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The present study examined the effects in mice of exposure to di(2-ethyl-hexyl) phthalate (DEHP)
throughout pregnancy and lactation on the development and function of the pituitary-gonadal
axis in male and female offspring once they have attained adulthood. Groups of two to three dams
were exposed with the diet from gestational d 0.5 until the end of lactation, at 0, 0.05, 5, and 500
mg DEHP/kg - d. The experiment was repeated three times (total: seven to 10 dams per treatment).
The 500-mg dose caused complete pregnancy failure, whereas exposure to doses of 0.05 and 5 mg
did not affect pregnancy and litter size. In total, about 30 male and 30 female offspring per group
were analyzed. Offspring of the DEHP-treated groups, compared with controls, at sexual maturity
showed: 1) lower body weight (decrease 20-25%, P < 0.001); 2) altered gonad weight (testes were
~13% lighter and ovaries ~40% heavier; P < 0.001); 3) poor germ cell quality (semen was ~50%
less concentrated and 20% less viable, and ~10% fewer oocytes reached Ml stage, P < 0.001); 4)
significant lower expression of steroidogenesis and gonadotropin-receptor genes in the go-
nads; and 5) up-regulated gonadotropin subunit gene expression in the pituitary. In conclu-
sion, our findings suggest that, in maternally exposed male and female mice, DEHP acts on
multiple pathways involved in maintaining steroid homeostasis. Specifically, in utero and
lactational DEHP exposure may alter estrogen synthesis in both sexes. This, in turn, induces
dysregulation of pituitary-gonadal feedback and alters the reproductive performance of ex-
posed animals. (Endocrinology 153: 937-948, 2012)

hthalates (phthalic acid esters) are plasticizers that are
Padded to polymers, especially polyvinyl chloride, to
impart softness and flexibility. They are widely used in the
manufacture of a wide range of consumer goods such as
medical devices, clothing, packaging, food containers,
personal-care products, and children’s toys (1). The most
commonly used phthalate is di(2-ethylhexyl) phthalate
(DEHP) with a production of 1 to 4 million tons per year,
which makes it one of the most widespread environmental
contaminants worldwide (2, 3). Phthalates do not form
strong molecular linkages with the polymer so they can
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diffuse throughout the matrix and leach into the environ-
ment (4, 5). As a result, the general population is widely
and continuously exposed to these compounds through
ingestion, inhalation, or skin absorption. They therefore
pose significant public health concerns, on account of their
endocrine-disrupting activity (6, 7).

The reproductive system is particularly susceptible to
the endocrine-disrupting activity of phthalates. In rats
these effects include reduction in fertility (8), litter size/
viability (9, 10), sperm density and motility (11), and bio-
chemical and morphological alterations of male and fe-

Abbreviations: AGD, Ano-genital distance; COC, cumulus-oocyte complexes; DEHP, di(2-
ethyl-hexyl) phthalate; dpc, days postcoitum; GAPDH, glyceraldehyde-3-phosphate dehy-
drogenase; hCG, human chorionic gonadotropin; PMSG, pregnant mare serum gonado-
tropin; PND, postnatal day; PPAR, peroxisome proliferator-activated receptor.
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male gonads (8). Furthermore, phthalates can cross the
placental barrier and also pass into breast milk, with a
significant risk of damage for the developing fetus and
newborn (12, 13). Unfortunately, many of the reproduc-
tive abnormalities resulting from developmental exposure
only become apparent after puberty (long-latency effect),
and this is a strong obstacle to the development of a cause
and effect relationship.

To date, clear evidence of DEHP reproductive toxicity
in maternally exposed adult male animals has been re-
ported (14-17), whereas little is known about the effects
of pre- and perinatal exposure to DEHP on females (18).
The mechanisms underlying the phthalates’ reproductive
toxicity is not yet fully understood, but morphological and
functional alterations of the reproductive system in animal
models suggest phthalate-mediated alterations to steroid
hormone-dependent processes in both males and females
(19-24).

The close correlation between gonadal steroidogenesis
and pituitary gonadotropins is well documented, and fer-
tility depends on precise hormonal regulation of this axis.
However, it is still not clear how pre- and perinatal expo-
sure to DEHP influences the pituitary-gonadal axis as re-
gards the regulation of steroid-gonadotropin cross talk.

The aim of the present study was to evaluate, in mice
given DEHP throughout pregnancy and lactation, the ef-
fects on pituitary-gonadal function at the morphological
and molecular levels in male and female offspring once
they reached adult age. Dams were exposed until the end
of lactation to cover the complete period of reproductive
system development in the mouse, which is largely post-
natal, whereas in other mammals, including human, re-
productive organ development is completed in utero.
DEHP dosages and the administration with food were
chosen for their relevance to human exposure.

Materials and Methods

Animals and treatments

Virgin female 5-wk-old CD-1 mice were purchased from
Charles River (Calco, Italy) and allowed to acclimatize for 2 wk.
They were housed in the animal facilities of the Department of
Animal Pathology and Health, Faculty of Veterinary Medicine,
University of Milan, under controlled conditions (23 =1 C, 12-h
light, 12-h dark cycle). Standard pellet food (4RF21, Charles
River) and tap water were available ad libitum.

Groups of two or three females were mated with one male and
inspected daily for a mating plug. The day of the vaginal plug
detection [0.5 d postcoitum (dpc)] each female was housed in-
dividually in type II cages with stainless steel covers and hard-
wood shavings as bedding. From this moment (0.5 dpc) through
lactation until weaning [postnatal d 21 (PND) 21], dams were
given diet containing DEHP or vehicle. DEHP (Sigma-Aldrich,
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Hamburg, Germany) was diluted in commercial sunflower oil
and used for preparing treated chow in a specialized company
(Altromin, Lage, Germany). The amount of DEHP added to the
chow to obtain the desired mg/kg - d doses (0, 0.05, 5, and 500
mg DEHP/kg - d) was calculated based on the mean daily food
intake of CD1 mice, which was calculated by a preliminary study
in the same physiological conditions and confirmed by the lit-
erature (25). Therefore, the chow was dosed by the concentra-
tions 0of 0.2857,28.57, and 2857.0 mg/kg food to ensure a mean
daily intake of 0.05, 5, and 500 mg/kg - d, respectively, for the
three experimental groups. Each batch of diet was tested before
use in an accredited laboratory (SGS Laboratory GmBH, Ham-
burg, Germany).

Two to three pregnant mice were randomly assigned among
the groups, and the experiment was replicated at least three times
(total seven to 10 dams per treatment). The dose range was se-
lected considering as reference value an amount close to the es-
timated daily intake of the general population (0.058 mg/kg - d)
asreported by Kavlok et al. (1). Because of the scant data on mice,
the highest dose was based on data reported for rats. Therefore,
the two highest doses were calculated by applying a factor of 100
so that the largest (500 mg/kg - d) was known to induce repro-
ductive adverse effects in rat offspring without causing overt
maternal toxicity (26). Dams and lactating offspring were ex-
amined daily for clinical signs of toxicity.

On PND 21 dams were euthanized by CO, inhalation, and
organs were collected. Variables including litter size, sex ratio,
pup weight, and the number of viable pups were recorded. The
liver, ovaries, and uterus were removed, weighed, and snap-fro-
zen in liquid nitrogen for later analysis. To count postimplan-
tation losses, an additional group of 15 dams per dose was ex-
posed to DEHP from dpc 0.5 and killed at specific times during
pregnancy (dpc 9.5,10.5,11.5, 13.5, and 15.5). Gross fetal and
placental morphology was compared between groups.

On PND 21 all pups were grouped according to gender, and
body weight was recorded. Males and females from each litter
were housed in groups for another 3 wk (up to PND 42). Stan-
dard pellet food (Charles River 4RF21) and tap water were avail-
able ad libitum.

On PND 42, at least three animals of each sex per litter were
randomly selected for measurements of body weight, ano-genital
distance (AGD), and autopsy. A total number of 85 male and 87
female offspring was evaluated (25-35 per each treatment
group).

Mice were euthanized by CO, inhalation followed by cervical
dislocation, and ano-genital distance (defined as the distance
between the center of the anus and the base of the genital bud)
was measured using manual calipers by a single investigator. The
animals were handled carefully to avoid variation in the mea-
surements due to stretching of the perineal region.

Male external genitalia were examined for malformations,
and testicular position was recorded after opening the abdominal
cavity. Pituitaries and reproductive organs of both sexes were
removed and weighed, and the mean weight was used in subse-
quent analyses. All organs significantly correlated with body
weight were adjusted for body weight. Organs were then snap-
frozen in liquid nitrogen for later analysis.

Care and experimental procedures with mice were in accor-
dance with accepted standard of human animal care following
Italian national regulations and were approved by the University
of Milan ethics committee.
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Sperm collection and dead-live ratio

Sperm was obtained from the cauda epididymes of adult off-
spring. Both cauda were dissected out from the body and trans-
ferred into 500 ul of previously equilibrated Whittingham me-
dium (37 Cat 5% CO, in air). Sperm was passively released into
the culture medium by puncturing the cauda three to four times
with a 27G needle. Some of the samples were diluted (1:100) with
water, and a sperm count was done in a Neubauer chamber.
Other samples were diluted (1:20) with 0.9% NaCl, and stained
by a modified Kovacs-Foote method (27). Briefly, one drop of
dilute sample was mixed on a microscope slide with one drop of
iso-osmotic 0.2% Trypan blue (Sigma T-8154; Sigma-Aldrich,
St. Louis, MO) and smeared with the edge of another slide. The
slides were vertically air dried then fixed for 2 min with fixative
solution (86 ml 1 N HCl plus 14 ml 37% formaldehyde solution
and 0.2 g neutral red (Fluka, 72210), and rinsed with tap and
distilled water. Finally, the slides were dried in air, and covered
with Eukitt (Fluka, 03989) and a coverslip.

Stained smears were examined by light microscopy at X400
magnification. The status of the head and tail of at least 100
spermatozoa was classified in each smear. Sperm with white or
pale pink heads (intact plasma membrane) were classified as
alive, and sperm with black to dark-purple heads (damaged
membrane) were classified as dead.

In vitro oocyte maturation

Maturation-competent cumulus-oocyte complexes (COC)
were collected from adult offspring injected with 3.5 IU Folligon
[pregnant mare serum gonadotropin (PMSG), Intervet Interna-
tional, Boxmeer, The Netherlands] before oocyte collection, and
matured iz vitro. Briefly, COC were collected in M2 medium by
gently puncturing visible antral follicles on the ovary surface
with a 30.5-gauge needle. Germinal vesicle-stage oocytes with an
intact vestment of cumulus cells were collected and pooled from
at least two mice per group. Maturation was in microdrops (200
wul,20-30 COC per drop) of bicarbonate-buffered a-MEM sup-
plemented with 10% (vol/vol) fetal calf serum, 1 mm glutamine,
10 TU/ml PMSG (Folligon, Intervet International) and 5 IU/ml
human chorionic gonadotropin (hCG, Chorulon, Intervet Inter-
national), 50 pg/ml streptomycin, and 75 pg/ml penicillin G and
cultured at 37 Cin 5% CO, in air.

Maturation was evaluated after 14-15 h. Oocytes with dif-
fuse or slightly condensed chromatin or with clumped or strongly
condensed chromatin with or without metaphase plate but no
polar body were classified as not matured (germinal vesicle and
metaphase I). Oocytes with a metaphase plate and a polar body
were considered mature MII oocytes. Oocytes with no visible
chromatin or with fragmented cytoplasm and/or abnormal chro-
matin patterns were considered degenerated. Experiments were
replicated at least four times, with a minimum of five mice per
treatment selected from different litters.

In vitro fertilization and embryo culture

Oocytes or sperm from untreated mice were used for assessing
fertilization, and developmental capacity of male and female
gametes was derived from maternally exposed adult offspring.

Briefly, females were superovulated by ip injection of 3.5 TU
Folligon (PMSG, Intervet International), followed 48 h later by
an ip injection of 5 IU Chorulon (hCG, Intervet). Spermatozoa
were collected as described above and capacitated for 60 min in

endo.endojournals.org 939

Whittingham medium (37 C at 5% CO, in air). COC were re-
covered 14 h after hCG from oviducts in M2 medium (Sigma-
Aldrich). After rinsing in Whittingham medium, COC were
inseminated with 2*10° capacitated spermatozoa. Putative fer-
tilized eggs (6 h after insemination) were then transferred to
250-pl drops of M16 medium (Sigma-Aldrich) covered with par-
affin oil and incubated at 37 C at 5% CO, in air for further 96 h.
Cleavage and blastocyst rate were assessed at 24 h and 96 h after
insemination, respectively.

RNA isolation and RT-PCR

Total RNA was isolated from one testis or ovary of all au-
topsied mice using Trizol (Invitrogen, Carlsbad, CA) according
to the manufacturer’s instructions. Total RNA was checked for
integrity and DNA contamination using a UV spectrophotom-
eter and 1.3% agarose gel electrophoresis. Total RNA (1 ug)
extracted from each sample was used to synthetize the cDNA
using a SuperScript kit (Invitrogen). The reverse transcription
reaction was carried out at 42 C for 1 h, and terminated by
heating at 94 C for 2 min.

Polyadenylated [poly(A)+] RNA from pituitaries was ex-
tracted usinga Dynabeads mRNA DIRECT kit (Deutsche Dynal,
Hamburg, Germany). Briefly, single pituitaries were lysed for 10
min at room temperature in 200 ul lysis buffer [100 mmol Tris-
HCI (pH 8), 500 mmol LiCl, 10 mmol EDTA, 1% (wt/vol) so-
dium dodecyl sulfate, and 5 mmol dithiothreitol]. After lysis, 10
wl prewashed Dynabeads-oligo(deoxythymidine) were pipetted
into the tube, and poly(A)+ RNA binding to oligo(deoxythy-
midine) was allowed for 5 min at room temperature. The beads
were then separated with a Dynal MPC-E magnetic separator
and washed twice with 50 ul washing buffer A [10 mmol Tris-
HCI (pH 8), 0.15 mmol LiCl, 1 mmol EDTA, and 0.1% (wt/vol)
sodium dodecyl sulfate] and three times with 50 ul washing
buffer B[10 mmol Tris-HCI (pH 8.0), 0.15 mm LiCl, and 1 mmol
EDTA]. Poly(A)+ RNA were then eluted from the beads by
incubation in 11 ul diethylpyrocarbonate-treated sterile water at
65 C for 2 min. Aliquots were immediately used for reverse tran-
scription with the PCR Core Kit (PerkinElmer Corp., Wellesley,
MA), using 2.5 wmol random hexamers to obtain the widest
array of cDNA. The reverse transcription reaction was carried
outin a final volume of 20 ul at 25 C for 10 min and 42 Cfor 1 h,
followed by a denaturation step at 99 C for 5 min and immediate
cooling on ice.

Table 1 lists the primers and PCR conditions for the genes
analyzed. Transcripts were selected because of their direct or
indirect involvementin the pituitary-gonadal cross talk. For each
set of primers, the optimal cycle number at which the transcript
was amplified exponentially was established by running a linear
cycle series and the number of PCR cycles was kept within this
range. Approximately 1 ul cDNA per sample was used for am-
plification. The cDNA fragments were generated by initial de-
naturation at 94 C for 3 min. The PCR products were separated
by electrophoresis on 1.3% agarose gel and detected under UV
light. To normalize signals from different RNA samples, glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) transcripts
were coamplified as an internal standard. Quantitative expres-
sion was analyzed with Quantity One software using the soft-
ware’s Volume Analysis Report (Bio-Rad Laboratories, Inc.,
Hercules, CA).
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TABLE 1. List of primers and PCR conditions

Gene Accession no. Primers Annealing C Product size
thr NMO013582 F: TCTACCTGCTGCTCATTGCCTC 57 553
R: AAGGCAGCTGAGATGGCAAAG
fshr NMO013523 F: ATGTGTAACCTCGCCTTTGCTG 57 393
R: AACATACAGCTGCGACAAAGGG
star BC082283 F: GAAGGAAAGCCAGCAGGAGAAC 58 496
R: CTGCGATAGGACCTGGTTGATG
cyplzal AY594330 F: ACGGTGGGAGACATCTTTGGG 57 283
R: CCTTCGGGATGGCAAACTCTC
cyp19al NMO007810 F: CCTCTGGATACTCTGCGACGAG 56 508
R: CGAATGGTGGAAGTTTGTGTGG
1h&pB NM008497 F: CATCACCTTCACCACCAGCATC 60 259
R: GAGGTCACAGGCCATTGGTTG
fsh&B NMO008045 F: CTGCCATAGCTGTGAATTGACC 55 203
R: CACAGCCAGGCAATCTTACG
pgr NM008829 F: GATGAGCCTGATGGTGTTTGGC 57 490
R: GGGCAACTGGGCAGCAATAAC
gapdh NM008084 F: TCACCATCTTCCAGGAGCG 57 572
R: CTGCTTCACCACCTTCTTGA

F, Forward; R, reverse.

Electrophoresis and immunoblot analysis

Protein from ovaries and testes was extracted using RIPA
buffer with added proteinase and phosphatase cocktail (catalog
nos.P2714 and P5726, respectively). The lysates were mixed 1:1
with 2 X Laemmli sample buffer and heated to 90 C for § min and
then centrifuged at 13,000 rpm for 2 min. Immunoblot analysis
was done as described previously (28). Cyp191al was detected
using a goat polyclonal anti-Cyp19 antibody (SC-1425; Santa
Cruz Biotechnology, Inc., Santa Cruz, CA). The secondary an-
tibody used to detect the Cyp191al-primary antibody complex
was horseradish peroxidase-conjugated bovine antigoat IgG
(SC-2378; Santa Cruz Biotechnology). Proteins on the mem-
branes were visualized using the WestPico ECL detection system
(Pierce Chemical Co., Rockford, IL). After the initial analysis,
the membranes were washed in a stripping buffer (2% sodium
dodecyl sulfate, 100 mMm B-mercaptoethanol, 50 mm Tris, pH
6.8) to remove bound antibodies and reprobed with a monoclo-
nal anti-B-actin antibody (catalog no. A1978). The secondary
antibody for detection of the B-actin-primary antibody complex

was horseradish peroxidase-conjugated goat antimouse IgG
(Pierce Chemical Co.). Protein content was analyzed in each blot
(from three different experiments) using the Volume Analysis
Report of Quantity One software (Bio-Rad).

Statistical analysis

All data were analyzed using GraphPad Prism software 5.03
(GraphPad Software, San Diego CA). Differences between the
means for litter size, AGD, organ weight, semen parameters, and
gene expression were tested by the D’Agostino and Pearson nor-
mality test to confirm Gaussian distribution and then examined
by one-way ANOVA, with statistical significance at P = 0.035.
When ANOVA gave a significant P value, treatments were com-
pared using Bonferroni’s test in the post hoc analysis. Data for in
vitro oocyte maturation and embryo development were analyzed
by binary logistic regression. Controls were taken as the refer-
ence group. Experiments were replicated at least three times, and
each replicate was fitted as a factor. The log-likelihood ratio

TABLE 2. Reproductive outcome and organ weights of dams treated with DEHP throughout pregnancy and

lactation
DEHP
Parameter 0 mg/kg - d 0.05 mg/kg - d 5 mg/kg - d 500 mg/kg - d

No. of dams 10 7 7 10
Pregnancy at term (%) 10/10 (100)? 6/7 (85.7)? 7/7 (100)? 1/10 (10)°
Abortion/miscarriage 0/10° 1/72 0/7@ 9/10°
Litter size 129+ 0.7 15.0 + 1.5 10.6 + 1.5 —1
Sex ratio (% F:M) 43.3:56.7 48.7:51.3 50.9: 49.1 —
Viability index (%) 98.5*+ 1.5 983+ 1.4 100.0 = 0.0 —
Liver weight (% of BW) 85+ 0.2 9.4 +1.2%b 10.0 + 0.8 —
Ovary weight (% of BW) 0.019 = 0.02 0.018 = 0.02 0.021 = 0.02 —
Uterus weight (% of BW) 0.48 = 0.05 0.53 = 0.07 0.55 = 0.09 —

Values are means = sem Viability index: (number of pups at weaning/number of pups alive on PND 2) X 100. BW, Body weight; F, female; M, male.

2 b Different superscripts indicate statistical differences for P =< 0.05. ’ Of the 10 pregnancies, only one reached term and a single male pup was
born (500 mg/kg - d group), and this pup was excluded from the analysis of the parameters reported in the table.
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dpc 9.5 dpc 11.5 dpc 15.5 the 5 mg/kg - d group being most af-
gl fected. The weight difference persisted
il Ulll ‘ ; 2\ up to 6 wk of age, when treated off-

B

500 mg/kg/day control

500 mg/kg/day control

500 mg/kg/day

FIG. 1. Morphological abnormalities of 500 mg DEHP/kg - d-treated fetuses and extra-
embryonic tissues taken on dpc 9.5, 11.5, and 15.5, compared with no exposure to DEHP at

the same times.

statistic was used to detect between-treatment differences
with dosage set as an explanatory variable. Significance was
set at P < 0.05.

Results

DEHP disturbs maternal reproductive outcome

Exposure to 500 mg/kg + d dramatically increased post-
implantation losses (Table 2), with only one of 10 females
able to deliver. Autopsy at specific times during pregnancy
indicated that embryonic vesicles appeared macroscopi-
cally normal until dpc 9.5. Between dpc 10.5 and 11.5,
resorption started and fetuses and fetal envelopes rapidly
degenerated. By dpc 15.5, only hemorrhagic remnants
could be seen in the uterine cavity (Fig. 1). There were no
signs of maternal toxicity and by dpc 19.5 (predicted time
of delivery), the uterus had recovered almost completely
although sometimes implantation sites were still evident.

In the 5 mg/kg - d group litters were slightly smaller
than controls. However, variability in litter sizes among
dams meant that the percentage of postimplantation losses
did not correlate significantly with the reduction in mean
litter size. There were no differences in mean litter size and
postimplantation losses in the 0.05 mg/kg - d group com-
pared with control.

The sex ratio and viability index of offspring were un-
affected by treatment, and there were no adverse clinical
findings in the newborn pups. DEHP-treated dams had a
dose-dependent increase in mean liver weight compared
with control. DEHP did not affect the dams’ ovary and
uterus weights.

DEHP affects morphological and reproductive
indices in offspring

Morphological indices (PND 21-42)

Pre- and perinatal treatment with 0.05 and 5 mg/kg - d
DEHP significantly reduced the body weight of female and
male pups at PND 21 and 42 (Table 3). At weaning (3 wk
of age), both male and female DEHP-treated offspring
were 20-25% lighter than control animals, the males in

spring still weighed between 6% and
14% less than control animals of the
same sex. Abdominal fat weight in fe-
males was significantly lower than in
controls, with respectively 41% and
30% reductions in the 0.05 mg/kg - d
and 5 mg/kg - d groups, but these dif-
ferences between doses were not signif-
icant. No significant differences were
seen in male adiposity (Table 3).

control

Reproductive indices (PND 42):

Table 4 shows results for male and female offspring.
In males, the 5 mg/kg-d and 0.05 mg/kg -d DEHP
doses significantly reduced testis and seminal vesicle
weight. Seminal vesicles in both groups were 20-25%
lighter, and testes from the 0.05 mg/kg-d group
weighed approximately 13% less. In female pups, ovar-
ian weight was significantly higher than controls in the
0.05 and the 5 mg/kg - d groups, with increases of about
45% and 35%. Uterus weights were unaffected, and
AGD was unaffected by DEHP at any dose, in males and
females.

DEHP affects in vitro oocyte maturation and
developmental competence in adult female
offspring

A total of 524 oocytes was used for analysis of nuclear
maturation. After isolation (0 h) most of the oocytes

TABLE 3. Morphological indices in male and female
offspring (PND 21-42)

DEHP
0 0.05 5
mg/kg-d mg/kg-d mg/kg-d
Male offspring
No. of animals 33 24 28
Body weight 99+03 81x03" 75+04°
PND 21 (g)
Body weight 329+04° 282+08" 300x0.7°
PND 42 (g)
Abdominal fat 1.5%20.1 1.6 £0.1 1.6 =0.1
(% of BW)
Female offspring
No. of animals 33 27 27
Body weight 95+05 72+06° 78+02°
PND 21 (g)
Body weight 30.8+0.6° 289+04° 276+0.6°
PND 42 (g)
Abdominal fat 24+02° 14=03" 17=x01°
(% of BW)

Values are means * sem. BW, Body weight. @ » < Djfferent superscripts
indicate statistical differences for P = 0.05.
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TABLE 4. Reproductive indices in male and female offspring (PND 42)

DEHP
0 mg/kg - d 0.05 mg/kg - d 5 mg/kg - d
Male offspring
No. of animals examined 33 24 28
AGD [cm/BW(1/3)] 0.530 = 0.004 0.520 + 0.005 0.520 = 0.007

0.086 = 0.002°
0.179 = 0.007

Testis weight (g)
Seminal vesicles weight (g)
Female offspring

No. of animals examined 33

AGD [cm/BW (1/3)] 0.23 = 0.004
Ovary weight (g) 0.0063 = 0.0002°
Uterus weight (g) 0.16 = 0.01

0.089 =+ 0.003?
0.132 = 0.008"

0.075 =+ 0.003%
0.143 = 0.008

27 27
0.23 = 0.005 0.22 = 0.007
0.0083 =+ 0.0002¢ 0.0071 =+ 0.0002°
0.13 = 0.01 0.14 = 0.01

Values are means *+ sem. BW, Body weight. * & € Different superscripts indicate statistical differences for P < 0.05.

(>99%) were at the germinal vesicle nuclear stage, inde-
pendently of treatment. Table 5 shows the in vitro matu-
ration of oocytes from maternally treated female off-
spring. After 14 h of culture, about 10% fewer oocytes
reached MII stage in the 0.05 and 5 mg/kg * d groups com-
pared with controls (P < 0.001). In addition, in both treat-
ment groups the percentage of degenerated oocytes was
almost double that of controls. The percentages of imma-
ture oocytes were not significantly different between the
groups, independently of treatment.

Developmental competence of female gametes was
tested on a total of 909 oocytes. The oocytes of the 0.05
mg/kg - d group produced embryos with a significantly
reduced capacity to complete the first mitotic division and
to subsequently reach the blastocyst stage compared with
both controls and the 5 mg/kg - d group (P = 0.0001;
Table 6).

DEHP affects semen characteristics and in vitro
developmental capacity in adult male offspring
Figure 2 shows semen characteristics of 6-wk-old pups
exposed to DEHP during gestation and lactation. Sperm
concentration and viability, intended as membrane integ-
rity, were significantly depressed by exposure to DEHP.
Compared with controls, semen from treated animals was
about 50% less concentrated (sperm count — DEHP 0: 5.9
*10°ml~" +0.8;0.05:2.8 * 10°ml ™! = 0.2; 5: 2.9 * 10°
ml~!' = 0.4.), and nearly 20% less viable (viable sperm —
DEHP 0: 71.3 = 2.2%; 0.05: 56.7 = 5.3%; 5: 57.1 =

3.5%).DEHP exposure compromised sperm developmen-
tal capacity but not its fertilization capacity. In tests using
oocytes (a total of 404) from untreated females and in vitro
fertilization protocols, the sperm from both the 0.05 and
the 5 mg/kg - d groups resulted in zygotes with the same
ability to complete first mitotic division, but with a sig-
nificantly reduced capacity to reach the blastocyst stage,
compared with controls (P = 0.05; Table 6).

DEHP-induced alterations in gene expression
profiles of adult offspring gonads and pituitaries

Expression of steroidogenesis-related genes in the
gonads

There was significant down-regulation of cyp19al in
the ovaries (0.05 and 5 mg/kg - d; Fig. 3A) and testes (5
mg/kg - d group; Fig. 3B). In ovaries, 5 mg/kg - d DEHP
lowered the expression level of the cyp17al transcript
(Fig. 3A). Gene expression for cyp19al was confirmed by
immunoblot analysis (Fig. 3C). The progesterone receptor
(pgr) transcript was significantly down-regulated in testes
(5 mg/kg - d) and ovaries (0.05 and 5 mg/kg - d) (Fig. 3D).
Finally, the mRNA levels for gonadotropin receptors, fshr
and [br, in male and female gonads were significantly
down-regulated in treated animals at all doses (Fig. 4A).

Expression of gonadotropin mRNA in the pituitary
There was a dose-dependent increase in the expression
of IhB mRNA in treated females, whereas the expression

TABLE 5. Effect of DEHP exposure on meiotic oocyte maturation in adult female offspring

DEHP dose

(mg/kg - d) Oocytes/mouse Immature (%) Mature (%) Degenerated (%)
0 35.2 = 3.1 3.88 = 0.6 88.0 = 1.0° 8.2 +1.18°
0.05 36.8 2.3 2.1+05 79.8 = 1.2° 18.2 + 0.8°
5 32.8 £ 5.1 2.1+0.8 80.0 + 1.5° 17.9 =220

Values are mean = sem. @ © Different superscripts within the same column indicate statistical differences for P < 0.05.
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TABLE 6. Effect of pre- and perinatal DEHP exposure on developmental capacity of gametes from adult male and

female offspring

DEHP
0 mg/kg - d 0.05 mg/kg - d 5 mg/kg - d

Males

No. of oocytes 162 138 140

Cleavage rate (%) 65.2 +9.3 65.0 = 10.2 47.4 +18.3

Blastocyst rate (%) 43.9 = 11.5° 13.50 = 6.5 4.4 +0.8°
Females

No. of oocytes 301 298 310

Cleavage rate (%) 59.63 + 4.52 34.48 = 4.2° 63.61 * 4.67

Blastocyst rate (%) 42.46 + 5.67 9.03 = 2.4° 48.17 + 3.67

Values are mean = sem. & © Different superscripts within the same column indicate statistical differences for P < 0.05.

of fshB mRNA did not differ between groups (Fig. 4B). The
[hBmRNA expression in control mice was respectively 2 and
3.5 times lower than in the 0.05 mg/kg - d and 5 mg/kg - d
animals. In males, the pituitary expression of both Ih8 and
fshB mRNA was significantly up-regulated only in the 5 mg/
kg - d group (1.3 and 1.5 times control levels).

Discussion

To our knowledge this is the first study showing that pre-
and perinatal exposure of mice to DEHP doses in the range

sperm count
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FIG. 2. Counts and viability of caudal epididymal sperm from mice
treated in utero and during lactation with DEHP. Different superscripts
denote significant differences between columns (P < 0.05).

of the estimated general human exposure (1, 6, 29-31)
induced permanent molecular and morphological pitu-
itary-gonadal alterations, which may explain the repro-
ductive deficiencies in both male and female offspring
when they reach adult age. DEHP exposure of pregnant
and lactating dams resulted in their offspring, at sexual
maturity, having: 1) lower body weight; 2) altered gonad
weight (lighter testis and heavier ovary); 3) poor germ cell
quality; 4) low expression of steroidogenesis and gonad-
otropin-receptor genes in the gonads; and 5) up-regulated
gonadotropin subunit gene expression in the pituitary.

In addition to these effects on the offspring’s reproduc-
tive health, we observed a dramatic acute consequence of
DEHP treatment on pregnant dams: complete pregnancy
failure with the highest dose (500 mg/kg - d). These data
are in agreement with a recent paper by Gray et al. (32)
reporting midgestation abortions in rats upon oral expo-
sure to high doses (500 and 1000 mg/kg * d) of phthalates.
Furthermore, chronic occupational exposure to high lev-
els of phthalates was associated with low pregnancy rates
and high rates of miscarriage in factory workers (33).

In the present study, examination of conceptuses in the
dams given 500 mg/kg - d showed that on dcp 10.5 embryos
and their extraembryonic envelopes started to degen-
erate,and embryos from all treated dams were no longer
viable by dpc 11.5. Vascular development in the postim-
plantation mouse embryo and placentation essentially be-
ginsondpc 6.5; therefore the embryoniccirculation is fully
functional by dpc 12.5 (34). DEHP activates the peroxi-
some proliferator-activated receptors (PPAR), a family of tran-
scription factors recently implicated in the inhibition of prolif-
eration and differentiation of endothelial cells i vitro and
impaired neovascularization iz vivo (35-38). It is therefore pos-
sible that DEHP exposure in pregnant mice affects placental
vascularization through activation of PPAR, leading to total
pregnancy failure at high doses (500 mg/kg - d).

The low body weight of the offspring exposed to DEHP
during the pre- and perinatal period agrees with previously



944 Pocar et al. DEHP Induces Long-Term Reproductive Deficits

testis

Endocrinology, February 2012, 153(2):937-948

on maturation of the pituitary-go-

ovary
A 20- B 15 nadal axis in the exposed progeny.
P £ The significant weight changes of
— a . . .
E = T a, 2 10 the testis and ovary in adult offspring
b 2 .
FA b bt & after exposure to DEHP in utero and
g * E . . . .
@ T 2 o5 during lactation are in agreement with
5 o5 i reports describing changes in gonad
4 . .
- 0.0 weight when DEHP was orally admin-
00055 00055 00055 00055 oo, :3 51 2o (;Z 51 istered at doses similar to what we used
17a1 19 cypt7a cypt9a
SAR cyptia cyptdat e g (2, 45-49). The novelty of the present
DEHPmg/kglday fokaicay study is that the morphological changes
C ovary testis D i ovary testis were related to gonadal function in
X male and female mice. As far as we
cyp19al = £ know, this is the first study showing
- 1.0 D .
% S that in vivo pre- and perinatal exposure
s p p p
B to DEHP concomitantly increases ovar-
S o5 . . . .
pact £ ian weight and impairs oocyte matura-
-actin ) . .
L e - —— @ tion competence, reducing oocytes’
0.0- r
0.05 0.05

0 0.05 5 0 005 5

DEHP mg/kg/day

DEHP mg/kg/day

FIG. 3. A, B, and D, Effect of DEHP on the mRNA levels of target genes in the gonads of
female and male mouse offspring on PND 42. Quantitative analysis of StAR, cyp17al,
cyp19al, and pgr mRNA in the gonads exposed to DEHP during pregnancy and throughout
lactation. Each column represents the mean = sem of at least three separate experiments. The
mMRNA normalized to the endogenous reference (gapdh) was analyzed by RT-PCR using
specific primers as described in Materials and Methods. Different superscripts denote
significant differences between columns (P = 0.05). C, Representative immunoblot analysis of
cyp19a1 and B-actin protein from total ovary and testis lysate of adult female and male

mouse offspring on PND 42.

published results. For example, mouse fetuses exposed to
DEHP during gestation from dpc 0 through dpc 17 had
significantly reduced body weight (39). Rats exposed to
di-n-butyl phthalate during pregnancy also had low birth
weight and reduced weight gain (40). Furthermore, a re-
cent nested case-control study in humans found a close
correlation with high phthalate levels in umbilical vein
blood in low-birth-weight cases compared with normal-
weight newborns (41).

It is noteworthy to remember that alteration in birth
weight and body weight gain has been often linked with
altered onset of puberty in the offspring (42, 43). Further-
more, several reports suggested that prepubertal exposure
to a variety of environmental chemicals, including DEHP
(for review, see Ref. 44), can hasten or delay the onset of
puberty in several animal models. Therefore, despite the
present study specifically aimed to analyze the effects of
maternal exposure to DEHP on the functionality of pitu-
itary-gonad axis in the offspring at adult age, further anal-
yses would be necessary to further clarify the effects of
maternal DEHP exposure on the pubertal development
and add further proof of the deleterious effects of DEHP

ability to complete the first meiotic di-
vision, hence increasing the percentage
of gametes that eventually degenerate.
Furthermore, matured oocytes showed
reduced developmental capacity com-
pared with the unexposed counterpart.
Recent in vitro studies have found im-
pairment of meiotic maturation and de-
velopmental competence in oocytes di-
rectly exposed in culture to either
DEHP or mono-(2-ethylhexyl) phtha-
late (50, 51), thus supporting our ob-
servations upon in vivo treatment. It is noteworthy to no-
tice that, in the present study, major adverse effects were
observed in the lowest investigated dose (0.05 mg/kg - d),
suggesting nonmonotonic response curves and low-dose
effects. This result is in agreement with recent studies re-
porting that treatment of rat dams with active phthalates
may result in nonlinear, mainly U-shaped, dose-response
curves effects in the offspring (23, 52, 53).

The mechanisms underlying phthalates’ influence on
oocyte quality is not yet fully understood. It is known that
these compounds may disrupt ovarian estrogen biosynthesis
pathways through a PPAR-mediated mechanism (21), and
lower estradiol secretion from granulosa cells may be respon-
sible for the impaired oocyte quality (54). There is evidence
that iz vitro exposure to phthalates suppresses cyp19a1 tran-
script levels and reduces 173-estradiol production in rat (20)
and human (55) granulosa cells, and that both DEHP and
mono-(2-ethylhexyl) phthalate reduce 17B-estradiol pro-
duction and cyp19al transcript levels, inhibiting the growth
of cultured whole antral follicles from mice (56).

The results of the present study may suggest that ad-
verse effects observed in oocyte quality may be related to
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observed in boys of mothers exposed to
high levels of phthalates during preg-
nancy, which is consistent with the dis-
ruption of androgen-dependent develop-
b ment (16). In male rats, in utero exposure
to phthalate upon oral administration of
500 mg/kg - d to pregnant dams inhibits
fetal testosterone synthesis (17). In men,
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impaired aromatase activity due to de-
fective cyp19al is related to low sperm
concentration and motility (57) and
disturbance of acrosome formation
(58, 59), and also by evidence of a
strong inverse association between es-
a tradiol levels and sperm DNA damage
(60). It is noteworthy to notice that
phthalate-induced sperm damage has
been related to poorer embryo devel-
opment and lower pregnancy rates
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superscripts denote significant differences between columns (P < 0.05).

dysregulated steroid synthesis. In fact, together with a sub-
optimal oocyte competence we found significant down-
regulation of Cyp17al and Cyp19al gene expression in
ovaries, suggesting a persistent alteration of the estrogen
synthesis pathway. This is paralleled by the significantly
low expression, even at the smallest DEHP dose, of the pr
gene, a known estrogen target gene.

Interestingly, the cause-effect relationship between
DEHP-induced altered expression of key transcripts in-
volved in estrogen biosynthesis and low reproductive per-
formance of female mice observed here may also apply to
male offspring from the same litter. In fact, in testes of
treated male offspring we observed decreases of cyp19al
and pr expression, with low sperm count, poor sperm vi-
ability, and reduced developmental competence. It is
therefore conceivable that male mice also, exposed to
phthalates pre- and perinatally, may have long-lasting
altered estrogen biosynthesis in the testis that, in turn,
results in disturbances of reproductive performance in
adulthood.

This conclusion is supported by several recent reports.
Reduced AGD and impaired testicular descent have been

DEHP mg/kg/day

FIG. 4. Effect of DEHP on the mRNA levels of target genes on PND 42 in the pituitaries and
gonads of female and male mouse offspring exposed to DEHP during pregnancy and
throughout lactation. A, Quantitative analysis of /hr and fshr mRNA in the gonads from male
and female adult offspring. B, Quantitative analysis of /hB and fshB mRNA in the pituitaries
from male and female adult offspring. Each column represents the mean =+ sem of at least
three separate experiments. The mRNA normalized to the endogenous reference (gapdh) was
analyzed by RT-PCR using specific primers as described in Materials and Methods. Different

— among partners of men undergoing as-
0 908 5 sisted reproductive treatments (61, 62),
fshi3 . . .

which nicely parallels the observation
of the present study indicating that
sperm derived from treated male off-
spring have reduced developmental ca-
pacity in vitro.

Estrogen deficiency or insensitivity
in man might also result in the accumu-
lation of fluid in efferent ductules and
subsequent atrophy of the testis (63).
These data are in agreement with our findings of low testis
weight in exposed males, further supporting an abnor-
mality in the regulation of estradiol synthesis.

Although we did not measure circulating steroid hor-
mones, poor gamete quality from exposed animals, to-
gether with the down-regulation of cyp19al and pgr ex-
pression in adult offspring of both sexes, may suggest low
serum estrogen levels, which, in turn, may affect the hy-
pothalamus-pituitary-gonadal negative feedback mecha-
nism. We therefore hypothesized that the reproductive
health deficits in male and female mice exposed to DEHP
in utero and during lactation, may be caused by long-
lasting damage to the entire pituitary-gonadal axis. This
hypothesis is further supported by the up-regulated ex-
pression levels of mRNA for gonadotropin 8 subunits in
pituitaries of both male and female treated offspring,
which may reflect attenuated negative feedback by estra-
diol on the pituitary. The increase in gonadotropin tran-
script levels observed in the present study, which, with the
exception of the /b in the female pituitary, was relatively
small, may not unequivocally produce increased serum
gonadotropin levels. However, several lines of evidence



946 Pocar et al. DEHP Induces Long-Term Reproductive Deficits

support this hypothesis. In fact, in line with our observa-
tions, it has been reported thatin adult rats direct exposure
by oral gavage to phthalates (1-500 mg/kg - d) enhanced
the pituitary capacity to secrete LH and/or, resulting in
high gonadotropin serum levels (2, 64, 65). Furthermore,
a dysregulation in gonadotropin secretion is also sug-
gested by the observed down-regulation of fshr and Ibr
mRNA in the testes and ovaries of DEHP-treated animals.
In fact, like other polypeptide hormone receptors, gonad-
otropin receptors undergo down-regulation at mRNA and
protein levels in response to ligands (66—69).

In conclusion, our findings suggest that in maternally
exposed male and female mice DEHP acts on multiple
pathways involved in maintaining steroid homeostasis. In
particular, results may suggest that exposure to the action
of phthalates contributes to disruption of estrogen bio-
synthesis pathways in both male and female gonads and
leads to imbalance of pituitary-gonadal cross talk. This
endocrine interference during critical windows of repro-
ductive development would impair gonad function and
gamete quality when the offspring reaches adulthood.

Nonetheless, DEHP might have altered offspring re-
production by affecting other pituitary gonadal cross talk
mechanisms, such as the activin/inhibin pathway. The
equilibrium between activin and inhibin is a well known
physiological system regulating gonadal function and
gamete quality, including cyp19al expression (70, 71).
Furthermore, developmental exposure to phthalate has
been shown to affect inhibin expression in the rat testis
(72). To expand our knowledge on the molecular mech-
anisms underlying the DEHP-induced effects observed in
the present study, further investigation is necessary.

The doses we employed were within the range of envi-
ronmental exposure levels in humans. Obviously, mouse
data, due to the known species differences in metabolism
and sensitivity to exogenous chemicals, must be assessed
very carefully before being extrapolated to the human.
However, because pathways leading to ovarian hormone
production are similar in rodents and humans and phtha-
lates can cross the placenta in both species, our observa-
tions of the inhibitory effect of DEHP on estrogen pro-
duction and, in turn, on reproductive performance, may
give reason for concern.
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