
HEP APPLICATIONS EXPERIENCE WITH THE EUROPEAN DATAGRID
MIDDLEWARE AND TESTBED

S. Burke, Rutherford Appleton Laboratory, Oxford, UK

O. Maroney, Bristol University, UK
F. Brochu, Cambridge University, UK

I. Augustin, F. Carminati, J. Closier, CERN, Geneva, Switzerland
D. Boutigny, J.J. Blaising, CNRS LAPP, Annecy, France
V. Garonne, A. Tsaregorodtsev, CNRS Marseille, France

D. Colling, Imperial College, London, UK
P. Capiluppi, A. Fanfani, C. Grandi, INFN Bologna, Italy

R. Barbera, INFN Catania, Italy
E. Luppi, INFN Ferrara, Italy

G. Negri, L. Perini, S. Resconi, INFN Milano, Italy
M. Reale, A. De. Salvo, INFN Roma 1, Italy
S. Bagnasco, P. Cerello, INFN Torino, Italy

O. Smirnova, Lund University, Sweden
K. Bos, D. Groep, W. van. Leeuwen, NIKHEF, Amsterdam, Netherlands

 F. Harris, I. Stokes-Rees, Oxford University, UK

Abstract

The European DataGrid (EDG) project ran from 2001
to 2004, with the aim of producing middleware which
could form the basis of a production Grid, and of running
a testbed to demonstrate the middleware. HEP
experiments (initially the four LHC experiments and
subsequently BaBar and D0) were involved from the start
in specifying requirements, and subsequently in
evaluating the performance of the middleware, both with
generic tests and through increasingly complex data
challenges. A lot of experience has therefore been gained
which may be valuable to future Grid projects, in
particular LCG and EGEE which are using a substantial
amount of the middleware developed in EDG. We report
our experiences with job submission, data management
and mass storage, information and monitoring systems,
Virtual Organisation management and Grid operations,
and compare them with some typical Use Cases defined
in the context of LCG. We also describe some of the main
lessons learnt from the project, in particular in relation to
configuration, fault-tolerance, interoperability and
scalability, as well as the software development process
itself, and point out some areas where further work is
needed. We also make some comments on how these
issues are being addressed in LCG and EGEE.

INTRODUCTION
The EU-funded European DataGrid (EDG) project [1]

ran from January 2001 to the end of 2003, with an
extension to March 2004 for the final EU review, which
was passed successfully. HEP applications were
represented through Work Package 8 (WP8) of the

project, initially with representatives of the four LHC
experiments and subsequently including the US
experiments BaBar and D0. There were also five
experiment-independent people. Over the lifetime of the
project all participants performed increasingly complex
tests to evaluate the EDG middleware. In 2004 the LHC
experiments have also performed data challenges on the
LHC Computing Grid (LCG) system [2], which uses a
substantial amount of EDG middleware. This paper
reports on the experiences during this period, and
indicates some of the lessons learnt.

EDG MIDDLEWARE AND TESTBED
EDG developed middleware in 5 main areas: job

submission, data management, information systems,
fabric management and mass storage interfaces. There
was also a joint development with the DataTAG [3]
project to produce VOMS [4], a VO-based membership
and authorisation service. Basic services were taken from
the Globus [5] and Condor [6] projects.

In addition, EDG ran an application testbed which
operated continuously from November 2001 until after
the formal end of the project in April 2004. The size of
the testbed increased over time; it started with five core
sites, and by the time of the final EU review in 2004 had
grown to 21 sites in 8 countries, with 161 CPUs and 14
Tb of disk storage, plus four sites with tape-based mass
storage systems (MSS). Most of those sites have since
joined the production LCG system.

The middleware evolved through a series of releases,
partly driven by the need to solve problems discovered by
application groups. By early 2003, version 1.4 of the

959

middleware was reasonably stable, and a report on the
status at that time was presented at CHEP03 [7]. In
August 2003 EDG released version 2.0 with major new
functionality in many areas, and this was upgraded to
version 2.1 in October 2003. The final EDG release was
2.1.9 in January 2004. WP8 submitted a report on the
final system as an EU deliverable in January 2004 [8].

Middleware Evolution from 1.x to 2.x

This section gives a brief summary of the middleware
changes between the two major EDG releases.

The job submission software changed fairly little from
the viewpoint of a user, but internally was refactored
substantially to deal with stability and scaling problems
found in the first release. In addition some new features
were added, for example to support interactive jobs,
checkpointing and composite job definitions, but these
were not fully integrated by the end of the project and
hence were generally not tested by the applications.

The data management software was completely re-
written. The first version used the LDAP-based Globus
Replica Catalog, which was found to have serious
scalability and performance problems, and a data
management system called GDMP which was very
difficult to configure and use. For cataloguing, the new
system has separate file and metadata catalogues, based
on MySQL or Oracle databases with a web-service front
end. The system was designed to have the file catalogues
distributed at each site with an indexing system to
aggregate the information, but has so far only been
deployed in a single-catalogue mode. The C++-based
client-server GDMP system was replaced with client-only
tools written in java.

For data storage, both MSS and disk-based, EDG
developed Storage Element (SE) software implementing
an early version of the web-service-based SRM standard
[9], which was developed during the lifetime of the
project by various partners including EDG. The so-called
“classic SE”, with a GridFTP server but no management
software, was also developed as a fallback solution.

The information system changed completely, from the
LDAP-based Globus MDS to a new system called R-
GMA. This uses a relational data model with SQL-style
querying, and an architecture where consumers of
information find producers which can satisfy their queries
by looking them up in a central registry, but with the
information itself passed directly from producer to
consumer. Adapters were also provided for compatibility
to convert to and from the LDAP format.

The information schema also changed to the unified
GLUE schema [10], aimed at helping to make different
Grids interoperable. This was implemented in both
relational and LDAP versions.

EDG continued to develop the LCFG-ng fabric
management system, and this was used at most EDG
sites. In addition it developed a new system called
Quattor which was not used in EDG but is used to
manage the LCG fabric at CERN and some other sites.

The VOMS VO management system was introduced in
the EDG testbed as a prototype, but in general the old
system based on an LDAP VO membership list and
dynamic, anonymous accounts continued to be used.

HEPCAL Use Cases

In 2002 LCG produced a document giving a set of 43
use cases for basic use of Grids by HEP applications,
known as HEPCAL [11]. This was based on previous
work in WP8. In early 2003 the version 1 middleware was
assessed against these use cases, and this was repeated for
version 2. Use cases were put into one of four classes, as
follows (the number of uses cases satisfied in version 2 is
given, followed by the version 1 value in parentheses):

Fully implemented: 13 (6)
Largely implemented: 4 (12)
Partly implemented: 11 (9)
Not implemented: 15 (16)

It can be seen that most of the progress was in resolving
problems with existing functionality, rather than in
providing missing functions.

The missing functionality falls into three main areas.
One concerns virtual data, i.e. storing a recipe for files
which allows them to be materialised on demand, which
was not part of the EDG workplan. The second relates to
metadata, a concept which is still unclear on both the
middleware and application sides. Finally, various use
cases relate to things like authorisation, job control and
optimisation, which were partly delivered but could not
be integrated or tested in the time available.

LCG and EGEE
LCG has taken the job submission, data management

and fabric management software from EDG, and
continued to evolve them to improve performance and
stability. R-GMA and the EDG SE were not sufficiently
stable for production use, although R-GMA has recently
been deployed in LCG for monitoring. As an information
system LCG uses customised LDAP servers. Storage
Elements currently use the classic SE interface until a
production-quality SRM solution is available. VOMS is
still under development.

Testing in EDG was fairly limited as time was short and
the software was initially quite unstable. However, D0
ATLAS and LHCb performed some tests, in addition to
generic testing by the experiment independent people.
The LHC experiments have run major data challenges on
LCG in 2004, and comments in this paper are based on
this experience as well as that on the EDG testbed.

The EU-funded EGEE project [12] is a successor to
EDG. Among other things it will take over the operation
of the LCG system and expand it to non-HEP sites and
applications, and will also produce new middleware.

 EXPERIENCE AND LESSONS LEARNT

HEP applications have made enormous progress in the

use of Grids, and are now routinely using LCG to run

960

hundreds of thousands of production jobs. We have
generally had a good relationship with middleware
developers and system managers, and problems have been
progressively addressed as the middleware has evolved.
Nevertheless, current systems are far from perfect, and
some broad lessons have been learnt about which areas
are especially prone to problems.

General Issues
It has become clear that running testbeds on a

reasonably large scale with real users is essential to
developing a robust system. Many problems emerge
which are not seen in the closed environments in which
developers test their code, and users often do things not
expected by the developers. Also, Grids are likely to be
highly heterogeneous, and middleware needs to be
sufficiently flexible to cope with a wide range of different
systems. Testing scalability is also important, in many
cases failures were only seen once the size of the system
grew beyond a few sites.

Developers should not be overambitious; many features
in the EDG middleware were not fully integrated by the
end of the project. Software integration and configuration
can be a major time-consumer, often taking longer than
the initial code development. Middleware is often flexible
and can be configured in many ways, but finding a
working configuration is then correspondingly difficult.
This can be made harder with the traditional style of
configuration via large numbers of parameters in text
files, which are often obscure in their effects. It is also
harder if the middleware does not give clear error
messages if the configuration is not suitable.

Following on from this, middleware needs to be
adaptive and fault-tolerant. In a large Grid there will
always be misconfigured sites, failed machines, full disks
and services down, so middleware needs to regard
exceptions as a part of normal operation. If errors do
occur, tracing problems through several layers of
middleware distributed over many sites requires
consistent error logging and remote diagnostic tools.

From the start of EDG one goal was to avoid single
points of failure. In practice, services were deployed with
a single instance with the intention of evolving to a
distributed and/or replicated model, but in practice this
has so far failed to happen. The lesson here is that
distributing services is not straightforward and requires a
dedicated effort to achieve.

A similar situation has been seen with security. Since
secure services tend to subtract from usability rather than
adding to it they are not seen as a priority, and in most
cases we started with insecure services with the intention
of adding security later. However, this has yet to happen;
security is a difficult and specialised area and again
requires a lot of effort. In general HEP does not regard
security as a high priority, but HEP systems are still
vulnerable to attack and this is likely to become a more
critical issue as the Grid becomes larger and more widely
known.

EDG developed many tools for particular functions, as
described above. However, some things were not covered
by any work package, and hence have left gaps in the
LCG system. An overall architecture, informed by user
requirements and use cases, is needed to ensure that all
areas are covered and that different services can interact
to achieve the desired behaviour.

Deployment
Middleware needs to be easily deployable on a wide

variety of sites by system managers with limited time and
who may not be Grid experts. Configuration managers
like LCFG and Quattor can help, but cannot be used
everywhere, and manual configuration has so far been
very difficult and error-prone. It is also hard to validate a
site as correctly configured, and a working site often
ceases to work properly after some time. Problems which
may affect only a few batch worker nodes in a large
system are particularly difficult to identify, and can result
in the “black hole” syndrome where one node fails jobs
immediately and hence attracts further jobs. In the current
LCG system, site-specific problems are the major cause
of job failures.

Interoperability between Grids is desirable, and the
GLUE schema is a step towards it. However, going
beyond simple job submission is difficult, particularly for
anything which requires client software pre-installed on
batch worker nodes, or needs specific versions of
compilers or libraries. Dynamic installation of a software
environment may be needed in future if non-dedicated
resources are to be used.

Another issue which remains unresolved is access to
the WAN from worker nodes. Many sites would like to
deny such access, but currently both the middleware and
application software require it, and there has so far been
little movement on either side.

Job Submission
The Resource Broker (RB) in EDG 2 is much more

stable than the earlier version, and has been further
improved by LCG. Failures due to the RB itself are now
around the 1% level. However, job submission remains a
fairly slow process, taking several seconds per job, and
since jobs can only be submitted one at a time it can be
difficult to submit a large number of short jobs.

There are also still some problems with scheduling, as
the RB relies on items in the information system which
are not always calculated in a meaningful way. In general
this no longer results in major problems, but can lead to a
non-optimal distribution of jobs.

The current implementation of the RB uses a “push”
model where jobs are dispatched to local batch queues as
soon as they are submitted. For some purposes a “pull”
model where sites collect jobs from a central queue may
be more appropriate. EGEE is currently developing such a
solution.

Error reports remain hard to interpret, and the absence
of a simple link between the job ID in the RB and the

961

local job ID in a batch system also makes it difficult to
trace the reasons for failures.

R-GMA
R-GMA appears to be a promising technology, for

application monitoring in particular, as it uses a standard
relational data model with SQL-style queries and makes it
easy for users to define their own tables.

However, the time available for testing R-GMA in EDG
was fairly limited. Some tests of application monitoring
were performed by the CMS and D0 experiments, and
were generally successful. R-GMA has only recently been
deployed in LCG, so further testing is required to make a
full assessment.

Information systems
In the EDG 2 testbed R-GMA was used as the

information system. This appeared to work satisfactorily,
but could only be tested on a fairly small and lightly-
loaded system over a limited time, so strong conclusions
cannot be drawn.

LCG has developed a system of LDAP servers backed
by databases, the so-called BDII. This has had some
problems with performance under heavy load, but in
general has been satisfactory.

Some problems have been encountered with the GLUE
schema, e.g. that it does not reflect the scheduling policies
at many sites. GLUE is not directly under the control of
LCG and has so far proved difficult to evolve, but an
effort in this direction is currently underway. The lesson
here is that schema evolution is difficult, so it is important
to make the schema flexible enough to cope with a wide
range of situations. There is also a need to have a clear
definition of things like measurement units, e.g. some
sites have published time limits in real time and others in
units normalised to CPUs of some standard power.

Errors in the published information can lead to
incorrect scheduling decisions, so there is a need to have
some checking in the information providers. Default
values need to be defined in a “safe” way, such that they
will tend to result in too few jobs going to a site rather
than too many.

Data Management
The EDG replica management tools are fairly intuitive

and have worked well. However, the choice of java for
clients resulted in the commands being very slow,
typically taking several seconds, and LCG has since re-
implemented them in C++.

The tools also have somewhat limited functionality.
They operate on only one file at a time, and as client-only
tools there is no provision for queuing transfers or
retrying at a later time after a failure. There are no
transactions or consistency checks, so failures can leave
the system in an inconsistent state. In general there is a
need for a higher-level data management system with a
client-server architecture.

The replica and metadata catalogues have been tested
up to a few million entries in LCG, without significant

problems. However, the web service interface can be very
slow to return large amounts of data from queries due to
the XML encoding overhead.

The SRM protocol is generally considered to be the
way forward for management of Grid-enabled storage,
but production-quality implementations are rare so far.
EDG provided an SE with a partial SRM implementation,
but while this worked reasonably well it had many
problems with configuration and stability, and was
essentially a prototype.

VO Management
The LDAP-based VO membership system used in EDG

has worked well, but has very limited functionality, for
example there are no subgroups and a user cannot belong
to more than one VO. VOMS appears to be a promising
solution, but has not yet been tested in a production
environment. Security tends to come last, but such tools
will be needed urgently as Grid usage increases. VOs
themselves will also need to develop experience in how
they want to manage the system.

SUMMARY
Over the last three years a great deal of experience has

been gained in the use of Grids by HEP experiments. The
EDG middleware has evolved substantially, and much of
it is deployed in the LCG production system, which is
being used extensively for real work. However, many
problems remain, and a lot of work is still required.
EGEE is working towards this goal, but it needs to take
account of the experience gained with existing systems.
For the LHC experiments in particular, 2007 is no longer
very far away, and a fully-working Grid is needed soon.

ACKNOWLEDGEMENTS
The authors wish to thank the EU and our national

funding agencies for their support. We would also like to
acknowledge the active cooperation of our EDG
colleagues in the middleware and testbed work packages,
as well as the substantial support of the Project Office.

REFERENCES
[1] http://eu-datagrid.web.cern.ch/eu-datagrid/
[2] http://lcg.web.cern.ch/LCG/
[3] http://datatag.web.cern.ch/datatag/
[4] http://grid-auth.infn.it/
[5] http://www.globus.org/
[6] http://www.cs.wisc.edu/condor/
[7] http://arxiv.org/pdf/cs.DC/0306027
[8] https://edms.cern.ch/file/428171/3/DataGrid-08-

D8.4-0127-3-0-161203.pdf
[9] http://sdm.lbl.gov/srm-wg/
[10] http://www.cnaf.infn.it/~sergio/datatag/glue/
[11] https://edms.cern.ch/document/375586/1.3
[12] http://egee-intranet.web.cern.ch/

962

http://eu-datagrid.web.cern.ch/eu-datagrid/
http://lcg.web.cern.ch/LCG/
http://datatag.web.cern.ch/datatag/
http://grid-auth.infn.it/
http://www.globus.org/
http://www.cs.wisc.edu/condor/
http://arxiv.org/pdf/cs.DC/0306027
https://edms.cern.ch/file/428171/3/DataGrid-08-D8.4-0127-3-0-161203.pdf
https://edms.cern.ch/file/428171/3/DataGrid-08-D8.4-0127-3-0-161203.pdf
http://sdm.lbl.gov/srm-wg/
http://www.cnaf.infn.it/~sergio/datatag/glue/
https://edms.cern.ch/document/375586/1.3
http://egee-intranet.web.cern.ch/

