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Nielsen, Michael F., Andrea Caumo, Visvanathan Chan-
dramouli, William C. Schumann, Claudio Cobelli, Bernard R.
Landau, Hendrik Vilstrup, Robert A. Rizza, and Ole Schmitz.
Impaired basal glucose effectiveness but unaltered fasting glucose
release and gluconeogenesis during short-term hypercortisolemia in
healthy subjects. Am J Physiol Endocrinol Metab 286: E102–E110, 2004.
First published September 9, 2003; 10.1152/ajpendo.00566.2002.—Ex-
cess cortisol has been demonstrated to impair hepatic and extrahepatic
insulin action. To determine whether glucose effectiveness and, in
terms of endogenous glucose release (EGR), gluconeogenesis, also
are altered by hypercortisolemia, eight healthy subjects were studied
after overnight infusion with hydrocortisone or saline. Glucose effec-
tiveness was assessed by a combined somatostatin and insulin infu-
sion protocol to maintain insulin concentration at basal level in the
presence of prandial glucose infusions. Despite elevated insulin con-
centrations (P � 0.05), hypercortisolemia resulted in higher glucose
(P � 0.05) and free fatty acid concentrations (P � 0.05). Furthermore,
basal insulin concentrations were higher during hydrocortisone than
during saline infusion (P � 0.01), indicating the presence of steroid-
induced insulin resistance. Postabsorptive glucose production (P �
0.64) and the fractional contribution of gluconeogenesis to EGR (P �
0.33) did not differ on the two study days. During the prandial glucose
infusion, the integrated glycemic response above baseline was higher
in the presence of hydrocortisone than during saline infusion (P �
0.05), implying a decrease in net glucose effectiveness (4.42 � 0.52
vs. 6.65 � 0.83 ml�kg�1�min�1; P � 0.05). To determine whether this
defect is attributable to an impaired ability of glucose to suppress
glucose production, to stimulate its own uptake, or both, glucose
turnover and “hot” (labeled) indexes of glucose effectiveness (GE)
were calculated. Hepatic GE was lower during cortisol than during
saline infusion (2.39 � 0.24 vs. 3.82 � 0.51 ml�kg�1�min�1; P �
0.05), indicating a defect in the ability of glucose to restrain its own
production. In addition, in the presence of excess cortisol, glucose
disappearance was inappropriate for the prevailing glucose concen-
tration, implying a decrease in glucose clearance (P � 0.05). The
decrease in glucose clearance was confirmed by the higher increment
in [3-3H]glucose during hydrocortisone than during saline infusion
(P � 0.05), despite the administration of identical tracer infusion
rates. In conclusion, short-term hypercortisolemia in healthy individ-
uals with normal �-cell function decreases insulin action but does not
alter rates of EGR and gluconeogenesis. In addition, cortisol impairs
the ability of glucose to suppress its own production, which due to
accumulation of glucose in the glucose space results in impaired
peripheral glucose clearance. These results suggest that cortisol excess

impairs glucose tolerance by decreasing both insulin action and
glucose effectiveness.

insulin action

EXCESS CORTISOL is characterized by various metabolic distur-
bances, including the presence of fasting hyperglycemia and
impaired glucose tolerance (21, 23, 34, 37). Furthermore,
excess cortisol induces hepatic and extrahepatic insulin resis-
tance. However, the mechanism(s) responsible for cortisol-
induced insulin resistance are poorly understood (28, 41).

Under conditions of daily living, after ingestion of a carbo-
hydrate meal, glucose and insulin rise and fall in a tightly
coordinated manner. The rise in plasma glucose concentration
stimulates insulin secretion, which results in suppression of
glucose release and stimulation of glucose uptake (12, 31).
However, glucose per se also plays a pivotal role in the
regulation of postprandial glucose metabolism. Hyperglycemia
suppresses glucose release and stimulates glucose disposal
through a mechanism referred to as glucose effectiveness (7).
Thus, in addition to pancreatic �-cell function and insulin
action, postprandial glucose tolerance depends on the ability of
glucose per se to stimulate its own metabolism. Whereas
several studies have determined the effects of cortisol on
insulin action, the impact of excess cortisol on gluconeogenesis
and glucose effectiveness, both of which contribute to hyper-
glycemia in insulin-resistant states such as diabetes mellitus,
has to our knowledge not yet been examined.

Glucose effectiveness is traditionally assessed by use of the
minimal model, which is based on the frequently sampled
intravenous glucose tolerance (FSIGT) test. However, whereas
a close correlation has been established between the glucose
clamp-derived estimate of insulin action and the minimal
model-derived insulin sensitivity index, the ability of the min-
imal model to accurately estimate glucose effectiveness is less
certain (15, 40). The present study, therefore, sought to deter-
mine the effects of cortisol on glucose effectiveness by using a
minimal model-independent approach (5). Furthermore, to de-
termine whether altered glucose effectiveness is due to an
impaired ability of glucose to suppress glucose production
and/or the ability of glucose to stimulate its own uptake, rates
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of glucose production and utilization were determined using
the tracer-dependent glucose infusion (“hot-GINF”) method.
Tracer-dependent indexes of glucose effectiveness, i.e., GE*b
and GEliver, were calculated by use of a model-independent
approach. The effects of cortisol on postabsorptive gluconeo-
genesis were assessed by combining the isotope dilution
method with the 2H2O technique (25).

MATERIALS AND METHODS

Subjects. After approval from the Ethics Committee, County of
Aarhus, eight healthy subjects (5 males and 3 females) with a mean
age of 26 yr (21–29 yr), lean body mass of 62.4 � 4.5 kg, and a body
mass index of 24.4 � 0.8 kg/m2, and without any family history of
diabetes gave written consent to participate in the study. Lean body
weight was measured using bioelectric impedance (Animeter; HTS-
Engineering APS, Odense, Denmark). All participants were Cauca-
sian. Female volunteers were studied in the middle of the menstrual
cycle. No recruited subjects were taking any medication. At least 3
days before study, subjects were instructed not to engage in vigorous
exercise. During the study period, volunteers were encouraged to
refrain from changes in eating behavior and exercise activities.

Experimental design. Subjects were admitted to the clinical re-
search center at 2130 on the evening before the study (Fig. 1). Study
subjects were instructed to eat their last meal at 1800. On the subject’s
admission, an 18-gauge cannula was inserted into a forearm vein of
each arm. One cannula was used for venous blood sampling and the
other for hormone and tracer infusion.

Each subject was studied on two occasions in random order
separated by 3 mo. This time interval was chosen to ensure negligible
amounts of deuterium-labeled glycogen on the second study day. On
one occasion, an infusion of hydrocortisone (2.0 �g�kg�1�min�1;
Solu-Cortef, Pharmacia & Upjohn) dissolved in saline was started at
2200 and maintained at that rate until 1630 (time 300) of the next day.
On the second occasion, saline was infused at a rate of 1.8 l/h. At
2200, 2400, and 0200, the subjects drank 1.7 ml of 2H2O (99.9% H;
Cambridge Isotope Laboratories, Andover, MA) per kilogram body
water. Body water was calculated to be 50% of total body weight in
women and 60% in men. Water ingested ad libitum thereafter was
enriched to be 0.5% 2H2O to maintain isotopic steady state. At 0500
(time �390), a primed continuous infusion of [3-3H]glucose (17 �Ci
prime, 0.17 �Ci/min continuous) was started and maintained through-
out the experiment. At 0630, the hand used for blood sampling was
placed in a heated Plexiglas box and maintained at a temperature of

�55°C throughout the study to allow sampling of arterialized venous
blood. Postabsorptive glucose release (EGR) and gluconeogenesis
were determined from 0700 to 0730.

At 0730 (time �240), an intravenous infusion containing soma-
tostatin (60 ng�kg�1�min�1; Ferring, Kiel, Germany), glucagon (0.65
ng�kg�1�min�1; Novo Nordisk, Bagsværd, Denmark), and growth
hormone (2 ng�kg�1�min�1; Novo Nordisk) was begun in all subjects.
An infusion of insulin (Insulin Actrapid; Novo Nordisk) was also
started at rates of 0.15 mU�kg�1�min�1 on the saline day and 0.25
mU�kg�1�min�1 on the cortisol day. Plasma glucose concentration
was measured at 15-min intervals with a glucose oxidase method
(Beckman Instruments, Brea, CA), and the insulin infusion rate was
adjusted to maintain glucose at �5 mmol/l. The last adjustment of this
“basal” insulin infusion was made �30 min before start of the
prandial glucose infusion and was maintained at that rate for the
remainder of the study.

At 1130 (time 0), a 5-h preprogrammed variable glucose infusion
was started with an infusion pump (model PhD 2000; Harvard
Apparatus, South Natick, MA) driven by a PC 2/30 265 computer
(IBM, Rochester, MN). Glucose was infused in a manner mimicking
the systemic rate of appearance of glucose that occurs after ingestion
of 50 g of glucose (1). The pattern and amount of glucose infused
normalized to lean body mass were equal on the two study days.

In an effort to maintain specific activities constant, the rate of basal
[3-3H]glucose was adjusted (�390–0 min, 100%; 0–30 min, 70%;
30–60 min, 46%; 60–120 min, 55%; 120–150 min, 53%; 150–300
min, 61%) according to the anticipated suppression of EGR during the
prandial glucose infusion. Furthermore, all glucose infused contained
[3-3H]glucose. Hence, glucose specific activities remained constant
on the two study days.

To avoid the confounding effects of counterregulation during
hypoglycemia, the experiments were terminated when plasma glucose
concentrations fell below 2.7 mmol/l (50 mg/dl).

Analytical techniques. Arterialized plasma glucose was measured
in duplicate immediately after sampling. Samples for hormone anal-
ysis were placed on ice, centrifuged at 4°C, separated, and stored at
�20°C until assay. Serum insulin was determined by two-site en-
zyme-linked immunosorbent assay (2). Plasma glucagon and C-
peptide concentrations were measured by radioimmunoassay. Serum
free fatty acids (FFA) were measured enzymatically using a Wako
NEFA (nonesterified fatty acid) Test Kit (Wako Chemicals, Neuss,
Germany).

The measurement of deuterium enrichment on carbons 2 and 5 in
glucose was performed as previously described (25). Briefly, 15 ml of

Fig. 1. Experimental design as described in MATERIALS

AND METHODS.
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blood were diluted with 30 ml of demineralized water and deprotein-
ized using 15 ml of 0.3 N ZnSO4 and 15 ml of 0.3 N Ba(OH)2. The
samples were centrifuged at 2,000 rpm for 15 min, and the pellet was
diluted in 15 ml of demineralized water to wash out the remaining
glucose. Glucose was isolated by successive ion-exchange chroma-
tography and high-performance liquid chromatography. For determi-
nation of deuterium enrichment on C5, glucose was first converted to
xylose, and the C5 of glucose with its hydrogens was cleaved by
periodate oxidation to formaldehyde, which was condensed with
ammonium hydroxide to form hexamethylenetetramine (HMT). The
2H bound to C2 of glucose was isolated after conversion of glucose to
ribitol-5-phosphate and arabitol-5-phosphate and treatment to form
HMT. HMT was analyzed on a Hewlett-Packard mass spectrometry
system. Standard solutions of glucose of known enrichment were run
along with the unknown samples to calibrate for instrument variations.

Calculation of glucose turnover. Glucose turnover, i.e., EGR and
glucose utilization, was calculated using Steele’s equations for non-
steady state (45). The pool correction factor and the glucose volume
of distribution were assumed to be 0.65 and 260 ml/kg, respectively.
Glucose specific activity, calculated as the ratio between tracer (dpm/
ml) and plasma glucose concentration, was smoothed from 0 to 300
min by use of the OOPSEG program of Bradley et al. (8). Glucose
production and utilization at time 0 were calculated using the average
specific activity from �30 to 0 min. Glucose clearance was calculated
as the ratio between glucose utilization (Rd) and the corresponding
plasma glucose concentration. The fractional contribution of glucone-
ogenesis to glucose release was determined as the ratio of deuterium
bound to carbon 5 in glucose to that bound to carbon 2 (25). A
quantitative estimate of postabsorptive gluconeogenesis was calcu-
lated by multiplying the mean glucose release from 0700 to 0730 by
the mean of the fractional contribution of gluconeogenesis to EGR
from 0630 to 0730.

Assessment of glucose effectiveness. The calculation of net glucose
effectiveness (GEb, ml�kg�1�min�1), i.e., the ability of glucose to
suppress glucose release and stimulate glucose utilization, has been
described elsewhere (5, 32). Net glucose effectiveness at basal insulin
concentration was calculated as the ratio between the area under the
curve (AUC) of the exogenous glucose infusion rate (GIR) and the
AUC of the glucose concentration above basal (�G)

GEb �
AUC[GIR(t)]

AUC[�G(t)]
(1)

Because equal amounts of glucose were infused in each subject on the
two study days, the excursion of glucose concentration above basal is
inversely related to net glucose effectiveness. The greater the glyce-
mic excursion, the lower the net glucose effectiveness (GEb).

To determine the effects of glucose on glucose production and
utilization, hot (tracer-determined) indexes of glucose effectiveness,
i.e., GE*b and GEliver, were calculated from glucose and [3-3H]glucose
concentrations (5). Whereas GE*b (ml�kg�1�min�1) determines the
ability of glucose at basal insulin to facilitate its own disposal, GEliver

(ml�kg�1�min�1) determines the effect of glucose to suppress its own
production. These estimates are equivalent to those derived using the
glucose clamp technique. The effect of glucose on glucose disposal
was calculated as follows

GE*b �
{AUC[�GIR*(t)] � PCRbGbAUC[�SA(t)]}

{AUC[�G*(t)] � GbAUC[�SA(t)]}
(2)

where �GIR* is the tracer infusion rate above basal, G* is the tracer
concentration, SA is the tracer specific activity, and PCRb is the basal
plasma glucose clearance rate.

The effect of glucose on glucose production (GEliver,
ml�kg�1�min�1) was calculated by dividing the area below basal of
EGR by the area above basal of glucose concentration. Since GEb

constitutes the effects of glucose both to suppress its own production

and to facilitate its own disposal, GEliver can also be calculated by
subtracting GE*b from GEb.

Plasma glucose clearance rate (PCR) and GE*b are related according
to the following equation

PCR(t) � GE*b 	 Rd,0/G(t) (3)

where Rd,0 equals the hypothetical rate of glucose uptake at zero
glucose concentration.

Assessment of basal insulin sensitivity. Insulin action was deter-
mined from postabsorptive glucose and insulin concentrations with
the homeostatic model assessment analysis for insulin sensitivity
(HOMA), as proposed by Turner and colleagues [Matthews et al. (26)
and Turner et al. (46)]. To account for differences in FFA concentra-
tions, insulin sensitivity was also calculated on the basis of the
recently revised QUICKI method, as suggested by Perseghin et al.
(38).

Statistical analysis. Data in the text and Figs. 1–9 are expressed as
means � SE. All rates are expressed per kilogram of lean body
weight. Integrated responses and responses above basal were calcu-
lated using the trapezoidal rule. Integrated response was defined as
total area above zero during saline or steroid infusion. Postabsorptive
measures were obtained from 0700 to 0730 (�270 to �240 min) (Fig.
1). Basal measures, i.e., those obtained in the presence of basal insulin
concentrations, were defined as the means of values from 1100 to
1130 (�30–0 min). A paired Student’s t-test was used to test for
differences during saline or steroid infusion. The Wilcoxon rank sum
test was used for data not fulfilling the criteria for normal distribution
(27). A P value �0.05 was considered statistically significant.

RESULTS

Postabsorptive glucose, FFA, and hormone concentrations.
Postabsorptive cortisol (1,243 � 133 vs. 386 � 50 nmol/l, P �
0.01), glucose (6.72 � 0.20 vs. 4.91 � 0.13 mmol/l, P � 0.01),
insulin (52 � 5 vs. 33 � 2 pmol/l, P � 0.05), and C-peptide
concentrations (594 � 55 vs. 476 � 34 pmol/l, P � 0.05) were
greater after overnight cortisol infusion than during saline
infusion (Fig. 2). During the night, circulating FFA concentra-
tions increased on both study days (Fig. 3). However, FFA
concentrations were higher during cortisol than during saline
infusion (0.71 � 0.07 vs. 0.47 � 0.06 mmol/l, P � 0.01).
Postabsorptive plasma glucagon concentrations did not differ
on the two study days (51 � 8 vs. 48 � 9 pg/ml, P � 0.82).

Postabsorptive EGR, gluconeogenesis, and insulin sensitiv-
ity. Despite higher glucose and insulin concentrations during
cortisol than during saline infusion, postabsorptive glucose
production (12.4 � 0.5 vs. 11.9 � 0.7 �mol�kg�1�min�1, P �
0.64) and gluconeogenesis (8.1 � 0.6 vs. 7.1 � 0.5
�mol�kg�1�min�1, P � 0.33) did not differ on the two study
days (Fig. 4). Gluconeogenesis accounted for 62.9 � 4.6 and
59.8 � 3.9% of total glucose release during cortisol and saline
infusion, respectively. Insulin sensitivity, determined by both
the HOMA analysis (2.58 � 0.30 vs. 1.19 � 0.14; P � 0.01)
and the revised QUICKI method (0.35 � 0.01 vs. 0.43 � 0.01;
P � 0.01), was markedly lower during cortisol than during
saline infusion, implying steroid-induced insulin resistance.

Although postabsorptive glucose concentrations were higher
during steroid infusion, glucose uptake did not differ signifi-
cantly on the two study days (12.4 � 0.5 vs. 11.9 � 0.7
�mol�kg�1�min�1; P � 0.64). Consequently, glucose clear-
ance was lower during steroid than during saline infusion
(1.89 � 0.06 vs. 2.42 � 0.18 ml�kg�1�min�1; P � 0.05).
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Substrate and hormone concentrations during prandial glu-
cose infusion. “Basal” insulin infusion rate, defined as the
infusion rate required to maintain glucose concentration at �5
mM (0.27 � 0.02 vs. 0.16 � 0.01 mU�kg�1�min�1, P � 0.01),
and the corresponding basal insulin concentrations (88 � 5 vs.
65 � 3 pmol/l, P � 0.05) were higher during cortisol than
during saline infusion, indicating the presence of steroid-
induced insulin resistance (Fig. 5). Basal C-peptide (31 � 5 vs.

28 � 8 pmol/l, P � 0.77) and glucagon (65 � 7 vs. 66 � 8
pg/ml, P � 0.85) concentrations did not differ on the two study
days (Fig. 6). Basal FFA concentrations (0.34 � 0.04 vs.
0.17 � 0.02 mmol/l, P � 0.01) were higher during cortisol
than during saline infusion.

In the presence of prandial glucose infusion, basal insulin
concentrations remained constant and higher during cortisol
than during saline infusion. Glucose infusion did not alter FFA
or glucagon concentrations. During somatostatin infusion, C-
peptide concentrations were completely suppressed on both
study days, implying suppressed endogenous insulin secretion
during the prandial glucose infusion.

Fig. 2. Nocturnal plasma cortisol (A), glucose (B), and insulin (C) concentra-
tions during cortisol (E) or saline (■ ) infusion.

Fig. 3. Nocturnal C-peptide (A), free fatty acid (FFA, B), and glucagon (C)
concentrations during cortisol (E) or saline (■ ) infusion.

Fig. 4. Postabsorptive rates of endogenous glucose release and gluconeogen-
esis during nocturnal cortisol or saline infusion. Gluconeogenesis was calcu-
lated by multiplying the mean ratio of deuterium enrichment at carbon 5 to that
at carbon 2 in glucose by the mean rate of fasting endogenous glucose release
from �30 to 0 min.

Fig. 5. Plasma cortisol (A), glucose (B), and serum insulin (C) concentrations
during prandial glucose infusion in the presence of cortisol (E) or saline (■ )
infusion. The glucose infusion was started at 0 min.
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Estimate of glucose effectiveness during the prandial glu-
cose infusion. Before the prandial glucose infusion, glucose
concentrations (5.20 � 0.12 vs. 5.44 � 0.13 mmol/l, P � 0.27)
were comparable and constant on both study days. In the
presence of constant basal insulin concentrations, the glycemic
excursion during glucose infusion was greater during cortisol
than during saline infusion (1,082 � 108 vs. 751 � 72
mmol�l�1�5 h�1, P � 0.05). Consequently, net glucose effec-
tiveness (4.42 � 0.52 vs. 6.65 � 0.83 ml�kg�1�min�1, P �
0.05) was impaired during cortisol infusion (Fig. 7).

Net glucose effectiveness, GEb, is a composite measure of
the ability of glucose to promote its own uptake (GE*b) and to
suppress its own production (GEliver). Because of the infusion
of a glucose tracer, the present design also allows a calculation
of these hot indexes of glucose effectiveness. Whereas GEliver

values were higher during saline than during steroid infusion
(3.82 � 0.51 vs. 2.39 � 0.24 ml�kg�1�min�1, P � 0.05), GE*b
(although higher during saline than during steroid infusion in 6
of 8 subjects) did not differ significantly on the two study days
(3.37 � 0.72 vs. 2.10 � 0.19 ml�kg�1�min�1, P � 0.15).

Plasma glucose clearance rate (PCR) is related to GE*b, Rd,0,
and glucose concentration as specified in Eq. 3. Rd,0 was
calculated in each subject by substituting in Eq. 3 the pretest
values of PCR and glucose concentration. In the present
experiments, Rd,0 did not differ on the two study days
(�4.08 � 3.53 vs. 1.37 � 1.14 �mol�kg�1�min�1; P � 0.24).
During the prandial glucose infusion, PCR changed as a
consequence of the change in glucose concentration. Mean
rates of PCR during glucose infusion were lower during cor-
tisol than during saline infusion (2.23 � 0.08 vs. 2.77 � 0.20
ml�kg�1�min�1; P � 0.05).

Glucose turnover during prandial glucose infusion. To de-
termine the effects of glucose on glucose kinetics, rates of EGR
and glucose disappearance were measured during the prandial
glucose infusion (Figs. 8 and 9). In the presence of basal
insulin concentrations, postabsorptive EGR values (14.2 � 0.6
vs. 12.3 � 0.4 �mol�kg�1�min�1; P � 0.05) were higher
during saline than during cortisol infusion. During the prandial
glucose infusion, EGR rates were suppressed promptly and
equally on the two study days (1,570 � 285 vs. 1,211 � 162
�mol/kg; P � 0.26). Because equal rates of glucose production
were obtained despite higher glucose concentrations during
steroid infusion, these results imply a defect in the ability of
glucose to suppress EGR during excess hydrocortisone con-
centrations.

In the presence of basal insulin concentrations, basal glucose
rates of disappearance were higher during saline than during
cortisol infusion (14.3 � 0.6 vs. 12.3 � 0.4 �mol�kg�1�min�1;

Fig. 8. Endogenous glucose release (A) and [3-3H]glucose specific activity (B)
during prandial glucose infusion in the presence of cortisol (E) or saline (■ )
infusion. The glucose infusion was started at 0 min.

Fig. 6. C-peptide (A), FFA (B), and plasma glucagon (C) concentrations
during prandial glucose infusion in the presence of cortisol (E) or saline (■ )
infusion. The glucose infusion was started at 0 min.

Fig. 7. Estimates of glucose effectiveness during basal insulin concentrations.
Net glucose effectiveness (GEb) constitutes the combined effects of glucose to
stimulate its own uptake (GEb

*) and suppress its own production (GEliver).
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P � 0.05). During the prandial glucose infusion, glucose
disappearance did not differ on the two study days (5,869 �
281 vs. 5,532 � 171 mmol/kg; P � 0.31). Consequently, in the
presence of excess cortisol, rates of disappearance were inap-
propriate for the higher glucose concentrations, indicating
impaired plasma glucose clearance (2.77 � 0.20 vs. 2.23 �
0.08 ml�kg�1�min�1; P � 0.05).

The same tracer infusion profile was applied during saline
and steroid infusions. Therefore, identical amounts of
[3-3H]glucose were infused in all subjects. Consequently, the
excursion of [3-3H]glucose concentration during the prandial
glucose infusion yields a model-independent assessment of
glucose uptake. In the present experiments, [3-3H]glucose
concentrations were higher during steroid than during saline
infusion (650,515 � 62,403 vs. 791,385 � 38,411 dpm�ml�1�5
h�1; P � 0.05). This difference in tracer concentration implies
a lower rate of glucose disappearance and confirms the pres-
ence of an impairment of glucose clearance during hypercor-
tisolemia.

DISCUSSION

Previous studies have demonstrated that excess cortisol
induces hepatic and extrahepatic insulin resistance (3, 18, 20,
28, 41, 42, 48). Metabolic effects may be induced by the
normal circadian variation in cortisol secretion (10, 11). Be-
sides coincident disturbances in protein and lipid metabolism,
hypercortisolemia is also characterized by hyperinsulinemia
and hyperglycemia (13, 21, 23, 34, 37, 43). The mechanism(s)
by which glucocorticoids induce alterations in glucose metab-
olism are, however, sparsely elucidated. Glucocorticoids are
reported to decrease glucose transport (36), and conflicting
results are reported on the effects of glucocorticoids on insulin
binding (6, 14, 22).

Under conditions of daily living, glucose and insulin con-
centrations rise and fall in a tightly coordinated manner. An
increase in either glucose or insulin will suppress glucose
production and stimulate glucose uptake. The concurrent rise
in concentration of both glucose and insulin will exert a greater
response than a rise in either alone (31). Previous studies have
established that excess cortisol, measured either during clamp
conditions or in the presence of physiological changes in
insulin concentrations, alters insulin action. However, the ef-
fects of glucocorticoids on glucose effectiveness, i.e., the
ability of glucose to regulate its own metabolism, have to our
knowledge never been examined. The present study was de-
signed to determine the effects of hypercortisolemia on post-
absorptive and postprandial glucose metabolism. Hydrocorti-
sone was infused at a rate known to induce hepatic and
extrahepatic insulin resistance (41). During steroid infusion,
cortisol concentrations increased threefold from baseline to
�1,200 nmol/l. This concentration is equivalent to the adrenal
response seen after severe trauma or surgical stress (9, 30,
35, 47).

Despite higher fasting insulin concentrations, both glucose
and FFA concentrations were higher during steroid than during
saline infusion. Although insulin action was not directly mea-
sured, both HOMA analysis and the revised QUICKI method
suggest that insulin action was impaired, implying that the
presence of insulin resistance was partially compensated by an
increase in insulin secretion. Fasting EGR, gluconeogenesis,
and, by implication, fasting glycogenolysis were unaltered
during hydrocortisone infusion; that is, net glycogenolysis to
the extent that there is glycogen cycling, with perhaps more
cycling on hydrocortisone administration (24). Because glu-
cose and insulin concentrations were both higher during hy-
drocortisone than during saline infusion, the present data sug-
gest an impaired ability of insulin and glucose to suppress
postabsorptive glucose production during excess cortisol con-
centrations.

The effects of glucocorticoids on hepatic glucose metabo-
lism have been studied in both in vivo and in vitro experiments.
Gluconeogenic conversion of alanine to glucose has been
demonstrated to be increased during acute rises in plasma
cortisol (19). Furthermore, phosphoenolpyruvate carboxyki-
nase (PEPCK) activity is increased by glucocorticoids, consis-
tent with an increase in gluconeogenesis during hypercortisol-
emia (16). As pointed out by Sasaki et al. (44), dexamethasone-
induced increase of PEPCK gene transcription is either blunted
or totally inhibited by elevated insulin, suggesting that insulin
is a dominant hormone in the regulation of gluconeogenesis
(44). Therefore, in the present experiments, the observation of
unaltered rates of gluconeogenesis and glucose production
during hypercortisolemia may be attributed to the inhibition of
insulin on PEP kinase transcription. This conclusion is sup-
ported by studies in overnight-fasted dogs in which a fivefold
elevation in plasma cortisol resulted in minimally elevated
rates of gluconeogenesis despite increased plasma insulin and
glucose concentrations (20).

Although several studies have determined the effects of
hydrocortisone on insulin action (3, 28, 41, 48), the effects of
glucocorticoids on glucose effectiveness are unknown. The
classic minimal model analysis based on the FSIGT was
originally designed to estimate insulin action. The model also
allows an estimate of glucose effectiveness, but the accuracy of

Fig. 9. Rate of disappearance (A) and [3-3H]glucose concentrations (B) during
prandial glucose infusion in the presence of cortisol (E) or saline (■ ) infusion.
The glucose infusion was started at 0 min.
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that estimate has been challenged. It has been demonstrated
that the cold minimal model in its original form provides an
overestimate of glucose effectiveness when assessed in the
presence of changing glucose concentrations (15). For that
reason, we chose in the present experiments to assess glucose
effectiveness by use of a minimal model-independent approach
in which insulin was maintained at basal concentrations and the
glycemic excursion was measured during a standardized glu-
cose infusion (5).

We have previously demonstrated that the estimate of glu-
cose effectiveness is sensitive to even subtle changes in insulin
concentrations (32). This is the case because EGR is inhibited
and glucose uptake is stimulated by insulin. Because cortisol
induces hepatic and extrahepatic insulin resistance to obtain the
same biological effect, higher insulin concentrations were
required during hypercortisolemia than during saline infusion.
To ensure that the response to exogenous glucose infusion was
assessed in the presence of biologically equivalent amounts of
insulin, the appropriate basal insulin concentration was indi-
vidually determined on each occasion in each study subject.
We defined basal as the insulin concentration necessary to
maintain the subject’s glucose concentration constant at 5.5
mmol/l. Inspection of Fig. 5 indicates that this goal was clearly
achieved during both saline and steroid infusions.

As depicted in Fig. 5, the basal insulin infusion rate (0.27 vs.
0.16 mU�kg TBW�1�min�1; P � 0.01) and the corresponding
insulin concentrations (88 � 5 vs. 65 � 3 pmol/l; P � 0.05)
were higher during cortisol than during saline infusion, indi-
cating the presence of steroid-induced insulin resistance. More-
over, basal insulin concentrations were maintained constant
from �30 until the end of the prandial glucose infusion.
Because each subject received the same glucose infusion pro-
file, the higher glycemic excursion, measured either in terms of
peak glucose concentrations or as integrated area above base-
line, indicates a decrease in net glucose effectiveness during
hypercortisolemia (Fig. 5).

The higher glucose concentrations during steroid infusion
could have been due to inappropriately high rates of EGR,
inappropriately low rates of glucose utilization, or a combina-
tion of both. Thus, to gain insight into the mechanism by which
glucose effectiveness is impaired, glucose production and rates
of glucose utilization were determined using the hot-GINF
method. Moreover, model-independent estimates of hot in-
dexes of glucose effectiveness were calculated on the basis of
glucose and [3-3H]glucose concentrations.

During the prandial glucose infusion, EGR decreased
promptly and equally on the two study days. However, these
rates of glucose production were obtained in the presence of
higher glucose concentrations during steroid infusion. Inspec-
tion of Fig. 8 suggests that, whereas suppression of EGR
appeared unaltered during the early part of the prandial glucose
infusion, the rate of suppression was inadequate from 150 min
and onward, implying an abnormal suppression of EGR by
glucose in the presence of hypercortisolemia. Moreover,
GEliver, calculated as the ratio between the area below basal of
EGR and the area above basal of glucose, was lower during
steroid than during saline infusion, demonstrating that the
ability of glucose to suppress glucose production is reduced in
the presence of excess cortisol concentrations.

Rates of glucose disappearance also did not differ in the
presence or absence of excess hydrocortisone (Fig. 9A). Equal

rates of glucose disappearance were obtained in the presence of
higher glucose concentrations, which suggests that glucose
clearance was impaired. Other evidence of an impairment of
glucose clearance during hydrocortisone infusion comes from
the inspection of the glucose tracer data (Fig. 9B). In the
present experiments, equal rates of [3-3H]glucose were infused
on the two study days. Therefore, the greater increment in the
concentration of [3-3H]glucose during steroid than during sa-
line infusion suggests that the tracer disappearance rate was
reduced during the hydrocortisone infusion. Altered rates of
glucose clearance, however, do not necessarily indicate that
peripheral glucose effectiveness, GE*b, is also different. In fact,
glucose clearance and glucose effectiveness are related but
measure slightly different aspects of glucose metabolism. Ac-
cording to Eq. 3, glucose clearance is the sum of GE*b and a
variable component determined by the ratio between Rd,0 (i.e.,
the hypothetical intercept with the Rd axis of the Rd vs. glucose
relationship) and the time-varying glucose concentration. We
found GE*b to be reduced in six of eight subjects in the presence
of hydrocortisone infusion; however, this reduction was not
statistically significant. Also, Rd,0 did not differ on the two
study days. Nevertheless, because of the marked difference in
the time courses of plasma glucose concentration, mean PCR
was lower during hydrocortisone than during saline infusion.

All in all, the present experiments provide evidence that
impaired glucose effectiveness during steroid infusion is attrib-
utable to a defect in the ability of glucose to suppress its own
production. Moreover, this defect produces an elevation of the
glucose level that results in impaired peripheral glucose clear-
ance.

The finding of impaired basal glucose effectiveness dur-
ing excess cortisol is in contrast to experiments by Baron et
al. (4), who studied the effects of a 12-h cortisol infusion on
non-insulin-mediated glucose uptake (NIMGU) (4). In these
experiments, no effects of cortisol on NIMGU was demon-
strated. Because glucose effectiveness in the present exper-
iments was determined during basal insulin concentrations,
and NIMGU was measured in the presence of near-zero
insulin conditions, these conditions suggest that cortisol has
different effects on glucose metabolism in the presence or
absence of insulin.

The present experiments suggest that impaired glucose
effectiveness is a contributing mechanism to glucose intol-
erance during conditions of excess cortisol. Various mech-
anisms may account for that finding. At basal insulin,
glucose-mediated glucose uptake may be induced by a mass
action effect facilitated by GLUT transport proteins. How-
ever, mass action is not the only mechanism. Hyperglycemia
has been demonstrated to recruit insulin-independent glu-
cose transporters (GLUT1 and GLUT2) to the cell surface
via a Ca2	-dependent mechanism, which is mechanistically
different from the insulin-dependent mechanism mediated
via phosphatidylinositol 3-kinase (33). Furthermore, hyper-
glycemia has been demonstrated to induce translocation of
GLUT4 transporters to the plasma membrane in muscle
(17). In addition, experiments by Petersen et al. (39) have
suggested that hyperglycemia inhibits hepatic glycogenoly-
sis primarily through inhibition of glycogen phosphorylase,
whereas insulin inhibits glycogenolysis primarily through
stimulation of glycogen synthase. It is currently unknown
how glucocorticoids interfere with these mechanisms in a
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way that ultimately leads to impaired glucose effectiveness.
It is well established that glucocorticoids affect gene ex-
pression, but these hormones may also exert their effects
through modulation of posttranscriptional events. Further
experiments are required to determine through which path-
ways hypercortisolemia effects insulin action and glucose
effectiveness.
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