
Hindawi Publishing Corporation
Neurology Research International
Volume 2011, Article ID 453179, 8 pages
doi:10.1155/2011/453179

Review Article

Erythropoietin: Recent Developments in
the Treatment of Spinal Cord Injury

Stephana Carelli,1, 2 Giovanni Marfia,1, 3 Anna Maria Di Giulio,1

Giorgio Ghilardi,4 and Alfredo Gorio1, 2

1 Laboratory of Pharmacology, Department of Medicine, Surgery and Dentistry, University of Milan,
Polo H. San Paolo, Via A. di Rudinı̀ 8, 20142 Milan, Italy

2 Clinical Pharmacology, IRCCS Humanitas, Via Manzoni 56, Rozzano, 20089 Milan, Italy
3 Cerebrovascular Unit, IRCCS, Istituto Neurologico C Besta, Via Celoria 11, 20133 Milan, Italy
4 Department of Medicine, Surgery and Dentistry, University of Milan, Polo H. San Paolo, Via A. di Rudinı̀ 8, 20142 Milan, Italy

Correspondence should be addressed to Stephana Carelli, stephana.carelli@unimi.it and
Giovanni Marfia, giovanni.marfia@unimi.it

Received 24 February 2011; Accepted 9 May 2011

Academic Editor: Jeff Bronstein

Copyright © 2011 Stephana Carelli et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Erythropoietin (EPO), originally identified for its critical function in regulating production and survival of erythrocytes, is a
member of the type 1 cytokine superfamily. Recent studies have shown that EPO has cytoprotective effects in a wide variety of
cells and tissues. Here is presented the analysis of EPO effects on spinal cord injury (SCI), considering both animal experiments
concerning to mechanisms of neurodegeneration in SCI and EPO as a neuroprotective agent, and some evidences coming from
ongoing clinical trials. The evidences underling that EPO could be a promising therapeutic agent in a variety of neurological
insults, including trauma, are mounting. In particular, it is highlighted that administration of EPO or other recently generated EPO
analogues such as asialo-EPO and carbamylated-EPO demonstrate interesting preclinical and clinical characteristics, rendering
the evaluation of these tissue-protective agents imperative in human clinical trials. Moreover the demonstration of rhEPO and its
analogues’ broad neuroprotective effects in animal models of cord lesion and in human trial like stroke, should encourage scientists
and clinicians to design clinical trials assessing the efficacy of these pharmacological compounds on SCI.

1. Introduction

Several studies published in recent years have shown that
the cytokine erythropoietin (EPO) is a crucial mediator
of injury-related tissue protection in mammals following
ischemic and nonischemic injuries. Severe spinal cord injury
(SCI) causes an immediate paralysis of muscles innervated
by motoneurons caudal to the injury site. This results
not only from a loss of supraspinal tracts that subserve
voluntary initiation of movement, for example, corticospinal
and reticulospinal tracts that use fast glutamatergic synaptic
transmission, but also from a loss of descending brain-
stem tracts that provide spinal motoneurons with their
major source of neuromodulators, such as 5-HT. From a
pathophysiological perspective, SCI has historically been

divided into two distinct phases. Primary (mechanical)
injury directly disrupts tissues but, in the acute phase,
frequently causes only limited neuronal death surrounding
the lesion epicenter and damage axons and blood vessels at
the site of injury, leading to vasoconstriction, hemorrhage,
and ischemia [1]. As a response to primary injury, a vigorous
inflammation is initiated and is followed by a cascade of sec-
ondary events such as fluid-electrolyte imbalance, regional
blood flow alterations, calcium-mediated cellular injury,
free-radical generation, glutamate-induced excitotoxicity,
disturbances in mitochondrion function, proinflammatory
cytokine production, and apoptotic cell death. This causes
the attraction of inflammatory cells such as neutrophils,
macrophages, and resident microglia. The consequence of
this phenomenon is the amplification of injury by releasing

mailto:stephana.carelli@unimi.it
mailto: giovanni.marfia@unimi.it


2 Neurology Research International

proinflammatory cytokines [2]. During the weeks following
trauma, the site of SCI is characterized by disrupted axons
and a cystic cavity encased within a glial scar. Intact
tissue surrounding the lesion is found in variable amounts.
It is in this intact tissue that neurons are found either
uninjured or with part of their myelin sheaths lost. These
neurons have the potential to regenerate axons. Nonetheless,
axonal regeneration frequently fails for two reasons: first,
elements within the lesion environment inhibit axonal
growth and second, neurons of the CNS themselves exhibit
a weak intrinsic ability to regenerate axons after trauma
[3, 4].

2. Erythropoietin Historical Background,
Structure, and Signalling

A century ago, it was clear that the production of ery-
throcytes was modulated by a humoral factor; Carnot
and DeFlandre [5] named this factor hemopoietin, and
successively, in 1948, Bonsdorf and Jalavisto first used the
term erythropoietin [6]. In 1977, erythropoietin was isolated
from urine of anemic patients; this opened the way to
the identification of both its amino acid sequence and
gene [7]. These findings opened the field of recombinant
human EPO, improving the quality of life of more than a
million patients affected by anemia [8]. The gene encoding
EPO is located in chromosome 7q11-q22, occupies a 5.4 Kb
region, and contains five exons and five introns and code
for a propeptide of 193 amino acids [9]. Erythropoietin is
produced by all vertebrates and is an acidic glycoprotein
member of the type I cytokine superfamily. The mature
form of the peptide is constituted by 165 amino acids with
a molecular weight of 30.4 kDa. It is a heavily glycosylated
protein hormone possessing three Asn-linked sugar chains
at Asn24, 38, and 83, and one mucin-type sugar chain
at Serl26 [10]. These sugar chains donate 40% of the
mol. wt of the peptide and probably cover most of its
molecular surface. Thus, the structure of the sugar chains
has increased importance in HuEPO, and it soon became
obvious that producing HuEPO in a heterologous host using
recombinant gene technology faced many problems. It has
been shown, for example, that sialic acids affect HuEPO’s in
vivo activity by hiding the penultimate galactose residue from
the asialoglycoprotein receptor [11, 12]. The EPO actions are
exerted by the interaction with a specific receptor (EPO-R)
which belongs to the type I family of single-transmembrane
cytokine receptors [8]. The gene of EPO-R is located on
chromosome 19p and contains eight exons and seven introns
and encode the synthesis of a peptide with a molecular
weight of 66 kDa and is constituted of 507 amino acids
[13]. In physiological conditions, the EPO serum levels are
very low and tissue hypoxia may cause their increase of
about 50-fold. Its classical function is the regulation of
erythroid development, allowing the maturation of erythroid
precursors by the inhibition of apoptosis (programmed cell
death) although in the last years, other important actions has
bee attributed to this factor (see below). In intrauterine life of
mammals, EPO is produced by the liver until late gestation,

when a switch is gradually initiated from liver to kidneys
[14]. In adult, this organ become the primary site of EPO
production [13] although the liver contributes to the 10%–
15% of EPO plasma levels. Expression of EPO mRNA has
also been found in brain cortex, cerebellum, hippocampus,
pituitary gland, placenta, testes, spleen, and lung [15–17].
Erythropoietin is mainly regulated in the kidney in response
to hypoxia, but other factors are also involved in specialized
tissues [18]. In contrast to erythropoietin, the expression of
EPOR is not appreciably sensitive to hypoxia [19], rather,
it is regulated by pro-inflammatory cytokines [20] such as
tumour necrosis factor-α (TNFα) and IL-1β, erythropoietin
itself [21] and probably other factors that have not yet been
identified. In mammals, endogenous erythropoietin (EPO)
can function either in the kidney-bone marrow system
or in a local autocrine-paracrine system. In both systems,
hypoxia-inducible factor (HIF) has a crucial role in regu-
lating erythropoietin expression. In addition, erythropoietin
expression in the autocrine-paracrine system can be activated
through other receptor systems (e.g., insulin-like growth
factor). In the kidney-bone marrow system, renal hypoxia
induces the synthesis of HIF by the kidney, which, in turn,
increases renal erythropoietin production. Newly synthe-
sized erythropoietin enters the circulation and travels to the
bone marrow, stimulating erythroid precursor survival and
maturation. Increased oxygen delivery to tissues as a result
of increased erythrocyte production attenuates the action
of HIF in a negative feedback manner. The signalling path-
way involves activation of Janus tyrosine kinase 2 (JAK2),
which further propagates the signal by engaging secondary
signalling molecules, including signal transducer and activa-
tor of transcription (STAT), Ras-mitogen-activated protein
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K).
In erythroid progenitor cells, this results in the upregulation
of antiapoptotic proteins of the B-cell leukaemia/lymphoma
2 (BCL2) family, such as BCL-XL [22]. In addition, the
activation of MAPK by JAK2 causes the activation of GSK3b
leading the inhibition of caspase activation [23]. Additional
EPO actions has been showed such as the modulation of
intracellular calcium concentration in excitable cells (neu-
rons and vascular smooth muscle cells) by the activation of
phospholipase C-gamma (PLCγ) [24]. Hormonal clearance
of erythropoietin from the serum occurs mainly through
receptor-mediated endocytosis in the bone marrow although
pharmacological doses of this cytokine are also eliminated
by the liver and kidneys [25]. Since the early 1990s, it
has emerged that EPO has cytoprotective effects in a wide
variety of tissues, including the brain, kidney, and heart,
from ischemic or nonischemic injury [26]. In its nonery-
thropoietic functions, EPO is produced locally by many
tissues in response to physical or metabolic stress and acts in
a paracrine-autocrine manner. Tissue-protective actions of
EPO have been shown to be mediated by a tissue-protective
receptor complex consisting of the EPO-R and the β
common-receptor (CD131) subunit that is also used by GM-
CSF, IL-3, and IL-5 [27]. Tissue injury induces metabolic
stress and the release of pro-inflammatory cytokines, which
activate HIF and increase local erythropoietin production.
Pro-inflammatory cytokines can also directly inhibit the
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production of erythropoietin but greatly upregulate the
expression of erythropoietin receptors (EPORs). The tissue-
protective actions of erythropoietin have similarities to those
activated during erythropoiesis, where JAK2, MAPK, PI3K,
and NFkB all seem to be important. Activated JAK2 initiates
signal transduction interacting with several adaptor factors
such as Src homology containing protein (SHC), growth
factors receptor-binding protein 2 (GRB2), son of sevenless
protein-1 (SOS-1), and PI3K. This determine the activation
of downstream messengers such as RAS, serine/threonine-
specific kinase (RAF1), ERK1/2, protein kinase B (AKT)
[27]. Moreover, Brines and coworkers suggested that a recep-
tor distinct from those expressed by erythroid precursors
specifically mediates tissue protection [27]. This receptor
probably consists of the EPOR monomer and a dimmer of
the β common receptor (βCR)—a shared receptor subunit
of interleukin 3 (IL-3), IL-5 and granulocyte-macrophage
colony stimulating factor (GMCSF). The exact mechanisms
by which EPO exhibits its neuroprotective effect are not fully
understood. Yet, as possible mechanisms have been proposed
inhibition of apoptosis, modulation of nitric oxide synthesis,
neurotransmitter release, and restoration of vasculature
integrity [4, 28, 29]. EPO also seems to play a role in CNS in
promoting neural progenitors cells and promoting ischemic
preconditioning [30].

3. Is Erythropoietin the Right Molecule?

Ordinarily, the hematopoietic activity of EPO is distinct from
its tissue-protective roles because of the large differences in
concentrations required for each function, and the separate
tissue compartments limit the possibility of cross-talk. For
example, the affinity of EPO for the EPOR expressed by
hematopoietic cells is ∼100- to ∼1000-fold higher than
for the receptor expressed by neural cells [31]. All animal
models studied so far have required high doses of rhEPO
for tissue protection above those conventionally used for the
treatment of anaemia, which will activate haematopoiesis.
Hematopoietic activity is undesirable in the setting of injury,
because increases in haematocrit (rheological abnormali-
ties) and prothrombotic activities act in concert to reduce
effective tissue perfusion. For example, an animal model
with increased expression of endogenous EPO exhibits
increased cerebral infarct size following arterial occlusion
in spite of high levels of EPO within the brain [32]. In
addition to adverse effects at the level of injury, serious
systemic complications are possible, as, for example, the
well-publicized fatal outcomes observed following “blood
doping” by athletes [22]. Furthermore, new data reveal that
many malignancies express receptors for and respond to
EPO by an increased mitotic rate [33]. It is particularly
worrisome that a large clinical trial evaluating the use of EPO
in patients with metastatic breast cancer was recently halted
after an increase in mortality within the EPO treatment arm
due to tumor progression and/or thrombotic events [34].
Development of a molecule that is devoid of hematopoietic
activity but is still active as a tissue protectant is theoretically
possible. Although only a single gene for the EPOR has been

described, EPORs obtained from tissues differ in molecular
weights and affinity for EPO [31, 35]. Likewise, receptor-
signalling pathways have not been completely defined but
include both the Jak2 STAT5 system used in erythrocyte
maturation [36] as well as the NFkB system so important for
cell survival [37]. It is unclear at present whether different
signalling themes are expressed by different tissues. In spite of
current limitations of knowledge, promising work to define
new non-EPO analogues is currently in advanced stages
of development. One alternative strategy to differentiate
the hematopoietic and tissue-protective activities of EPO
is based on the observation that neuroprotection by EPO
occurs via a gene expression program requiring only 5
minutes of exposure [38]. In contrast, during hematopoiesis,
a continuous population of new cells appears, which require
a continued presence of EPO. Thus, EPO with a reduced
half-life will preferentially target tissue injury rather than
the bone marrow. In fact, it is straightforward to reduce
the serum half-life of EPO (to <2 min) by removing the
sialic acid moieties terminating the oligosaccharides of the
molecule. Asialo-EPO has been produced by use of sialidase,
this molecule is not erythropoietic in vivo even up to doses
of 500 ug/kg body weight in mice (equivalent to 50,000
erythropoietic units) [28]. The multiple mechanisms by
which EPO is active, as well as the successful phase II
trial in human stroke, suggest that the use of rhEPO will
likely translate successfully into human trials. However, the
hematopoietic activities of rhEPO could lead to serious
hematopoietic and neoplastic complications, particularly
following multiple doses. The nonhematopoietic analogues
that are currently under development offer a promise of
novel therapy for a wide variety of tissue injuries by
specifically targeting an endogenous protective system that
is a component of the innate immune response.

4. Erythropoietin Analogues and Related
Pharmacological Properties

Nonhematopoietic EPO analogues may represent a novel
class of drugs for stroke therapy. The advantage of using
nonhematopoietic EPO analogues it to avoid the stimu-
lation of hematopoiesis and thereby the prevention of an
increased hematocrit with a subsequent procoagulant status
or increased blood pressure [39].

Modified erythropoietin molecules which manifest solely
tissue protective or erythropoietic activity may have a more
target effect. As an example, transformation of lysine to hom-
ocitrulline by carbamylation gives rise to CEPO (Carbamy-
lated Epo). CEPO shows only tissue-protective effects. In
2006, a study on focal cerebral ischemia rat model showed
that postischaemic intravenous treatment with CEPO lead
to improvement of functional recovery [40]. Mahmood and
colleagues investigated the effect of intraperitoneally infused
recombinant human erythropoietin (rHuEPO) and CEPO
in traumatic brain injury rat model and concluded that
both compounds are equally effective in enhancing spatial
learning and promoting neural plasticity, but haematocrit
was significantly increased only with rHuEPO [41]. Similarly,
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a study by Wang et al. demonstrated equivalent effects
of rHuEPO and CEPO in the reduction of neurological
impairment in rats subjected to embolic middle cerebral
artery occlusion [42]. As expected, rHuEPO, but not CEPO,
produced a transient increase in haematocrit levels [42].
Moreover, experimental results revealed that the sialic acid
content of the erythropoietin molecule is directly associated
with its circulating half-live and bioactivity. Darbepoietin is a
rHuEPO analogue which contains more sialic acid residues.
Consecutively, that molecule exerts longer circulating half-
life and thereby in vivo potency. On the contrary, asialic EPO
is generated by enzymatic desialylation of rHuEPO and man-
ifests attenuated in vivo erythropoietic activity and shorter
half-life (minutes); however, it retains its neuroprotective
effects [28, 43].

In addition to the development of structurally related
EPO derivatives or mimetics (structural variants) that target
EPOR, compounds that acts by induction of EPO gene
expression (functional EPO variants), such as HIF-stabilizers
[44–46] and GATA-2 inhibitors [47] are actively pursued as
alternatives to EPO for stimulation of erythropoiesis and
ultimately also for neuroprotection. The advantages and
disadvantages of agents that ubiquitously induce a wide
spectrum of hypoxia inducible genes are presently not clear.
In particular, the question whether these agents have benefits
over the use of rHuEPO in the treatment of nervous system
disorders remains to be addressed, except for the role of
hypoxia inducible genes activation on adult neural stem cells,
where that process results on EPO production and increase of
cell survival and differentiation in mature neurons reaching a
rate of 40% after prolonged ischemia as demonstrated in our
recent studies [48].

The intracerebral injection of recombinant human ery-
thropoietin in either transient forebrain ischemia [49–51] or
regional brain ischemia [52] causes neuroprotection. EPO
was administered via a transcranial route in prior studies
of brain ischemia because EPO does not cross the blood-
brain barrier (BBB). The lack of EPO penetration of the brain
following intravenous (IV) administration has been demon-
strated in both the mouse [53] and the Rhesus monkey [54].
The poor BBB penetration of EPO from blood could, at least
in part, explain the failure to produce neuroprotection in
human stroke following treatment with i.v. EPO in the first
6 h following the infarction [55]. Thus, the development of
EPO as a drug for CNS disorders such as stroke requires
that the neurotrophin be re-engineered to cross the BBB.
This is possible by genetic fusion of EPO to a BBB molecular
Trojan horse. The Trojan horse is an endogenous peptide, or
peptidomimetic monoclonal antibody (MAb), that crosses
the BBB via receptor-mediated transport. Recently, human
EPO was re-engineered as an IgG-EPO fusion protein, where
EPO was fused to a genetically engineered MAb against
the human insulin receptor (HIR) [54]. This study show
that HIRMAb cross-reacts with the insulin receptor in the
Rhesus monkey, and the HIRMAb-EPO fusion protein was
shown to rapidly penetrate the BBB in the Rhesus monkey
following IV injection. The potent neuroprotection property
of the HIRMAb-EPO fusion protein was investigated in
a rat stroke model, the permanent middle cerebral artery

occlusion (MCAO) model [56]. Following the intracerebral
injection of picomole doses of HIRMAb-EPO fusion protein,
the stroke volume was reduced 98% in the rat [56]. The
HIRMAb-EPO fusion protein was injected directly into the
brain in the rat MCAO model, because the HIRMAb part
of the fusion protein does not recognize the rat insulin
receptor [57]. There is no known MAb against the rat or
mouse insulin receptor that could be used as a BBB Trojan
horse in rodents. For that reason, it has been proposed the
delivery of neurotrophins such as EPO across the mouse
BBB is possible with a surrogate Trojan horse, which is a
genetically engineered MAb against the mouse transferring
receptor (TfR), which is designated the cTfRMAb [58]. The
cTfRMAb is comprised of variable regions from an original
rat IgG, which are fused to mouse heavy chain and light chain
constant regions, and is specific for the mouse TfR with no
reactivity for the rat TfR. Recently, a fusion protein of the
cTfRMAb and EPO, designated the cTfRMAb-EPO fusion
protein, has been engineered and expressed [59]. Fusion
protein rapidly crosses the BBB in the mouse, and the brain
uptake following i.v. injection is 2.0 ± 0.1% of injected
dose (ID)/gram [59]. The cTfRMAb-EPO fusion protein
retains high affinity binding for the mouse EPO receptor
(EPOR) with a KD of 0.33 ± 0.04 nM [59]. Therefore,
the purpose of the present investigation was to examine
the neuroprotective properties of i.v. administration of the
cTfRMAb-EPO fusion protein in a permanent MCAO model
in the mouse. Recombinant EPO was also administered i.v.
in this study. MCAO study in the mouse provides the basis
for future work in MCAO models in higher animals, such
as the primate, using the HIRMAb-EPO fusion protein [54].
The study presented by Zhou and colleagues [60] shows that
an 81% reduction in stroke volume is achieved with a brain
IgG-EPO concentration of 600 ng/g. The brain uptake of the
HIRMAb-EPO fusion protein in the Rhesus monkey is 2.1 ±
0.1% ID/100 g brain [54].

5. Preclinical Studies

Erythropoietin and EPO-R have been documented to play
important roles in SCI. This is the case for both endogenous
and exogenously administered EPO [14]. Of great clinical
importance is also the expression of EPO after SCI which
has been shown to be a part of the physiological response
to hypoxia. Bernaudin and colleagues [52] reported that
in the encephalic areas surrounding ischemic brain lesions,
cells increased the expression levels of EPO and its receptor
mRNAs. In particular, the upregulation of EPO receptor
occurred first in neurons and endothelial cells of the
microcirculation and was followed by an increase in EPO
expression by astrocytes and neurons. This increase of EPO
has been proposed as a mechanisms that, by apoptosis
inhibition, could reduce the inflammatory response, and
thus a reduction of secondary injury in rats [61]. The
work of many groups demonstrated that the administration
of exogenous rhEPO in animal models (rats) of trau-
matic SCI produces substantial neuroprotection [43, 62–70].
Gorio et al. [62] and coworkers in two different models of
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traumatic spinal cord lesion (transient compression or blunt
trauma) showed that the single dose i.p. administration of
rhuEPO gives a markedly superior clinical course of recovery
of motor function compared with placebo, characterized by
an earlier and more complete normalization of function
over a 28-day period of study. Moreover, the same authors
observed that secondary inflammation was also markedly
attenuated by rhEPO administration and associated with
reduced cavitation within the cord. These results suggested
that beneficial effect of rhEPO treatment occurs within the
first week after injury.

The exact mechanisms by which EPO exhibits its neuro-
protective effects are still under investigation. In particular,
exogenous EPO administrations leads to improvement in
cognitive outcome as well as in (sensory-) motor func-
tions, together with a diminution of lesion volume, brain
oedema, inflammation, and apoptosis. Recently, Huang and
coworkers in rat contusion model of SCI showed that the
administration of a single dose of rhEPO immediately after
cord injury improved motor function recovery, decreased
lesion severity, and increased neuronal regeneration. This
work evidenced that the protective effect of exogenous EPO
was mediated by the increase of MKP-1 (Mitogen Kinase
Phosphatese-1) expression and the decrease of MAP kinase
activity (p-ERK1/2). The chronic effects mediated by a single
exposure of rhuEpo were investigated in a contusion model
of SCI in rat by Vitellaro-Zuccarello and coworkers [70]. The
work of these researchers showed that rhEPO administration
after SCI modifies astrocytic response to injury by increasing
AQP4 (Aquaporin-4) immunoreactivity in the spinal cord,
but not in the brain, without apparent modifications of
dystrophin and syntrophin distribution. They also observed
an attenuation of astrogliosis, and a significant increase of
the relative volume of a microvessel fraction, indicating a
proangiogen or a vasodilatory effect of rhEPO. However,
it has been reported that a genetic reduction in reactive
astrocytes in a mouse model has been associated with a
worse clinical outcome after a stab injury to the spinal cord
[71]. Thus, the meaning of a reduced astrogliosis caused
by EPO needs further investigations. Taken together, the
available data on Erythropoietin’s beneficial effects in animal
models of SCI are due to limitation of damage following
injury and enhancement of neuronal regeneration. Neural
stem cells present in SC proliferate to form spheres of
undifferentiated cells that produce neurons, astrocytes, and
oligodendrocytes. Cultured stem cells when exposed to EPO
produced two to threefold more neurons [29, 48]. Thus,
EPO might contribute to recovery after SCI by increasing the
number of new neurons.

6. Human Trials

Taken collectively, the evidences presented on the preclinical
evaluation studies of EPO effects on spinal cord injury, it
is reasonable to assume that exogenous and endogenous
EPO and EPO-R system acts as a protective mechanism that
becomes rapidly activated after injury to promote neuronal
survival. Published clinical studies on EPO in neurological

and psychiatric indications are still rare even though many
studies are ongoing worldwide. Concerning the administra-
tion of exogenous EPO on spinal cord injury, only two trial
were found on databases [72], one of them is an Italian
multicenter study and concerns the evaluation of tolerability
and efficacy of erythropoietin (EPO) treatment in spinal
shock: comparative study versus methylprednisolone (MP).
Primary objective of the study is to assess the superiority of
EPO compared to MP in improving the clinical outcome of
SCI (ASIA impairment scale); secondary objectives are: to
assess the safety of EPO compared to MP, the effects on the
motor and sensory functions and on improving functional
autonomy, the influence on spasticity and neurogenic pain,
and, the impact on surrogate end-points (Somatosensory
Evoked Potentials and Magnetic Resonance Imaging). The
second study was conducted in Canada and dedicated
to the treatment of patients with malignant spinal cord
compression (MSCC) who are paraparetic or paraplegic
before initiating treatment, the current treatment options
provide a meagre-to-poor chance of neurologic recovery, and
the prognosis is guarded. Improving the chance of ambu-
lation after treatment for MSCC may dramatically improve
patients’ quality of life, decrease days spent in hospital,
and improve survival. Steroids appear to prevent neurologic
damage from MSCC and increasing doses appear to have
an increasingly protective effect; however, higher doses are
limited by an increasing incidence of serious toxicity [72].

7. Erythropoietin and Neural Stem Cells

Studies of neural stem and progenitor cells play a very impor-
tant role to understand the mechanisms of differentiation of
the cells into lineage specific cells like neurons and astroglia.
Several studies have shown that neurogenesis is enhanced
after hypoxia and that erythropoietin (EPO) is produced
in the brain as part of the intrinsic hypoxia response.
Thus, Shingo and coworkers investigated the effects of
exogenous EPO on in vitro culture of stem cells. They showed
that exogenous EPO acts directly on cultured embryonic
NSCs, promoting the production of neuronal progenitors
[29], suggesting a possible role of EPO in neural stem
cells differentiation. Carbamylated erythropoietin (CEPO), a
well-characterized erythropoietin (EPO) derivative, does not
bind to the classical EPO receptor and does not stimulate
erythropoiesis. Wang et al. found that CEPO significantly
increased adult neural progenitor cell proliferation and
promoted neural progenitor cell differentiation into neurons,
which was associated with upregulation of Sonic hedge-
hog (Shh), its receptor ptc, and mammalian achaete-scute
homolog 1 (Mash1), a pro-neuron basic helix-loop-helix
protein transcription factor [73]. The same authors by using
a coculture system of mouse brain endothelial cells and
neural progenitor cells derived from the subventricular zone
of adult mouse, investigated the hypothesis that neural
progenitor cells treated with rhEPO promote angiogenesis.
Their in vitro results suggested that EPO enhances VEGF
secretion in neural progenitor cells through activation of
the PI3K/Akt and ERK1/2 signalling pathways and that
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neural progenitor cells treated with rhEPO upregulated
VEGFR2 expression in cerebral endothelial cells, which along
with VEGF secreted by neural progenitor cells promoted
angiogenesis [74]. Giese et al. demonstrated that differ-
entiation of human foetal neural progenitor cells under
hypoxic conditions results in an increased neurogenesis.
Moreover, their expansion and proliferation under lowered
oxygen conditions also increased neuronal differentiation,
although proliferation rates were not altered compared
to normoxic conditions. Erythropoietin partially mimicked
these hypoxic effects, promoting an increase of the metabolic
activity during differentiation and exerting protection of
differentiated cells from apoptosis [75]. Recently, we directed
our efforts to the isolation of neural precursor cells (NPCs)
capable of resisting to a prolonged ischemic insult, as this
may occur at the site of traumatic and ischemic CNS
injuries. Adult neural precursors from mice postmortem
brain were isolated, grown in vitro, and their differentiation
capability was investigated by evaluating the expression of
different neuronal markers. This new type of neural stem
cells were called postmortem neural precursors (PM-NPCs).
Under differentiation conditions, our PM-NPCs yield mostly
neurons (about 30%–40%), show activation of hypoxia-
inducible factor-1 and MAPK, and express both erythro-
poietin (EPO) and its receptor (EPO-R). The exposure of
PM-NPCs to neutralizing antibodies to EPO or EPO-R
dramatically reduced the extent of neuronal differentiation
to about 11% of total PM-NPCs. The functionality of mTOR
and MAPK is also required for the expression of the neuronal
phenotype by PM-NPCs. These results suggest that PM-
NPCs can be isolated from animal cadaver even several hours
after death and their self-renewable capability is comparable
to normal neural precursors. Differently, their ability to
achieve a neural phenotype is superior to that of NPCs,
and this is mediated by the activation of hypoxia-induced
factor 1 and EPO signaling. PM-NPCs may represent good
candidates for transplantation studies in animal models of
neurodegenerative diseases [48].

8. Conclusions

Recently, research has focused on rhEPO and its non-
erythropoietic derivatives investigating their effects on SCI
treatment as well as the molecular mechanisms involved
such as antiapoptotic, anti-inflammatory functions, oedema
reduction leading to neuronal and oligodendrocytes sur-
vival [36], and restoration of vascular integrity. Moreover,
researchers suggested a contribution of EPO to neurons
regeneration. The remarkable safety profile of rhEPO ther-
apy in anemia and the demonstration of rhEPO and its
analogues’ broad neuroprotective effects in animal models
should encourage the design of clinical trials to assess
the efficacy of therapy of these proteins on SCI. Clinical
evaluation end points should include besides quality of life
assessment, motor, and sensory and autonomic function.
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