
Wildfire Smoke Detection
Using Computational Intelligence Techniques

Angelo Genovese, Ruggero Donida Labati, IEEE, Member,
Vincenzo Piuri, IEEE, Fellow, Fabio Scotti, IEEE, Member

Department of Information Technology
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Abstract—In this paper, we propose an image processing
system for the detection of wildfire smoke based on computational
intelligence techniques and capable of adapting to different
applicative environments. The proposed system is designed for
processing with limited computational complexity. The detection
process focuses on the extraction of specific features of wildfire
smoke. A computational intelligence classifier is adopted to
identify the presence of smoke. In order to test its effectiveness,
the proposed system has been tested with low quality frame
sequences, providing the capability to deal also with low cost
cameras. The results indicate that the proposed approach is
accurate and can be effectively applied in different environmental
conditions.

Index Terms—computer vision, neural networks, smoke detec-
tion, forest fires.

I. INTRODUCTION

Forest fires are one of the main problems in regions with hot
climate and extensive vegetation. The work in [1] reports that,
each year, about 0.1% of the world forest surface is destroyed
by fires. In most cases, manned surveillance towers are adopted
to watch forest areas which present the greatest risk of fire.
Lookout towers equipped with cameras are a more feasible
approach, since many cameras from different locations and
points of view can be monitored by a single control station.
Recently, many research projects have studied the possibility
to develop automatic fire and smoke detection systems based
on sensor networks or machine vision techniques, in order
to achieve a better efficiency and a shorter alarm response
time. These approaches have the advantages of a great distance
vision, absence of latency, and the possibility to extract more
information (such as position, size, growth, and kind of fire
and smoke) [2].

In this paper, we propose a new approach for real-time
detection of forest fire smoke, which is designed for low power
and low cost platforms. Since the smoke is visible before the
forest fires [3], our approach focuses on smoke detection. In
order to keep the approach feasible for low cost hardware,
we consider only images captured under visible light. The
approach takes into account bad quality frame sequences and
employs computational intelligence techniques, in particular
describing the adoption of neural networks.

The paper is structured as follows: in Section II a literature
review is presented, in Section III the proposed approach is

described, and Section IV describes the experimental results.

II. PREVIOUS WORK

Machine vision systems for fire and smoke detection can be
divided in two main categories: systems based on dedicated
IR/UV cameras, and systems operating under visible light. In
the first case, simpler image processing techniques are needed,
but the cost of the camera hardware is higher. In the second
case, however, image processing and detection algorithms are
less straightforward to design.

Machine vision algorithms for smoke detection can also
be divided in two different classes: methods based on single
images or multiple images. The algorithms of the first class
can be considered as a special case of image segmentation
techniques. Methods appertaining to the second class can also
use dynamic characteristics [4]. The vast majority of smoke
detection algorithms operating in visible light conditions be-
longs to the second class and uses approaches based on color,
texture, movement, shape, frequency, and energy.

A method that uses color features is presented in [5], and
it is based on searching the pixels with similar values in the
RGB color space. Texture features are used by the methods
presented in [6 – 8]. The method proposed in [7] performs
the smoke detection by first extracting high variability regions
from the frame sequences and then comparing the texture
features with characteristics previously extracted from each
smoke image. The approach described in [8] is based on a
predetermined color model for the smoke, and considers the
gradual blending of the model in the frame. Texture features
such as Tamara features, gray intergrowth matrix, gray level
co-occurrence matrix (GCLM) are also used in combination
with wavelet features [9] by the system presented in [1].

Movement and shape features such as circumference, area,
direction and growth are used by the works described in [10
– 12]. Frequency and energy features are usually exploited
with the use of wavelet transform or Fourier coefficients in
order to detect the random behavior typical of smoke clouds
regions. Such features are often used in combination with other
features, as in the methods presented in [13 – 16].

The combined use of visual features, shape descriptions,
wavelet features and statistical modeling is described in [17,
18], together with an approach especially directed to the
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detection of long-distance wildfire smokes. This approach de-
scribes the differences in visual, shape and frequency features
of smoke seen from long distances (some kilometers) and
introduces the problem of false alarms caused by clouds. The
used features are based on the color of smoke and on the
detection of regions with rising intensity in subsequent video
frames.

Another approach for the forest fire detection is described in
[12], and it is based on motion detection, analysis of moving
edges and shape properties, such as growing and rising of
moving pixels.

Machine vision systems for fire and smoke detection can
be based on different classifiers. The methods for the smoke
detection in medium-range and open areas depicted in [19, 20]
are based on moving region detection and texture analysis,
and use probabilistic and Support Vector Machines (SVM)
classifiers. SVM are also used in [10, 15, 16]. Neural Networks
are used in [9, 14]. Other methods use probabilistic techniques,
such as Hidden Markov Models [18] and Bayesian Classifiers
[21].

A summary of machine vision techniques for wildfire,
medium and long range smoke detection is depicted in Table
I.

Commercial machine vision systems are also available and
used in the process of wildfire monitoring [23 – 25]. How-
ever, they are often wired and expensive. In many situations
commercial systems are used in combination with meterolog-
ical data and geographical information systems, such as the
systems described in [22, 26]. These systems employ a multi-
agent architecture with an image processing stage for smoke
detection. This stage is based on methods for motion detection,
image segmentation, dynamic pattern analysis, color-space
analysis and texture analysis.

III. THE PROPOSED APPROACH

The proposed approach is designed for low quality and low
resolution video acquisitions (eg. 320 × 240 pixel at 7 FPS),
in order to use off-the-shelf hardware and keep the image
processing techniques as fast as possible, while keeping the
memory consumption at a minimum. In order to achieve this
result, the proposed method is designed to keep track only of
a small number of frames, varying from 5 to 10.

The focus on long-distance wildfire makes frequency anal-
ysis less discriminant because whirls and spirals typical of its
fluid behavior are not detectable and much details are lost.
Due to the low contrast of the frame sequences and different
atmospheric conditions, color-space analysis is difficult to
perform. For these reasons, the extracted features focus on
a general behavior, described by movement characteristics.

The proposed approach extracts different features from the
input frame sequences and then classifies each pixel into
two different categories: “fire” and “not fire”. The feature
extraction method is divisible in the sequent steps:

1) moving region detection;
2) smoke-color analysis;
3) sharp edge detection;

4) growing region detection;
5) rising region detection;
6) perimeter disorder analysis.
The extracted features are then used by computational

intelligence classifiers.

A. Feature extraction

1) Moving region detection: The first step consists in the
moving region detection, in which the candidate smoke regions
are extracted. The moving region detection step is based on
the methods proposed in [27] and [17]. The proposed method
uses an adaptive system to update the background estimation
and the thresholds. The background estimation is computed as
follows:

B(x, y, t+ 1) =


aB(x, y, t) + (1− a)I(x, y, t)

if (x, y) is stationary
B(x, y, t)

if (x, y) is a moving pixel

, (1)

where I(x, y, t) represents the intensity of the pixel at location
(x, y) in the t-th frame of the frame sequence I , B(x, y, t) is
the previous estimated background intensity at the same pixel
position, a is a positive real constant close to one. Initially,
B(x, y, 0) is set equal to the first frame I(x, y, 0). A pixel
positioned at (x, y) is assumed to be moving if it satisfies the
disequations:

|I(x, y, t)− I(x, y, t− 1)| > TI(x, y, t) , (2)
|I(x, y, t)− I(x, y, t− 2)| > TI(x, y, t) , (3)

where I(x, y, t−1) is the intensity of the pixel at the location
(x, y) in the (t− 1)-th frame I and TI(x, y, t) is a threshold
updated at each frame, according to the equation:

TI(x, y, t+1) =


bTI(t) + (1− b)(c|I(x, y, t)−B(x, y, t)|)

if (x, y) is stationary
TI(t)

if (x, y) is a moving pixel
(4)

where c is a real constant greater than one and b is a positive
constant close to one. Initial threshold values are set to a pre-
determined non-zero value.

In order to detect even slow moving regions, as described
in [17], it is possibile to use two different background es-
timations, Bfast(x, y, t) and Bslow(x, y, t). Bfast(x, y, t) is
updated at every frame and Bslow(x, y, t) is updated every
second. For every pixel (x, y), the value DM (x, y, t) repre-
senting its motion is computed as follows:

DM =



0 if |Bfast −Bslow| ≤ Tlow

|Bfast −Bslow| − T low(t)

Thigh − Tlow

if ≤ Tlow|Bfast −Bslow| ≤ Thigh

1 if ≤ Thigh|Bfast −Bslow|

, (5)

where 0 < Tlow < Thigh are threshold values. The result is a
matrix DM (x, y) with values in the range [0, 1]. The resulting
matrix DM is thresholded in order to reduce the computational
time and by considering regions with low values of movement.



TABLE I
SUMMARY OF MACHINE VISION TECHNIQUES FOR MEDIUM AND LONG RANGE SMOKE DETECTION

Reference Methodology Database size Performance

[18]
Background estimation, smoke colour detection using YUV
thresholds, rising region detection with HMM, shadow detec-
tion with RGB rules, classification with LMS active learning
(compared with WMA and fixed weights).

5 Videos 500 to 1000 frames long,
public database at:
http:// signal.ee.bilkent.edu.tr/
VisiFire/

0.4% false alarms. 1

[12] Motion detection, spectrum analysis of moving edges, moving
shape properties (growing, rising, expanding).

Videos taken from database at:
http:// signal.ee.bilkent.edu.tr/
VisiFire/

0% false alarms. 2

[19] Moving region detection, computation of a probabilistic model
based on a time series of speed, shape and texture properties.

Ad-hoc database with multiple
videos of same place in different
times of day.

Distance metric of probability distribution
from ideal smoke probability distribution of
features, approach performs well on test on
few videos. 3

[20] Moving region detection, feature extraction from texture analy-
sis, SVM classification.

Ad-hoc database with multiple
videos of same place in different
times of day.

Approach performs well on test on few
videos. 4

[22] Motion detection, image segmentation, smoke dynamic pattern
analysis, color-space analysis and texture analysis.

Videos taken from field test during
wildfire. 3.7% false alarms

Notes:
1 Number of frames and subset of videos used for testing not available.
2 Low number of frames tested.
3 Classification metrics not available.
4 Classification metrics not available.

2) Smoke color analysis: This step checks for high dif-
ferences in the intensity channel of adjacent frames. Smoke
regions possess a gray-ish color, related to low chrominance
values. First, the frame I(x, y, t) is converted from the RGB
to the YUV color space by using the following formulas:

Y = 0.299R+ 0.567G+ 0.114B,

U = −0.147R− 0.289G+ 0.436B,

V = 0.615R− 0.515G− 0.100B . (6)

Then, for each pixel at the location (x, y) and time t, a
smoke color feature DC(x, y, t) is computed according to the
following equation:

DC =


1− |U − 128|+ |V − 128|

128
if Y − U > T1 and Y − V > T1

and T3 ≤ Y ≤ T4

0 otherwise

, (7)

where T1, T2, T3, T4 are predetermined thresholds. The
resulting values are then thresholded and normalized in the
range [0.8, 1], which corresponds to the most significative
regions.

3) Sharp edge detection: The sharp edge detection checks
the intensity channel of adjacent frames. The frames I(x, y, t)
and I(x, y, t − 1) are converted in the corresponding frames
in the Y channel of the YUV color space Y (x, y, t) and
Y (x, y, t − 1). The difference frame is computed according
to:

DY (x, y, t) = |(Y (x, y, t)− Y (x, y, t− 1)| . (8)

The values of DY inferior to a fixed threshold T5 are discarded
in order to match only high values of DY , which are related
to sharp edge transitions.

4) Growing region detection: The analysis of the growing
areas of moving regions is performed by computing the frame
difference between the moving region matrix at the time t and
the time t− 1:

DM−diff (x, y, t) = DM (x, y, t)−DM (x, y, t− 1) . (9)

The obtained values are then summed, considering only the
positive contributes in order to avoid excessive data fluctua-
tions:
DG(t) =

∑
x,y

(DM−diff (x, y, t)) ∀ DM−diff (x, y, t) 6= 0 ,

(10)
where DG(t) is the growing value at time instant t. The values
of DG are then normalized between two threshold values.

5) Rising region detection: The first task in the detection
of rising regions is to save the position of the highest moving
pixel for a sequence of time instants:

Ht−n = min
y

DM (x, y, t− n) if DM (x, y, i) > 0

∀ 0 < n < N , (11)

where Ht−n is the location of the highest moving pixel at time
instant t − n and N is the maximum number of considered
previous instants of time. The rising value DR(t) at the time
instant t is then computed as the difference between the first
and the last of the locations: DR(t) = Ht−0 − Ht−N . The
values of DR(t) are then mormalized between two empirically
estimated thresholds.

6) Perimeter disorder analysis: This step analyzes the ratio
of perimeter to area in order to compute a measure of the
perimeter disorder. The moving region description matrix
DM (x, y, t) is first binarized by using the same threshold value
used in Subsection III-A1. For each distinct 8-connected re-
gion of the binary image, the area and perimeter are computed.
The perimeter disorder value for each region is computed as:

DP (i, t) =
Pi

Ai
∀ 1 < i < Nb , (12)

where DP (i, t) is the perimeter disorder value of the i-th
blob (8-connected region) at time instant t, Pi and Ai are
the perimeter and area of the i-th blob, and Nb is the number
of the blobs.

B. Feature classification
The features are extracted pixelwise for N frames. Global

features, such as growing value DG and rising value DR,



(a) (b)

Fig. 1. Example of smoke frame with pixelwise segmentation: (a) original
frame; (b) segmentated image.

TABLE II
SUMMARY OF DATASETS

N Dataset Frame Features × Non smoke samples /
Name Sequence Samples Smoke samples

DST1-5 DST1 14 × 20318 19923/395
5 DST2-5 DST2 14 × 24327 23485/482

DST3-5 DST3 14 × 28207 27756/451
DST4-5 DST1+DST2+DST3 14 × 72852 71524/1328
DST1-7 DST1 18 × 18977 18605/372

7 DST2-7 DST2 18 × 24929 24437/492
DST3-7 DST3 18 × 18880 18504/376
DST4-7 DST1+DST2+DST3 18 × 62786 61546/1240

DST1-10 DST1 24 × 9523 9336/187
10 DST2-10 DST2 24 × 24291 24436/485

DST3-10 DST3 24 × 18825 18503/322
DST4-10 DST1+DST2+DST3 24 × 53269 52275/994

are replicated on every moving pixel. The growing and rising
values are considered in a N -length timeseries. Every pixel
corresponds to 4 + (N × 2) features:

• Moving value DM ;
• Smoke color value DC ;
• Sharp edge transition value DY ;
• N× Growing value DG;
• N× Rising value DR;
• Perimeter disorder value DP .
In this work, we compare different classifiers, according to

the number of frames used in the feature extraction process.
In particular, we use N = 5, 7, 10.

IV. EXPERIMENTAL RESULTS

In this paper we refer to the True Positive as the percentage
of smoke samples correctly identified as such, and True
Negative as the percentage of non-smoke samples correctly
identified as non smoke. We tested our approach by using
three different sets of frame sequences, each with pixelwise
segmentation (Fig. 1):

1) DST1: low-quality frame sequences, both smoke and
non-smoke;

2) DST2: medium-quality frame sequences, both smoke
and non-smoke;

3) DST3: synthethic frame sequences, both smoke and non-
smoke.

The set of frame sequences DST3 was obtained by using the
algorithms proposed in [28].

We used these sets of frame sequences in order to compute
different feature datasets. The features are related to different
numbers of consecutive frames (N = 5, 7, 10). A summary of
the datasets is shown in Table II.

TABLE III
SUMMARY OF PROPOSED APPROACHES RESULTS

Reference Dataset Hidden Tp Tn Fp Fn Sens. Spec. Total
Method Name L. Size (%) (%) (%) (%) (%) (%) (%)
5 frames DST1-5 10 1.94 98.06 0.00 0.00 100.00 100.00 0.00

NN pixelwise DST2-5 10 1.71 97.84 0.18 0.27 86.31 99.82 0.45
approach DST3-5 20 1.59 98.37 0.04 0.01 99.33 99.96 0.05

DST4-5 15 1.73 98.08 0.10 0.10 94.73 99.90 0.19
7 frames DST1-7 10 1.96 98.04 0.00 0.00 100.00 100.00 0.00

NN pixelwise DST2-7 10 1.50 97.95 0.08 0.48 75.81 99.92 0.55
approach DST3-7 15 1.98 98.00 0.01 0.02 99.20 99.99 0.02

DST4-7 15 1.76 97.96 0.06 0.22 88.89 99.94 0.28
10 frames DST1-10 10 1.96 98.04 0.00 0.00 100.00 100.00 0.00

NN pixelwise DST2-10 15 1.54 98.01 0.05 0.41 78.97 99.95 0.46
approach DST3-10 15 1.71 98.28 0.01 0.01 99.69 99.99 0.02

DST4-10 25 1.63 98.09 0.05 0.23 87.63 99.95 0.28

Notes: Hidden L. Size = number of hidden layer nodes of the feed-foreward neaural
networks; Sens. = Sensitivity; Spec. = Specificity.

For each frame, we evaluated the correctness of the seg-
mented smoke areas estimated using the proposed method by
comparing the obtained results with the ground-truth binary
images. Fig. 2 shows some examples of segmented smoke
regions obtained by using different values of N .

We used a N-fold cross-validation scheme with N = 10
in order to compute all the figures of merits presented in
the paper [29]. We used a two-layer Feed Forward Neural
Network with different number of nodes in the hidden layer:
10, 15, 20, 25. The output layer is composed by a linear node
and the topology of the hidden layer nodes is tan-sigmoidal.
The method used to train the neural networks is the back-
propagation algorithm.

A summary of the results obtained by the proposed approach
is depicted in Table III. It is possible to observe that the method
obtained few misclassification errors. In particular, the number
of false positives is always < 0.2%.

In order to test the performances of the proposed approach
under adverse conditions, we introduced artificial effects in
the DST1 frame sequences. Table V summarizes the result
of the classification under simulated fog, increased and de-
creased luminance, and additive Poisson noise. These effects
are obtained by using the method described in [28] (Fig.
3). It is possible to observe that adverse conditions have
a negligible impact on the performances of the proposed
approach, resulting only in a small increasing of the total
classification error (less than 0.15%). Fig. 4 shows an example
of results related to frame sequences with simulated fog.

We also compared the obtained results with the ones
achieved by using kNN classifiers. In particular, we used
different values of k: 1, 3, 5, and 10. The results obtained
by using kNN classifiers are shown in IV. It is possible to
observe that, in most of the cases, neural classifiers obtained
a better accuracy. This fact is particularly evident by observing
the results obtained by evaluating the feature datasets related
to the set of frame sequences DST-2, which is noisier than
DST-1 and DST-3. Another advantage related to the neural
classifiers is that they require less computational time than
the kNN classifiers. For example, the time needed by a feed-
forward neural network with 10 neurons in the hidden layer
is about 1/25 of the time required by a kNN classifier with k
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Fig. 2. Examples of input frames and outputs for different classifiers: (a),(d) 5 frames NN pixelwise approach; (b),(e) 7 frames NN pixelwise approach;
(c),(f) 10 frames NN pixelwise approach.

TABLE IV
RESULTS USING KNN CLASSIFIERS

Reference Dataset k Tp Tn Fp Fn Sens. Spec. Total
Method Name (%) (%) (%) (%) (%) (%) (%)
5 frames DST1-5 1 1.94 98.04 0.01 0.00 99.75 99.98 0.02

kNN pixelwise DST2-5 1 1.78 97.79 0.23 0.20 89.83 99.77 0.43
approach DST3-5 10 1.58 98.29 0.11 0.01 99.11 99.89 0.12

DST4-5 1 1.71 98.07 0.11 0.11 93.96 99.89 0.22
7 frames DST1-7 3 1.96 98.03 0.01 0.00 100.00 99.99 0.01

kNN pixelwise DST2-7 10 1.40 94.54 3.49 0.57 71.14 96.44 4.06
approach DST3-7 5 1.98 97.85 0.15 0.01 99.47 99.84 0.16

DST4-7 10 1.75 96.52 1.51 0.22 88.83 98.46 1.73
10 frames DST1-10 3 1.96 97.99 0.04 0.00 100.00 99.96 0.04

kNN pixelwise DST2-10 10 1.40 94.55 3.50 0.55 71.96 96.43 4.04
approach DST3-10 5 1.70 98.13 0.16 0.01 99.38 99.84 0.17

DST4-10 10 1.62 96.43 1.71 0.25 86.63 98.26 1.95

Notes: Sens. = Sensitivity; Spec. = Specificity.

TABLE V
SUMMARY OF RESULTS UNDER ADVERSE CONDITIONS

Reference Dataset Hidden Tp Tn Fp Fn Sens. Spec. Total
Method Name L. Size (%) (%) (%) (%) (%) (%) (%)

DST1-5 10 1.94 98.06 0.00 0.00 100.00 100.00 0.00
5 frames DST1-5 Fog 10 31.70 1595.90 0.40 0.30 99.06 99.97 0.04

NN pixelwise DST1-5 - Lum 10 46.20 2309.00 0.00 0.00 100.00 100.00 0.00
approach DST1-5 + Lum 10 21.90 1095.80 0.00 0.00 100.00 100.00 0.00

DST1-5 + Noise 15 20.80 1048.30 0.30 0.40 98.11 99.97 0.07
DST1-7 10 1.96 98.04 0.00 0.00 100.00 100.00 0.00

7 frames DST1-7 Fog 20 31.50 1595.80 0.50 0.50 98.44 99.97 0.06
NN pixelwise DST1-7 - Lum 10 28.40 1421.00 0.00 0.00 100.00 100.00 0.00

approach DST1-7 + Lum 25 26.60 1360.10 1.00 0.60 97.79 99.93 0.12
DST1-7 + Noise 15 43.10 2155.00 0.20 0.50 98.85 99.99 0.03
DST1-10 10 1.96 98.04 0.00 0.00 100.00 100.00 0.00

10 frames DST1-10 Fog 20 32.00 1596.20 0.10 0.00 100.00 99.99 0.01
NN pixelwise DST1-10 - Lum 25 28.10 1397.80 0.10 0.20 99.29 99.99 0.02

approach DST1-10 + Lum 15 26.60 1359.60 1.50 0.40 98.52 99.89 0.14
DST1-10 + Noise 20 42.30 2155.10 0.10 0.60 98.60 100.00 0.03

Notes: Sens. = Sensitivity; Spec. = Specificity; Fog = addition of simulated fog; -Lum:
decreased luminance (Y) channel; +Lum = increased luminance (Y) channel; Noise =
additive poisson noise.

= 10.
In further studies, other kernel-based classifiers, such as

support vector machines and radial basis function networks,
can be considered.

(a) (b)

(c) (d)

Fig. 3. Examples of simulated adverse conditions: (a) fog; (b) decreased
luminance; (c) increased luminance; (d) additive noise.

V. CONCLUSIONS

The paper proposed a new method to detect wildfire smoke.
This method is designed in order to achieve a fast, low cost
and reliable system to monitor fire-sensitive areas.

The proposed approach uses feature extraction algorithms
based on image processing techniques, and classifiers based
on computational intelligence strategies. The first step is a
preliminary down-sampling of the frame sequences (both in
space and time), followed by a moving region detection, which
extracts the candidate smoke regions. Then, the candidate re-
gions are processed by using a smoke color analysis algorithm,
a sharp edge detector, and growing and rising region detection



(a) (b) (c)
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Fig. 4. Examples of input frames and outputs for different classifiers with presence of fog: (a),(d) 5 frames NN pixelwise approach; (b),(e) 7 frames NN
pixelwise approach; (c),(f) 10 frames NN pixelwise approach.

techniques. Neural classifiers are then used in order to estimate
the areas that describe smoke regions in the different frames.

We tested the performances of the proposed method in
different scenarios, comparing the obtained results with the
ones obtained by kNN classifiers. Experiments showed that
the method is feasible and accurate. The approach performed
well even in the presence of non-ideal conditions. Conditions
of poor visibility can cause missed detections, but do not raise
the number of false alarms.
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