNAs can be 

localized not only in exons or introns of independent transcriptional units that do not encode proteins 

(Rodriguez et al., 2004), but also in protein-coding genes (Smalheiser, 2003). It is unclear whether these 

miRNA genes are functionally related to their guests: the splicing process may be unable to issue an intron 

that is accessible to a miRNA. In addition, splicing and processing by miRNAs might be coupled, and so 

miRNAs and mRNAs could be processed simultaneously. Studies on expression levels of miRNAs and 

messengers have revealed that miRNAs are frequently co-expressed with their host genes (Baskerville and 

Bartel, 2005). miRNAs can be grouped into families based on sequence homology at the 5' end of their 

mature forms, but it was still not clear whether members of a family monitor the same biological processes 

(Esquela-Kerscher and Slack, 2006). 

1.2.3 miRNA biogenesis 

miRNA biogenesis is a multi-step process (Figure 7), that begins in the nucleus and ends in the cytoplasm. 

miRNA genes are transcribed by RNA Polymerase II (Pol II), although it cannot be excluded that a small 

number of these genes can be transcribed by other RNA polymerases (Cai et al., 2004; Lee et al., 2004). 

Primary transcripts (pri-miRNAs) are single-stranded RNA molecules folded in on themselves to form a loop 

structure flanked by two free sequences, not folded, and present a cap of 7-methylguanine at the 5' end and 

a poly-A tail at the 3' end, features of mRNAs coding for proteins. Subsequently, pri-miRNAs are processed 

by the endonuclease RNase III Drosha, and its cofactor Pasha, to release the pre-miRNA precursor product 

of about 70 nucleotides in length. Then, these precursors are transported by the exportin 5 into the 

cytoplasm, where they are processed by another RNase III enzyme, Dicer, to generate a transient 

miRNA:miRNA* duplex of about 22 nucleotides in length. This duplex is then loaded into the miRNA-

containing RNA-induced silencing complex (miRISC), which includes the Argonaute (Ago) proteins, and the 

mature miRNA is retained in this complex, while the other strand is cleaved. Then, the mature miRNA can 

bind to its target sites. It is believed that the thermodynamic stability of the two ends of the duplex 

determines which strand should be selected. The strand with less stability at the paired bases at the 5' end is 

typically incorporated (e.g., G:U instead of G:C) (Esquela-Kerscher and Slack, 2006). 
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Figure 7. The biogenesis of microRNAs (Adapted from Esquela-Kerscher and Slack, Nat Rev Cancer, 2006). 

1.2.4 Target prediction and new miRNAs discovered 

In the last few years computational methods have been developed to identify miRNA targets (Enright et al., 

2003, Lewis et al., 2003, Stark et al., 2003). These methods search for conserved regions in the 3'UTR that 

are complementary to miRNAs. Identification of mRNA targets is more difficult in animals than in plants, 

since there are few mRNAs perfectly complementary to miRNAs in animals (Rajewsky, 2006a). The analysis 

of the miRNA binding sites, which must be experimentally validated, is based on several criteria: (1) a perfect 

complementarity between the 3'UTR of mRNA targets and the first 8 nucleotides of miRNAs from their 5'UTR 

end (within this region pairing G:U are allowed), (2) the formation of a heteroduplex structurally and 

thermodynamically stable, and (3) the evolutionary conservation of target sites among vertebrates (Stark et 

al., 2003). Several independent groups have formulated algorithms to predict miRNA targets (Enright et al., 

2003; John et al., 2004; Kertesz et al., 2007; Kiriakidou et al., 2004; Krek et al., 2005; Lewis et al., 2005a). 

However, the binding of multiple miRNAs to a single mRNA complicates the target prediction (Krek et al., 

2005). 

The Sanger Center miRBase (http://www.mirbase.org/) provides the central repository for microRNA 

sequence information. miRBase has a role in defining the nomenclature for miRNA genes and assigning 

names to novel miRNAs for publication in peer-reviewed journals. The online miRBase database is a 

resource containing all published miRNA sequences, together with textual annotation and links to the 

http://www.nature.com/ng/journal/v39/n10/abs/ng2135.html
http://www.mirbase.org/
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primary literature and to other secondary databases (Griffiths-Jones, 2004, 2010). At now, the miRBase 

Targets database, has been rebranded as MicroCosm (http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/), containing computationally predicted targets for microRNAs across many 

species. The miRNA sequences are obtained from the miRNA Registry and analyzed with the 3'UTR 

sequences of all human genes. 

Several algorithms for computational mapping of miRNA targets have been published (Ioshikhes et al., 

2007). Some of the most popular algorithms for miRNA target prediction are described below. 

TargetScan (http://www.TargetScan.org/) combines models based on thermodynamics of the interaction 

between miRNA and mRNA with sequence analysis to predict conserved targets in many genomes. Given a 

sequence of a conserved miRNA gene in multiple vertebrates and a set of orthologous 3'UTR sequences of 

these organisms, TargetScan looks for UTRs for segments with the perfect complementarity of Watson-Crick 

between 2 and 8 bases of a miRNA starting from the 5' end (the seed match). The conservation of target 

sites is required in at least five genomes (human, mouse, rat, dog and chicken). The program extends the 

seed match in each direction, including G:U pairing but stopping in the presence of a wrong pairing. The 

algorithm assigns a score to each interaction in agreement with the binding energy and conservation among 

species (Lewis et al., 2005a). 

Pic Tar (http://pictar.mdc-berlin.de/) is one of the programs that most successfully predicts targets for 

miRNAs (Krek et al., 2005). The approach of this program provides a comparison between the different 

species using multiple sequence alignment between orthologous 3'UTR sequences. A score with maximum 

likelihood is given to each candidate sequence for each species separately. The program looks for 

conserved segments of 3'UTR containing a minimum of perfect and imperfect pairing for a given set of user-

specified miRNAs. Thus, a length of the putative binding site for the length of the corresponding miRNA seed 

is established, taking a score based on Hidden Markov Model (HMM) for each 3'UTR sequence. 

Diana-microT (http://diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi ) is an algorithm that first identifies putative 

interactions miRNA/mRNA-based energy between the two RNA-binding imperfectly matched (Kiriakidou et 

al., 2004). In a first phase, the program evaluates whether there are at least three consecutive canonical 

pairing between the two sequences: it calculates the minimum free energy required for the connection 

between the two sequences, using two nucleotides at a time to calculate the pairing between a miRNA and 

its putative target. DIANA-microT method allows a weak binding at 5' seed, involving 6 consecutively paired 

nucleotides or G:U wobble pairs, if there exists additional base paring between the miRNA 3' end and target 

gene (Kiriakidou et al., 2004). This method was reported to show the precision levels of 66%, which is the 

highest among several prediction programs (Min and Yoon, 2010a). 

miRanda (http://www.micro-RNA.org/): this method was originally developed to predict miRNA target genes 

in D. melanogaster (Enright et al., 2003), but is also used to predict human miRNA targets. For each miRNA, 

miRanda selects target genes on the basis of three properties: sequence complementarity using a position-

weighted local alignment algorithm, free energies of RNA-RNA duplexes, and conservation of target sites in 

related genomes (Enright et al., 2003). John et al. (John et al., 2004) improved the method by implementing 

a strict model for the binding sites that require almost perfect complementarity in the seed region allowing a 

single wobble pairing. The potential targets are identified by the use of a modified Smith-Waterman local 

http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
http://www.targetscan.org/
http://pictar.mdc-berlin.de/
http://diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi
http://www.microrna.org/
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alignment program (Smith and Waterman, 1981a). The score for each alignment is based on the 

complementary sequence and not the identity. Based on these alignments, the thermodynamic stability of 

these RNA duplexes is also estimated. 

PITA (http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html) estimates the free energy cost to unfold 

the mRNA secondary structure that surrounds the target site. This algorithm combines this free energy cost 

with the ΔG of miRNA-target pairing to measure ΔΔG. The algorithm finds seed matches (allowing a user-

specified number of mismatches), and calculates ΔΔG for each match, irrespective of conservation. PITA 

starts by scanning the UTR for potential microRNA targets (using the supplied seed matching tools) and then 

scores each site using the method described in Kertesz et al. (Kertesz et al., 2007). Although designed and 

tested for 3'UTRs, PITA can predict miRNA recognition elements outside the 3'UTR (Kertesz et al., 2007). 

Some features allow users to define whether an identified molecule is a true microRNA: (1) a mature miRNA 

should be expressed as a transcript of about 22 nucleotides in length, (2) it must derive from a precursor with 

a characteristic secondary structure (hairpin structure without large loops) and (3) should cover the portion of 

the stem of the hairpin and (4) be processed by Dicer. Another commonly used criterion concerns the 

conservation of sequence and hairpin structure of a predicted miRNA in different species. A “perfect” miRNA 

should satisfy all these criteria, only one of these criteria is not sufficient to establish that a gene is a new 

candidate miRNA (Ambros et al., 2003d). 

1.2.5 miRNA and cancer 

Recent studies have shown that the expression of microRNAs may be involved in the process of 

tumorigenesis, functioning as tumor suppressors or oncogenes (Esquela-Kerscher and Slack, 2006). 

miRNAs associated with cancer are called "oncomirs". The expression of miRNAs is associated with various 

types of cancer. About 50% of human miRNAs is found in regions of the genome known as fragile sites, 

which are associated with cancer, indicating that they have an important role in tumor progression. The first 

indication of a possible role of miRNA as tumor suppressor resulted from a study by Calin et al. in which it 

has been shown that patients with B-cell chronic lymphocytic leukemia (CLL), the form of adult leukemia, 

often had deletions or reduction of expression of two miRNA genes in a cluster: mir-15a and mir-16-1. 

Deletions within the 13q14 locus have been found in more than 65% of cases of CLL, and also in 50% of 

cases of mantle cell lymphoma, in 16-40% of patients with multiple myeloma, and finally in 60% cases of 

prostate cancer. So, it was thought that a tumor suppressor gene may be located in this region of the 

genome of about 30 kb. In addition, it was found that mir-15a and mir-16-1 are located within the intron of a 

non-protein-coding RNA gene of unknown function, called LEU2. In patients with CLL, who have these 

deletions, a more favorable prognosis was found than in patients with an abnormal karyotype or deletions at 

other loci such as 11q23 and 17p13. This can be explained by the fact that homologues of mir-15a and mir-

16-1 have been found in a cluster on chromosome 3 (mir-15b and mir-16-2, respectively) and expressed at 

low levels in patients with CLL (so, in any case, the deletions do not involve a complete elimination of these 

miRNA families) (Calin et al., 2002, 2004b). 

Then, Cimmino and his collaborators showed that miR-15a and miR-16-1 negatively regulate BCL2, which is 

an anti-apoptotic gene and is often over-expressed in many types of cancer in humans, including leukemias 

and lymphomas. Therefore, it was thought that the deletion or deregulation of mir-15a and mir-16-1 leads to 

http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html
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an increased expression of BCL2, promoting leukaemogenesis and lymphomagenesis in hematopoietic cells 

(Cimmino et al., 2005). 

Other studies have shown a strong correlation between a decreased expression of some miRNAs and 

oncogenesis (Iorio et al., 2005; Michael et al., 2003). 

Different expression profiles of miRNAs have been observed in certain organs emphasizing the importance 

of miRNAs in the maintenance of stem cells and in directing the differentiation of certain cell types during 

development. The miRNA profiles are surprisingly informative, reflecting the lines of development and state 

of differentiation of tumors (Lu et al., 2005c). Some researchers are now using the expression profiles of 

miRNAs as a distinctive character in order to classify the different types of cancer, defining miRNA as 

markers that may predict a favorable prognosis (Calin et al. 2004b; Calin et al., 2005; Chan et al., 2005; He 

et al., 2005a; Iorio et al. 2005; Lu et al. 2005c; Takamizawa et al. 2004). Lu et al. suggested that the 

expression profiles of a few miRNAs (approximately 200 genes) are required to accurately classify human 

cancers (Lu et al., 2005c). The alterations of miRNA expression may promote tumor formation by modulating 

the functional expression of critical genes involved in tumor development and progression (Lu et al., 2005c). 

Also some components of the machinery of miRNAs are involved in the process of tumorigenesis, such as 

Dicer (Karube et al., 2005). 

Since the first paper reported the link between the abnormal expression of miRNAs and cancer in 2002 

(Calin et al., 2002), more and more studies have shown that many miRNAs take part in the progression of 

various cancers, including tumor growth, differentiation, adhesion, apoptosis, invasion, and metastasis (Calin 

et al., 2004b; Calin and Croce, 2006; Gaur et al., 2007). miRNA profiling experiments have revealed that 

many miRNAs are abnormally expressed in clinical cancer samples, since cancer is ultimately a 

consequence of a disordered gene expression. 

Liu et al. define miRNAs as “star molecules”, in their opinion miRNAs have become the focus in recent years 

and the studies of their roles in cancers have continued (Lu et al., 2005c). 

Generally, the mechanisms implicated in oncogenesis and tumor suppression related to miRNAs have been 

proposed (Figure 8). However, the exact mechanisms and entire networks of miRNAs in cancer 

progressions are still unclear and deserve deep investigation. 
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Figure 8. microRNAs can function as tumor suppressors and oncogenes. (a) In normal tissues, proper 
miRNA transcription, processing and binding to complementary sequences on the target mRNA results in the 
repression of target gene expression through a block in protein translation or altered mRNA stability (not 
shown). The overall result is normal rates of cellular growth, proliferation, differentiation and cell death. (b) 
The reduction or deletion of a miRNA that functions as a tumor suppressor leads to tumor formation. A 
reduction in or elimination of a mature miRNA may be due to defects at any stage of miRNA biogenesis 
(indicated by question marks) and ultimately leads to the inappropriate expression of the miRNA-target 
oncoprotein (violet squares). The overall outcome might involve increased proliferation, invasiveness or 
angiogenesis, decreased levels of apoptosis, or undifferentiated or de-differentiated tissue, ultimately leading 
to tumor formation. (c) The amplification or over-expression of a oncogenic miRNA would also result in tumor 
formation. In this situation, increased amounts of a miRNA, which might be produced at inappropriate times 
or in the wrong tissues, would eliminate the expression of a miRNA-target tumor suppressor gene, leading to 
cancer progression. Increased levels of a mature miRNA might occur because of amplification of the miRNA 
gene, a constitutively active promoter, increased efficiency in miRNA processing or increased stability of the 
miRNA (indicated by question marks). ORF, open reading frame. (Adapted from Esquela-Kerscher and 
Slack, Nat Rev Cancer, 2006). 



25 

 

1.2.6 Methods to detect miRNA expression 

miRNA expression profiles are closely related to developmental stages and physiological states as well as 

disease processes; thus, miRNA expression assessment and analysis are basic and preliminary procedures 

in most miRNA studies. Moreover, the use of the expression profiles of miRNAs to distinguish different types 

of cancer might facilitate the diagnosis and treatment of many diseases. These studies have produced a 

large number of miRNA-disease associations and have shown that the mechanisms of miRNAs implicated in 

diseases are very complex. Therefore, a large-scale analysis and integrating of these miRNA-disease 

associations at a system level will offer a platform to dissect the mechanisms of miRNAs in disease, although 

the current miRNA-disease associations are far from complete. In fact, the Human MicroRNA & Disease 

Database (HMDD, http://202.38.126.151/hmdd/mirna/md/) has been developed to retrieve the associations 

of miRNA and disease from literature. HMDD contains miRNA names, disease names, dysfunction 

evidences, and literature PubMed ID (Lu et al., 2008). 

At present, methods widely used for miRNA expression detection mainly include miRNA cloning, northern 

blotting, quantitative PCR (qPCR), in situ hybridization (ISH), and miRNA arrays (Li and Ruan, 2009d). Each 

methodology has its own advantages and disadvantages. miRNA cloning is mainly used to discover new 

miRNAs, but it‟s not accurate in miRNA quantification. Northern blotting can reflect the miRNA expression 

profile more accurately than cloning, in fact, it‟s considered the “gold standard” of miRNA detection. On the 

other hand, northern blotting it‟s very time consuming, requires large amounts of RNA samples and 

radioactive probes. qPCR is another method widely used to quantify specific miRNAs in samples. It‟s a very 

high sensitive and specific method, but limited by high cost. ISH can provide information on the location of 

miRNA expressed in cells or tissues as well as the miRNA abundance. Unfortunately, ISH is not suitable for 

high-throughput profiling. Instead, miRNA arrays offer rapid and high-throughput analysis and are useful to 

study the expression levels of hundreds of miRNAs at the same time. At now, many different miRNA 

microarray platforms exist (Sato et al., 2009). Nowadays, deep-sequencing expression analysis allows to 

accurately quantify miRNA and also mRNA expression levels on whole-genome scale and to discover novel 

miRNAs and mRNAs. Deep-sequencing provides a major advance in robustness, comparability and richness 

of expression profiling data respect to microarray and qPCR („t Hoen et al., 2008; Zhou et al., 2010a). 

1.2.7 miRNA and RCC 

Differential levels of specific miRNAs have been observed in several tumor types when compared to normal 

tissues. In solid cancers, the spectrum of expressed miRNAs is very different from that of normal cells 

(Volinia et al., 2006). In fact, global reduction in miRNA expression is a feature of many cancers, miRNA 

gene copy number variation appears common in cancer, and over-expression of miRNAs can contribute to 

oncogenesis. Epigenetic silencing is another regulatory mechanism that controls miRNA expression (Lu et 

al., 2005c; Vogt et al., 2011; Volinia et al., 2006). Thus, the modulation of miRNA expression in cancer is 

well-established. 

miRNA expression profiles have some potential advantages in respect to standard mRNA or other protein-

based profiles: (1) miRNAs appear to be very stable in tissues and biological fluids, including serum and 

urine, even in degraded preparations (Jung et al., 2010), and are protected from endogenous RNase since 

they have a small size and perhaps have packaged within exosomes; (2) their tissue-specific nature makes 

http://202.38.126.151/hmdd/mirna/md/
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miRNAs ideal candidates for biomarkers (Li et al., 2010a). In recent years, many efforts have been made not 

only to obtain tissue-specific and tumor type-specific signatures, but also to identify new diagnostic 

biomarkers within miRNA class. 

Since miRNAs are tissue-specific, it‟s possible to find miRNA specifically expressed in the kidney. In 

particular, I‟ll described below some differential expression studies on RCC and ccRCC subtype. The role of 

miRNAs in the regulation of renal development, physiology, and pathology has emerged as an important and 

potentially fruitful area of research. Multiple studies have shown that miRNA expression can be used as a 

useful diagnostic tool. 

One of the first studies on the involvement of miRNAs in RCC dates back to 2007, in which Gottardo and 

colleagues reported, specifically, the up-regulation of four miRNAs (miR-7-2, miR-28, miR-185, and let-7f-2) 

in RCC tissues compared to normal kidney (Gottardo et al., 2007). 

In 2008, Nakada et al. investigated expression profiles of miRNAs in ccRCC (16 patients) and chRCC (4) 

and in normal kidneys (6). They found that the two histotypes were separable. In particular, 43 miRNAs were 

differentially expressed between ccRCC and normal kidney, whose 37 down- and 6 up-regulated genes; 

while 57 miRNAs were differentially expressed between chRCC and normal kidney, whose 51 down- and 6 

up-regulated genes. These data indicated that miRNAs tend to be down-regulated in both ccRCC and 

chRCC compared with normal kidney. Moreover, they observed that the most down-regulated miRNAs in 

ccRCC were miR-141 and miR-200c, and that their putative target was ZEB2, gene involved in repression of 

CDH1/E-cadherin and in epithelial to mesenchymal transition. By functional validation, they suggested that 

the down-regulation of these two miRNAs could be involved in suppression of CDH1 transcription via up-

regulation of ZEB2. They also showed that genome copy number aberrations could affect the expression of 

miRNAs, in particular of those that are each cleaved from a single precursor. (Nakada et al., 2008). Today, 

the involvement of miR-200 miRNA family in EMT is fully validated by other studies (Gregory et al., 2008, 

2008a; Kim et al., 2011a; Tellez et al., 2011). For example, Park et al. by evaluating the expression of 207 

miRNAs in the 60 cell lines of the drug screening panel maintained by the Nation Cancer Institute (NCI-60), 

identified the miR-200 miRNA family as an extraordinary marker for cells that express CDH1 but lack 

expression of Vimentin (VIM), that are epithelial and mesenchymal markers, respectively. miR-200 was 

found to directly target the mRNA of the CDH1 transcriptional repressors ZEB1 and ZEB2. The ectopic 

expression of miR-200 caused up-regulation of CDH1 in cancer cell lines and reduced their motility. 

Conversely, inhibition of miR-200 reduced CDH1 expression, increased expression of VIM, and induced 

EMT. The authors suggested miR-200 as a powerful marker and determining factor of the epithelial 

phenotype of cancer cells (Park et al., 2008). It has been reported that also miR-205 is involved in EMT 

process by repressing CDH1 (Gregory et al., 2008, 2008a; Tellez et al., 2011). 

In another study, the miRNA expression levels were used to distinguish kidney cancer subtypes, using tumor 

tissues from 20 patients, four cases from each of the following histotypes: oncocytoma, chromophobe, 

papillary, poor-prognosis clear cell, and good-prognosis clear cell. The researchers found a unique miRNA 

signature for each subtype of renal tumor; in particular, they identified a genomic similarity between 

chromophobe and oncocytoma, and between papillary and clear cell RCC; and distinct miRNA patterns 

correlated to good and poor prognosis ccRCC subtypes (Petillo et al., 2009). 



27 

 

A study by Huang et al. showed a total of 76 differentially expressed miRNAs comparing 11 pairs samples 

(ccRCC and normal matched), whose 50 up- and 26 down-regulated genes, among them miR-27a, miR-221, 

miR-34a, miR-103, miR-143 were specifically expressed in ccRCC samples. The highest expression level 

was detected in let-7-g and miR-21, while the lowest in miR-145, miR-320, miR-494 (Huang et al., 2009j). 

Chow et al. performed a comparison between 3 ccRCC tissues and their normal counterpart. They found a 

total of 33 dysregulated miRNAs, including 21 up-regulated miRNAs, and that many of these miRNAs have 

been reported to be dysregulated in other malignancies (Chow et al., 2010). 

Weng et al. performed whole-genome small RNA deep sequencing in paired frozen and formalin-fixed 

paraffin-embedded (FFPE) tissue specimens of benign kidney and ccRCC. They found 73 differentially 

expressed miRNAs in frozen and 133 in FFPE samples, respectively, with a high correlation not only among 

different types of samples but also between deep sequencing, microarray and qPCR technologies used on 

the same samples, highlighting that miRNAs are relatively stable also in FFPE samples (Weng et al., 2010). 

Another study reported a total of 35 miRNAs that can robustly distinguish ccRCC from their patient-matched 

normal kidney tissue samples (28 samples) with high confidence; among them 26 were down- and 9 up-

regulated. Furthermore, miRNAs identified down-regulated in this study were correlated also to common 

deletions in ccRCC (Juan et al., 2010). 

Also Fridman and his collaborators used miRNA expression to accurate molecular classify renal tumors 

among 125 FFPE samples, including 38 oncocytomas, 27 chromophobe RCCs, 34 ccRCCs, and 26 pRCC. 

They identified 33 differentially expressed miRNAs through pairwise comparisons of each of the four 

histotypes and high degree of similarity between ccRCC and pRCC, and between chRCC and oncocytoma, 

thus they selected miRNAs in order to identify each pair of types, that were miR-31 and miR-126 for the first 

pair, and miR-221 and miR-210 for the pair composed by chRCC and oncocytoma, obtaining a clear 

separation between the four groups (Fridman et al., 2010a). 

A recent study of White et al. reported the analysis of 70 matched pairs of ccRCC and normal kidney tissues 

from the same patients by microarray, followed by validation in qPCR. They identified 166 dysregulated 

miRNAs (89 up- and 77 down-regulated genes), including miR-122, miR-155 and miR-210, which had the 

highest over-expression, and miR-200c, miR-335 and miR-218, which were most down-regulated. They 

conducted an extensive target prediction analysis showing that many predicted target genes are involved in 

RCC pathogenesis. They also demonstrated that miRNA dysregulation might be attributed in part to 

chromosomal aberrations, co-regulation of miRNA clusters and co-expression with host genes (White et al., 

2011b). 

Youssef et al. developed a classification system that can distinguish the different RCC subtypes. Using 

miRNA microarray analysis, they identified 91 miRNAs as statistically differentially expressed among 

different subtypes, and that ccRCC is more closely related to pRCC and that both are distinct from 

oncocytoma and chRCC. Also in this study the correlation between cytogenetic changes and miRNA 

dysregulation was highlighted (Youssef et al., 2011). 

Whereas, Heinzelmann et al. detected a miRNA signature, composed by 33 miRNAs, that potentially 

distinguishes between metastatic and non-metastatic ccRCCs, including miR-451, miR-221, miR-30a, miR-
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10b and miR-29a. They also identified a group of 12 miRNAs (e.g., let-7 family, miR-30c, miR-26a), which 

were decreased in highly aggressive primary metastatic tumors (Heinzelmann et al., 2011). 

Powers et al. defined distinct miRNA expression profiles in the 4 most common renal epithelial tumor 

subtypes and showed that, despite the common chromosomal gains and losses in RCC, very few of the 

significant miRNA gene expression differences can be explained solely by a gene dosage effect, except in 

the cases of miR-21 and miR-143 (Powers et al., 2011). 

Neal et al., through a functional study, found high levels of HIF in a renal cell line (RCC4) lacking functional 

VHL according to the literature, they demonstrated that following treatment to suppress HIF expression, the 

levels of miR-155 and miR-210 were decreased in the treated lines, thus their expression level is HIF-

dependent. A striking positive correlation was also found between CAIX and miR-210 expression, they were 

significantly increased in tumors with identifiable VHL mutations, or promoter methylation, compared to 

tumors that did not show mechanisms for suppression of VHL function (Neal et al., 2010). 

In 2007, Kulshreshtha et al. demonstrated for the first time a functional link between hypoxia and miRNA 

expression, showing a specific spectrum of miRNAs (including miR-23, miR-24, miR-26, miR-27, miR-103, 

miR-107, miR-181, miR-210, and miR-213) that is induced in response to low oxygen, at least some via a 

hypoxia-inducible-factor-dependent mechanism. Moreover, a small group, such as miR-26, miR-107 and 

miR-210, decreased pro-apoptotic signaling in a hypoxic environment by inhibiting caspase activation, 

suggesting an impact of these transcripts on tumor formation (Kulshreshtha et al., 2007a). 

Interestingly, miR-210 plays a crucial role in the cellular response to hypoxia, because it‟s regulated by both 

HIF-1α and HIF-2α. HIF-1α directly binds to a hypoxia responsive element (HRE) on the proximal miR-210 

promoter, thus defining miR-210 as a direct transcriptional target of HIF-1α (Kulshreshtha et al., 2007a; 

Huang et al., 2010). miR-210 was found to be involved in angiogenesis, cell cycle regulation, stem cell 

differentiation, DNA damage repair, mitochondrial metabolism and cancer, since it has a high expression 

level in many cancers. Since the close correlation between miR-210 expression and tumor hypoxia, 

circulating miR-210 might be a prognostic marker in cancer patients (Huang et al., 2010). Nakada et al. 

demonstrated that miR-210 over-expression may cause multipolar spindle via centrosome amplification and 

that this phenomenon, in turn, contributes to the abnormal cell division and aneuploidy. Therefore, miR-210 

over-expression may contribute to the tumorigenesis and/or progression of ccRCC (Nakada et al., 2011). 

All these studies show that miRNA profiling could represent an invaluable tool to classify tumors that 

represent diagnostic challenges. The discovery of distinctive miRNA signatures will likely improve the 

molecular classification of cancer and specify distinct roles within biologic processes of each miRNA. 

miRNAs can act as oncogenes or tumor suppressors depending on the tissue and the expression of their 

targets. Because miRNAs can target many genes, modulating the level of a single miRNA could eventually 

affect many pathways at the same time. For example, deregulation of specific miRNAs, which control 

important angiogenic and proliferative processes, may have an important role in the biology of RCC. 
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1.3 Integrative analysis of miRNA and mRNA expression profiles 

1.3.1 Integrative genomics approach 

The molecular complexity of a tumor manifests itself at the genomic, epigenomic, transcriptomic and 

proteomic levels, thus an integrated analysis may have an important role in characterizing a tumor. miRNA 

and gene expression patterns are closely related, they work cooperatively to form gene regulatory networks, 

therefore, integrative genomics and genetics approaches might be a useful tool in elucidating the complex 

relationships often found in these networks. (Shen et al., 2009). Anyway, the specific functional roles of most 

miRNAs and their combinatorial effects in biological processes are still unclear. 

A number of studies have provided the necessary experimental evidence confirming the validity of the casual 

relationships inferred using such an approach. The regulatory mechanisms of miRNA-mediated regulation 

are very complex and difficult to elucidate. Each miRNA can directly regulate hundreds of messanger RNAs 

(mRNAs); conversely, most mRNAs have a length that contain many binding sites for miRNAs (Su et al., 

2011). 

Zhang et al. have explained the reasons for which identifying functional miRNA-gene regulatory networks is 

important, as follows: (1) one gene can be regulated by multiple miRNAs and one miRNA can regulate a 

large number of genes, thus, the aim of the research is to find a set of miRNAs and their co-regulated genes; 

(2) the miRNA-mRNA target relationships differ among tissues and conditions; (3) although miRNAs 

physically interact with mRNAs, ultimately miRNA regulation affects the quantities of proteins in cells rather 

than the quantities of mRNAs, so, the expression levels of miRNAs are not always anti-correlated with those 

of their target genes; (4) the genomic data are generally noisy and incomplete (Zhang et al., 2011). 

Therefore, the availability of miRNA and gene expression profiles from the same patient or cell line and 

miRNA-gene networks, provides an opportunity to discover and accurately characterize miRNA-gene 

regulatory relationships. 

Much of the current effort in miRNA studies is focused on the elucidation of their function. Typically miRNAs 

have been studied by using the gene profiling approach. Each miRNA has been studied for its single 

contribution to differential expression or to a compact predictive signature. Since one miRNA can regulate 

translation of tens or even hundreds of different mRNAs and in different ways, and a single mRNA can be 

regulated by more than one miRNA, as mentioned above, the effect of miRNAs on cell pathology and 

physiology is likely to be complex (Volinia et al., 2010). 

It should be noted that miRNA target prediction algorithms are prone to high degree of false positives and 

completely ignore the tissue- or disease-specific nature of miRNA-target interactions (Mestdagh et al., 2011), 

thus, miRNA-mRNAs paired expression profiles may improve the accuracy of sequence-based miRNA-target 

predictions. 

1.3.2 miRNA-mRNA integrated studies 

Several laboratories are now producing expression profiles of miRNA and mRNA on the same set of 

samples, providing a global view on the dynamics of miRNA-gene regulatory networks (Huang et al., 2007; 

Nunez-Iglesias et al., 2010; Su et al., 2010; Zhang et al., 2011). 



30 

 

Starting from genome-wide miRNA and gene expression data by microarray analysis and target prediction 

by many existing algorithms, it‟s possible to reconstruct functional post-transcriptional miRNA-gene 

networks, since miRNAs tend to down-regulate their target genes, the expression profile of miRNA-gene 

pairs are expected to be anti-correlated (Sales et al., 2010; Su et al., 2010; Su et al., 2011). 

A number of exploratory studies have attempted to decipher how miRNAs, genes and proteins interact on a 

system level. Zhang et al. applied an integrative approach of multiple types of genomic data (i.e., predicted 

miRNA-gene interactions, the miRNA and gene expression profiles, the gene-gene interaction networks) to 

identify miRNA-gene regulatory relationships in 368 human ovarian cancer samples (Zhang et al., 2011). 

Using a different procedure, Metsdagh et al. performed an integrative approach of miRNA and gene 

expression profiles, transcription target prediction and mechanistic models of gene network regulation in a 

total of 244 human samples belonging to 4 different data sets (normal adult tissues, neuroblastoma tumors, 

myeloma tumors and NCI-60 cancer cell lines) (Mestdagh et al., 2011). In another study, miRNA expression 

levels were integrated with aCGH (array-comparative genomic hybridization) and mRNA expression profiles 

in 26 tumor and corresponding normal lung tissue samples from highly asbestos-exposed and non-exposed 

patients, and on 8 control lung tissue samples (Nymark et al., 2011). An integrated approach applied to 

breast cancer revealed roles for miRNAs in 101 human primary breast cancer samples, identifying 

statistically significant differential expression of miRNAs that distinguish the reciprocal basal-like and luminal-

A breast cancer subtypes (Enerly et al., 2011). Elkan-Miller et al. identified functionally important miRNA-

target pairs in the mammalian inner ear through an in silico prediction model that integrates miRNA, mRNA 

and protein expression, since studying both the mRNA and protein levels provides the most informative view 

of miRNA regulation and their functional roles in particular tissues or organs (Elkan-Miller et al., 2011). 

Havelange et al. integrated miRNA and mRNA expression profiles obtained from 48 newly diagnosed AML 

(acute myeloid leukemia) patients by using microarray platforms, and performed correlation, gene ontology, 

and network analysis, and finally an experimental validation (Havelange et al., 2011a). 

In RCC field, Zhou et al., using massively parallel sequencing technology, analyzed the miRNA and gene 

expression profiles in tumor tissues and matched normal adjacent tissues obtained from 10 ccRCC patients 

without distant metastases. They found that a total of 404 miRNAs and 9,799 mRNAs were differentially 

expressed in tumors compared to normal tissues. They also identified 56 novel miRNA candidates in at least 

two samples. They confirmed that canonical cancer gene and miRNAs (e.g., VEGFA, miR-210) play pivotal 

roles in ccRCC development, and proposed novel candidates without previous annotation in ccRCC 

carcinogenesis (e.g. PNCK and miR-122). They also confirmed that pathways controlling cell fates (e.g., cell 

cycle, apoptosis) and cell communication (e.g., focal adhesion, ECM-receptor interaction) were disrupted in 

ccRCC. In addition, their results showed that the expression of a miRNA gene cluster located on Xq27.3 was 

consistently down-regulated in at least 76,7% of about 50 ccRCC patients (Zhou et al., 2010a). 

Taken together, these studies highlight the importance of using an integrative approach of multiple genomics 

data in different type of diseases, despite the fact that each study is conducted by a different method and 

different target prediction algorithms are used. 

In particular, in our study we integrated miRNA and gene expression profiles using a web-based tool namely 

MiRNA and Genes Integrated Analysis, MAGIA (Sales et al., 2010). MAGIA allows to perform an integrative 
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analysis of miRNA and gene expression data, and target predictions, facilitating the detection of functional 

miRNA-mRNA relationships. Target predictions are based on a number of different algorithms (miRanda, 

PITA, TargetScan), with the possibility of combining them with Boolean operators. Integrative analysis can 

be performed adopting different functional measures (i.e., parametric and non parametric correlation 

indexes, a variational Bayesian model, mutual information, and a meta-analysis approach based on p-value 

combination) of miRNA and mRNA expression data. Moreover, MAGIA constructs bipartite regulatory 

networks of the best miRNAs and mRNA putative interaction and retrieves data about genes, miRNAs and 

diseases available in public databases (Sales et al., 2010). For example, this type of integrative analysis of 

miRNA-mRNA expression and genome-wide copy number (CN) profiles has been applied to reconstruct a 

network of functional interactions occurring in multiple myeloma (MM), allowing the definition of specific 

patterns of miRNA expression that distinguish distinct subtypes of MM associated with distinct and well-

known genetic alterations, and the reconstruction of a general miRNA-mRNA regulatory network that 

represents the putative functional regulatory effects (as supported by expression data) of all of these 

miRNAs on their targets in MM (Lionetti et al., 2009). 
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2 AIM OF THE STUDY 

During my PhD fellowship work, I focused on ccRCC, which is the most common, invasive and metastatic 

subtype among kidney adult tumors. 

The present study aimed to identify the functional relationships and regulatory networks connecting genes 

and microRNAs potentially important for ccRCC tumorigenesis. To do this, three RCC cell lines, Caki-1, 

Caki-2 and A498, which are commonly used in functional studies for ccRCC, were analyzed for their 

genome-wide gene and miRNA expression profiles, using Affymetrix microarray technology. Two of them, 

Caki-1 and A498, are also included into the NCI-60 cancer cell line panel. These three tumor cell lines were 

compared to a normal tubular epithelial renal cell line (HK-2). Then, using an innovative statistical and 

bionformatical procedure, we combined and integrated gene and miRNA expression data in order to 

reconstruct miRNA-target post-transcriptional regulatory networks involved in RCC biology. 

This PhD thesis is structured in three major sections: 

Part I: High-throughput gene expression profiling. Assessment of VHL and HIF-1α mutational status in 

all the cell lines here used. Genome-wide analysis of gene expression profiles of RCC cell lines as compared 

to HK-2, using Affymetrix GeneChip
®
 Human Gene 1.0 ST Array. Statistical and bioinformatics procedures to 

calculate differentially expressed genes and to perform a pathway and functional enrichment analysis. An 

extensive literature mining search to find association between genes and RCC and cancer. 

Part II: High-throughput miRNA expression profiling. Genome-wide analysis of miRNA expression 

profiles by comparing RCC cell lines to HK-2, using Affymetrix GeneChip
®
 miRNA Array. Statistical and 

bioinformatics analysis to calculate differentially expressed miRNAs, followed by functional enrichment 

analysis. Selection of miRNAs resulting associated with RCC and cancer in previous published papers. 

Validation of miRNA expression levels by quantitative PCR (qPCR). 

Part III: Integrated analysis of miRNA and gene expression data. Statistical and bioinformatics analysis 

to carry out miRNA and gene expression profiles integration. Reconstruction of miRNA-target gene post-

transcriptional regulatory networks involved in RCC pathology. Selection of some miRNA-gene anti-

correlated pairs for qPCR validation. 
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3 PART I: HIGH-THROUGHPUT GENE EXPRESSION PROFILING 

3.1 Material and Methods 

3.1.1 Cell Lines 

Three established RCC cell lines were used as in vitro model for ccRCC pathology (Table 1). They all are of 

epithelial origin: Caki-1 was derived from the skin metastasis of a ccRCC; Caki-2 was established from the 

primary tumor that originated Caki-1; A498 was derived from a renal carcinoma. As normal control, we used 

HK-2 (CRL-2190) cell line, which is an immortalized proximal tubule epithelial cell line derived from a normal 

adult human kidney. Cell lines were purchased from American Type Culture Collection (ATCC, Manassas, 

VA, USA) and were cultured in our laboratory according to their corresponding ATCC datasheets. Two cell 

lines, Caki-1 and A498, are also included in the NCI-60 cell line collection 

(http://www.sanger.ac.uk/genetics/CGP/NCI60/). 

Cell Line ATCC No. Disease Gender Age 

Caki-1 HTB-46 Clear cell carcinoma (s) Male 49 

Caki-2 HTB-47 Clear cell carcinoma Male 69 

A498 HTB-44 Renal carcinoma Female 52 

Table 1. Description of the RCC cell lines used in these analyses. s, skin metastasis (site of origin for Caki-
1). 

3.1.2 Total RNA and DNA extraction 

Total RNA was extracted from RCC and normal cell lines using the miRNeasy extraction kit (Qiagen, Hilden, 

Germany), according to the manufacturer‟s instructions. After elution in RNase free-water, RNA samples 

were quantified by ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). RNA 

quality was checked by microcapillary electrophoresis on 2100 BioAnalyzer (Agilent Technologies, Santa 

Clara, CA, USA), using a RNA 6000 Nano LabChip kit, following the manufacturer‟s instructions. Thus, total 

RNA integrity was assessed on the basis of the RIN (RNA Integrity Number) factor. The RIN is generated for 

each sample across a ten point scale: samples with a RIN ≥ 7 have a good quality, lower values indicate 

partial or complete RNA degradation. The 28S/18S rRNA ratio and an estimated concentration are also 

provided, and presence of low molecular weight RNA molecules (including 5S rRNA and small RNAs) was 

verified. RNA samples were stored at -80°C until use. 

Genomic DNA was extracted from the RCC and normal cell lines using the standard phenol-chloroform 

procedure, eluted in TE buffer and quantified by ND-1000 spectrophotometer (NanoDrop Technologies). 

DNA samples were stored at -20°C until use. 

3.1.3 Assessment of VHL and HIF status 

In order to perform a VHL mutation screening by direct Sanger sequencing, the three exons of this gene 

were entirely amplified by PCR. Exon 2 was amplified according to Matsuda (Matsuda et al., 2008), but 

adapting the procedure to Platinum Pfx DNA Polymerase and using 10 ng of genomic DNA per sample. 

Exon 1 and exon 3 were amplified by PCR in a total volume of 25 µl containing: 20 ng of genomic DNA, 1x 

http://www.sanger.ac.uk/genetics/CGP/NCI60/
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PCR buffer (Roche Diagnostics, Germany), 0.3 mM each dNTP (Roche), 1 mM MgCl2 (Roche), 1U FastStart 

Taq DNA Polymerase (Roche), 0.3 µM Primer Forward, 0.3 µM Primer Reverse. Thermal program includes: 

95°C for 4 min, followed by 35 cycles of 95°C for 30 sec, 63.5°C for 30 sec (56°C for exon 3), and 72°C for 

45 sec, with a final extension of 72°C for 7 min. After PCR, amplification products were checked out by 2% 

agarose gel electrophoresis. Sequencing reactions were performed using the BigDye
®
 Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems, Life Technologies, Carlsbad, CA, USA), on a DNA Sequencer ABI 

3130XL instrument (Applied Biosystems), following the manufacturer‟s instructions. Then, the 

electropherograms were visualized by use of Chromas free software v. 1.45 

(http://www.technelysium.com.au/chromas.html), and nucleotide variations were sought out taking into 

reference the VHL sequence annotated in Ensembl database 

(http://www.ensembl.org/Homo_sapiens/Transcript/Exons?db=core;g=ENSG00000134086;r=3:10182692-

10193904;t=ENST00000256474). The sequence of primers used in both PCR and sequencing reactions are 

reported in Table 2. 

PRIMER SEQUENCE 

Ex_1F 5‟ AGCGCGTTCCATCCTCTAC 3‟ 

Ex_1R 5‟ GTCACCCTGGATGTGTCCTG 3‟ 

Ex_2F 5' CTTTAACAACCTTTGCTTGTCCCGATA 3' 

Ex_2R 5' GTCTATCCTGTACTTACCACAACAACCT 3' 

Ex_3F 5‟ GCAAAGCCTCTTGTTCGTTC 3‟ 

Ex_3R 5‟ CCGCTACGGATGTAGAATGG 3‟ 

Table 2. Primers used in PCR and sequencing reactions. 

To assess HIF-1α protein expression, western blot analysis was carried out. For one-dimensional 

electrophoresis (1-DE) western blotting, 30 µg of protein lysates, obtained from renal cell lines, quantified 

with a Bio-Rad microassay (Hercules, CA), were separated on 10% SDS-PAGE and on NuPage 4 to 12% 

Bis-Tris pre-cast gels using MOPS SDS running buffer (Invitrogen), with described conditions (Perego et al., 

2005). 1-DE gel was blotted onto a nitrocellulose membrane that was stained with Ponceau S (Sigma- 

Aldrich) to check transferred proteins. The membrane was incubated for two hours with a mouse monoclonal 

antibody against HIF-1α (dilution 1:500, clone 54, BD Transduction Laboratories, Lexington, KY) and against 

α-actin (dilution 1:1000, Sigma-Aldrich). The detection was performed by one-hour incubation at room 

temperature with a secondary antibody coupled with horseradish peroxidase and SuperSignal West Dura 

Detection System (Pierce, Rockford, IL). Densitometric analysis was performed using a GS-710 imaging 

densitometer equipped with Quantity One Software (Bio-Rad). 

3.1.4 High-throughput gene expression analysis 

3.1.4.1 Target sample preparation for microarray gene expression analysis 

In order to perform a differential gene expression analysis by comparing the three RCC cell lines to HK-2, we 

assessed gene expression levels in tumor and normal cell lines by use of Affymetrix microarray technology. 

For each sample, three technical replicates were prepared and hybridized onto the GeneChip
®
 Human Gene 

1.0 ST Array (Affymetrix, Santa Clara, CA, USA), which measures gene expression levels of 19,973 well-

annotated genes, using a single probe set per gene comprised of multiple probes distributed along the entire 

http://www.technelysium.com.au/chromas.html
http://www.ensembl.org/Homo_sapiens/Transcript/Exons?db=core;g=ENSG00000134086;r=3:10182692-10193904;t=ENST00000256474
http://www.ensembl.org/Homo_sapiens/Transcript/Exons?db=core;g=ENSG00000134086;r=3:10182692-10193904;t=ENST00000256474


37 

 

length of the genomic locus, thus offering a whole-transcript coverage. The array contains 764,885 distinct 

probes, with a mean of 28 probes per gene, and all probe sets are perfect match (PM) only. Gene 1.0 ST 

Array probe design is based on the March 2006 human genome sequence assembly (UCSC hg18, NCBI 

Build 36). This platform provides more than 99% coverage of sequences present in the RefSeq database 

(November, 2006; http://www.ncbi.nlm.nih.gov/RefSeq/). Starting from 100 ng of total RNA per sample, 

labelled targets were prepared using Ambion
®
 Whole Transcript (WT) Expression Kit (Applied Biosystems, 

Life Technologies) and GeneChip
®
 WT Terminal Labeling and Controls Kit (Affymetrix), following 

manufacturers‟ instructions. 

Briefly, as illustrated in Figure 9, total RNA is primed with synthetic primers containing a T7 promoter 

sequence and reverse transcribed into first-strand cDNA. Afterwards, the single-stranded cDNA is converted 

into double-stranded cDNA, using DNA Polymerase and RNase H to simultaneously synthesize second-

strand cDNA and degrade the original RNA. The in vitro transcription (IVT) reaction is then performed to 

synthesize and amplify the antisense cRNA. Next, the cRNA is purified and measured for yield and size 

distribution. 10 µg of cRNA are reverse transcribed using random primers, to synthesize second-cycle cDNA. 

The cRNA template is degradated by RNase H to leave a single-stranded cDNA, that is ,purified and 

assessed for size distribution. Lastly, 5.5 µg of cDNA is fragmented, biotin terminally labeled, and hybridized 

for 16 hours at 45°C onto Gene 1.0 ST Array. The array is then washed and stained using the Affymetrix 

Fluidics Station FS-450. Fluorescent images of each array are acquired using Affymetrix GeneChip
®
 

Scanner 3000 7G and analyzed using GeneChip
®
 Operating Software (GCOS). 

 

Figure 9. Affymetrix whole transcript target preparation for hybridization onto GeneChip
®
 Human Gene 1.0 

ST Array. 

http://www.ncbi.nlm.nih.gov/RefSeq/
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3.1.4.2 Differential gene expression analysis 

Custom definition file (CDF) from M. Dai (v. 12.1.0, 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp) was 

used to annotate the 19,973 genes interrogated by GeneChip
®
 Gene 1.0 ST Array. RMA (Robust Multi-array 

Average, Irizarry et al., 2003) procedure was used to quantify, normalize and summarize probe intensity 

levels, thus obtaining an expression raw data matrix. Array data quality control was conducted using 

Affymetrix Expression Console (V 1.2). Differential gene expression analysis was performed comparing each 

RCC cell line to normal HK-2 cell line and using the Rank Product (RP) statistical algorithm to identify 

differential expressed genes (DEGs) in each pairwise comparison, setting the p-value threshold at 0.1. RP 

was chosen since the groups to be compared have a small size (three replicates each). All calculations were 

performed in R environment using several Bioconductor packages (Gentleman et al., 2004; R Development 

Core Team, 2009). 

3.1.4.3 Bioinformatics and functional enrichment analysis 

To investigate the biological role of DEGs found in each pairwise comparison, functional enrichment analysis 

was carried out using the Database for Annotation, Visualization and Integrated Discovery (DAVID, v 6.7, 

http://david.abcc.ncifcrf.gov/, Huang et al., 2009), in order to identify functional pathways enriched in DEGs. 

DAVID was also used to perform enrichment analysis of Gene Ontology (GO) molecular function (MF) and 

biological processes (BP) terms, with a p-value ≤ 0.001. Furthermore, we intersected the DEGs found in 

each comparison with the gene lists of a series of interesting pathways retrieved by KEGG database 

(http://www.genome.jp/kegg/pathway.html), such as Apoptosis (KEGG code: hsa04210, including 86 genes), 

Cell Cycle (hsa04110, 128 genes), RCC (hsa05211, 70 genes), VEGF (hsa04370, 76 genes), mTOR 

(hsa04150, 52 genes), and Immune System (including 785 genes and manually composed by combining 13 

lists of genes related to immune system, to avoid gene redundancy). Additionally, we intersected the DEGs 

with a list of angiogenesis-related genes, which we generated by selecting a total of 127 genes from the 

following BioCarta pathways: Akt, MAPKinase, Wnt, NF-kB Signaling Pathways and VEGF, Hypoxia and 

Angiogenesis Pathway (http://www.biocarta.com/genes/index.asp). In the same way, we also used a list of 

154 genes associated to VHL and HIF pathways (by PID, Pathway Interaction Database, 

http://pid.nci.nih.gov/, Table 1 Appendix), which we obtained by combining 2 lists of genes related to VHL 

and HIF pathways, to avoid gene redundancy. 

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://david.abcc.ncifcrf.gov/
http://www.genome.jp/kegg/pathway.html
http://www.biocarta.com/genes/index.asp
http://pid.nci.nih.gov/
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3.2 Results 

3.2.1 Assessment of VHL and HIF status 

By direct Sanger sequencing of the three VHL exons in RCC and HK-2 cell lines, we found that A498 

harbours a frameshift mutation (p.G144fs*14) on exon 2, which creates a stop codon replacing the lysine at 

position 159. Caki-2 shows a transversion from A to T (p.R177*) on exon 3, which introduces a premature 

stop codon, resulting in absence of the last 36 aminoacids of the tumor suppression region of VHL protein. 

Caki-1 and HK-2 cell lines have a wild-type gene. Additionally, we found the hemizygous (one copy) loss of 

chromosomal arm 3p in all the three RCC cell lines by Affymetrix 250K SNP Array analysis (data not shown). 

Western blot analysis showed a high abundance of HIF-1α protein in Caki-1 and Caki-2 compared to HK-2. 

Conversely, HIF-1α protein was expressed at low level in A498 cell line (Figure 10). 

 

Figure 10. Western blot analysis of HIF-1α protein expression in HK-2, Caki-1, Caki-2 and A498 cell lines. 

3.2.2 High-throughput gene expression analysis 

We performed a differential gene expression profiling by comparing each RCC cell line to the normal HK-2 

cells, using Affymetrix GeneChip
®
 Human Gene 1.0 ST Array platform. Using RP algorithm, we identified the 

DEG lists for each pairwise comparison. 

3.2.2.1 Differential gene profiling of Caki-1 vs HK-2 

We found a total of 1,954 DEGs (1,003 up- and 951 down-regulated genes) in Caki-1 as compared to HK-2. 

DAVID functional enrichment analysis evidenced DEGs related to relevant pathways, such as p53 signaling 

pathway (15 genes, e.g. BID, TP53, ATR, ATM, MDM2, FAS), metabolic pathways (25 genes, e.g. ARG2, 

ALDH2, GSTM1) and ECM-receptor interaction pathway (17 genes, e.g. ITGA1, ITGA6, THBS2, SDC2). 

Enrichment analysis on GO Molecular Function terms highlighted that binding and enzymatic activities 

involved many up-regulated (e.g. ATM, ATR, RAP1B, CHUK, RAD50, RPS6KB1, ABCC2, KRAS, FER, 

HELZ, MYSM1, SMARCA1, APC, MET) and down-regulated genes (e.g. MT1F, MT1M, PIGU, PIGT, 

GPAA1) (Figure 11). In particular, regarding enriched GO Biological Process terms, there was an overall up-

regulation of genes involved in cell cycle process (e.g. BRCA2, CDC27, ERCC5, STAG1, CASP3, SOD2, 

XRCC4, NUF2, CENPF, UGP2, SKA2, NT5E), while many down-regulated genes were associated to the 

nucleosome assembly processes within the cell and response to different stimula (e.g. H2AFX, ASF1B, GAL, 

TGFB1, CCND2, SERPINA1, ARSA, TP53, CD74, EGR2 and several members of the histone family) 

(Figure 1 Appendix). 
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Figure 11. Caki-1 vs HK-2: DAVID enrichment analysis on GO Molecular Function terms for the 951 down-
regulated genes (panel A) and the 1003 up-regulated genes (panel B). On the X-axis, the log(p-value) of 
DAVID enrichment test is reported. 

3.2.2.2 Differential gene profiling of Caki-2 vs HK-2 

We found 1,958 DEGs (1,007 up- and 951 down-regulated genes) in Caki-2 as compared to HK-2. By 

DAVID functional enrichment analysis, we observed the involvement of several DEGs in relevant pathways, 

such as p53 signaling pathway (16 genes, e.g. CCND2, PERP, GADD45A, ATM, MDM2, FAS), leucocyte 

transendothelial migration (22 genes, e.g. ICAM-1, VCAM1, ROCK1, JAM3, ITGB1) and glutathione 

metabolism (11 genes, e.g. GSTM1, GSTM3, IDH2, GSTP1). DAVID enrichment analysis on GO Molecular 

Function terms showed that many DEGs, both up-regulated (e.g. IFIH1, HELB, ACSL3, UBE2Q2, RPS6KB1, 

RAB1A, ATR, ROCK2, LARS, UGDH, SUCLA2, MTIF2, RND3, MFN1) and down-regulated (e.g. MMP9, 

DCN, SPARC, THBS1, CYR61, and several members of the metallothionein family), were involved in binding 

and enzymatic activities (Figure 12). By characterizing DEGs also in terms of GO Biological Processes, we 

noted that many up-regulated genes were related to centrosome organization and response to DNA damage 

(e.g. BRCA1, GADD45A, CETN3, TUBE1, HAUS6, UGP2, XRCC4, APC, RIF1, SSB, CWC22), while down-

regulated genes were involved in growth regulation and cell assembly processes (e.g. ENPP1, GREM1, 

TGFB2, CDKN2A, IDH3G, LUM, ERCC2, and several members of the histone family) (Figure 2 Appendix). 
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Figure 12. Caki-2 vs HK-2: DAVID enrichment analysis on GO Molecular Function terms for the 951 down-
regulated genes (panel A) and the 1007 up-regulated genes (panel B). On the X-axis, the log(p-value) of 
DAVID enrichment test is reported. 

3.2.2.3 Differential gene profiling of A498 vs HK-2 

By comparing A498 cell line to HK-2, we obtained a total of 1,968 DEGs (997 up- and 971 down-regulated 

genes). DAVID functional enrichment analysis showed some enriched pathways, such as p53 signaling 

pathway (15 genes, e.g. BID, ATR, CASP9, IGFB3, MDM2, APAF1, FAS), ubiquitin mediated proteolysis (23 

genes, e.g. UBE2A, HERC4, CDC27, RBX1, CUL2, MDM2), oxidative phosphorylation (22 genes, e.g. 

NDUFA5, NDUFA2, NDUFB9, ATP6AP1, UQCRQ, COX5B), leukocyte transendothelial migration (20 genes, 

e.g. CLDN16, ICAM-1, GNAI1, PTPN11, PIK3R3, VCAM1, ITGB1, RAP1B, JAM2). By enrichment analysis 

on GO Molecular Function terms, we observed that many up-regulated genes were associated to binding 

and enzymatic activities (e.g. KRAS, EPHA7, AGPS, NPR2, MAPK6, FER, APAF1, CHUK, SMC2, SMC3, 

RPS6KB1, ATM, TRPM7, ZAK, GNAQ, IREB2, USP7, MYSM1), while many down-regulated genes were 

involved in transport activities (e.g. ATP1A3, SLC9A1, XRCC1, JUNB, TFDP2, E2F1, PPARD, SNAI1, 

GSTM1, FNTB, GSTT1) (Figure 13). By characterizing DEGs also in terms of GO Biological Processes, we 

found that many up-regulated genes were involved in cell cycle and response to stress and DNA damage 

(e.g. PHAX, FGF2, CAV2, MITD1, UPF2, CSTF3, CDC27, SKA2, DOCK2, RANBP2, MDM2, XRCC4, 

RRM2B, ERCC4, BRCA1, BRCA2, ATR, ATM) and down-regulated genes were implicated in cell assembly 

processes, such as protein-DNA complex, chromatin and nucleosome assembly (e.g. GTF2A2, ASF1B, 

CENPV, SUV39H1, HDAC8, and several members of the histone family) (Figure 3 Appendix). 
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Figure 13. A498 vs HK-2: DAVID enrichment analysis on GO Molecular Function terms for the 971 down-
regulated genes (panel A) and the 997 up-regulated genes (panel B). On the X-axis, the log(p-value) of 
DAVID enrichment test is reported. 

 



43 

 

Using different pathway databases, such as BioCarta, KEGG and PID, we observed that many DEGs found 

in these differential analyses were related to pathways tipically correlated to cancer and RCC pathology, and 

some were in common among the three comparisons, as reported in Table 3. 

Table 3. DEGs related to typical cancer pathways found for each comparison (with respect to HK-2). Down-
regulated genes are in green, up-regulated genes are in red, genes found in common in at least two 
analyses are underlined. Genes validated in qPCR are in bold. 

 Caki-1 Caki-2 A498 

Angiogenesis 

TGFB2, MAPK13, TGFB1, 

MKNK2, MAP3K9, CHUK, 

MAP2K6, MAPK6, PIK3CA, 

RPS6KB1 

MAPK13, TGFB2, RPS6KB1, 

MAPK6, PIK3CA, MAP2K6 

CASP9, CHUK, RPS6KB1, 

MAPK6 

Apoptosis 

PIK3R3, TNFSF10, BID, TP53, 

AKT2, CASP3, PRKAR1A, CHUK, 

FAS, PIK3CA, BIRC2, IL1A, ATM 

TNFSF10, IRAK3, PIK3R3, BID, 

IL1R1, MYD88, BIRC2, PRKAR2B, 

TNFRSF10A, FAS, PIK3CA, ATM, 

BIRC3 

IRAK3, TNFSF10, AKT2, BID, 

PIK3R3, CASP9, CASP3, CHUK, 

APAF1, FAS, ATM, BIRC3 

Cell Cycle 

CCND2, CDKN2A, TGFB2, 

SMC1B, TGFB1, RBX1, SFN, 

TP53, MAD2L2, CCND3, CDC27, 

MDM2, STAG2, SMC3, STAG1, 

ATR, ATM 

CCND2, CDKN2A, TGFB2, 

GADD45B, CDC27, ATR, STAG2, 

SMC3, STAG1, GADD45A, MDM2, 

ATM 

CDKN2A, SFN, CDKN2C, SMC1B, 

MAD2L2, RBX1, E2F1, CDC20, 

CDC25B, TFDP2, ORC4L, ATR, 

CDC27, SMC3, GADD45A, MDM2, 

ATM 

RCC 
TGFB2, PIK3R3, TGFB1, RBX1, 

AKT2, PDGFB, MET, KRAS, 

PTPN11, PIK3CA, RAP1B, CUL2 

PAK3, EPAS1, PIK3R3, TGFB2, 

CUL2, PIK3CA, RAP1B 

AKT2, RBX1, EGLN3, PIK3R3, 

CUL2, KRAS, PTPN11, RAP1B 

VEGF 
MAPK13, PIK3R3, HSPB1, AKT2, 

RAC2, KRAS, PIK3CA, PLA2G4A 

RAC2, PIK3R3, MAPK13, HSPB1, 

SH2D2A, PIK3CA 

AKT2, RAC2, PIK3R3, CASP9, 

PLA2G4A, KRAS 

VHL-HIF 
CITED2, PDGFB, NPM1, ABCG2, 

MDM2, GRB10, SOD2, ROCK1, 

YES1, CP, TFRC, ATM, FER 

HMOX1, CD2AP, ROCK1, 

GADD45A, GRB10, FER, MDM2, 

ABCG2, TFRC, ATM, CP 

IGFBP3, YES1, GADD45A, 

ROCK1, GRB10, MDM2, FER, 

ATM 

mTOR 
PIK3R3, AKT2, PRKAA1, PIK3CA, 

RPS6KB1 

PIK3R3, RPS6KB1, PIK3CA AKT2, PIK3R3, PRKAA1, 

RPS6KB1 

Immune 

System 

IFITM1, SERPINA1, CLDN4, IFI30, 

JAM2, HLA-DMB, ICAM-1, LGMN, 

MAPK13, HSPA2, PRKCZ, F3, 

JAM3, PIK3R3, MYL9, CCL28, 

CD74, GNG5, TNFSF10, CBLB, 

TAPBP, BID, PROS1, ARRB2, 

GSK3A, PIN1, HLA-DMA, 

CXCL16, LAT, PRKCD, WASF2, 

GNG7, AKT2, PSME1, ULBP2, 

GNG11, RAC2, JAK3, CASP3, 

LYN, GNAI3, JAK2, CHUK, FGB, 

MAP2K6, GNAI1, ITGA6, 

SERPINE1, TLR1, FAS, IFNE, 

KRAS, CARD11, CXCL2, PTPN11, 

ROCK1, DNM1L, ITGB1, TLR3, 

PIK3CA, BIRC2, RAP1B, CTSS, 

TLR4, DOCK2, HSPA4, MYO10, 

ITGA1, ROCK2, PLA2G4A, TBK1, 

NFYB, TFRC, IL7R, TFPI, SUGT1, 

DDX3X, RPS6KB1, HLA-DPA1, 

ITGA4, IL1A, CASP1, TLR6, CD9, 

C1S, CXCL5, CXCL1, ANPEP, 

SCIN, BIRC3, VCAM1, CXCL6 

C3, CLDN11, PAK3, F3, CXCL16, 

PIN1, CBLB, ARRB2, VCAM1, 

SHC3, GNG7, CXCL2, TNFSF10, 

IFITM1, SERPINA1, ICAM-1, 

CLDN2, MYL9, PLAU, GNG4, JAM2, 

IL8, RAC2, PIK3R3, JAM3, CD74, 

MAPK13, SERPINE1, BID, IL1R1, 

CFB, LGMN, HLA-DMB, ACTN1, 

GNG5, SIPA1, HLA-DMA, F11R, 

GNG10, CFH, PIP5K1C, GNG11, 

MMP9, PROS1, PRKCZ, MYD88, 

GNB2, DNM1L, IFNGR1, SUGT1, 

BIRC2, ROCK1, HSPA4, ITGB1, 

TIAM2, LY96, RAPGEF3, 

TNFRSF10A, ITGA1, KITLG, 

RPS6KB1, PLCB1, NFYB, FAS, 

IFIH1, PIK3CA, ROCK2, DDX3X, 

MYO10, GNAI1, MAP2K6, ITGA2, 

TFRC, TLR6, CCL5, ITGA6, TBK1, 

RAP1B, SYK, PREX1, PLA2G4A, 

TLR4, SCIN, BIRC3, CD9, CLDN16, 

DDX3Y 

HSPA1A, IFITM1, ICAM-1, 

CLDN4, CLDN2, GNG4, IFI30, 

TNFSF10, SERPINA1, ARRB1, 

MYL9, HLA-A, F2R, HSPA2, 

GSK3A, HSPA1B, JAM2, PIN1, 

GNG5, F3, LGMN, AKT2, BID, 

WASF2, CX3CL1, CLDN11, RAC2, 

JAK3, PIK3R3, CFH, MICB, 

CASP3, NLRP3, ITGB1, SUGT1, 

PIKFYVE, IFIH1, HLA-DPB1, 

HSPA4, CHUK, PLCB4, CXCL1, 

CASP1, ITGA2, RPS6KB1, FAS, 

TFPI, PLA2G4A, RAPGEF3, 

DDX3X, DNM1L, KRAS, ROCK1, 

PTPN11, PIK3AP1, TLR3, 

CARD11, GNAI1, OCLN, TLR4, 

PLCB1, TBK1, ITGA6, DOCK2, 

ROCK2, ITGA1, VCAM1, NFYB, 

BIRC3, RAP1B, HLA-DPA1, 

ITGA4, THY1, CD9, SCIN, 

CLDN16 
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By intersecting the three lists of DEGs obtained comparing each RCC cell line to HK-2, we found a total of 

790 common DEGs. Among them, 779 were also concordant in their differential expression direction, 

including 413 up- and 366 down-regulated genes. In particular, as illustrated in the Venn diagram (Figure 

14), Caki-1 has a total of 1,095 DEGs in common with Caki-2, whose 1,082 are concordant (551 up- and 531 

down-regulated genes), and 1,148 DEGs in common with A498 (1,136 are concordant, 592 up- and 544 

down-regulated genes); while Caki-2 and A498 have a total of 1,041 DEGs in common, whose 1,020 are 

concordant (532 up- and 488 down-regulated genes). More specifically, we found 501 genes that are 

modulated only in Caki-1, whose 265 are up- and 236 are down-regulated genes; while 305 genes are 

shared with Caki-2, whose 136 are up-, 161 are down-regulated and 8 modulated in different way in these 

two cell lines. Instead, Caki-1 and A498 shared 358 genes, whose 178 are up-, 177 are down-regulated and 

3 modulated in different way. Finally, Caki-2 and A498 have 251 genes in common, whose 118 are up-, 120 

down-regulated and 13 modulated in different way in these two cell lines. There were 612 genes modulated 

only in Caki-2 (322 up- and 290 down-regulated genes) and 569 genes modulated only in A498 (278 up- and 

291 down-regulated genes). In particular, we carried out an extensive data mining focusing the investigation 

to those modulated genes associated to ccRCC pathology and to cancer. 

 

Figure 14. Venn diagram representing the intersection among the DEG lists obtained from the three 
comparisons. 



45 

 

3.3 Discussion 

In this section, we performed a genome-wide differential gene expression analysis using Affymetrix 

microarray technology, which is able to simultaneously investigate about 19,973 well-known genes. To do 

this, we used three RCC cell lines as in vitro model of RCC pathology, i.e. Caki-1, Caki-2 and A498, and we 

compared the gene profiles of these cell lines to that of a normal one, HK-2 (human kidney 2), which was 

chosen since being a proximal tubular cell line derived from a normal adult kidney (Ryan et al., 1994). 

First of all, we characterized the VHL mutational status in all these cell lines by direct sequencing. We found 

that both Caki-2 and A498 cell lines had a VHL
-/-

 status, while Caki-1 had a wild-type gene. Mutations found 

in Caki-2 and A498 affected the tumor suppression region of the VHL protein, and particularly in Caki-2 also 

the region necessary to bind Elongin C (Richards, 2001). In this way, we confirmed literature data about VHL 

mutations in A498 and Caki-2 cell lines (Whaley et al., 1994); although most literature about Caki-2 reports a 

wild-type VHL status. We also assessed the HIF expression by western blot and we found a high level of 

HIF-1α protein in Caki-1 and Caki-2, and a low level in A498. Our results demonstrated the agreement 

between a mutated VHL status and the high HIF-1α protein expression level in Caki-2 cell line. Whereas, in 

A498 and Caki-1, which resulted VHL-/- and wild type cell lines, respectively, we found a high and a low 

expression level, respectively, of HIF-1α protein, which could be the result of an oxygen/pVHL-independent 

regulation (Baldewijns et al., 2010). In fact, recent evidences suggested that HIF-1α degradation may also be 

regulated in an oxygen/prolyl hydroxylases/pVHL/independent manner by HSP90 (heat shock protein 90). 

The role of this protein is to protect proteins from misfolding and degradation through its ATPase activity. 

HSP90 binds and stabilizes HIF-1α by excluding RACK1 (receptor for activated C-kinase 1), which can 

promote proteasome-dependent degradation of HIF-1α. Another possible way to degradate HIF-1α in an 

oxygen-independent manner can be through the hypoxia-associated factor (HAF), which is an E3 ubiquitin 

ligase for HIF-1α. In addition to being activated during hypoxia or in the absence of VHL, HIF-1α can be 

activated by interaction with reactive oxygen species (ROS), probably inhibiting prolyl hydroxylases (PHDs) 

hydroxylation. Possible mechanisms include direct inhibition of the PHDs or effects of ROS on the levels of 

ascorbate, iron, or Krebs cycle intermediates (Baldewijns et al., 2010). 

As reported in Catalogue Of Somatic Mutations In Cancer (COSMIC, 

http://www.sanger.ac.uk/genetics/CGP/CellLines/), which collects somatic mutation information and related 

details and contains information concerning human cancers, Caki-1 and A498 cell lines also carried 

mutations in CDKN2A (cyclin-dependent kinase inhibitor 2A) gene, and A498 also resulted mutated in 

SETD2 (SET domain containing 2) gene, while Caki-2 cell line is not included in this database. 

In our laboratory, we performed the genome-wide analysis of DNA copy number alterations (CNAs) of these 

RCC cell lines, using the Affymetrix GeneChip
®
 Human Mapping 250K SNP Array platform (data not shown). 

We detected CNAs on all chromosomes, except the chr 2 and 12. Among them, five chromosomes showed 

regions of both DNA gain and loss (chr 1, 3, 11, 17 and 18), while the remaining chromosomes had regions 

of either CN gain (chr 4, 5, 7, 8, 10 and 16) or CN loss (chr 6, 9, 13, 14, 15, 19, 20, 21 and 22). The Caki-2 

showed CNAs on all autosomes, covering either whole chromosomes (chr 17 and 20) or one chromosomal 

arm (chr 2p+, 3p-, 6p+, 7p+, 9p-, 10p+, 11q-, 13q-, 16p+, 18q-, 19q+, 21q+ and 22q+). Six chromosomes 

showed long regions of CNN-LOH (copy number neutral-loss of heterozygosity) (chr 4, 8, 9, 11 and 14), 

http://www.sanger.ac.uk/genetics/CGP/CellLines/
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while on chr 8 we found a LOH associated with a CN gain status, where the major allele was duplicated 

twice and the minor allele was lost. Finally, in the A498 cell line only two chromosomes (chr 4 and 10) 

showed no alterations in DNA copy number status, while the whole chr 12 showed only CNN-LOH. The other 

chromosomes had either deletions (chr 1p, 3p, 6 p, 6q, 8p, 11q, 14q, 18p, 18q and 20p) or amplifications 

(chr 1q, 2p, 2q, 5p, 7 p, 7q, 8q, 9p, 9q, 11p, 16p, 16q, 17p, 17q, 19q, 20p, 20q and 21q). Many of these 

alterations were in agreement with previously published SKY karyotype (Roschke et al., 2003). Our results 

demonstrated that these cell lines had a very complex karyotype. Many studies focused on amplified and 

over-expressed genes and calculated that a fraction ranging from 44% to 62% of amplified genes showed 

concomitant up-regulated expression levels (Bicciato et al., 2009; Hyman et al., 2002). This suggests the 

presence of an aneuploidy-induced deregulation of the cancer transcriptome that occurs in addition to the 

transcriptional and post-transcriptional deregulation of oncogenes and tumor suppressor genes. 

Gene expression profiling was performed by comparing the three RCC cell lines to HK-2. The list of the top 

50 down- and up-regulated genes are reported in supplementary tables (Tables 2-3-4 Appendix). 

DEG functional annotation analysis revealed a general activation of genes mostly belonging to p53 signaling 

pathway and extracellular matrix-interaction classes, and inactivation of genes principally involved in 

metabolic pathways. In particular, among down-regulated genes, we found genes involved in lipid pathways, 

carboxylic acid biosynthetic processes, macromolecular complex assembly and nucleosome assembly. As 

recently reported, the down-regulation of these pathways is symptom of the loss of a normal renal function 

(Tun et al., 2010). Some up-regulated genes found in Caki-1 are involved in cell cycle and DNA repair 

processes. In particular, there are many genes known to be involved in p53 signaling and apoptosis 

pathways, such as ATM, MDM2, FAS, ATR, SERPINE1, CASP3, BIRC2. 

An intriguing down-regulated gene, found in all three cell lines as compared to HK-2, is Gremlin1 (GREM1). 

According to literature (van Vlodrop et al., 2010), it was already found down-regulated in several tumor cell 

lines (such as neuroblastoma, fibrosarcoma, colon adenocarcinoma, breast carcinoma), suggesting a tumor 

suppressor function. GREM1, a bone morphogenetic protein antagonist and putative angiogenesis-

modulating gene, it‟s a secreted glycoprotein that binds and antagonizes bone morphogenetic proteins 

(BMPs) 2, 4, and 7, thereby preventing the ability of these ligands to interact with their receptors and 

resulting in inhibition of downstream TGF-signaling. BMPs have multiple functions in many cell and tissue 

types including angiogenesis, proliferation, apoptosis, differentiation, chemotaxis and extracellular matrix 

production during development as well as in adult life. Epigenetic silencing of GREM1 by promoter CpG 

island methylation occurs in ccRCC cell lines, thus, during tumor progression, cumulative genetic/epigenetic 

events can activate additional angiogenic growth factors, resulting in an increased tumor driven 

angiogenesis. However, the role of GREM1 in renal cancer pathogenesis and the mechanisms by which 

GREM1 gene expression is regulated remain mostly unknown. 

Another interesting gene is Arginase 2 (ARG2), which is down-regulated in our RCC cell lines compared to 

HK-2. Arginase, which catalyzes the conversion of arginine to urea and ornithine, exists in two distinct 

isoforms. Arginase I is expressed almost exclusively in the liver where it serves as an essential enzyme of 

the urea cycle. In contrast, arginase II is expressed in the kidney and many other extrahepatic tissues (Gotoh 

et al., 1996; Miyanaka et al., 1998). Although its functions have not been well documented, ARG2 has been 

recognized to participate in the regulation of nitric oxide synthase (NOS) (Jansen et al., 1992). In the kidney, 
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ARG2 is distributed in the proximal tubules (Miyanaka et al., 1998), and metabolizes most of the arginine 

here present (Jansen et al., 1992). Interestingly, current consensus is that ARG2 plays also a role in blocking 

apoptosis as well (Esch et al., 1998; Estévez et al., 2006; Gotoh and Mori, 1999). 

Moreover, we found that many dysregulated genes are involved in the protein ubiquitination pathway, which 

is very important for the hypoxia process. Among them, we highlighted the up-regulation of CUL2 in RCC cell 

lines here analyzed, necessary to pVHL for HIF-1α proteasomal degradation (Cohen and McGovern, 2005), 

and many ubiquitin specific peptidases and heat shock proteins. Additionally, other genes are involved in 

NRF2-mediated oxidative stress response, such as members of aldo-keto reductase family, some 

glutathione S-transferases, phosphoinositide-3-kinases and superoxide dismutases. Oxidative stress is 

involved in many diseases and caused by an imbalance between the production of reactive oxygen species 

(ROS) and the detoxification of reactive intermediates. Oxidative stress has been hypothesized to play a role 

also in aging and age-related disorders, including essential hypertension. ROS intermediates such as 

peroxides and free radicals, can be very damaging for many cell components such as proteins, lipids and 

DNA. Severe oxidative stress can trigger apoptosis and necrosis. ROS can interfere with protein regulation, 

including the activity of renal transporters. The cellular defense response to oxidative stress includes 

induction of detoxifying enzymes and antioxidant enzymes. Nuclear factor-erythroid 2-related factor 2 (Nrf2) 

binds to the antioxidant response elements (ARE) within the promoter of these enzymes and activates their 

transcription. Inactive Nrf2 is retained in the cytoplasm by association with an actin-binding protein Keap1. 

Upon exposure of cells to oxidative stress, Nrf2 is phosphorylated in response to the protein kinase C, 

phosphatidylinositol 3-kinase and MAP kinase pathways. After phosphorylation, Nrf2 translocates to the 

nucleus, binds AREs and transactivates detoxifying enzymes and antioxidant enzymes, such as glutathione 

S-transferase, cytochrome P450, NAD(P)H quinone oxidoreductase, heme oxygenase and superoxide 

dismutase. The mitochondrial superoxide dismutase 2 (SOD2), that was found up-regulated in Caki-1 by our 

analysis, is a member of the iron/manganese superoxide dismutase family and binds to the superoxide 

byproducts of oxidative phosphorylation converting them to hydrogen peroxide (H2O2) and diatomic oxygen. 

H2O2 previously produced is converted to water and molecular oxygen by a catalase, which uses reduced 

glutathione as the hydrogen donor. Increased levels of ROS in cells and tissues may act as a signal to 

enhance the activity and expression of antioxidant enzymes. According to this hypothesis, an increase in 

antioxidant enzymes activity and/or expression with age would be expected, this being an adaptation to help 

cells and tissues to protect from oxidative stress (Silva and da Silva, 2007; Simao et al., 2011). 

Another interesting gene is VCAM-1, a member of the immunoglobulin (Ig) superfamily and a cell-surface 

glycoprotein expressed by cytokine-activated endothelium that interacts with the integrin, playing its role in 

cell-cell adhesion and in metastasis. This gene was identified as the single most predictive gene for survival 

in RCC patients in the study of Vasselli et al. This type I membrane protein mediates leukocyte-endothelial 

cell adhesion and signal transduction (Vasselli et al., 2003). It is well known, that VCAM1 is over-expressed 

in RCC and is involved in tumor immune escape and resistance induction (Lin et al., 2007). In our case, 

VCAM1 was found differently modulated among the three comparisons (up-regulated in Caki-1 and A498 

and down-regulated in Caki-2). Moreover, we found another cell adhesion molecule ICAM-1 (intercellular 

adhesion molecule-1), that normally is up-regulated in RCC (Tanabe et al., 1997a). ICAM-1 mediates two 

important functional aspects of tumor biology, namely enhancement of tumor metastasis and mediation of 
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host defense mechanisms such as lymphocyte-mediated tumor cytotoxicity (Juengel et al., 2011). This gene 

encodes a cell surface glycoprotein which is typically expressed on endothelial cells and immune system 

cells and binds to integrins. ICAM-1, member of Ig superfamily, is mainly implicated in normal tissue 

epithelial architecture and/or immune responses. Generally, alternative expression of cell adhesion 

molecules is associated with pathogenesis and progression of benign and malignant neoplasms of various 

tissues (Albelda, 1993). Among the up-regulated genes, there were also integrins, such as ITGA1, ITGA2, 

ITGA6 and ITGAX. Integrins are pivotal regulators of adhesion, migration, differentiation, proliferation and 

cell survival Tumor cells are known to modify their integrin expression to become highly motile and invasive. 

How and which integrin subtypes are involved in cancer progression has not been fully clarified. 

The matrix metalloproteinases (MMPs) are the main proteases that are involved in remodelling of 

extracellular matrix (ECM). Many members of the MMP family were found to be down-regulated in all the 

three RCC cell lines, e.g. MMP1, MMP9, MMP14, MMP16 and MMP24. A role played by pVHL is also to 

reduce MMP secretion (Baldewijns et al., 2010). 

An interesting gene is ROCK1, a member of Rho-kinases, that was found up-regulated together with ROCK2 

in all the three comparisons. Rho (Rho small GTP-binding protein) regulates formation of stress fibers, focal 

adhesions and cell migration through reorganization of the actin cytoskeleton (Abe et al., 2008). ROCK is 

one of the major downstream effectors of Rho and induces stress-fiber formation and assembly. ROCK and 

Rho are involved in regulation of a variety of cellular processes such as cytoskeletal organization, cell cycle 

progression, malignant transformation and metastasis (Imamura et al., 2000). ROCK has been reported to 

be involved in human tumor progression, while a ROCK inhibitor suppressed tumor growth and metastasis. 

According to the study by Abe et al., ROCK1 was found up-regulated in ccRCC, and its high expression level 

was shown to be associated with a shorter survival (Abe et al., 2008). 

Concordantly with the observation of an high HIF-1α protein expression level in Caki-2 cell line, two HIF 

targets were found up-regulated, i.e. the platelet-derived growth factor D (PDGFD) and the epidermal growth 

factor (EGF), involved in angiogenesis and cell proliferation and/or survival, respectively (Baldewijns et al., 

2010). 

By Gene Ontology analysis we found many down-regulated genes involved in cadmium and copper ions 

binding, collagen binding and extracellular matrix binding. Also in this case this indicated a loss of the normal 

renal functions related to ion transport and binding, and maintenance of cell and tissue structure and function 

(Tun et al., 2010). Among the up-regulated genes, many are involved in amino acids binding, ATP binding 

and enzymatic activities associated to ATP roles (energy metabolism), microtubules organization. These are 

some of the main processes implicated in RCC, even if some of these metabolic pathways were found down-

regulated by Tun et al. (Tun et al., 2010). 

An important HIF target is the lysyl oxidase (LOX) gene, that was found up-regulated in A498, since this cell 

line is a VHL-/- cell line, even if HIF-1α is expressed at low concentration by our analysis of western blot, 

sign that other processes might be implicated in HIF degradation (Baldewijns et al., 2010). LOX is involved in 

cell adhesion and motility processes. Lysyl oxidase has been reported to influence tumour cell motility and 

invasiveness by reshaping the collagen matrix (Kirschmann et al., 2002; Stassar et al., 2001). In the ECM, 

LOX initiates the covalent cross-linking of collagens and elastin, thereby increasing insoluble matrix 

deposition and tensile strength The increase of the ECM-protein LOX expression level has been correlated 
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with metastatic disease (e.g. in breast cancer) and is essential for hypoxia-induced metastasis (Erler and 

Giaccia, 2006). LOX elevation occurs in metastatic and/or invasive breast cancer cell lines and correlates 

with increased staging in RCC. Previous reports showed that genetic inhibition of LOX increased cell 

proliferation in renal cells (NRK-49F cells) (Giampuzzi et al., 2005), again supporting the idea that LOX acts 

as a tumor suppressor. In fact, in the study by Erler and Giaccia, it was hypothesized that LOX might be a 

good therapeutic target for the prevention of metastasis in breast cancer and potentially other solid tumors, 

including RCC (Erler and Giaccia, 2006). 

In A498, many down-regulated genes are involved in ion transport within the cell and in nucleosome 

organization, while up-regulated genes are involved in response to stress, DNA repair mechanisms, cell 

cycle process, and energy metabolism; therefore, similar processes already seen in the other two 

comparisons and that include the main renal functions. 

Interestingly, among the 779 DEGs that we found concordantly modulated in the three comparisons, we 

observed that many genes are associated to cancer-related pathways and RCC pathology, such as 

apoptosis, angiogenesis, cell cycle, RCC, mTOR, VEGF, VHL-HIF and the immune system. In particular, 

many common up-regulated genes are implicated in the immune system, in agreement with Tun et al. (Tun 

et al., 2010). The activation of the immune system is striking in ccRCC and may be linked to the 

responsiveness of ccRCC to immunotherapies, which makes ccRCC one of the few cancers that respond to 

immunomodulatory therapies. 

Most our results are consistent with already published, thus confirming that RCC cell lines are an optimal in 

vitro model to carry out functional investigations on RCC-related pathways. Naturally, it should be noted that 

RCC cell lines have gene expression profiles significantly different from those in tumor tissues, however, the 

most important patterns are preserved. We found a much higher percentage of DEGs in RCC cell lines than 

in RCC tissue samples, as previously reported by others (Liou et al., 2004). Three factors might contribute to 

these differences: (1) the RCC cell lines were derived from metastatic RCC, therefore, more gene mutations 

have been possibly accumulated and thus more genes were differentially expressed; (2) the RCC cell lines 

are a pure population of cancer cells in contrast to the RCC tissue samples that contain many other different 

cell types apart from cancer cells, thus the expression intensity of differentially expressed genes was 

magnified in the RCC cell lines; (3) the RCC cell line in vitro culturing may have introduced changes in the 

gene expression profile as compared with in vivo tissue cancer cells. On the other hand, many important 

genes were consistently expressed in both types of tumor samples, thus suggesting that the main gene 

expression patterns of RCC tissues can be investigated also through the gene profiling of RCC cell lines. As 

a matter of fact, immortalized tumor cell lines have been widely used in several cellular and molecular 

studies, including comprehensive screening of 60 National Cancer Institute (NCI) cell lines (NCI-60) for gene 

expression (Wang et al., 2006b), proteomic (Nishizuka et al., 2003) and miRNA profiles (Blower et al., 2007). 
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4 PART II: HIGH-THROUGHPUT MIRNA EXPRESSION PROFILING 

4.1 Material and Methods 

4.1.1 High-throughput miRNA expression analysis 

4.1.1.1 Target sample preparation for microarray miRNA expression analysis 

To assess the genome-wide miRNA expression level in RCC cell lines, we performed a differential miRNA 

expression analysis comparing the three RCC cell lines to HK-2. Total RNA of cell lines, extracted as 

described above, was prepared using FlashTag
TM

 Biotin RNA labeling kit (Genisphere Inc., Hatfield, PA); for 

each sample, three technical replicates were carried out. Then, we used Affymetrix GeneChip
®
 miRNA Array 

(Affymetrix Santa Clara, CA, USA). Each single array includes 7,815 probe sets, representing over 6,703 

miRNA sequences for a total of 71 organisms (847 are human miRNA sequences), from Sanger miRNA 

database (V.11) (http://www.mirbase.org/) and an additional 922 sequences of human snoRNAs and 

scaRNAs from Ensembl database (http://www.ensembl.org/index.html) and snoRNABase (http://www-

snorna.biotoul.fr/). Each array contains 4 identical probes for each miRNA sequence, and 11 probes for each 

snoRNA and scaRNA. Moreover, all probe sets are perfect match only. The oligonucleotide probe length is 

25-mer; less, if the miRNA is shorter than 25 bases. 

Briefly, total RNA samples were prepared using FlashTag
TM

 Biotin RNA labeling kit, following the 

manufacturer‟s instructions. This kit allows the use of total RNA samples containing LMW (low molecular 

weight) RNA. For each sample we used 1 µg of total RNA, as recommended. The labeling reaction is based 

on Genisphere‟s proprietary 3DNA dendrimer signal amplification technology, as illustrated in Figure 15. 

Prior to array hybridization, labeling reaction efficiency was checked using the Enzyme Linked Oligosorbent 

Quality Control Assay (ELOSA QC Assay), following the manufacturer‟s instructions. The blue substrate 

color indicates a positive result (a qualitative result). For instrument quantitation, a Stop Reagent is added to 

each well. This converts the blue substrate to a yellow color. A plate reader is then used to read the 

absorbance at 450 nm: readings of greater than 0.10 OD over a negative control should be considered 

positive. This assay generates positive results of at least 0.15-1.00 OD when working appropriately. After 

that, biotin-labelled samples were hybridized onto the arrays at 48°C and 60 rpm for 16 hours. The arrays 

were then washed and stained using the Affymetrix Fluidics Station FS-450. We used Affymetrix GeneChip
®
 

Scanner 3000 7G to acquire fluorescent images of each array (.CEL files) and Affymetrix GCOS software to 

analyze them. 

http://www.mirbase.org/
http://www.ensembl.org/index.html
http://www-snorna.biotoul.fr/
http://www-snorna.biotoul.fr/
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Figure 15. FlashTag Procedure Overview: 1μg of total RNA is used for a tailing reaction, followed by ligation 
of the biotinylated signal molecules to the target RNA sample (15 biotins to each sample). ELOSA QC Assay 
is then used to verify the labeling procedure prior to array hybridization, also using a positive (included in the 
kit) and a negative control (labeling reaction without any RNA Spike Control Oligos and no total RNA). 

4.1.1.2 Differential miRNA expression analysis 

Intensity .CEL files were imported into Affymetrix
© 

miRNA QC Tool software 

(http://www.affymetrix.com/partners_programs/programs/developer/tools/devnettools.affx#miRNAQC, 

V.1.0.33.0) to perform data quality control and to convert intensities into expression values. Using the 

Affymetrix miRNA_1.0 Annotation file (http://www.affymetrix.com/support/technical/other/mirna-

1_0_annotations_20090219.zip), we annotated 847 human miRNA probe sets (namely hsa-miRNAs) and 

5,856 miRNA probe sets for the remaining 70 organisms and, finally, the control target content including 

background, control sequences, housekeeping (1 human 5.8s rRNA probe set) and oligo spike-in. According 

to Genisphere procedure (http://www.genisphere.com/pdf/FAQ_for_FlashTag_2.pdf), oligo spike-in 2, 23, 29, 

31 and 36 probe sets should present a value of more than 1000 intensity units (signal-background) to accept 

array quality. These five oligos are spiked into the RNA samples prior to FlashTag labeling and contain 

controls for the GeneChip miRNA array and the ELOSA QC Assay, shown as follows: 

 oligos 2, 23, and 29 are RNA, and confirm poly(A) tailing and ligation; 

 oligo 31 is poly(A) RNA, and confirms ligation; 

 oligo 36 is poly(dA) DNA, and confirms ligation and lack of RNAses in the RNA sample. 

The differential miRNA expression analysis was performed by comparing the three RCC cell lines to HK-2. 

The statistical algorithm Rank Product (RP) was chosen to calculate the differentially expressed miRNAs 

http://www.affymetrix.com/partners_programs/programs/developer/tools/devnettools.affx#miRNAQC
http://www.affymetrix.com/support/technical/other/mirna-1_0_annotations_20090219.zip
http://www.affymetrix.com/support/technical/other/mirna-1_0_annotations_20090219.zip
http://www.genisphere.com/pdf/FAQ_for_FlashTag_2.pdf
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(DEMs) for each pairwise comparison, setting the p-value threshold at 0.1. RP was chosen since the groups 

to be compared have a small size (three replicates each). All calculations were performed in R environment, 

using several Bioconductor packages (Gentleman et al., 2004; R Development Core Team, 2009). 

4.1.1.3 Bioinformatics and functional enrichment analysis 

Bioinformatics analysis and data mining of differentially expressed miRNAs were carried out using Human 

MiRNA & Disease Database (HMDD, http://202.38.126.151/hmdd/mirna/md/, last update Oct-3-2011, Lu et 

al., 2008) to assess which DEMs are related to cancer and renal carcinoma. An extensive literature mining of 

the data has been performed using supplementary miRNA data released from recent published article on 

RCC. 

4.1.1.4 Data validation by qPCR 

To validate the microarray results, we performed a quantitative reverse-transcribed polymerase chain 

reaction (qPCR). Globally, we validated 11 miRNAs showing modulation in microarray experiments in at 

least one comparison and resulting related to cancer and renal carcinoma in HMDD database. Starting from 

10 ng of total RNA for each assay, qPCR reactions were performed by use of TaqMan
®
 MicroRNA Reverse 

Transcription (RT) kit (Applied Biosystems, Life Technologies, Inc. Carlsbad, CA, USA) and specific miRNA 

primers provided with TaqMan
®
 microRNA Assays, according to the manufacturer‟s protocol. RT reactions 

were performed on the Applied Biosystems 7900 Thermocycler machine. To normalize RNA samples, we 

used RNU48 as endogenous control (provided as TaqMan
®
 microRNA Assays-Control). Reactions were run, 

in triplicate, on the Applied Biosystems 7900HT Fast Real-Time PCR System machine. Ct values were 

calculated using the SDS software version 2.3 (Applied Biosystems), by applying automatic baseline and 

standard threshold settings. We applied the 2
-∆∆Ct

 method (Applied Biosystems User Bulletin No.2) to obtain 

a relative quantification of miRNA expression levels. The assay list is provided in supplementary table (Table 

5 Appendix). 

http://202.38.126.151/hmdd/mirna/md/
http://202.38.126.151/hmdd/mirna/md/


54 

 

4.2 Results 

4.2.1 High-throughput miRNA expression analysis 

4.2.1.1 Comparison between RCC cell lines and HK-2 

We assessed miRNA expression levels by comparing the three RCC cell lines to a normal one, HK-2, using 

Affymetrix technologies. Expression values were used to obtain lists of differentially expressed miRNAs for 

each pairwise comparison using Rank Product algorithm, with the p-value threshold set at 0.1. All the arrays 

passed the quality control performed on oligo spike-in probe sets. The entire lists of differentially expressed 

miRNAs found in each comparison are reported in supplementary tables (Tables 6-7-8 Appendix). As 

showed by cluster analysing, we found that the miRNA Affymetrix profiling of replicated samples were highly 

correlated (Figures 16-17-18). 

Globally, we found 50 DEMs (26 up- and 24 down-regulated miRNAs) in Caki-1 as compared to HK-2, 62 

DEMs (32 up- and 30 down-regulated miRNAs) in Caki-2 as compared to HK-2 and 54 DEMs (18 up- and 36 

down-regulated miRNAs) in A498 as compared to HK-2. The data showed that peculiar miRNA profiling is 

present for each comparison however some miRNA are concordantly modulated (Table 4). 
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Figure 16. Caki-1 vs HK-2. Clustering heatmap of RCC cell lines and HK-2 based on the 50 DEMs found in 
the comparison Caki-1 vs HK-2. The heatmap was obtained by use of dChip (Li and Wong, 2001). Each row 
represents a single miRNA and each column an experimental sample. The color gradient is from green 
(down-regulated miRNA) to red (up-regulated miRNA). 
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Figure 17. Caki-2 vs HK-2. Clustering heatmap of RCC cell lines and HK-2 based on the 62 DEMs found in 
the comparison Caki-2 vs HK-2. The heatmap was obtained by use of dChip (Li and Wong, 2001). Each row 
represents a single miRNA and each column an experimental sample. The color gradient is from green 
(down-regulated miRNA) to red (up-regulated miRNA). 
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Figure 18. A498 vs HK-2. Clustering heatmap of RCC cell lines and HK-2 based on the 54 DEMs in the 
comparison A498 vs HK-2. The heatmap was obtained by use of dChip (Li and Wong, 2001). Each row 
represents a single miRNA and each column an experimental sample. The color gradient is from green 
(down-regulated miRNA) to red (up-regulated miRNA). 
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 MIRNAs 

COMPARISON DOWN-REGULATED UP-REGULATED 

Caki-1 

vs 

HK-2 

hsa-miR-205, hsa-miR-182, hsa-miR-335, hsa-

miR-129-star, hsa-miR-103, hsa-miR-130b, hsa-

miR-129-3p, hsa-miR-107, hsa-miR-145, hsa-

miR-576-3p, hsa-miR-93, hsa-miR-342-3p, hsa-

miR-183, hsa-miR-19b, hsa-miR-132, hsa-miR-

708, hsa-miR-106b, hsa-miR-197, hsa-miR-16, 

hsa-miR-99b, hsa-miR-574-3p, hsa-miR-17, hsa-

miR-606, hsa-miR-143 

hsa-miR-23a, hsa-miR-484, hsa-miR-181d, hsa-

miR-1303, hsa-miR-128, hsa-miR-29a, hsa-miR-

27a-star, hsa-miR-196a, hsa-miR-675, hsa-miR-

34a, hsa-let-7c, hsa-miR-574-5p, hsa-let-7g, 

hsa-miR-663b, hsa-miR-1207-5p, hsa-miR-29b-

1-star, hsa-let-7f, hsa-miR-125b-1-star, hsa-miR-

224, hsa-miR-99a, hsa-miR-146b-5p, hsa-let-7a, 

hsa-miR-494, hsa-miR-146a, hsa-miR-125b, 

hsa-miR-100 

Caki-2 

vs 

HK-2 

hsa-miR-205, hsa-miR-155, hsa-miR-21, hsa-

miR-25, hsa-miR-28-3p, hsa-miR-19b, hsa-miR-

1826, hsa-miR-193a-5p, hsa-miR-708, hsa-miR-

30a-star, hsa-miR-27b, hsa-miR-29a, hsa-miR-

221, hsa-miR-26a, hsa-miR-145, hsa-miR-183, 

hsa-miR-197, hsa-miR-152, hsa-miR-149, hsa-

miR-182, hsa-miR-200b, hsa-miR-30c, hsa-miR-

20a, hsa-miR-132, hsa-let-7i, hsa-miR-28-5p, 

hsa-miR-130a, hsa-miR-181b, hsa-let-7f, hsa-

miR-342-3p 

hsa-miR-720, hsa-miR-151-5p, hsa-miR-17-star, 

hsa-miR-625-star, hsa-miR-671-5p, hsa-miR-

320b, hsa-miR-320a, hsa-miR-146a, hsa-miR-

125b, hsa-miR-629, hsa-miR-638, hsa-miR-149-

star, hsa-miR-1228-star, hsa-miR-193b, hsa-

miR-24, hsa-miR-31, hsa-miR-423-3p, hsa-miR-

324-5p, hsa-miR-423-5p, hsa-miR-30c-2-star, 

hsa-miR-140-3p, hsa-miR-320d, hsa-miR-378, 

hsa-miR-193b-star, hsa-miR-486-5p, hsa-miR-

138, hsa-miR-23a-star, hsa-miR-663, hsa-miR-

185, hsa-miR-210, hsa-miR-34a, hsa-miR-100 

A498 

vs 

HK-2 

hsa-miR-31, hsa-miR-205, hsa-miR-345, hsa-

miR-125a-5p, hsa-miR-145, hsa-miR-574-3p, 

hsa-miR-210, hsa-miR-99b, hsa-miR-197, hsa-

miR-28-5p, hsa-let-7e, hsa-miR-149, hsa-miR-

361-5p, hsa-miR-130b, hsa-miR-532-5p, hsa-

miR-152, hsa-miR-15b, hsa-miR-193a-5p, hsa-

miR-362-5p, hsa-miR-132, hsa-miR-28-3p, hsa-

miR-342-3p, hsa-miR-183, hsa-miR-92b, hsa-

miR-23b, hsa-miR-500, hsa-miR-143, hsa-miR-

1307, hsa-miR-146a, hsa-miR-107, hsa-miR-

625, hsa-miR-20b, hsa-miR-221, hsa-miR-103, 

hsa-miR-744, hsa-miR-106b-star 

hsa-miR-484, hsa-miR-1280, hsa-miR-30a, hsa-

miR-1288, hsa-miR-132-star, hsa-miR-379, hsa-

miR-20a, hsa-miR-548a-3p, hsa-miR-27a, hsa-

miR-34c-3p, hsa-miR-29b-1-star, hsa-miR-134, 

hsa-miR-34c-5p, hsa-miR-34a, hsa-miR-192, 

hsa-miR-29a, hsa-miR-194, hsa-miR-127-3p 

Table 4. List of differentially expressed miRNAs found in each comparison between RCC cell lines and HK-2. 
miRNAs are ordered according to their expression values, from the most down-regulated miRNA to the most 
up-regulated miRNA. Down-regulated miRNAs are in green, up-regulated miRNAs are in red, and common 
DEMs are underlined. 

Moreover, we found 9 DEMs in common among the three comparisons, in particular 7 were also concordant, 

as follows: hsa-miR-34a is up-regulated, while hsa-miR-205, hsa-miR-145, hsa-miR-183, hsa-miR-197, hsa-

miR-132 and hsa-miR-342-3p are down-regulated in all the RCC lines vs HK-2 (Figure 19). Whereas, hsa-

miR-146a was found up-regulated in Caki-1 and Caki-2 cell lines vs HK-2 and down-regulated in A498 vs 

HK-2; while hsa-miR-29a was found up-regulated in Caki-1 and A498 vs HK-2, and down-regulated in Caki-2 

vs HK-2. 
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Figure 19. Common and concordant DEMs. Clustering heatmap of RCC cell lines and HK-2 based on the 7 
common and concordant DEMs found in all the three comparisons. The heatmap was obtained by use of 
dChip (Li and Wong, 2001). Each row represents a single miRNA and each column an experimental sample. 
The color gradient is from green (down-regulated miRNA) to red (up-regulated miRNA). 

In each comparison, by clustering heatmaps, we observed that some miRNAs are characteristically up- or 

down-regulated, at a statistically significant level, only in one RCC cell line compared to HK-2. For example, 

we found that miR-335 and miR-576-3p are down-regulated, while 14 miRNAs (e.g., miR-128, miR-125, miR-

224, let-7g, let-7f, miR-494) are up-regulated only in Caki-1 vs HK-2. The down-regulation of 8 miRNAs (i.e., 

miR-30c, miR-30a*, miR-155, miR-26a, miR-21, miR-200b, miR-25, miR-27b) and the up-regulation of 13 

miRNAs (e.g., miR-320b, miR-320a, miR-30c-2*, miR-378, miR-185, miR-193b, miR-210, miR-720) were 

found only in Caki-2 vs HK-2. Finally, miR-31 and miR-15b were down-regulated and 6 miRNAs (i.e., miR-

127-3p, miR-192, miR-379, miR-194, miR-134, miR-34c-5p) were up-regulated only in A498 vs HK-2. These 

results demonstrate that each RCC cell line has a own miRNA signature, even if these miRNAs showed 

modulation also in the other RCC cell lines but not at statistically significant level. Despite a peculiar miRNA 

expression in each RCC cell line, we found 9 dysregulated miRNAs in common, whose 7 were also 

concordant. 

Currently, Sanger miRNA database is at version 17 (April, 2011), so there are some differences with the 

version 11, on which the GeneChip miRNA array was designed. So, when comparing the two miRNA 

database versions (freely available for download in miRBase FTP site), we noted that 4 DEMs were no 

longer considered belonging to miRNA class in the latest version (hsa-miR-768-3p, hsa-miR-886-3p, hsa-

miR-886-5p and hsa-miR-1308). Thus, these 4 miRNAs were not included in our DEM lists or used for 

further analyses. 



60 

 

4.2.1.2 Functional enrichment analysis and validation by qPCR 

Bioinformatics analysis and data mining using HMDD (Human MicroRNA & Disease Database) highlighted 

11 DEMs already associated to cancer and renal cell carcinoma in different studies (Table 5). 

MIRNA Caki-1 Caki-2 A498 REFERENCES 

hsa-miR-21 
 

down 
 

Huang et al., 2009; Juan et al., 2010; Zhang et 
al., 2011 

hsa-miR-34a up up up 
Dutta et al., 2007; Liu et al., 2010; Juan et al., 
2010; Vogt et al., 2011; White et al., 2011 

hsa-miR-143 down 
 

down Huang et al., 2009; White et al., 2011 

hsa-miR-145 down down down 
Huang et al., 2009; Gan et al., 2010; Jung et al., 
2009; Sachdeva et al., 2010 

hsa-miR-146a up up down Ha et al., 2010; Perske et al., 2010 

hsa-miR-149 
 

down down Juan et al., 2010; Liu et al., 2010 

hsa-miR-152 
 

down down Wang et al., 2010 

hsa-miR-183 down down down 
Jung et al., 2009; Nakada et al., 2011; White et 
al., 2011 

hsa-miR-205 down down down 
Gregory et al., 2008; Majid et al., 2011; Tellez et 
al., 2011 

hsa-miR-210 
 

up down 
Jung et al., 2009; Zhou et al., 2010; Nakada et al., 
2011; White et al., 2011 

hsa-miR-221 
 

down down 
Heinzelmann et al., 2011; Huang et al., 2009; 
White et al., 2011 

Table 5. List of DEMs already reported to be associated to cancer and renal carcinoma in the HMDD 
database. Corresponding publications are indicated. 

To verify miRNA expression levels of miRNAs, we used miRNA specific TaqMan probes for qPCR validation. 

In total, we validated 11 miRNAs that we found modulated in at least one RCC cell line compared to HK-2. 

Moreover, these 11 miRNAs were already found associated to cancer and renal carcinoma in the HMDD 

database. Thus, by qPCR, we confirmed previously observed microarray expression values (Table 6). In 

details, we noted in all the three comparisons the down-regulation of hsa-miR-145, hsa-miR-183 and hsa-

miR-205 and the up-regulation of hsa-miR-34a. Instead, in Caki-1 we confirmed the down-regulation of hsa-

miR-143 and the up-regulation of hsa-miR-146a; in Caki-2 the down-regulation of hsa-miR-21, hsa-miR-149, 

hsa-miR-152 and hsa-miR-221, and the up-regulation of hsa-miR-146a and hsa-miR-210; and, finally, in 

A498 the down-regulation of hsa-miR-143, hsa-miR-146a, hsa-miR-149, hsa-miR-152, hsa-miR-210, hsa-

miR-221. Moreover, we observed the down-regulation of hsa-miR-21, hsa-miR-149 and hsa-miR-152 and a 

tendency to the up-regulation of hsa-miR-210 and hsa-miR-221 in Caki-1, the down-regulation of hsa-miR-

143 in Caki-2, and the down-regulation of hsa-miR-21 in A498, although these miRNAs were not found 

differentially expressed by microarray analysis. 
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MIRNA Caki-1 Caki-2 A498 

 
qPCR array qPCR array qPCR array 

hsa-miR-21 -10,33 n.s. -10,87 -3,40 -1,89 n.s. 

hsa-miR-34a 0,23 1,58 0,57 2,30 0,47 1,92 

hsa-miR-143 -24,90 -1,31 -74,60 n.s. -32,80 -1,15 

hsa-miR-145 0,00 -2,09 0,00 -1,90 0,00 -2,11 

hsa-miR-146a 43,85 3,57 30,03 1,34 -8,43 -1,13 

hsa-miR-149 -2,69 n.s. -1,34 -1,82 -2,64 -1,45 

hsa-miR-152 -1,56 n.s. -7,88 -1,83 -4,20 -1,41 

hsa-miR-183 -61,87 -1,70 -1,46 -1,84 -3,54 -1,26 

hsa-miR-205 0,00 -4,68 0,00 -4,57 0,00 -4,72 

hsa-miR-210 0,27 n.s. 4,83 2,19 -5,88 -1,87 

hsa-miR-221 1,30 n.s. -1,66 -2,04 -3,19 -1,08 

Table 6. Quantitative real-time PCR validation of miRNA microarray analysis in RCC cell lines compared to 
HK-2. Expression values are expressed in fold change both for qPCR and array results for each comparison 
(n.s.: not statistically significant). 
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4.3 Discussion 

In this second section, we performed a genome-wide differential miRNA expression analysis using Affymetrix 

GeneChip
®
 miRNA array, which allows the detection of a total of 6,703 miRNAs in 71 organisms, whose 847 

are human miRNAs, based on the Sanger miRNA database (V.11). To do this, we used three RCC cell lines 

as in vitro model of renal cell carcinoma pathology, i.e. Caki-1, Caki-2 and A498, and we compared their 

miRNA profiles to that of HK-2, a proximal tubular cell line derived from normal adult kidney (Ryan et al., 

1994). 

We found a total of 50 DEMs (26 up- and 24 down-regulated miRNAs) in Caki-1, 62 DEMs (32 up- and 30 

down-regulated miRNAs) in Caki-2 and 54 DEMs (18 up- and 36 down-regulated miRNAs) in A498 as 

compared to HK-2. 

By functional annotation analysis according to HMDD database and literature mining search, we observed 

that all DEMs found in the three comparisons were already known to be associated to at least one cancer 

and/or one disease, except five miRNAs, i.e. miR-576 and miR-606 (down-regulated in Caki-1 vs HK-2), 

miR-1303 (up-regulated in Caki-1), miR-1307 (down-regulated in A498) and miR-1288 (up-regulated gene in 

A498). Therefore, we could speculate that these miRNAs might have an important role in renal cancer cells, 

however further investigations are certainly needed. 

Furthermore, functional annotation analysis showed that almost all miRNAs found in common in the three 

comparisons were already reported widely associated with RCC, as described below. 

According to recent literature (Juan et al., 2010; White et al., 2011b), we found the common up-regulation of 

miR-34a in all the three RCC cell lines. This is a very interesting miRNA, since it is a potential tumor 

suppressor involved in many types of cancer, and found either up-regulated (e.g., in RCC, hematopoietic 

and head and neck tumors) or down-regulated (e.g., in neuroblastoma), working in a cell type-specific 

manner. A study conducted by Dutta and his colleagues suggested that miR-34a over-expression, an 

acquired trait during carcinogenesis, supports cell proliferation in the majority of cancers (Dutta et al., 2007). 

When over-expressed, miR-34a leads to apoptosis or cellular senescence, whereas reduction of miR-34a 

function attenuates p53-mediated cell death. Moreover, miR-34a is a direct p53 target gene, since it has 

several candidate p53 binding sites in the promoter region and the intron. In fact, p53 transcriptionally 

activates miR-34a, and other members of the same family (such as miR-34b and miR-34c), in response to 

multiple cellular stresses. Then, miR-34a, in turn, induces apoptosis or growth arrest by post-transcriptional 

repression of its target genes (i.e. E2F3 and NOTCH1) in a context-dependent manner (He et al., 2007a). 

Furthermore, Vogt et al. reported that many tumors, including renal cancer, display CpG methylation of miR-

34a and miR-34b/c at a relatively high frequency (Vogt et al., 2011). Probably, it could be due to a tendency 

of cell lines to harbour p53 mutations, which may alleviate a requirement for miR-34a methylation, or 

alternatively, loss of CpG-methylation during in vitro passaging. The authors hypothesized that since ectopic 

expression of miR-34a has been shown to induce senescence, it is possible that miR-34a inactivation by 

CpG methylation contributes to the escape from oncogene-induced senescence in the early phases of tumor 

development, thus facilitating the emergence of tumor-initiating cells, since processes as cell cycle arrest, 
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senescence or apoptosis will presumably be attenuated in cells with loss of miR-34a function (Vogt et al., 

2011). 

Some studies revealed the involvement of miR-205 in EMT (epithelial to mesenchymal transition) (Gregory et 

al., 2008a; Tellez et al., 2011). Recently, the down-regulation of miR-205 in RCC has been reported for the 

first time (Majid et al., 2011). The authors demonstrated the role of this miRNA in inhibiting Src-mediated 

oncogenic pathways in renal cancer, using cell lines and tissues. The Src family of protein kinases (SFK) 

plays key roles in regulating fundamental cellular processes, including cell growth, differentiation, cell shape, 

migration and survival. They showed that miR-205 expression is inversely correlated with the expression of 

SFKs, and transient and stable over-expression of miR-205 caused induction of G0/G1 cell cycle arrest, and 

apoptosis, and suppressed cell proliferation, colony formation, migration and invasion in renal cancer cells. 

These results indicated that miR-205 is an important tumor suppressor miRNA in RCC, suggesting also its 

therapeutic potential. 

According to literature (Huang et al., 2009j; Jung et al., 2009, White et al., 2011b; Yi et al., 2010), we found a 

down-regulation of miR-145 in all the three RCC cell lines. This miRNA locus is located on chromosome 5 

(on 5q32-33), which is a well-known fragile site in human genome, this probably explaining the decreased 

expression of miR-145 observed in many tumors (e.g. breast, colon, prostate, lung, bladder). Thus, its role in 

controlling cell proliferation has been suggested, probably due to direct targeting of c-Myc oncogene by 

directly binding to its 3'UTR. Over-expression of miR-145 is able to down-regulate some of the c-Myc target 

genes such as cyclin D1 and elF4E which are involved in cell cycle regulation. Moreover, this miRNA also 

has a role in cell invasion and metastasis, the suppression of cell invasion is in part due to the silencing of 

the metastasis gene mucin 1, that causes a reduction of β-catenin as well as of the oncogenic cadherin-11. 

Given its involvement in cell growth and invasion, miR-145 has been proposed as tumor suppressor. This 

feature may be also related to the fact that miR-145 is regulated by p53, and that suppression of miR-145 

alters the p53-mediated cell cycle arrest, which is likely in part by silencing of c-Myc. Surely, further studies 

will be required to evaluate the potential utility of miR-145 as novel biomarker or novel therapeutic target for 

cancer therapy (Sachdeva and Mo, 2010). Gan et al. confirmed, by qPCR, the down-regulation of miR-145 

and the up-regulation of some of its targets such as c-Myc, in ccRCC compared with matched normal kidney 

samples, thus suggesting a role for miR-145 also in renal tumorigenesis (Gan et al., 2010). 

miR-183 was found down-regulated in all the three comparisons we analyzed, accordingly with many 

previous studies on ccRCC samples (Jung et al., 2009; Nakada et al., 2008; White et al., 2011b). miR-183 

locus is located on chromosome 7 and has been implicated in key cellular functions, such as neurosensory 

development (Sarver et al., 2010). Recently, it has been reported that miR-183 functions as a potential 

oncogene in specific sarcoma types and in colon cancer by directly or indirectly regulating EGR1 and PTEN 

expression levels, respectively. In addition, the authors showed that miR-183 knockdown in the 

corresponding tumor cell lines affect cellular migration (Sarver et al., 2010). 

Despite the fact that in some recent studies (Chow et al., 2010; White et al., 2011b) miR-342-3p was 

reported as up-regulated in RCC samples, we found that this miRNA was modulated in all the three 

comparisons but in the opposite direction. In the same way, we reported the down-regulation of miR-197 in 

all the three RCC cell lines, although White et al. detected the involvement of this miRNA in their ccRCC 
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samples but in the opposite direction (White et al., 2011b). miR-197 has been reported to translationally 

repress Fus1 expression by targeting specific sequences in the 3′UTR of FUS1, which is a tumor suppressor 

gene located on human chromosome 3p21, and expression of Fus1 protein is highly regulated at various 

levels, leading to lost or greatly diminished tumor suppressor function in many lung cancers (Du et al., 2009). 

Recently, Anand et al. described how miR-132, an angiogenic growth factor-inducible miRNA expressed in 

the normal endothelium, facilitates pathological angiogenesis by down-regulating p120RasGAP, a molecular 

brake for Ras (Anand and Cheresh, 2011). Importantly, targeting miR-132 with a complementary, synthetic 

anti-miRNA restored the brake and decreased angiogenesis and tumor burden in multiple tumor models. 

They also showed that ectopic expression of miR-132 was sufficient to increase in vitro endothelial 

proliferation and tube formation. Conversely, the complementary anti-miR-132 decreased in vitro endothelial 

proliferation and tube formation, and both developmental and pathological angiogenesis in vivo. These 

observations highlighted that miR-132 is not only among the early response genes in endothelial activation 

but also a critical regulator of the downstream events controlling endothelial proliferation, tube formation and 

angiogenesis in vivo. Taken together, emerging evidences suggest a central role for microRNAs downstream 

of multiple growth factors in regulating endothelial proliferation, migration and vascular patterning (Anand 

and Cheresh, 2011). In our analyses, miR-132 was found down-regulated in RCC cell lines, so its relation 

with angiogenesis in renal cancer needs other studies. 

Generally, the up-regulation of miR-146a in RCC samples has been reported (Ha et al., 2010; Perske et al., 

2010; White et al., 2011b). Accordingly, we found the up-regulation of this miRNA in Caki-1 and Caki-2 cell 

lines, but not in A498. Perske et al. demonstrated that miR-146a partially reduces or completely abolishes 

endogenous nitric oxide (NO) production to escape macrophage-mediated cell death, since it translationally 

inhibits the iNOS (Inducible Nitric Oxide Synthase) protein expression. It has been suggested that inhibition 

of miR-146a may render these tumor cells susceptible to therapeutic strategies (Perske et al., 2010). In 

another study, miR-146a resulted up-regulated in renal cancer, and, its over-expression increased after 

stimulation by carbamylated albumin (cAlb), since carbamylation is a post-transcriptional modification; 

anyway, its pathophysiological consequences remain poorly understood (Ha et al., 2010). 

We detected that miR-29a is up-regulated in Caki-1 and A498, according to Chow et al. (Chow et al., 2010), 

while it's down-regulated in Caki-2. Heinzelmann et al. reported miR-29a as one of the most down-regulated 

miRNAs in metastatic compared to non-metastatic ccRCC tumors (Heinzelmann et al., 2011). Thus, this 

miRNA needs further investigations. 

Another intriguing miRNA is miR-21, which was found down-regulated in Caki-2 vs HK-2, and reported up- or 

down-regulated in many tumors (White et al., 2011b). Among oncogenic miRNAs, miR-21 is over-expressed 

in several different human cancer types, such as glioma, breast cancer, colon cancer, lung cancer, head and 

neck cancer, and plays critical roles in regulating the cancer malignant phenotype (Zhang et al., 2011b). 

Recent studies have reported that miR-21 is up-regulated in RCC tissues compared with normal tissues 

(Juan et al., 2010; Liu et al., 2010a). However, few direct evidences exist to explain how this miRNA is 

involved in the RCC development. Zhang et al. showed that miR-21 knockdown by antisense 

oligonucleotides inhibited cell proliferation and induced cell apoptosis in RCC cells, indicating that miR-21 is 

a critical oncogenic miRNA that inhibits cell apoptosis in RCC (Zhang et al., 2011b). The results of this study 
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suggested that the down-regulation of miR-21 expression promoted RCC cell apoptosis by way of the 

caspase pathway. In fact, knockdown of miR-21 could activate the caspase pathway, mediated by multiple 

potential target genes, such as FASL (Fas ligand) and TIMP3 (metalloproteinase inhibitor 3), and 

subsequently induce cell apoptosis in RCC (Zhang et al., 2011b). In our study, we confirmed the down-

regulation of miR-21 by qPCR in all the three RCC cell lines, despite microarray results were not statistically 

significant in Caki-1 and A498 comparisons. 

On the other hand, miR-210 was detected to be up-regulated in Caki-2 and down-regulated in A498, 

probably due to the different HIF-1α expression level, since miR-210 is a direct transcriptional target of HIF-

1α (Kulshreshtha et al., 2007a; Huang et al., 2010). In fact, Caki-2 had a high HIF-1α protein level, while 

A498 showed a low protein level by our western blot analysis. qPCR results confirmed microarray data for 

Caki-2 and A498 cell lines, and showed a tendency of down-regulation in Caki-1. 

Although the pri-miRNA structure has not been identified yet, it has been suggested that miR-145 could be 

co-transcribed with miR-143 (Cordes et al., 2009). miR-145 and miR-143 are localized close to each other at 

chromosome 5q32, which is a locus often deleted (e.g., in myelodysplastic syndromes) (Le Beau et al., 

1989). By qPCR we confirmed the down-regulation of both miRNAs in our RCC cell lines. 

We reported that miR-221 is down-regulated in Caki-2 and A498 cell lines, and confirmed our data by qPCR, 

showing a tendency of up-regulation in Caki-1. Interestingly, this miRNA was recently reported down-

regulated (White et al., 2011b) and up-regulated (Huang et al., 2009j) in RCC. Moreover, Heinzelmann et al. 

reported that this miRNA is one of the most down-regulated genes that can distinguish metastatic from non-

metastatic tumors (Heinzelmann et al., 2011). In haematopoietic progenitor cells, it has been reported that 

miR-221 together with miR-222 inhibit endothelial cell migration, proliferation, and angiogenesis in vitro by 

targeting the stem cell factor receptor c-kit and by indirectly regulating endothelial nitric oxide synthase 

expression (Urbich et al., 2008). The miR-221/222 family also reduces c-kit expression and consequently cell 

proliferation, and their depletion also changed the miRNA signature of HUVEC51 (human umbilical vein 

endothelial cells) indicating that miRNAs control the expression of other miRNAs. In fact, 9 miRNAs were 

found up-regulated and 23 miRNAs down-regulated in response to miR-221/ 222 depletion (Urbich et al., 

2008). 

By qPCR we also confirmed the down-regulation of miR-152, which is a tumor suppressor silenced by 

aberrant DNA hypermethylation in endometrial cancer. miR-152 epigenetic silencing was consistent with its 

location at 17q21.32 in COPZ2 (coatomer protein complex, subunit zeta 2) intron 1, which is often silenced in 

endometrial cancer by DNA hypermethylation, and also with evidences that miR-152 targets the DNA 

methyltransferase DNMT1 (Tsuruta et al., 2011). The CpG island methylation of miR-152 was also observed 

in non-small-cell lung cancer (NSCLC) clinical specimens (Kitano et al., 2011). 

According to literature, we assessed by microarray and qPCR the down-regulation of miR-149, which is 

reported under-expressed also in other studies and which targets lysyl oxidase (LOX), an important HIF 

target involved in extracellular matrix formation and turnover (Baldewjins et al., 2011; Juan et al., 2010; Jung 

et al., 2010; Liu et al., 2010a). 
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Many studies also demonstrated that the copy number alterations may affect miRNA expression levels in 

RCC samples (Powers et al., 2011; White et al., 2011b, Youssef et al., 2011). In our study, we have not 

performed the integration between copy number and miRNA expression levels since, as described above, 

the RCC cell lines we used carried a very aberrant karyotype, with many CNAs on several chromosomes, 

and this would have make this analysis very difficult and unreliable. 

Using the recent literature about ccRCC miRNA gene expression profiling, we compared our list of 125 

differentially expressed miRNAs (the total number of DEMs found through the three comparisons) with the 

datasets of modulated miRNAs reported by other authors. Through this comparison, we observed that 

among 125 miRNAs, 64 were not found in any other paper, 36 were reported in at least one paper, and, 

thus, the remaining 25 miRNAs were cited in two or more papers (Table 7). Noticebly, we found 10 miRNAs 

(miR-149, miR-182, miR-183, miR-185, miR-200b, miR-224, miR-34a, miR-362-5p, miR-532-5p, miR-629) 

depicting concordant modulation between the present investigation performed on ccRCC cell lines and those 

reported by other authors on RCC tissues. 

MIRNA Caki-1 Caki-2 A498 
Nakada 
et al., 
2008 

Chow 
et al., 
2010 

Juan 
et al., 
2010 

Liu 
et al., 
2010 

Zhou 
et al., 
2010 

Yi 
et al., 
2010 

White 
et al., 
2011 

hsa-miR-125b Up Up 
   

Down Down 
   

hsa-miR-130b Down 
 

Down 
 

Up 
    

Up 

hsa-miR-138 
 

Up 
 

Down Down 
     

hsa-miR-149 
 

Down Down 
  

Down Down 
   

hsa-miR-155 
 

Down 
 

Up 
 

Up Up Up 
 

Up 

hsa-miR-15b 
  

Down 
     

Up Up 

hsa-miR-16 Down 
       

Up Up 

hsa-miR-17 Down 
   

Up 
   

Up 
 

hsa-miR-182 Down Down 
 

Down Down 
     

hsa-miR-183 Down Down Down Down Down 
     

hsa-miR-185 
 

Up 
   

Up Up 
  

Up 

hsa-miR-200b 
 

Down 
  

Down Down Down 
   

hsa-miR-20a 
 

Down Up 
 

Up 
    

Up 

hsa-miR-20b 
  

Down 
 

Up 
  

Down 
  

hsa-miR-21 
 

Down 
  

Up Up Up Up Down Up 

hsa-miR-210 
 

Up Down Up Up Up Up Up 
 

Up 

hsa-miR-224 Up 
  

Up Up Up Up Up 
 

Up 

hsa-miR-342-3p Down Down Down 
 

Up 
    

Up 

hsa-miR-34a Up Up Up 
  

Up Up Up 
 

Up 

hsa-miR-362-5p 
  

Down 
 

Down 
   

Down 
 

hsa-miR-378 
 

Up 
  

Down 
   

Up 
 

hsa-miR-379 
  

Up Down Down 
     

hsa-miR-532-5p 
  

Down 
 

Down 
    

Down 

hsa-miR-629 
 

Up 
  

Up 
  

Up 
 

Up 

hsa-miR-720 
 

Up 
  

Down 
   

Up Down 

Table 7. List of 25 miRNAs cited as differentially expressed in two or more other papers. 
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The differences between miRNAs identified by each study could be due to the experimental methodology, 

including the platform used, cell lines or kidney cancer subtypes analyzed, experimental conditions, sample 

size or statistical analysis applied. 

Overall, by literature mining, we observed that in many studies (Ha et al., 2010; Majid et al., 2011; Nakada et 

al., 2008, 2011; Zhang et al., 2009, 2011) RCC cell lines have been widely used as in vitro model of renal 

cell carcinoma in order to identify miRNAs that target relevant genes involved in pathways, like apoptosis, 

angiogenesis, epithelial to mesenchymal transition and so on, which are often altered in this cancer, so 

allowing sometimes to identify miRNAs potentially useful as novel biomarkers or therapeutic targets for RCC. 

Thus, we suggest that it is possible to extensively study the role of specific and novel miRNAs associated to 

renal cell carcinoma using immortalized RCC cell lines in combination with functional approaches. 
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5 PART III: INTEGRATED ANALYSIS OF MICRORNA AND GENE EXPRESSION 

DATA 

5.1 Material and Methods 

5.1.1 miRNA-gene integrated analysis 

In order to study the miRNA-target gene relationships and their regulatory networks in RCC cell lines, we 

performed an integrated analysis, by combining miRNA and gene expression profiles using MAGIA (MiRNA 

And Genes Integrated Analysis) tool, based on the assumption that true target expression level is expected 

to be anti-correlated with that of its miRNA (Sales et al., 2010). First of all, an adjacency matrix was 

reconstructed by target predictions, applying MiRanda (Enright et al., 2003; John et al., 2004) and PITA 

(Kertesz et al., 2007) algorithms to the analysis of miRNA sequences and transcripts 3'UTR sequences. 

Thus, obtaining a list of miRNA-transcript predicted relationships, each associated to a score. For each 

algorithm, we chose the top 20% of all predictions, in order of score values, and combined the selected 

predictions to obtain their union. To reconstruct the adjacency matrix, we considered only 19,793 genes 

represented in the Affymetrix Gene 1.0ST Array and 125 DEMs (the total number of DEMs found through the 

three comparisons) in at least one comparison. The second step was the selection of target relationships 

significantly supported by expression data. For each pair of DEM and target gene, we computed the 

Pearson‟s correlation between the corresponding expression profiles and associated to a p-value. We 

selected as potentially functional relations, only those between miRNA-gene pairs associated to negative 

coefficients. In this way, we obtained the adjacency matrix of supported regulatory interactions. For each 

comparison, post-transcriptional regulatory networks, comprising only DEMs in the comparison and all 

predicted and supported target genes represented on the array, were reconstructed by Cytoscape software 

(V. 2.6.3). This analysis was carried out thanks to our collaboration with the group of Dr. Stefania Bortoluzzi 

of University of Padua. 

5.1.2 Selection of relevant miRNA-gene anti-correlated pairs 

Starting from the results of the integrated analysis of miRNA and gene expression data, we selected some 

relevant miRNA-gene anti-correlated pairs for further investigations. In order to do this, we focused our 

attention on common and concordant DEMs found in all three comparisons. Using the adjacency matrix of 

supported regulatory interactions previously obtained and DAVID functional enrichment analysis on DEGs 

previously described, we verified which and how many were the targets of each common and concordant 

DEM and, thus, we selected some genes that were already associated with pathways associated to RCC 

and cancer in general. 

5.1.3 qPCR validation of selected target genes 

Concerning the selected most relevant miRNA-gene pairs, we assessed their anti-correlated expression 

measuring the expression levels of the 3 DEMs and 8 DEGs by qPCR. For miRNAs, we conducted qPCR 

reactions as previously described. For target genes, we performed qPCR starting from 1 µg of total RNA 

using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Life Technologies, Inc. 

Carlsbad, CA, USA) and gene-specific primers provided with TaqMan
®
 Gene Expression Assays. To 
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normalize RNA samples, we used ACTB as endogenous control. Reactions were run in triplicate on the 

Applied Biosystems 7900HT Fast Real-Time PCR System machine. Threshold (Ct) values were calculated 

using the SDS software version 2.3, as described above, and the 2
-∆∆Ct

 method was applied to obtain a 

relative quantification of gene expression levels. The assay list is provided in supplementary table (Table 9 

Appendix). 
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5.2 Results 

5.2.1 miRNA-gene integrated analysis 

Integrated analysis was performed by combining miRNA and gene expression data by using MAGIA tool. 

Through this analysis we found a total of 575,773 predicted relationships between 125 DEMs and 17,313 

target genes (represented on the array and having at least one target site for at least one DEM). Among 

these predicted relationships, only 2,236 resulted really supported by gene expression data based on 

applied criteria, involving 88 DEMs out of 125 (~70%), and 1,695 target genes out of 17,313 (~10%). 

Using Cytoscape, we reconstructed miRNA-gene networks, as previously reported (21), through the 

adjacency matrix of supported regulatory interactions, each comprising only DEMs in the comparison and all 

predicted and supported target genes. In each network we distinguished two types of nodes, miRNA and 

target gene, connected by directed edges, that represent probable relationships between miRNA and target 

genes. 

For each comparison we found both wide networks, in which one DEM could regulate more than 100 target 

genes, and small networks, in which one DEM could affect only one single gene. Specifically, according to 

the stringency criteria applied, we found networks that involve a total of 40 DEMs (21 up- and 19 down-

regulated miRNAs) and 968 target genes (whose 263 up- and 100 down-regulated genes) in Caki-1 

compared to HK-2; 48 DEMs (21 up- and 27 down-regulated miRNAs) and 1,283 genes (whose 244 up- and 

199 down-regulated genes) in Caki-2 compared to HK-2; 39 DEMs (11 up- and 28 down-regulated miRNAs) 

and 1,056 genes (whose 278 up- and 78 down-regulated genes) in A498 compared to HK-2. 

Firstly, we focused our attention on common and concordant DEMs found in all the three comparisons and, 

thus, we investigated how many predicted targets were also differentially expressed genes in each 

comparison and how many were also common and concordant supported target genes. The counts of 

predicted and supported target genes for the three common and concordant miRNAs belonging to major 

networks is illustrated in Table 8. The distribution of target genes for each DEM is given in supplementary 

table (Table 10 Appendix). 

MIRNA 
PREDICTED 

TARGET GENES 
Caki-1 Caki-2 A498 

COMMON & CONCORDANT 

SUPPORTED TARGET 

GENES 

hsa-miR-34a 217 53 87 62 50 

hsa-miR-205 237 108 89 107 76 

hsa-miR-145 280 137 95 135 84 

Table 8. Counts of predicted target genes for three DEMs. Predicted target genes that are also differentially 
expressed in each comparison, and in common in the three comparisons are here reported. The up-
regulation is highlighted in red, the down-regulation in green. 

Afterwards, we focused our interest on wide networks that involved DEMs and more than 100 predicted 

target genes. Three networks were very interesting, because they were very big common miRNA-gene 

networks; moreover, they had many predicted target genes that were found differentially expressed in each 

comparison. An example of each miRNA-gene regulatory network is shown only for Caki-1 as compared to 

HK-2, since these are big common networks in all three comparisons (Figures 20-21). These networks were 
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composed by hsa-miR-34a which was up-regulated in the three comparisons, and hsa-miR-145 and hsa-

miR-205. These two latter miRNAs were both down-regulated in all the three comparisons, and they also 

had a total of 94 predicted target genes in common, whose 31 were up-regulated in RCC cell lines compared 

to HK-2. 

 

Figure 20. Example of a miRNA-gene regulatory network in Caki-1 vs HK-2 comparison (visualization by 
Cytoscape). hsa-miR-34a, that is up-regulated (red triangle), and its supported target genes (down-regulated 
genes in blue and other non differentially expressed targets in grey) are reported. DEGs validated by qPCR 
are in violet (USP2 and PPARD). 
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Figure 21. A miRNA-gene regulatory network in Caki-1 vs HK-2 comparison (visualization by Cytoscape). 
hsa-miR-145 and hsa-miR-205, that are down-regulated (green triangles), and their supported target genes 
(up-regulated genes in orange and other non differentially expressed targets in grey) are reported. DEGs 
validated by qPCR are in violet (ATM, CDC27, FER, GRB10, NT5E and RPS6KB1). 

5.2.2 qPCR validation of selected target genes 

To verify the anti-correlation among miRNAs and their target genes, we selected 8 genes that were predicted 

targets of the 3 DEMs, belonging to big common networks, and that were already associated to cancer-

related pathways. Using bionformatics analysis we selected target genes involved in the following pathways: 

cell cycle (CDC27), leukocyte extravasation signaling (FER), VHL-HIF pathway (GRB10), metabolic 

pathways (NT5E), pathways in cancer (ATM, PPARD), mTOR, angiogenesis (RPS6KB1) and protein 

ubiquitination pathway (USP2). The following genes: ATM, CDC27, FER and GRB10 were predicted targets 

of hsa-miR-145; FER, NT5E and RPS6KB1 were predicted targets of hsa-miR-205 (FER was found in 

common with hsa-miR-145); and, finally, PPARD and USP2 were predicted targets of hsa-miR-34a. By our 

results obtained by qPCR (Table 6), we confirmed that hsa-miR-34a was up-regulated, while hsa-miR-145 

and hsa-miR-205 were down-regulated in the three comparisons. In regards to target genes, we confirmed 

by qPCR the up-regulation of ATM, CDC27, FER, GRB10, NT5E and RPS6KB1, and the down-regulation of 

PPARD and USP2 in all the three comparisons (Table 9). In Caki-1 vs HK-2 comparison, we observed a 

significative down-regulation of PPARD gene by qPCR, while microarray analysis did not return a significant 

differential expression. 
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GENE Caki-1 Caki-2 A498 

 
qPCR array qPCR array qPCR array 

ATM 285,32 3,05 353,76 3,42 761,80 3,23 

CDC27 140,43 1,90 120,66 1,98 365,07 2,05 

FER 71,44 3,08 37,21 2,45 223,07 2,84 

GRB10 12,13 2,17 14,91 2,41 45,27 2,56 

NT5E 30,00 3,20 30,59 2,85 81,42 2,81 

RPS6KB1 126,63 2,97 59,62 2,36 31,45 2,23 

PPARD -3,23 n.s. -4,95 -1,74 -4,87 -1,89 

USP2 -8,50 -2,07 -10,18 -2,54 -7,25 -2,29 

Table 9. Quantitative real-time PCR validation of gene microarray analysis in RCC cell lines compared to 
HK-2. Expression values are expressed in fold change both for qPCR and array results for each comparison. 
Down-regulated genes are in green and up-regulated genes in red. 
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5.3 Discussion 

Elucidating tissue-specific miRNA functions, going beyond miRNA target prediction and expression 

correlation, has become one of the major challenges in miRNA research. miRNAs contribute to the RCC 

development at different levels and it‟s evident that miRNAs can target various altered signaling pathways 

related to RCC pathogenesis (Redova et al., 2011). Integrated analysis may have an important role in 

characterizing a tumor caused by its molecular complexity, that manifests itself at multiple levels (i.e. 

genomic, transcriptomic and proteomic) (Shen et al., 2009). Presently, the number of studies that combine 

gene and miRNA expression profiles has been constantly increasing, thanks to the development of high-

throughput technologies, next-generation sequencing and several bioinformatics tools. 

In this study we performed an integrated analysis in order to combine gene and miRNA expression profiles 

using MAGIA (Sales et al., 2010) and to reconstruct miRNA-gene post-transcriptional regulatory networks, 

under the assumption that, since miRNAs tend to down-regulate their targets, expression profiles of miRNAs 

and real targets are expected to be anti-correlated (Sales et al., 2010). In particular, we focused our attention 

on three wide common networks, involving DEMs and more than 100 predicted target genes. These 

networks were composed by modulated miRNAs found in common in the three comparisons, i.e. miR-34, 

miR-145 and miR-205. These miRNAs have many predicted target genes that were also found differentially 

expressed in each comparison. For each network, our interest was focused on some supported target 

genes, their expression levels were also detected by qPCR to validate the anti-correlation between miRNA 

and gene. 

As described above, miR-34a was detected up-regulated in the three comparisons. miR-34a is a potential 

tumor suppressor involved in many types of cancer, working in a cell type-specific manner. Over-expression 

of miR-34a leads to apoptosis or cellular senescence, while its reduction attenuates p53-mediated cell death 

(Dutta et al., 2007). This miRNA is a direct p53 target gene, involved in apoptosis and growth arrest (He et 

al., 2007a), and recently it has been shown that many tumors, including renal cancer, display CpG 

methylation of miR-34a (Vogt et al., 2011). 

In particular, among supported target genes of miR-34, we emphasize the down-regulation of of PPARD and 

USP2. 

Peroxisomal proliferators-activated receptor-delta (PPARD) has been shown to play a key role in fatty acid 

utilization and oxidation in both skeletal muscle and adipose tissue (Barish et al., 2006; Muoio et al., 2002). It 

belongs to a family of nuclear hormone receptors that are bound and activated by fatty acids and/or their 

derivatives, and they regulate genes that are involved in lipid metabolism, storage, and transport (Muoio et 

al., 2002). Additionally, PPARs may suppress inflammation through mechanisms involving the release of 

anti-inflammatory factors or the stabilization of repressive complexes at inflammatory gene promoters. 

PPARD has emerged as a powerful metabolic regulator in diverse tissues including fat, skeletal muscle, 

kidney, liver and the heart (Barish et al., 2006). In addition, in vitro studies showed the involvement of 

PPARD in angiogenesis, proliferation of endothelial and smooth muscle cells (Piqueras et al., 2007; Zhang 

et al., 2002b). The evidence for a significant role of PPARD in humans is less clear. Therefore, since PPARD 

has been associated to lipid metabolism and angiogenesis, it might play an important role in renal 
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tumorigenesis and in loss of normal renal function, such as lipid metabolism, that exist in cancer (Tun et al., 

2010). 

USP2 is an ubiquitin-specific protease, that belongs to deubiquitinating enzymes class. Ubiquitylation is a 

reversible post-translational modification with key roles in various signal transduction cascades and in 

determining protein stability. USP2 has been shown to associate with and stabilize fatty acid synthase (FAS), 

a protein which is often over-expressed in biologically aggressive prostate cancer cells. siRNA knockdown of 

USP2 induced apoptosis, which could be reversed by over-expression of FAS (Graner et al., 2004). USP2 

expression has been correlated with tumor progression and worse prognosis in oral squamous cell 

carcinoma (da Silva et al., 2009). In RCC cell lines used in our study USP2 was detected down-regulated, 

thus this gene might induce apoptosis also in renal cancer cells, but further investigations are needed. 

Recently, it has been reported that USP2 down-regulation inhibits TNF-α-induced NF-kB activity and nuclear 

translocation in different cell lines. Its depletion reduced NF-kB-dependent target gene expression and 

cytokine secretion. Deregulation of TNF-α (tumor necrosis factor-α) expression signaling and NF-kB (nuclear 

factor-kappa B) activity are involved in the pathology of many diseases, including cancer, since TNF-α is 

produced in response to inflammation, injury and other environmental changes, while NF-kB is a family of 

central transcription factors that regulate crucial cellular processes (e.g., cell proliferation, apoptosis, immune 

responses). Thus, the authors suggested USP2 as a novel regulator of TNF-α/NF-kB signaling and tissue 

homeostasis, with a possible relevance for cancer therapy (Metzig et al., 2011). The role of USP2 in 

carcinogenesis remains to be elucitated. 

miR-145 was down-regulated in the three RCC cell lines compared to HK-2. Many tumors (e.g. breast, colon, 

prostate, lung, bladder) show a decreased level of miR-145. Its role in controlling cell proliferation has been 

suggested, probably due to direct targeting c-Myc oncogene. It‟s probable that it also has a role in cell 

growth and invasion, so it has been proposed as a tumor suppressor (Sachdeva and Mo, 2010). Gan et al. 

reported the down-regulation of this miRNA and the corresponding up-regulation of some of its target genes 

in RCC samples, proposing a role of miR-145 in renal tumorigenesis (Gan et al., 2010). 

We confirmed by qPCR the up-regulation of the following supported target genes for miR-145: ATM, CDC27, 

FER and GRB10. We chose these genes because of their roles in many pathways such as: cell cycle, 

apoptosis, p53 signaling, DNA repair, cellular growth and proliferation, cellular assembly and organization, 

leukocyte extravasation signaling, post-translational modification, molecular transport and carbohydrate 

metabolism. 

The ATM (ataxia-telangiectasia mutated) gene is mutated in ataxia-telangiectasia syndrome, which is a rare, 

autosomal recessive disorder characterized by cerebellar ataxia, neuro-degeneration, radiosensitivity, cell 

cycle checkpoint defects, genome instability and a predisposition to cancer. The ATM protein is a 

serine/threonine protein kinase and a member of the phosphoinositide 3-kinase-related protein kinase (PIKK) 

family, together with ATR (ATM and Rad3 related protein kinase), DNA-PKcs (DNA dependent protein 

kinase catalytic subunit) and mTOR (mammalian target of rapamycin). All PIKKs are involved in signaling 

following cellular stress. A number of studies have extensively demonstrated that ATM plays a role in cell 

cycle checkpoints, DNA double-strand breaks (the most cytotoxic lesions caused by ionizing radiation) 

repair, in chromosomal end-to-end fusion at telomeres in absence of the telomeric protection complex. It has 

been reported that following induction of DNA damage, or treatment with agents that alter chromatin 
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structure, ATM undergoes an intermolecular auto-phosphorylation on two serine residues, increasing its 

activity (Derheimer and Kastan, 2010). Also the exposure to hypoxia-induced replication arrest initiates a 

DNA damage response that includes both ATR- and ATM-mediated signaling. It has been shown that most 

solid tumors, including renal carcinoma, develop in an environment of below optimal oxygen concentration, 

which is hypoxia, and severe levels of hypoxia (<0,1% O2) induce a specific hypoxic response implicating the 

unfolded protein response, cell death and DNA damage response (DDR). During DDR, signals, such as a 

double strand break, are detected by a group of proteins, including ATM. During hypoxia, ATM increases its 

auto-phosphorylation and phosphorylates Chk2 (cell cycle checkpoint kinase 2). Even though hypoxia 

doesn‟t lead to an accumulation of DNA damage, reoxygenation induces DNA damage at significant levels 

through the action of ROS (reactive oxygen species). Thus, the result of this damage is the ATM-Chk2-

mediated G2 arrest in order to allow repair (Olcina et al., 2010). Therefore, it has been suggested that the 

repression of genes involved in DNA repair, such as ATM, may have an important role in increasing genomic 

instability in tumor cells, contributing to the aggressiveness of hypoxic tumors (Bristow and Hill, 2008). The 

involvement of ATM in many cell signaling processes, in cancer and especially in hypoxia could be very 

interesting in RCC field and in our RCC cell lines that showed a different level of HIF-1α protein, that has 

been shown to be involved in causing cell cycle arrest following moderate hypoxia by inhibition of c-Myc 

(Gordan et al., 2007a).  

CDC27 (cell division cycle 27 homolog) is a core subunit of the anaphase-promoting complex (APC), that is 

a ubiquitin ligase that initiates anaphase and mitotic exit. It has been reported that activation of APC is 

involved in the TGF-β signaling pathway (Wan and Kirschner, 2001a). TGF-β is an inhibitory growth factor 

for a variety of epithelial cells and loss of TGF-β growth inhibition is a hallmark for many types of human 

tumors. Zhang et al. demonstrated that the phosphorylation of CDC27 serves as an important mechanism in 

activation of APC at a different level. Phosphorylated CDC27 destroys SnoN, a proto-oncoprotein, repressor 

of transcription that is rapidly degraded upon stimulation by TGF-β in an ubiquitin-dependent manner, since 

over-expression of SnoN in TGF-β responsive cells blocks TGF-β-induced cell growth. On the other hand, 

CDC27, destroying SnoN, allows the transcription of genes necessary for growth inhibition. The authors 

suggested that it‟s likely that casein kinase II (CKII) is the responsive kinase that activates APC via 

phosphorylation of CDC27 (Zhang et al., 2011c). Moreover, multiple phosphorylation sites on CDC27 have 

been suggested to be important in mitosis for its regulation (Kraft et al., 2003). Thus, the alteration of CDC27 

expression level might affect the TGF-β signaling and the cell growth arrest in a variety of epithelial cells, as 

well as, in many types of human tumors. 

FER (Fes-related protein) encodes a tyrosine kinase that is activated by cell-surface receptors, such as 

EGFR and PDGFR. Activated FER associates with and activates cellular protein containing SH2 domains. 

Recently, Guo and Stark reported that FER is on a pathway through which EGF activates NF-kB and that 

over-expression of FER activates NF-kB, conferring resistance to the NF-kB inhibitor quinacrine (Guo and 

Stark, 2011). The activation of NF-kB is important in tumors, since it induces the expression of NF-kB-

dependent genes whose products inhibit apoptosis, promoting proliferation, inflammation and invasion 

(Baldwin, 1996). The exact function of FER is still unknown. Growth factors such as EGF and PDGF 

triggering signal transduction by their receptors activate FER which then interacts with proteins such as 

cortactin and p120Cas, implicated in the reorganization of the actin cytoskeleton (Kim and Wong, 1995, 
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1998). FER has also been implicated in the regulation of cell-cell and cell-matrix interactions that are 

mediated by adherens junctions and focal adhesions (Greer, 2002). FER is expressed ubiquitously in a 

variety of tissues and cells and is expressed at a high level in numerous malignant cell lines (Allard et al., 

2000a). According to literature, RCC cell lines showed a higher level of FER than in normal cells. 

GRB10 encodes for a member of a super family of adapter proteins. This protein contains several interaction 

motifs. In fact, it has been reported that Grb10 protein interacts with tyrosine kinase receptors such as PDGF 

and EGF. Anyway, its function as an adapter molecule remains to be discovered. Peraldi et al. showed that 

Grb10 protein is a tyrosine phosphorylated in response to VEGF. Thus, VEGF increases the expression level 

of GRB10, and in turn Grb10 increases KDR (kinase insert domain containing receptor) molecules. KDR 

together with Flt-1 (Fms like tyrosine kinase) are two specific tyrosine kinase receptors expressed only on 

endothelial cells, that are activated by VEGF, that is involved in endothelial cell proliferation, angiogenesis. 

They suggested that Grb10 is involved in a positive feed-back loop in VEGF signaling, during 

neovascularization (Giorgetti-Peraldi et al., 2001). Grb10 protein has been involved in the regulation of 

ligand-induced ubiquitination, internalization, and stability of the IGF-IR (insulin-like growth factor receptor) 

(Morrione, 2003). 

The hub of the third big common network was miR-205, which was detected down-regulated in the three 

comparisons. miR-205 has been suggested as an important tumor suppressor miRNA in renal cancer, since 

it may be involved in cell proliferation, apoptosis, colony formation, migration and invasion in renal cancer 

cells (Majid et al., 2011). 

The down-regulation of miR-205 in RCC playing a role in inhibition of Src-mediated oncogenic pathways has 

been reported (Majid et al., 2011). Furthermore, this miRNA may also have a role in epithelial to 

mesenchymal transition (Gregory et al., 2008a; Tellez et al., 2011). Among its predicted target genes, we 

chose to validate the following genes: FER (target gene in common with miR-145, as described above), 

NT5E and RPS6KB1. By qPCR, we confirmed the up-regulation of these supported target genes. 

NT5E is implicated in cell cycle and nucleic acid metabolism; while RPS6KB1 is involved in cell cycle, 

cellular growth and proliferation, cell signaling (e.g., mTOR signaling, PI3K/Akt signaling). 

NT5E (ecto-5′-nucleotidase, also called CD73) encodes for a glycosyl-phosphatidylinositol (GPI)-linked, 

membrane protein found on the surface of a variety of cell types. It‟s thought to function as a co-signaling 

molecule on T lymphocytes, and as an adhesion molecule that is important for lymphocyte binding to 

endothelium. Recently, NT5E protein has been implicated in a variety of physiologic responses, e.g. 

epithelial ion and fluid transport, ischemic preconditioning, tissue injury, platelet function, hypoxia, and 

vascular leak (Colgan et al., 2006; Sitkovsky et al., 2008; Zhang, 2010b). A study reported that NT5E 

participates in cell-cell and cell-matrix interactions (Spychala, 2000). According to literature, we detected the 

up-regulation of NT5E, in fact, it‟s widely expressed in many cancer cell lines and is up-regulated in tumor 

tissues. Its over-expression has been associated with tumor neovascularization, invasiveness, and 

metastasis (Spychala, 2000). This up-regulation in cancerous tissues is accompanied by its high enzymatic 

activity, which can mediate the production of extracellular adenosine (Jin et al., 2010), that impairs cellular 

antitumor immune responses at multiple levels, including T-cell activation, clonal expansion of tumor-specific 

T cells with helper and cytolytic effector function, tumor cell killing. Since the role of NT5E in tumor immune 
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escape via generation of adenosine, it has been suggested that targeted NT5E therapy is an important 

alternative approach to the effective control of tumor growth (Jin et al., 2010; Zhang, 2010b). 

RPS6KB1 (ribosomal protein S6 kinase) belongs to a family of proteins involved in numerous pathways, 

many of which are central to the carcinogenic process, such as regulation of cell growth, insulin and 

inflammation. RPS6KB1 is a mitogen-activated protein kinase (MAPK) that regulates cell growth given its 

activation by growth factors such as PDGF, EGF and insulin through regulation by mTOR. RPS6KB1 is a 

downstream effector of mTORC1 pathway in regulating cell growth by modulating many processes, including 

protein synthesis, ribosome biogenesis and autophagy. mTORC1 directly phosphorylates and activates 

RPS6KB1, which is an important regulator of cell size. RPS6KB1 promotes protein synthesis and represses 

the phosphatidylinositol 3-kinase (PI3K)–Akt pathway by inhibiting IRS1 (insulin receptor substrate 1) and 

IRS2 expression (Sabatini, 2006). As mentioned in the introduction of this thesis, mTOR and PI3K-Akt 

signaling are relevant pathways that have been associated with RCC pathology (Tun et al., 2010). RPS6KB1 

has been identified as a potential oncogene, since it is amplified in 8-10% of breast tumors and over-

expressed in the majority of tumors with amplification (Sinclair et al., 2003). RPS6KB1 has three known 

functions: (1) protein synthesis by inducing selective translation of mRNAs that encode components of the 

translation apparatus and are essential for cell growth and proliferation (Dufner and Thomas, 1999); (2) cell 

cycle control by up-regulating cyclin D3, resulting in phosphorylation of pRb and E2F1 dependent entry of 

the cell into S phase (Feng et al., 2000c); (3) cell migration by association with the Rac1 and Cdc42 

GTPases that are involved in regulation of actin polymerization and cell migration (Lambert et al., 2002). 

By integrated analysis between miRNA and mRNA expression profiles in the three RCC cell lines compared 

to HK-2, we found interesting miRNA-gene regulatory networks. We focused our interest on relationships 

that exist within three wide common networks, composed by three miRNAs (one up-regulated and two down-

regulated miRNAs) and their relative target genes that were already known to be associated with cancer and 

renal carcinoma by literature. In particular, by qPCR, we confirmed the expression levels of both these 

miRNAs and some of their supported target genes, thus, reporting their anti-correlation. However, to assess 

if a gene is a real target of a miRNA, thus, demonstrating their anti-correlation, functional validations are 

needed. We suggest that miRNA-target genes pairs such as miR-145 and its targets ATM and GRB10, miR-

205 and RPS6KB1, miR-34a and USP2, could be of interest for functionally validation and further 

investigations in the RCC field. 
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6 CONCLUSIONS AND FUTURE PROSPECTS 

In this PhD thesis, we described a comprehensive and integrated analysis between gene and miRNA 

expression profiles in three RCC cell lines compared to a normal renal tubular epithelial cell line. 

Using Affymetrix high-density microarray technology, we performed whole-genome gene and miRNA 

expression analyses, thus identifying genes and miRNAs involved in functional processes and biological 

pathways associated with RCC biology. In agreement with already published data, we found many 

modulated genes and miRNAs known to be associated with RCC malignant progression. Additionally, we 

provided findings about novel genes and miRNAs potentially associated to clear cell RCC pathology. We 

found that the integration of gene and miRNA expression profiles allowed the identification of genes affected 

by miRNA post-transriptional regulation and their corresponding alterations, which could be of interest for 

RCC development and progression. Our results confirmed that immortalized RCC cell lines can be used as 

in vitro model for RCC pathology, since they showed gene and miRNA expression patterns resembling those 

of renal tumor tissues, thus maintaining the typical RCC signature. On the other hand, by comparing our 

results to already published data, we observed some discordances about some gene and miRNA 

modulations. Indeed, it should be noted that, whereas a cancerous tissue is characterized for being 

heterogeneous and composed by different cell populations, a tumor cell line is mostly enriched in tumoral 

component but it might accumulate different genomic alterations during in vitro culturing, thus explaining 

different results among distinct studies. Therefore, our study underlined that in order to carry out a functional 

analysis on specific pathways and miRNA-gene networks relevant for ccRCC pathology, the suitable number 

of RCC cell lines to be included should be properly evaluated. 

In conclusion, we suggested that the integration of gene and miRNA expression profiles could help the 

identification of novel and complex functional relations between the whole transcriptome and miRNome that 

are potentially involved in renal carcinoma. Thus, the integration of various genomics data favours a deeper 

comprehension of RCC biology and the identification of functional processes and regulatory networks 

crucially important for tumorigenesis. This may represent a valuable resource to discover novel candidate 

biomarkers useful for diagnostic and prognostic clinical applications or for the development of novel targeted 

therapies. 

Starting from the results here presented, we will plan further investigations addressing the functional 

validation of some miRNA-gene relationships using RNA interference approach on RCC cell lines. 

Alternatively, ccRCC primary cell cultures, could be used, since they are an optimal in vitro tumor model of 

RCC retaining the typical molecular features of parental RCC tissues and providing a greater cell 

homogeneity. Moreover, we are planning to study the role of these miRNA-gene networks in ccRCC 

etiopathogenesis and outcome using a clinical collection of well-characterized ccRCC tissue samples and 

taking into consideration their clinical phenotype and follow-up. 
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8 GLOSSARY OF ABBREVIATIONS 

4E-BP1   4E-binding protein 1 
aCGH   array-comparative genomic hybridization 
Ago   Argonaute 
AJCC   American Joint Committee on Cancer 
AML   acute myeloid leukemia 
ANXA4   annexin A4 
APC   adenomatosis polyposis coli protein 
ARE   antioxidant response elements 
ARG2   Arginase 2 
ASK1   apoptosis signal regulating kinase 1 
ATCC   American Type Culture Collection 
ATM   ataxia-telangiectasia, mutated 
ATR   ATM and Rad3 related protein kinase 
bFGF   basic fibroblast growth factor 
BMPs   bone morphogenetic proteins 
BP   biological processes 
CAIX   carbonic anhydrase IX 
cAlb   carbamylated albumin 
CAV1   caveolin-1 
CCND1   cyclin D1 
ccRCC   clear cell renal cell carcinoma 
CDC27   cell division cycle 27 homolog 
CDF   custom definition file 
CDH1   E-cadherin 
CDKN2A  cyclin-dependent kinase inhibitor 2A 
Chk2   cell cycle checkpoint kinase 2 
chr   chromosome 
chRCC   chromofobe renal cell carcinoma 
CK1   casein kinase 1 
CLL   chronic lymphocytic leukemia 
CN   copy number 
CNA   copy number alteration 
COSMIC  Catalogue Of Somatic Mutations In Cancer 
COX-2   cyclooxygenase-2 
CXCR   chemochine receptors 
DAVID   Database for Annotation, Visualization and Integrated Discovery 
DDR   DNA damage response 
DEGs   differential expressed genes 
DEMs   differentially espresse miRNAs 
DNA-PKcs  DNA dependent protein kinase catalytic subunit 
ECM   extracellular matrix 
EGFR   epidermal growth factor 
ELOSA   Enzyme Linked Oligosorbent Assay 
EMT   epithelial to mesenchymal transition 
ENG   endoglin 
EPO   erythropoietin 
FAS   fatty acid synthase 
FDA   Food and Drug Administration 
FER   Fes-related protein 
FFPE   formalin-fixed paraffin-embedded 
GLUT-1   glucose transporter 
GO   Gene Ontology 
GREM1   gremlin1 
GSK-3β   glycogen synthase kinase 3β 
H2O2   hydrogen peroxide 
HAF   hypoxia-associated factor 
HGF   hepatocyte growth factor 
HIF   hypoxia-inducible factor 
HK-2   human kidney 2 
HMDD   Human MicroRNA & Disease Database 
HPRC   hereditary papillary renal carcinoma 
HRE   hypoxia-response element 
HSP90   heat shock protein 90 
ICAM-1   intercellular adhesion molecule-1 
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IFNα   interferon α 
IGF   insulin-like growth factor 
IL-2   interleukin-2 
iNOS   inducible nitric oxide synthase 
ITGA   integrin 
IVT   in vitro transcription 
JARID1C  lysine (K)-specific demethylase 5C 
LEF-TCF  lymphoid enhancer-binding factor 1-T cell specific transcription factor 7 
LMW   low molecular weight 
LOH   loss of heterozygosity 
LOX   lysyl oxidase 
MAGIA   MiRNA and Genes Integrated Analysis 
MAPK   miogeno-activated protein kinase 
MET   mesenchymal to epithelial transitino 
MF   molecular function 
miRISC   miRNA-containing RNA-induced silencing complex 
miRNA   microRNA 
MM   multiple myeloma 
MMP   metalloproteinase 
mTOR   mammalian target of rapamycin 
MUC1   mucin 1 
NCI   National Cancer Institute 
NF-kB   nuclear factor-kappa B 
NO   nitric oxide 
NOS   nitric oxide synthase 
Nrf2   Nuclear factor-erythroid 2-related factor 2 
NT5E   ecto-5′-nucleotidase 
PBRM1   polybromo 1 
PDGF   platelet-derived growth factor 
PDK1   pyruvate dehydrogenase kinase 1 
PFKM   6-phosphofructokinase 1 
PHDs   prolyl hydroxylases 
PID   Pathway Interaction Database 
PIP3   phosphatidylinositol-3,4,5-triphosphate 
PLGF   placental growth factor 
PM   perfect match 
PPARD   peroxisomal proliferators-activated receptor-delta 
pRCC   papillary renal cell carcinoma 
PTEN   phosphatase and tensin homolog 
qPCR   quantitative PCR 
RACK1   receptor for activated C-kinase 1 
RCC   renal cell carcinoma 
RIN   RNA Integrity Number 
RMA   Robust Multi-array Average 
ROCK1   Rho-kinase 1 
ROS   reactive oxygen species 
RP   Rank Product 
RPS6KB1  ribosomal protein S6 kinase 
RT   reverse transcription 
SCF   VHL skp-cullin-F-box protein 
SDF1   stromal cell-derived factor 1 
SETD2   SET domain containing 2 
SFK   Src family of protein kinases 
SOD2   superoxide dismutase 2 
TGF-α   transforming growth factor-α 
TNF-α   tumor necrosis factor-α 
TNM   tumor, node, metastasis 
UICC   Union for International Cancer Control 
USP2   ubiquitin-specific protease 2 
UTR   untranslated region 
UTX   lysine (K)-specific demethylase 6A 
VCAM1   vascular cell adhesion molecule1 
VEGF   vascular epithelial growth factor 
VHL   von Hippel-Lindau 
VIM   Vimentin 
WHO   World Health Organization 
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9 APPENDIX 

Table 1. List of the 154 genes included in the VHL and HIF pathways by PID (Pathway Interaction 
Database). 

Entrez ID Gene Entrez ID Gene Entrez ID Gene Entrez ID Gene 

25 ABL1 2321 VEGFR1 5045 FURIN 7033 TFF3 

52 ACP1 2324 VEGFR3 5054 PAI 7037 TFR 

123 ADRP 2534 FYN 5155 PDGFB 7157 TP53 

133 ADM 2549 GAB1 5159 PDGFRB 7319 UBE2A 

207 AKT1 2624 GATA2 5170 PDK1 7410 VAV2 

226 ALDOA 2645 GCK 5209 PFKFB3 7414 VCL 

387 RHOA 2885 GRB2 5211 PFKL 7422 VEGFA 

405 ARNT 2886 GRB7 5230 PGK1 7423 VEGFB 

444 ASPH 2887 GRB10 5236 PGM1 7428 VHL 

472 ATM 3090 HIC1 5243 MDR1 7525 YES1 

581 BAX 3091 HIF-1A 5315 PKM 7852 CXCR4 

664 BNIP3 3098 HK1 5335 PLCG1 8260 ARD1 

768 CAIX 3099 HK2 5566 PRKACA 8553 BHLHE40 

808 CAM 3162 HMOX1 5578 PKKCA 8648 SRC-1 

867 CBL 3172 HNF4 5580 PRKCD 8826 IQGAP1 

998 CDC42 3265 HRAS 5600 MAPK11 8828 NRP2 

1003 CDH5 3303 HSP70 5606 MKK3 8829 NRP1 

1026 CDKN1A 3315 HSP27 5728 PTEN 8877 SPHK1 

1029 CDKN2A 3320 HSP90 5747 FAK1 9047 TSAD 

1356 CP 3398 ID2 5770 PTPN1 9175 MLK 

1385 CREB1 3484 IGFBP1 5771 PTPN2 9429 ABCG2 

1445 CSK 3486 IGFBP3 5777 SHP1 9564 BCAR1 

1499 CTNNB1 3689 ITGB2 5781 SHP2 10370 CITED2 

1647 GADD45A 3725 JUN 5795 DEP1 10397 NDRG1 

1785 DNM2 3791 VEGFR2 5829 PXN 10499 TIF2 

1796 DOK1 3939 LDHA 5879 RAC1 10603 APS 

1901 S1PR1 3952 LEP 5921 RASGAP 10818 FRS2 

1906 EDN1 4035 LRP1 6093 ROCK1 10987 JAB1 

2022 ENG 4170 MCL1 6095 RORA4 23607 CD2AP 

2023 ENO1 4193 MDM2 6387 CXCL12 25759 SHC2 

2033 EP300 4609 MYC 6461 SHB 29907 SNX15 

2034 HIF-2A 4690 NCK1 6464 SHC 51564 HDAC7 

2056 EPO 4734 NEDD4 6503 SLAP 54583 PHD2 

2113 ETS1 4793 NFKBIB 6513 GLUT1 64344 IPAS 

2185 PYK2 4843 NOS2 6648 SOD2 79365 BHLHE41 

2235 FECH 4846 ENOS 6667 SP1 112399 PHD3 

2241 FER 4869 NPM1 6714 SRC 171221 HSP40 

2242 FES 4907 NT5E 7015 TERT 
  

2274 FHL2 5034 P4HB 7018 TF 
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Table 2. The top 50 down-regulated and up-regulated genes in Caki-1 vs HK-2, obtained by Rank Product 
analysis. *Expression values are reported in log2 fold-change. 

Entrez ID Gene Symbol log2FC* Entrez ID Gene Symbol log2FC* 

6588 SLN -7.07 10584 COLEC10 7.10 

100033435 SNORD116-24 -6.57 54578 UGT1A6 7.05 

2239 GPC4 -6.42 6288 SAA1 6.86 

100128252 LOC100128252 -6.16 5552 SRGN 6.52 

6578 SLCO2A1 -6.15 6594 SMARCA1 6.21 

100033420 SNORD116-8 -5.83 216 ALDH1A1 6.18 

91851 CHRDL1 -5.79 6372 CXCL6 5.96 

4494 MT1F -5.54 84740 LOC84740 5.77 

83716 CRISPLD2 -5.41 1646 AKR1C2 5.74 

255743 NPNT -5.32 23743 BHMT2 5.71 

729642 NA -5.29 9615 GDA 5.60 

4493 MT1E -5.18 414899 BLID 5.50 

100033413 SNORD116-1 -5.15 3910 LAMA4 5.49 

26810 SNORD41 -5.13 91607 SLFN11 5.47 

8519 IFITM1 -5.13 7412 VCAM1 5.43 

26585 GREM1 -5.11 22998 LIMCH1 5.16 

4642 MYO1D -5.11 330 BIRC3 5.14 

9118 INA -5.10 11167 FSTL1 5.14 

100033426 SNORD116-14 -4.92 80243 PREX2 4.97 

677840 SNORA71D -4.90 57020 C16orf62 4.94 

6090 RNY5 -4.87 85477 SCIN 4.92 

5080 PAX6 -4.85 23532 PRAME 4.76 

894 CCND2 -4.83 8644 AKR1C3 4.65 

100033427 SNORD116-15 -4.78 79745 CLIP4 4.65 

4935 GPR143 -4.78 8754 ADAM9 4.65 

100033434 SNORD116-23 -4.76 290 ANPEP 4.59 

89944 GLB1L2 -4.69 2919 CXCL1 4.56 

3772 KCNJ15 -4.66 653 BMP5 4.54 

677807 SNORA22 -4.64 29103 DNAJC15 4.52 

4501 MT1X -4.59 1645 AKR1C1 4.48 

1152 CKB -4.55 79339 OR51B4 4.44 

83543 AIF1L -4.54 57016 AKR1B10 4.40 

10734 STAG3 -4.47 10346 TRIM22 4.31 

100033418 SNORD116-6 -4.46 837 CASP4 4.25 

8357 HIST1H3H -4.42 440712 C1orf186 4.21 

10406 WFDC2 -4.38 344887 LOC344887 4.19 

7351 UCP2 -4.37 5125 PCSK5 4.09 

5730 PTGDS -4.35 761 CA3 4.09 

4060 LUM -4.29 50484 RRM2B 4.09 

7012 TERC -4.27 51316 PLAC8 4.07 

9365 KL -4.23 6374 CXCL5 4.06 

79887 PLBD1 -4.23 8411 EEA1 3.97 

8291 DYSF -4.23 7169 TPM2 3.97 

283596 SNHG10 -4.22 2564 GABRE 3.97 

164312 LRRN4 -4.20 401494 PTPLAD2 3.96 

2348 FOLR1 -4.16 313 AOAH 3.96 

677801 SNORA14A -4.11 91351 DDX60L 3.91 

6591 SNAI2 -4.08 80008 TMEM156 3.90 

121504 HIST4H4 -4.05 9982 FGFBP1 3.90 

1634 DCN -4.04 4982 TNFRSF11B 3.89 
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Figure 1. Caki-1 vs HK-2: DAVID enrichment analysis on GO Biological Process terms for the 951 down-
regulated genes (panel A) and the 1003 up-regulated genes (panel B). On the X-axis, the log(p-value) of 
DAVID enrichment test is reported. 
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Table 3. The top 50 down-regulated and up-regulated genes in Caki-2 vs HK-2, obtained by Rank Product 
analysis. *Expression values are reported in log2 fold-change. 

Entrez ID Gene Symbol log2FC* Entrez ID Gene Symbol log2FC* 

3955 LFNG -2.68 1645 AKR1C1 8.14 

718 C3 -2.68 57016 AKR1B10 8.13 

10266 RAMP2 -2.67 216 ALDH1A1 8.03 

79814 AGMAT -2.67 1646 AKR1C2 7.79 

5010 CLDN11 -2.67 54600 UGT1A9 7.71 

57462 KIAA1161 -2.67 54578 UGT1A6 6.94 

10148 EBI3 -2.66 10149 GPR64 6.57 

84952 CGNL1 -2.66 57834 CYP4F11 6.38 

26805 SNORD45A -2.65 6750 SST 6.36 

4833 NME4 -2.65 22998 LIMCH1 6.33 

10591 C6orf108 -2.65 1244 ABCC2 6.11 

441246 RPL35P5 -2.64 5552 SRGN 6.11 

79899 PRR5L -2.64 5125 PCSK5 6.04 

81888 HYI -2.64 8653 DDX3Y 5.97 

115123 MARCH3 -2.64 8644 AKR1C3 5.96 

196740 C10orf72 -2.64 10686 CLDN16 5.87 

6515 SLC2A3 -2.63 266977 GPR110 5.86 

6136 RPL12 -2.63 1470 CST2 5.83 

388282 LOC388282 -2.63 79745 CLIP4 5.82 

7117 TMSL3 -2.63 9615 GDA 5.80 

23452 ANGPTL2 -2.61 80243 PREX2 5.73 

11147 HHLA3 -2.61 5268 SERPINB5 5.64 

56911 C21orf7 -2.60 2877 GPX2 5.62 

11337 GABARAP -2.60 80008 TMEM156 5.58 

23635 SSBP2 -2.59 256764 WDR72 5.57 

5050 PAFAH1B3 -2.58 4051 CYP4F3 5.53 

6446 SGK1 -2.58 8942 KYNU 5.51 

8722 CTSF -2.57 57020 C16orf62 5.51 

29933 GPR132 -2.57 7348 UPK1B 5.45 

4881 NPR1 -2.57 344887 LOC344887 5.37 

26801 SNORD48 -2.56 54575 UGT1A10 5.26 

2275 FHL3 -2.56 928 CD9 5.26 

633 BGN -2.56 7447 VSNL1 5.22 

23371 TENC1 -2.55 29953 TRHDE 5.21 

124976 SPNS2 -2.55 5144 PDE4D 5.21 

25915 NDUFAF3 -2.55 767 CA8 5.17 

3009 HIST1H1B -2.54 64208 POPDC3 5.13 

997 CDC34 -2.54 56923 NMUR2 5.09 

54478 FAM64A -2.54 771 CA12 5.00 

9099 USP2 -2.54 6594 SMARCA1 4.94 

27122 DKK3 -2.54 23657 SLC7A11 4.94 

79883 PODNL1 -2.54 55790 CSGALNACT1 4.91 

6297 SALL2 -2.53 23743 BHMT2 4.78 

2947 GSTM3 -2.52 23532 PRAME 4.72 

25864 ABHD14A -2.52 9086 EIF1AY 4.72 

79897 RPP21 -2.52 79695 GALNT12 4.71 

8092 ALX1 -2.52 51313 C4orf18 4.70 

256227 MGC87042 -2.52 1469 CST1 4.70 

93145 OLFM2 -2.51 330 BIRC3 4.68 

79966 SCD5 -2.51 23266 LPHN2 4.67 
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Figure 2. Caki-2 vs HK-2: DAVID enrichment analysis on GO Biological Process terms for the 951 down-
regulated genes (panel A) and the 1007 up-regulated genes (panel B). On the X-axis, the log(p-value) of 
DAVID enrichment test is reported. 
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Table 4. The top 50 down-regulated and up-regulated genes in A498 vs HK-2, obtained by Rank Product 
analysis. *Expression values are reported in log2 fold-change. 

Entrez ID Gene Symbol log2FC* Entrez ID Gene Symbol log2FC* 

3303 HSPA1A -7.63 216 ALDH1A1 7.61 

1004 CDH6 -7.48 10686 CLDN16 6.37 

6588 SLN -7.23 10584 COLEC10 6.21 

7345 UCHL1 -6.03 6594 SMARCA1 6.05 

100128252 LOC100128252 -6.01 79745 CLIP4 5.88 

91663 MYADM -5.90 51702 PADI3 5.64 

29015 SLC43A3 -5.88 91607 SLFN11 5.57 

26585 GREM1 -5.59 57020 C16orf62 5.51 

8355 HIST1H3G -5.56 85477 SCIN 5.38 

4060 LUM -5.48 5919 RARRES2 5.31 

729642 NA -5.30 8754 ADAM9 5.21 

684 BST2 -5.30 6335 SCN9A 5.12 

3009 HIST1H1B -5.18 5341 PLEK 5.11 

677840 SNORA71D -5.09 928 CD9 5.05 

2239 GPC4 -5.06 837 CASP4 5.05 

26810 SNORD41 -5.02 164781 WDR69 5.03 

8342 HIST1H2BM -5.00 10060 ABCC9 4.75 

3772 KCNJ15 -5.00 7070 THY1 4.69 

4935 GPR143 -5.00 23266 LPHN2 4.58 

3018 HIST1H2BB -4.98 10346 TRIM22 4.56 

4316 MMP7 -4.82 64881 PCDH20 4.53 

5730 PTGDS -4.80 5649 RELN 4.48 

8357 HIST1H3H -4.76 346389 MACC1 4.38 

2202 EFEMP1 -4.73 23532 PRAME 4.37 

8519 IFITM1 -4.72 23230 VPS13A 4.33 

4494 MT1F -4.69 64097 EPB41L4A 4.32 

89944 GLB1L2 -4.68 5144 PDE4D 4.25 

100033420 SNORD116-8 -4.65 3676 ITGA4 4.17 

10653 SPINT2 -4.49 9723 SEMA3E 4.16 

7351 UCP2 -4.47 4065 LY75 4.13 

6090 RNY5 -4.45 54809 SAMD9 4.11 

100033434 SNORD116-23 -4.36 6568 SLC17A1 4.04 

8904 CPNE1 -4.32 3113 HLA-DPA1 4.01 

10734 STAG3 -4.31 2170 FABP3 4.00 

8368 HIST1H4L -4.27 55031 USP47 3.99 

677801 SNORA14A -4.26 50484 RRM2B 3.99 

4995 OR3A2 -4.25 84740 LOC84740 3.98 

100127980 LOC100127980 -4.19 440706 NA 3.95 

2878 GPX3 -4.19 343450 KCNT2 3.94 

8354 HIST1H3I -4.18 55075 UACA 3.92 

6920 TCEA3 -4.18 100129762 NA 3.92 

3383 ICAM-1 -4.15 158471 PRUNE2 3.91 

100033435 SNORD116-24 -4.15 219285 SAMD9L 3.90 

10457 GPNMB -4.13 79780 CCDC82 3.89 

1634 DCN -4.13 120892 LRRK2 3.84 

100033413 SNORD116-1 -4.13 50940 PDE11A 3.82 

7851 MALL -4.10 51747 LUC7L3 3.81 

90649 ZNF486 -4.06 7130 TNFAIP6 3.81 

8356 HIST1H3J -4.01 10111 RAD50 3.80 

7102 TSPAN7 -4.01 132671 SPATA18 3.80 



105 

 

Figure 3. A498 vs HK-2: DAVID enrichment analysis on GO Biological Process terms for the 971 down-
regulated genes (panel A) and the 997 up-regulated genes (panel B). On the X-axis, the log(p-value) of 
DAVID enrichment test is reported. 
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Table 5. List of qPCR TaqMan
®
 MicroRNA Expression Assays (purchased from Applied Biosystems, Life 

Technologies, Inc. Carlsbad, CA, USA). RNU48 was used as endogenous control to normalize miRNA 
expression levels. 

TaqMan
®
 MicroRNA Assay Assay ID 

hsa-miR-21 000397 

hsa-miR-34a 000426 

hsa-miR-143 002249 

hsa-miR-145 002278 

hsa-miR-146a 000468 

hsa-miR-149 002255 

hsa-miR-152 000475 

hsa-miR-183 002269 

hsa-miR-205 000509 

hsa-miR-210 000512 

hsa-miR-221 000524 

RNU48 001006 
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Table 6. List of down-regulated (24) and up-regulated (26) miRNAs in Caki-1 vs HK-2, obtained by Rank 
Product analysis. *Expression values are reported in log2 fold-change. 

MIRNA log2FC* MIRNA log2FC* 

hsa-miR-205 -4.68 hsa-miR-100 5.59 

hsa-miR-182 -3.40 hsa-miR-125b 5.41 

hsa-miR-335 -2.84 hsa-miR-146a 3.58 

hsa-miR-129-star -2.81 hsa-miR-494 2.93 

hsa-miR-103 -2.47 hsa-let-7a 2.73 

hsa-miR-130b -2.32 hsa-miR-146b-5p 2.69 

hsa-miR-129-3p -2.23 hsa-miR-99a 2.65 

hsa-miR-107 -2.11 hsa-miR-224 2.57 

hsa-miR-145 -2.09 hsa-miR-125b-1-star 2.55 

hsa-miR-576-3p -2.03 hsa-let-7f 2.50 

hsa-miR-93 -1.84 hsa-miR-29b-1-star 2.43 

hsa-miR-342-3p -1.71 hsa-miR-1207-5p 2.11 

hsa-miR-183 -1.71 hsa-miR-663b 1.97 

hsa-miR-19b -1.60 hsa-let-7g 1.86 

hsa-miR-132 -1.60 hsa-miR-574-5p 1.85 

hsa-miR-708 -1.57 hsa-let-7c 1.74 

hsa-miR-106b -1.56 hsa-miR-34a 1.58 

hsa-miR-197 -1.48 hsa-miR-675 1.53 

hsa-miR-16 -1.43 hsa-miR-196a 1.48 

hsa-miR-99b -1.43 hsa-miR-27a-star 1.39 

hsa-miR-574-3p -1.43 hsa-miR-29a 1.25 

hsa-miR-17 -1.34 hsa-miR-128 1.19 

hsa-miR-606 -1.32 hsa-miR-1303 1.08 

hsa-miR-143 -1.31 hsa-miR-181d 1.05 

  
hsa-miR-484 1.01 

  
hsa-miR-23a 0.98 
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Table 7. List of down-regulated (30) and up-regulated (32) miRNAs in Caki-2 vs HK-2, obtained by Rank 
Product analysis. *Expression values are reported in log2 fold-change. 

MIRNA log2FC* MIRNA log2FC* 

hsa-miR-205 -4.57 hsa-miR-100 2.31 

hsa-miR-155 -3.91 hsa-miR-34a 2.30 

hsa-miR-21 -3.40 hsa-miR-210 2.19 

hsa-miR-25 -2.90 hsa-miR-185 2.18 

hsa-miR-28-3p -2.88 hsa-miR-663 2.09 

hsa-miR-19b -2.87 hsa-miR-23a-star 2.03 

hsa-miR-1826 -2.86 hsa-miR-138 1.92 

hsa-miR-193a-5p -2.68 hsa-miR-486-5p 1.84 

hsa-miR-708 -2.62 hsa-miR-193b-star 1.84 

hsa-miR-30a-star -2.53 hsa-miR-378 1.81 

hsa-miR-27b -2.39 hsa-miR-320d 1.79 

hsa-miR-29a -2.10 hsa-miR-140-3p 1.70 

hsa-miR-221 -2.04 hsa-miR-30c-2-star 1.70 

hsa-miR-26a -2.02 hsa-miR-423-5p 1.67 

hsa-miR-145 -1.90 hsa-miR-324-5p 1.66 

hsa-miR-183 -1.84 hsa-miR-423-3p 1.64 

hsa-miR-197 -1.83 hsa-miR-31 1.54 

hsa-miR-152 -1.83 hsa-miR-24 1.41 

hsa-miR-149 -1.82 hsa-miR-193b 1.41 

hsa-miR-182 -1.78 hsa-miR-1228-star 1.38 

hsa-miR-200b -1.71 hsa-miR-149-star 1.37 

hsa-miR-30c -1.62 hsa-miR-638 1.37 

hsa-miR-20a -1.56 hsa-miR-629 1.37 

hsa-miR-132 -1.54 hsa-miR-125b 1.34 

hsa-let-7i -1.53 hsa-miR-146a 1.34 

hsa-miR-28-5p -1.50 hsa-miR-320a 1.32 

hsa-miR-130a -1.48 hsa-miR-320b 1.32 

hsa-miR-181b -1.41 hsa-miR-671-5p 1.28 

hsa-let-7f -1.33 hsa-miR-625-star 1.26 

hsa-miR-342-3p -1.23 hsa-miR-17-star 1.25 

  
hsa-miR-151-5p 1.24 

  
hsa-miR-720 1.23 
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Table 8. List of down-regulated (36) and up-regulated (18) miRNAs in Caki-2 vs HK-2, obtained by Rank 
Product analysis. *Expression values are reported in log2 fold-change. 

MIRNA log2FC* MIRNA log2FC* 

hsa-miR-31 -4.88 hsa-miR-127-3p 2.71 

hsa-miR-205 -4.73 hsa-miR-194 2.08 

hsa-miR-345 -2.27 hsa-miR-29a 2.07 

hsa-miR-125a-5p -2.17 hsa-miR-192 2.01 

hsa-miR-145 -2.12 hsa-miR-34a 1.93 

hsa-miR-574-3p -2.05 hsa-miR-34c-5p 1.54 

hsa-miR-210 -1.87 hsa-miR-134 1.28 

hsa-miR-99b -1.82 hsa-miR-29b-1-star 1.22 

hsa-miR-197 -1.80 hsa-miR-34c-3p 1.20 

hsa-miR-28-5p -1.74 hsa-miR-27a 1.18 

hsa-let-7e -1.48 hsa-miR-548a-3p 1.14 

hsa-miR-149 -1.45 hsa-miR-20a 1.11 

hsa-miR-361-5p -1.44 hsa-miR-379 1.08 

hsa-miR-130b -1.43 hsa-miR-132-star 1.05 

hsa-miR-532-5p -1.42 hsa-miR-1288 1.05 

hsa-miR-152 -1.41 hsa-miR-30a 0.99 

hsa-miR-15b -1.36 hsa-miR-1280 0.96 

hsa-miR-193a-5p -1.36 hsa-miR-484 0.88 

hsa-miR-362-5p -1.35 
  

hsa-miR-132 -1.29 
  

hsa-miR-28-3p -1.29 
  

hsa-miR-342-3p -1.28 
  

hsa-miR-183 -1.26 
  

hsa-miR-92b -1.24 
  

hsa-miR-23b -1.24 
  

hsa-miR-500 -1.22 
  

hsa-miR-143 -1.15 
  

hsa-miR-1307 -1.15 
  

hsa-miR-146a -1.14 
  

hsa-miR-107 -1.10 
  

hsa-miR-625 -1.10 
  

hsa-miR-20b -1.10 
  

hsa-miR-221 -1.09 
  

hsa-miR-103 -1.07 
  

hsa-miR-744 -1.06 
  

hsa-miR-106b-star -1.03 
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Table 9. List of qPCR TaqMan
®
 Gene Expression Assays (purchased from Applied Biosystems, Life 

Technologies, Inc. Carlsbad, CA, USA). ACTB was used as housekeeping gene (endogenous control) to 
normalize gene expression. 

TaqMan
®
 Gene Expression Assay Assay ID 

ATM Hs01112307_m1 

CDC27 Hs00265810_m1 

FER Hs01099028_m1 

GRB10 Hs00193409_m1 

NT5E Hs01573922_m1 

PPARD Hs00987011_m1 

RPS6KB1 Hs00177357_m1 

USP2 Hs00275859_m1 

ACTB Hs99999903_m1 
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Table 10. Counts of predicted target genes for each DEM as calculated by MAGIA tool. 

MIRNA 
No. PREDICTED 
TARGET GENES 

MIRNA 
No. PREDICTED 
TARGET GENES 

hsa-miR-145 280 hsa-miR-15b 11 
hsa-miR-205 237 hsa-miR-103 10 
hsa-miR-34a 217 hsa-miR-194 10 
hsa-miR-1228* 153 hsa-miR-183 9 
hsa-miR-663 126 hsa-miR-324-5p 9 
hsa-miR-143 76 hsa-miR-23a 9 
hsa-miR-31 58 hsa-miR-196a 8 
hsa-miR-30a* 48 hsa-miR-224 8 
hsa-miR-125b-1* 46 hsa-miR-146b-5p 8 
hsa-miR-210 44 hsa-miR-125b 8 
hsa-miR-25 42 hsa-miR-29a 7 
hsa-miR-24 41 hsa-miR-130a 6 
hsa-miR-345 37 hsa-miR-125a-5p 6 
hsa-miR-26a 37 hsa-miR-342-3p 6 
hsa-miR-155 35 hsa-miR-181d 5 
hsa-miR-29b-1* 32 hsa-miR-130b 5 
hsa-miR-127-3p 31 hsa-miR-100 4 
hsa-miR-193b 30 hsa-miR-379 4 
hsa-miR-185 30 hsa-miR-34c-5p 4 
hsa-miR-28-3p 29 hsa-let-7f 4 
hsa-let-7a 28 hsa-miR-99a 3 
hsa-miR-197 27 hsa-miR-193a-5p 3 
hsa-miR-423-3p 26 hsa-miR-19b 3 
hsa-miR-221 24 hsa-miR-192 2 
hsa-miR-106b 23 hsa-miR-671-5p 2 
hsa-miR-138 23 hsa-miR-1207-5p 2 
hsa-miR-181b 23 hsa-miR-28-5p 2 
hsa-miR-27b 21 hsa-miR-128 2 
hsa-miR-320d 19 hsa-miR-335 1 
hsa-miR-23b 19 hsa-miR-1303 1 
hsa-miR-200b 19 hsa-miR-484 1 
hsa-miR-708 17 hsa-miR-149 1 
hsa-miR-486-5p 17 hsa-miR-500 1 
hsa-miR-17 16 hsa-miR-574-3p 1 
hsa-miR-20a 16 hsa-miR-606 1 
hsa-miR-107 14 hsa-miR-625 1 
hsa-miR-16 13 hsa-miR-132 1 
hsa-let-7e 13 hsa-miR-629 1 
hsa-miR-146a 13 hsa-miR-134 1 
hsa-miR-151-5p 13 hsa-miR-27a* 1 
hsa-miR-23a* 12 hsa-miR-1826 1 
hsa-let-7i 12 hsa-miR-720 1 
hsa-let-7c 12 hsa-miR-744 1 
hsa-miR-182 11 hsa-miR-152 1 

  
Tot. = 88 Tot. = 2236 
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