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Amyotrophic Lateral Sclerosis 
Amyotrophic lateral sclerosis (ALS) is a chronic relentless neurodegenerative 

disorder also known as Lou Gehrig’s disease or Charcot’s sclerosis. It is the most 

common motor neuron disorder of the adult life, with an average onset at the age of 

50-60 years. The incidence is uniformly scattered throughout the world and it is 

about 1-2 per 100.000 people, whilst the prevalence is 4-5 per 100.000 individuals. 

Males are slightly more commonly affected than females, with a ratio men to 

women of about 1,6/1. Affected people show the typical signs of both upper and 

lower motor neuron damage, i.e. clonus, hyperreflexia, spasticity, fasciculation, 

progressive muscle weakness, dysphagia. Symptoms progressively worsen till 

death, usually due to respiratory failure, within 1-5 years from the clinical onset 

(Bruijn et al., 2004; Cleveland and Rothstein, 2001; Pasinelli and Brown, 2006; 

Strong, 2003; Valentine et al., 2005). The causes of this phenotype are the selective 

loss of cortical, brainstem and spinal cord motor neurons as well as the Wallerian 

degeneration of the descending axons with neurofilament accumulation. Dying 

neurons are characterized by the presence of protein aggregates including 

ubiquitinated inclusions, neurofilament-rich “hyaline conglomerated inclusions” 

and Bunina bodies, dense and refractile eosinophilic inclusions of lysosomal origin 

and cytoskeletal disorganization (Dal Canto and Gurney, 1995). These processes 

are often accompained by intense astrocytosis and microgliosis (McGeer and 

McGeer, 2002). 

Some motor neurons are unaffected till very late stages of the disease, namely 

neurons of the Onuf’s nucleus, deputed to control bladder evacuation, and those of 

the oculomotor nucleus (Strong et al., 2005). 

Although ALS has been first described by the French physician Jean-Martin 

Charcot in the XIX century (Charcot, 1869), its aetiopathogenesis remains largely 

unknown. In the 90-95% of clinical cases, the disease occurs with no apparent 

genetic linkage (sporadic ALS, sALS), whilst in the remaining 5-10%, the disease 

is inherited (familial ALS, fALS). Importantly, sALS and fALS occurrences are 

indistinguishable in terms of both clinical signs and neuropathology .  
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Genetics of amyotrophic lateral sclerosis 

Familial ALS is generally inherited as an autosomic dominant pathology, although 

a recessive form and an X-linked phenotype have been described. Extensive genetic 

analyses have been performed so far and have allowed the linkage between ALS 

and mutations in different genes and specific genetic loci.  

 

Superoxide dismutase 1 

The major breakthrough in the field was achieved by Rosen et al. (Rosen et al., 

1993), who found that a number of families with fALS harbored mutations in the 

gene coding for the enzyme superoxide dismutase 1 (SOD1). As yet, more than 150 

different ALS-associated point mutations in the sequence of the SOD1 gene, located 

on chromosome 21q22.1, have been described 

(http://alsod.iop.kcl.ac.uk/Als/index.aspx   Fig. 1a) and account for about 20% of 

fALS. SOD1 is an ubiquitously expressed enzyme of 153 amino acids. It is a 

metalloprotein, as it coordinates an atom of copper and one of zinc. The zinc allows 

the proper folding and stabilization of the protein, whilst the copper is necessary for 

its enzymatic activity. SOD1, indeed, acts as a homodimer to detoxify, through a 2-

steps reaction, the superoxide anion produced during the cell metabolism. In 

particular, the catalytic copper is first reduced to Cu+ with oxygen formation and 

then it is oxidized to Cu2+ with the production of hydrogen peroxide (Fig. 1b).  
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Fig.1 Human SOD1 structure and normal catalytic activity  

 

(a) secondary structural representation of human SOD1 showing the locations of 

fALS-associated mutations (left) and a monomer of SOD1 (right) colored to match 

the drawing on the left (from (Selverstone Valentine et al., 2005)). (b) schematic 

representation of the two emi-reactions catalyzed by SOD1 (E = enzyme) 

 

Most of the identified mutations generate amino acid substitution throughout the 

primary and the tertiary structure of the protein, whilst others give rise to truncated 

proteins. Generally, all these mutations confer an autosomal dominant phenotype 

with a 100% of penetrance, with some exceptions. Namely, SOD1-D90A1 is usually 

dominant, although in Scandinavian populations it was reported to be recessive, 

implying that other genes may influence the clinical outcome. Therefore, different 

                                                 
1 Mutations are conventionally expressed referring to the protein sequence, namely 
indicating the corrispondent aminoacid, its position and the aminoacid that substitutes it 
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mutations can give rise to phenotypic variations, such as different age of onset, 

disease progression or main affected district (Andersen, 2006). 

The advent of transgenic mice allowed great advances in the field, including the 

confirmation of a causative relationship between the expression of mutant SOD1 

(mtSOD1) and the disease. Of the more than 100 mutations in humans, 3 (SOD1-

G85R, SOD1-G37R, and SOD1-G93A) have been extensively characterized in 

transgenic mouse models of ALS (Bruijn and Cleveland, 1996; Gurney et al., 1994; 

Ripps et al., 1995) (Wong et al., 1995). In these mice, the mutant human protein is 

ubiquitously expressed (under the control of the human or mouse SOD1 gene 

promoter) at levels equal to or several fold higher than the level of endogenous 

SOD1. Unlike the variable pattern in humans, weakness typically starts in the hind 

limbs between 3 and 12 months of age, depending on both the mutation and the 

level at which mtSOD1 is expressed. Hind limb weakness coincides with increased 

astrogliosis, activation of microglia, and loss of spinal cord motor neurons. Thus, 

pathology in these mice closely mimics many aspects of the human disease.  

This amount of evidence and the fact that turning off mutant human SOD1 

(hSOD1) expression in transgenic mice by small interfering RNAs (siRNAs) 

reversed the pathological phenotype, definitely confirmed a cause-effect 

relationship between mtSOD1 expression and ALS development (Ralph et al., 

2005; Raoul et al., 2005; Saito et al., 2005; Wang et al., 2008; Xia et al., 2006). 

Nevertheless, despite several years of intense research, it is still unclear as to how 

the mutations in the SOD1 gene induce this disease. It was first hypothesized that 

mtSOD1s could lose their physiological activity, but this statement was proven 

untrue by studies performed on both human samples and transgenic animals. 

Indeed, dismutase activity level did not correlate with the age of disease onset or 

with the rapidity of progression in patients (Bowling et al., 1995; Cleveland et al., 

1995). Moreover, transgenic mice expressing different mutant hSOD1s developed 

the pathological phenotype despite normal (Borchelt et al., 1994; Bruijn et al., 

1997b 1995 #33) or even elevated (Gurney et al., 1994 1995 #27) enzymatic 

activity. Finally, genetic ablation of the sod1 gene in transgenic mice neither caused 

motor neuron pathology nor affected the lifespan (Reaume et al., 1996). Therefore, 

mtSOD1 toxicity was later ascribed to a gain of an unknown function, rather than to 
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the loss of its enzymatic activity. The different pathogenetic hypotheses related to 

this issue will be discussed in details in the next sections. 

 

Alsin 

A juvenile form of ALS has also been described (Ben Amida et al., 1990). In these 

cases the disease is inherited as recessive trait and it is characterized by slow 

progression and a predominant upper motor neuron phenotype. In 2001, two groups 

independently identified the gene alsin in the locus 2q33 (ALS2) as the mutation site 

responsible for this type of pathology (Hadano et al., 2001; Yang et al., 2001). 

Since then, a total of 19 independent ALS2 mutations from 17 families have been 

reported (Hadano et al., 2001; Hadano et al., 2007; Herzfeld et al., 2009; Mintchev 

et al., 2009; Shirakawa et al., 2009; Sztriha et al., 2008; Verschuuren-Bemelmans et 

al., 2008; Yang et al., 2001). These mutations are predicted to result in either 

premature termination of translation or substitution of an evolutionarily conserved 

amino acid in alsin, the ALS2-coded protein, leading to loss of its function. Alsin is 

a 184 KDa protein ubiquitously expressed, particularly in neurons, and localized to 

the cytoplasmic face of the endosomal membranes (Yamanaka et al., 2003). It 

contains three putative guanine nucleotide exchange factor (GEF) domains, 

involving Ras, Rab and Ran motifs. GTPases of the Ras subfamily regulate cellular 

signalling that couples extracellular signals to intracellular responses regulating 

vesicle transport and microtubule assembly. Although its function is not fully 

understood, it is known to act as an exchange factor for Rab5a in vitro (Otomo et 

al., 2003), which regulates endosomal trafficking and Rac1 activiy (Kanekura et al., 

2004) and is involved in macropinocytosis-associated endosome trafficking and 

fusion (Kunita et al., 2007; Otomo et al., 2008) and neurite outgrowth (Jacquier et 

al., 2009; Jacquier et al., 2006; Otomo et al., 2008).  

Because affected families displayed frameshift mutations that lead to aberrant 

proteins without detectable functional domains, it was initially postulated that this 

form of ALS might be simply due to the loss of alsin function. To verify this 

hypothesis, different lines of transgenic mice that do not express alsin were 

generated (Cai et al., 2005; Devon et al., 2006; Yamanaka et al., 2006). However, 

mice lacking ALS2 do not recapitulate the complex disease phenotypes, despite 
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subclinical levels of motor dysfunction and axonal degeneration in aged animals 

(Cai et al., 2008; Hadano et al., 2006; Hadano et al., 2007). Thus, potentially 

important clinical implications raised from these observations, but the physiological 

functions of alsin and the molecular mechanisms underlying motor dysfunction 

resulting from ALS2 deficiency remain to be clarified. 

 

Dynactin 

A variety of additional genes linked to other subtypes of ALS have been recently 

identified (reviewed in (Shaw, 2005)). In particular, a mutation in the gene 

encoding a subunit of dynactin was described in a family showing a phenotype 

characterized by early adulthood onset with respiratory difficulties (Puls et al., 

2003). This finding corroborated previous studies in mice that develop motor 

neuron degeneration caused by disruption of normal dynactin/dynein function 

(LaMonte et al., 2002 2003 #247). As these proteins are deputed to the retrograde 

axonal transport of vesicle and organelles, this evidence highlighted the importance 

of this cellular function for proper motor neuron viability. 

 

Senataxin 

Missense mutations in SETX cause an autosomal dominant, juvenile onset motor 

neuron disease with distal muscle weakness and atrophy, normal sensation, 

pyramidal signs and a normal life-span. SETX encodes a 303 kDa DNA/RNA 

helicase domain with homology to human RENT1 and IGHMBP2 — two genes 

that encode proteins involved in RNA processing (Chen et al., 2004; Chen et al., 

2006b). Altered RNA processing is implicated in two other inherited motor neuron 

diseases — i.e. spinal muscular atrophy (with mutations in the survival motor 

neuron gene) or a severe, infantile, distal spinal muscular atrophy with prominent 

respiratory dysfunction (SMARD; spinal muscular atrophy with respiratory distress, 

with mutations in IGHMBP2). 

 

VAMP-associated protein B 

The gene VAPB has six exons that encode a ubiquitously expressed 27.2 kDa 

homodimer, which belongs to a family of intracellular vesicle-
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associated/membrane-bound proteins that are presumed to regulate vesicle 

transport. 

Defects in this gene cause adult-onset, autosomal dominant ALS and atypical ALS 

(slowly progressive with tremors) but not frontotemporal dementia (for an example, 

see (Skibinski et al., 2005)).  

 

TDP-43 

TDP-43 (TAR DNA-binding Protein) is a 43 KDa protein encoded by the TARDBP 

gene located on chromosome 1 (Arai et al., 2006; Neumann et al., 2006). In normal 

conditions, TDP-43 is a nuclear protein which regulates transcription and RNA 

splicing, and participates in mRNA transport and stability (Moisse et al., 2009b; 

Strong et al., 2007) (Buratti and Baralle, 2008). Various missense mutations of 

TDP-43 gene have been identified (Gitcho et al., 2008; Sreedharan et al., 2008); 

(Kuhnlein et al., 2008; Rutherford et al., 2008); (Baumer et al., 2009; Corrado et al., 

2008; Daoud et al., 2009; Del Bo et al., 2009; Kamada et al., 2009; Yokoseki et al., 

2008); (Benajiba et al., 2009; Kirby et al., 2010; Xiong et al., 2010). Mutant TDP-

43 could be involved in 3% familial ALS and 2.9% sporadic ALS (Sreedharan et 

al., 2008); (Lagier-Tourenne and Cleveland, 2009) (Daoud et al., 2009). The 

dysfunction of TDP-43 resulting from the mutation, which induced apoptosis and 

mislocalization of TDP-43, and caused shorter motor neuronal axons could also 

play an essential role in the pathogenesis of ALS (Sreedharan et al., 2008; Winton 

et al., 2008; Johnson et al., 2008; Kabashi et al., 2010; Chen-Plotkin et al., 2010). 

Many studies have shown that TDP-43 in tissues taken from cases of FTLD-TDP or 

ALS is often hyperphosphorylated, cleaved, ubiquitinated, mislocalized, and poorly 

soluble (Arai et al., 2006; Chen-Plotkin et al., 2010; Neumann et al., 2006) and 

TDP-43 aggregates are present in the cytosol and the nucleus of neuronal and glial 

cells of ALS patients, with the striking exception of patients with familial ALS 

caused by SOD1 mutations (Lagier-Tourenne and Cleveland, 2009). It is still not 

clear if these aggregates are a causative event in the pathogenesis of ALS or if they 

are a consequence of the pathological process but these features suggest various 

loss of function and gain of toxic functions for TDP-43 with a possible role in 

disease pathogenesis (Chen-Plotkin et al., 2010). In addition, upregulation of TDP-
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43 expression with prominent cytosolic localization in motor neurons injured by 

degenerative processes such as ALS could represent an appropriate response to 

neuronal injury (Moisse et al., 2009a). The observation that the majority of 

inclusion-bearing cells in patients display nuclei devoid of TDP-43 led to the 

hypothesis that some of the deleterious effects of abnormal TDP-43 metabolism 

may reflect a loss of TDP-43 nuclear function (Igaz et al., 2008).  

 

FUS/TLS 

The identification of TDP-43 mutations in ALS patients was rapidly followed by 

the association of another RNA/DNA-binding protein, named FUS/TLS (fused in 

sarcoma/translocated in liposarcoma) with this disorder (Kwiatkowski et al., 2009; 

(Vance et al., 2009). Thirty mutations have now been reported in about 4% of 

familial ALS and in rare sporadic patients with no apparent familial history. The 

inheritance pattern is dominant except for one recessive mutation (H517Q) found in 

a family of Cape Verdean origin (Kwiatkowski et al., 2009). Most are missense 

mutations with a few exceptions. 

Similar to TDP-43, FUS is ubiquitously expressed and it is mainly localized into the 

nucleus of both neuronal and glial cells (Aman et al., 1996; Andersson et al., 2008). 

However, post-mortem analysis of brain and spinal cord from patients carrying 

FUS/TLS mutations identified abnormal FUS/TLS cytoplasmic inclusions in 

neurons and glial cells (Belzil et al., 2009; Corrado et al., 2010; Kwiatkowski et al., 

2009; Tateishi et al., 2009; Vance et al., 2009). These inclusions were reported to 

be immunoreactive for FUS/TLS as well as for other proteins, including 

GRP78/BiP, p62 and ubiquitin, but strikingly not for TDP-43, implying that 

neurodegenerative processes driven by FUS/TLS mutations are independent of 

TDP-43 mislocalization (Vance et al., 2009; (Suzuki et al., 2010; Tateishi et al., 

2009).  

The mechanisms that determine the FUS subcellular localization are not fully 

understood. Since the molecular weight of human FUS protein is 53,426 daltons 

and the cutoff for passive diffusion through the nuclear pore complex is estimated 

to vary between 40 and 60 kDa (Gerace, 1995; Peters, 2009; Rout et al., 2003), it is 

theoretically possible but likely difficult for FUS to migrate across the nuclear pore 
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complex by this route. In keeping, there is no classic nuclear localization sequence 

(NLS) reported or predicted in FUS and bioinformatic attempts revealed no 

classically predictable NLS (eg, PredictNLS server at 

cubic.bioc.columbia.edu/services/predictNLS; (Cokol et al., 2000)). However, it has 

been suggested that the C-terminus of FUS could work as NLS (Gal et al., 2010). In 

this context, it is interesting to note that most of the FUS mutations identified to 

date are clustered in the C-terminus of the protein (Kwiatkowski et al., 2009; Vance 

et al., 2009). 

 

Similarities between the pathologies caused by TDP-43 and FUS mutants have been 

identified. Although the two proteins are not closely related, they share similar 

sequence elements, such as the RNA recognition motif (Ou et al.) domain and 

glycine-rich regions, which are common to RNA/DNA binding proteins (Lagier-

Tourenne and Cleveland, 2009). Furthermore, similar to FUS, TDP-43 has been 

reported to play roles in RNA transcription, splicing, and transport (Buratti and 

Baralle, 2008; Volkening et al., 2009). Both proteins are normally mostly nuclear in 

neurons, and their molecular features in ALS encompass their mislocalization to the 

cytoplasm and the formation of protein inclusions (Arai et al., 2006; Kwiatkowski 

et al., 2009; Kwong et al., 2007; Neumann et al., 2006; Sreedharan et al., 2008; 

Vance et al., 2009).  

 

In addition to the genes described above, several potential risk factors for ALS have 

also been identified. Among these, there are polymorphisms of the neurofilament 

heavy chain (NF-H), the ciliary neurotrophic factor (CNTF) and the vascular 

endothelial growth factor (VEGF) (Bruijn et al., 2004). Furthermore, Amyotrophic 

lateral sclerosis has also been associated to a mutation of the glial glutammate 

transporter EAAT2 (Trotti et al., 2001).  

 

Pathogenesis of ALS 

The discovery of mutations in the SOD1 gene allowed the development of several 

mouse models of ALS. These transgenic animals represent the most useful tool to 

study the mechanisms underlying the pathology outcome. Since the clinical 
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presentation of fALS and sALS is indistinguishable, it is possible to hypothesize 

that, whatever is the triggering cause, the pathological process passes through 

common pathways. Thus, the disease mechanisms extrapolated from studies on 

mutant SOD1 transgenic mice may be of interest also for the sporadic form of the 

disease. Among the recognized pathogenetic hypotheses, there are oxidative stress, 

excitotoxicity, protein aggregates, mitochondrial damage, cytoskeletal 

disorganization, trophic factor deficiency, neuroinflammation and the detrimental 

actions of non neuronal cells. 

 

Oxidative stress 

Despite intense experimental efforts, it is still unclear as to how mtSOD1 can cause 

ALS. As described in the genetics section, SOD1 is an antioxidant enzyme whose 

toxicity seems to be due to the gain of a deleterious function.  

On these bases, it was first hypothesized that the mutant protein could display 

anomalous activity, namely handling aberrant substrate, such as hydrogen peroxide 

(Wiedau-Pazos et al., 1996), the normal end-product of its catalytic activity. In this 

study, it was proposed that, in vitro, H2O2 could be transformed by mtSOD1 into 

the highly reactive hydroxyl radical, triggering a peroxidation cascade. However, 

the evidence of this phenomenon in vivo was not exhaustive because signs of 

peroxidation were found in hSOD1-G93A mice (Andrus et al., 1998; Hall et al., 

1998a), but not in other models (Bruijn et al., 1997a). 

Another proposed substrate for mtSOD1 was peroxynitrite, which is the end-

product of the reaction between superoxide and nitric oxide (NO). Initially, it was 

suggested that the spontaneously formed peroxynitrite could be used by the mutant 

enzymes to cause protein nitration (Beckman et al., 1993). However, a more 

articulated hypothesis was later postulated, starting from the observation that some 

mtSOD1s bind zinc ions less efficiently (Crow et al., 1997) and that zinc depleted 

SOD1s induce NO-dependent cell death in cultured primary neurons (Estevez et al., 

1999). It was therefore proposed that zinc deficiency, in the presence of bound 

copper, facilitates the reversal of the usual reaction, namely the conversion of 

oxygen into superoxide (Estevez et al., 1999). It is to mention that also the 

peroxynitrite-hypothesis was weakened by in vivo studies, mainly because the 
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pharmacological reduction of NO levels pharmacologically (Upton-Rice et al., 

1999) or the disruption of the n-nos (Facchinetti et al., 1999) or i-nos genes (Son et 

al., 2001) did not delay disease onset or improve survival. 

All the issues addressing the oxidative stress hypothesis have in common the 

requirement for the catalytic activity of SOD1, which relies on the presence of the 

copper ion in the active site. Therefore, it was speculated that disrupting copper 

loading in vivo could improve the pathological phenotype. To address this issue, 

two transgenic mouse models were generated. The first one was based on a 

previous finding, namely the discovery that in yeast SOD1 requires a specific 

chaperone, the copper chaperone for SOD1 (CCS) (Culotta et al., 1997), to load 

copper. Transgenic mice devoid of CCS were therefore generated and cross-bred 

with different transgenic mouse models of ALS (Subramaniam et al., 2002). 

Unfortunately, disease onset and progression was not modified, even if copper 

loading into SOD1 motor neurons was greatly reduced. The other model consisted 

in transgenic mice harboring a mtSOD1 in which all the histidines necessary to 

coordinate copper were replaced (Wang et al., 2003), but also in this case, the 

animals displayed an ALS-like phenotype. 

A microarray study of motor neuronal cells expressing mutant SOD1 reported 

down-regulation of genes involved in the antioxidant response, including the 

transcription factor Nrf2 (nuclear erythroid 2-related factor 2), several members of 

the glutathione S-transferase family, and two peroxiredoxins (Kirby et al., 2005). 

Reduced Nrf2 messenger RNA (mRNA) and protein expression has more recently 

been reported in spinal cord neurons from ALS patients (Sarlette et al., 2008). 

Activation of Nrf2 leads to its translocation into the nucleus, where it interacts with 

the antioxidant-response element (ARE) to drive the expression of antioxidant 

enzymes (Nguyen et al., 2009); furthermore Nrf2 regulates also its own expression 

through an auto-regulatory loop (Kwak et al., 2002). Although it is currently 

unclear how Nrf2 expression comes to be down-regulated in ALS patients, it should 

be noted that cellular Nrf2 levels declined by over 50% in old rats (24 months) 

relative to young rats (3 months) (Suh et al., 2004). Given that increased age is one 

of the major known risk factors for developing ALS, it seems conceivable that the 

mechanism(s) involved in the age-related down-regulation of Nrf2 may also 
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contribute to the down-regulation observed in ALS patients. Down-regulation of 

Nrf2 expression in ALS may reduce the ability of the cells to remove ROS 

generated through normal cellular metabolism, resulting in a gradual increase in 

oxidative stress over time. 

 

Excitotoxicity 

Glutamate is the major excitatory amino-acid of the central nervous system (CNS). 

While normal glutamate levels mediate physiological neurotransmission, elevated 

concentrations trigger excitotoxicity, a form of neuronal cell death with its own 

features (reviewed in (Arundine and Tymianski, 2003)). In order to prevent this 

deleterious event, glutamate is normally cleared from the synaptic cleft by specific 

transporters, named EAAT1-5 (reviewed in (Danbolt, 2001)), expressed both on 

neurons and on the surrounding glia.  

Several findings suggest a role for excitotoxicity in the pathogenesis of ALS, since 

studies on patients showed increased glutamate levels in cerebrospinal fluid (CSF) 

(Fiszman et al., 2010). This extracellular accumulation of neurotransmitter was 

proposed to be due to a reduced uptake of the amino acid and, therefore, expression 

and activity levels of glutamate transporters were then investigated.  

Particular attention was focused on the astrocyte specific transporter EAAT2, which 

is responsible for about 90% of the extracellular glutamate removal (Miller et al., 

1996, Tanaka, 1997 #49). Its presence is necessary for neuronal survival, as 

reducing EAAT2 expression levels by antisense nucleotide was described to cause 

neuronal demise (Rothstein et al., 1996). Interestingly, the selective loss of EAAT2 

was reported in ALS patients (Rothstein et al., 1995) as well as in both transgenic 

mouse (Bendotti et al., 2001b; Bruijn et al., 1997b) or rat (Howland et al., 2002) 

models of the disease. Various mechanisms for EAAT2 loss have been proposed, 

from mRNA aberrant splicing (Lin et al., 1998), that was observed also in 

Alzheimer patients, to the recently proposed selective cleavage of this transporter 

by caspase-3 (Boston-Howes et al., 2006) and subsequent sumoylation of the 

EAAT2 fragment which accumulates into the nucleus of spinal cord astrocytes 

(Gibb et al., 2007). If this event is relevant to the pathogenetic cascade, increasing 

the expression levels of EAAT2 should improve the clinical course of the disease. 
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In keeping with this hypothesis, the overexpression of EAAT2 in hSOD1-G93A 

mice delayed the grip strength decline, even though paralysis onset and life span 

were not affected (Guo et al., 2003). Moreover, a wide screen of the US Food and 

Drug Administration (FDA)-approved drugs has been recently performed to 

identify clinically available molecules able to increase EAAT2 expression levels 

(Rothstein et al., 2005). Surprisingly, beta-lactam antibiotics have proven useful to 

reach this aim and their efficacy has been therefore tested in vivo. Ceftriaxone has 

been delivered to hSOD1-G93A transgenic mice and the treated mice displayed 

delayed paralysis onset and prolonged life-span, thus demonstrating that a 

pharmacological therapy based on increasing EAAT2 function may be 

neuroprotective (Rothstein et al., 2005). As antibiotics are clinically tested drugs, a 

clinical trial to evaluate the efficacy of ceftriaxone is currently ongoing.  

A decrease in the transporter expression level is not the only possible cause of its 

functional impairment: mutations or post-transcriptional modifications may also 

alter its properties. According to this hypothesis, a mutation in the EAAT2 gene, 

leading to reduced activity, was recently identified in a patient with sporadic ALS 

(Trotti et al., 2001). Moreover, EAAT2 was demonstrated to be very sensitive to the 

oxidative stress generated by two endogenous oxidants implicated in ALS 

pathogenesis: H2O2 (Volterra et al., 1994) and peroxynitrite (Trotti et al., 1996). 

Taken together, these findings provide evidence that the oxidative stress and the 

excitotoxic hypothesis are interrelated and may be considered as two aspects of a 

unique pathogenic pathway.  

It is well known that excitotoxicity can be triggered not only by increased 

extracellular glutamate concentrations, but also by alterations of the glutamate 

receptors that lead to an improved sensibility to the toxic action of the 

neurotransmitter. This could be the case of motor neurons in ALS. Indeed, these 

cells normally display a particular vulnerability to glutamate especially following 

the activation of AMPA receptors (Terro et al., 1998), a feature that may be further 

increased in ALS. In cell culture studies, mtSOD1 can increase glutamate toxicity 

acting by altering AMPA receptor subunit composition (Roy et al., 1998). 

Normally, AMPA receptors are Ca2+-impermeable, as they display the properly 

edited GluR2 subunit, but may become Ca2+-permeant upon defective editing of the 
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G/R site. Therefore the proper editing of GluR2 and the subunit composition are 

critic to prevent excessive Ca2+ intake and toxicity. In agreement with this proposal, 

samples from ALS patients displayed alteration in GluR2 editing especially in 

motor neurons (Kawahara et al., 2004; Kwak and Kawahara, 2005; Takuma et al., 

1999). Furthermore an increase in GluR3 AMPA subunit expression in animal 

models of ALS has been demonstrated (Spalloni et al., 2004; Sun et al., 2006) 

leading to a reduction of the ratio between GluR2 and GluR3 which is likely to be 

harmful to neurons. Consistently, administrating GluR3 antisense protein nucleic 

acid (Rembach et al., 2004) or overexpressing GluR2 (Tateno et al., 2004) 

prolonged mice survival. Conversely, mice lacking the GluR2 subunit showed a 

reduced survival (Van Damme et al., 2005).  

Finally, it is worth to cite that the only drug approved for ALS treatment is riluzole, 

which is an antiglutamatergic drug. This compound was able to prolong survival 

both in transgenic mice (Gurney et al., 1998) and in patients (Bensimon et al., 1994; 

Lacomblez et al., 1996; Miller et al., 1996). 

 

Protein aggregates 

The presence of abnormal protein aggregates is a common feature of different 

neurodegenerative disorders, namely prion diseases, Alzheimer’s disease, 

Parkinson’s disease, Huntington’s chorea and even ALS. Their significance is still 

debated, as they could be either detrimental or beneficial (Soto, 2003). In ALS, the 

presence of different intracellular cytoplasmic inclusions is a typical hallmark of 

dying motor neurons (reviewed in (Strong et al., 2005)). Interestingly, in transgenic 

animals, hSOD1 aggregates were detected in both motor neurons and astrocytes 

(Dal Canto and Gurney, 1995) (Bruijn et al., 1998; Dal Canto and Gurney, 1995; 

Furukawa and O'Halloran, 2006; Gurney, 1994; Miller et al., 2004; Pasinelli et al., 

2000). Furthermore, SOD1 aggregates were found also in ALS patients (Shibata et 

al., 1996; Shibata et al., 1994) that lack mutations in this enzyme (Forsberg et al., 

2010). Mutant hSOD1 aggregates have been found in the brain on both the matrix 

and the cytoplasmic face of mitochondria (Cleveland and Liu, 2000; Manfredi and 

Xu, 2005; Pasinelli et al., 2004; Vande Velde et al., 2008b; Vijayvergiya et al., 

2005). Since protein aggregates were detected before the onset of symptoms (Bruijn 
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et al., 1998) and selectively in ALS tissues (Durham et al., 1997), it is likely that 

protein misfolding could be part of mtSOD1 toxicity. Many hypotheses were 

formulated to explain this issue including the one suggesting that aggregates may 

sequester other proteins (Watanabe et al., 2001) or alter the proper function of 

cellular organelles, such as mitochondria (see below). Among the proteins detected 

in the aggregates, there were also ubiquitin and chaperone proteins. The former is 

normally responsible for proper intracellular proteolysis (Ciechanover, 2005) and 

its sequestration may lead to a reduced proteasome activity (Allen et al., 2003), 

which in turn alters the physiological protein turnover. The latter are a group of 

proteins that promote the correct folding of protein (Bukau et al., 2006). Some of 

them, the heat-shock protein 40 and 70 (HSP40 and HSP70), form insoluble 

aggregates with mtSOD1. Interestingly, reduction in the availability of HSP70 

seems to mediate part of the toxicity induced by mtSOD1, as overexpression of the 

chaperone protein can ameliorate neuronal sufferance (Bruening et al., 1999). 

Furthermore, hSOD1-G93A transgenic mice treated with arimoclamol, a HSP70 

inducer, displayed a prolonged life span (Kieran et al., 2004). 

A recent work by Poletti and colleagues demonstrated that HspB8 is overexpressed 

in hSOD1-G93A NSC34 cells and in motor neurons of hSOD1-G93A mice. Their 

findings indicate that HspB8 increases mutant SOD1 solubility and clearance by 

activating the autophagic removal of the misfolded mutant SOD1 in NSC-34 cells.  

 

Mitochondrial damage   

Since mitochondrial morphological abnormalities were initially described in 

proximal axons as well as in the ventral horns of sALS patients (Hirano et al., 

1984), several studies have been focused on this issue (reviewed in (Hervias et al., 

2006)). Data obtained from autoptic samples did not provide conclusive evidence 

whether such alterations are causative or mere by-products of the degenerative 

mechanism. Therefore, further investigations to solve this question were performed 

both in vitro and in transgenic mouse models of fALS. 

Mitochondrial depolarization, an indicator of respiratory chain dysfunction, and 

alterations in calcium homeostasis were observed in both neuroblastoma cells 
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transfected with the mtSOD1 (Carri et al., 1997) and primary neurons from hSOD1-

G93A mice (Menzies et al., 2002). 

Degenerating mitochondria were described in two different transgenic lines, namely 

those expressing either hSOD1-G93A (Dal Canto and Gurney, 1995) or hSOD1-

G37R (Wong et al., 1995). Moreover, in hSOD1-G93A mice, the number of 

vacuolated mitochondria increased dramatically at the onset of the disease, when 

neuronal loss was still limited, suggesting that mitochondrial alterations may be a 

triggering event in the pathogenesis of fALS (Kong and Xu, 1998). Ultrastructural 

studies showed that vacuoles may derive from expansion of the intermembrane 

space (Bendotti et al., 2001a), with subsequent collapse and degradation of the 

inner membrane (Higgins et al., 2003; Xu et al., 2004).  

Based on all these observations, the connection between mtSOD1 and degenerating 

mitochondria was investigated. Initially, the localization of both mutant and wild 

type SOD1 was determined in the mitochondria of mouse brain and spinal cord 

(Mattiazzi et al., 2002), particularly in motor neurons (Higgins et al., 2002; Jaarsma 

et al., 2001). Abnormal clustering of mitochondria was recently reported in motor 

axons in mutant SOD1 transgenic mice (Sotelo-Silveira et al., 2009). However, the 

fine ultrastructural SOD1 localization within the mitochondria is still debated and 

probably it may be affected by the techniques utilized in the experimental plan. 

Mattiazzi and colleagues first proposed that SOD1 concentrates in the 

intermembrane space of mitochondria (Mattiazzi et al., 2002), but other groups 

demonstrated the association of the mutant enzyme with the cytoplasmic face of the 

outer membrane. This may be mediated by the interaction with integral membrane 

components (Liu et al., 2004), such as the anti-apoptotic protein Bcl-2 (Pasinelli et 

al., 2004) or the cytoplasmic exposed face of voltage-dependent anion channel 1 

(VDAC1) (Israelson et al., 2010). Also Vande Velde and colleagues recently 

demonstrated a strong binding of misfolded mtSOD1 to the cytoplasmic face of 

mitochondria (Vande Velde et al., 2008a). 

Copper chaperone for SOD1 (CCS) is also partially localized in mitochondria 

(Sturtz et al., 2001) and assists in the entry and retention of SOD1 in mitochondria 

(Field et al., 2003). Increased localization of mutant SOD1 in mitochondria by CCS 

overexpression in the CCS/hSOD1-G93A double transgenic mice caused early 
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mitochondrial pathology and accelerated disease course (Son et al., 2007). The 

presence of SOD1 aggregates was detected also in the brain mitochondrial matrix 

(Vijayvergiya et al., 2005). Although mtSOD1 presence was demonstrated in other 

subcellular compartments in mice (Kikuchi et al., 2006), only the mitochondrial 

localization appeared to be sufficient to trigger cell death in neuroblastoma cells 

expressing mtSOD1 targeted to different organelles (Takeuchi et al., 2002). 

The mechanisms underlying these abnormalities are still object of intense studies, 

because an exhaustive demonstration of the cause-effect relationship between 

mtSOD1, mitochondrial dysfunction and neurotoxicity has not yet been provided. 

However, a recent finding seems to corroborate the hypothesis that the 

mitochondrial localization might mediate neurotoxicity. Indeed, it was 

demonstrated in cell culture that dorfin overexpression is useful to reverse mtSOD1 

toxicity (Niwa et al., 2002), by reducing its mitochondrial localization (Takeuchi et 

al., 2004). Dorfin is a RING finger-type E3 ubiquitin ligase and it is localized in 

inclusion bodies in both sALS and fALS. It seems that dorfin binds ubiquitin to 

mtSOD1, thereby enhancing its clearence (Niwa et al., 2002).  

Morphological abnormalities are not the only reported mitochondrial alterations, 

but also different functional impairments were described. The role of mitochondria 

within the cell is twofold: they provide energy with the mitochondrial electron 

transport chain and they simultaneously compartmentalize several molecules that 

may trigger apoptosis if released in the cytosol. As both of these functions seem to 

be affected in ALS, the former will be discussed below, whilst the latter in the next 

section. 

A reduction in enzymatic activity of the respiratory chain complexes (Jung et al., 

2002; Mattiazzi et al., 2002 2005 #76) and a decreased capacity to consume oxygen 

and to synthesize ATP (Mattiazzi et al., 2002) were first demonstrated. 

Interestingly, the bioenergetic failure was then correlated to a reduction in 

mitochondrial calcium loading capacity (Damiano et al., 2006), thereby providing a 

link between alterations of these organelles and excitotoxicity (see above). Some of 

these effects (Damiano et al., 2006; Kirkinezos et al., 2005) were detected before 

the clinical onset of the disease. Elevated calcium can induce reactive oxygen 

species and oxidative stress in primary motor neurons isolated from hSOD1-G93A 
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mice (Kruman et al., 1999). Alternatively, calcium-mediated glutamate 

excitotoxicity might contribute to the mutant SOD1 toxicity in motor neurons.  

Also the axonal transport of mitochondria is impaired in ALS; recent studies 

showed that both the anterograde and retrograde transport of mitochondria were 

altered by mtSOD1 in NSC-34 cells expressing mitochondria-targeted SOD1. In 

addition, mtSOD1 also caused mitochondrial fragmentation and impaired 

mitochondrial dynamics (Magrane et al., 2009; Magrane and Manfredi, 2009). 

The mechanisms by which mtSOD1 disrupts axonal transport of mitochondria are 

not completely understood but several possible scenarios can be hypothesized. 

MtSOD1 can cause a partial loss of mitochondrial membrane potential and thus can 

change axonal transport of mitochondria (Miller and Sheetz, 2004); the elevated 

local calcium concentration induced by decreased mitochondrial buffering 

capability can promote detachment of kinesin heavy chain from microtubule 

(Chang et al., 2006; Wang and Schwarz, 2009; Yi et al., 2004). Furthermore, the 

activated kinases can phosphorylate kinesin subunits and affect anterograde 

transport (De Vos et al., 2000; Morfini et al., 2007; Morfini et al., 2009; Pigino et 

al., 2009; Shibata et al., 2008). Alternatively, activated MAP kinase can also 

phosphorylate neurofilaments and lead to their accumulation in axons (Ackerley et 

al., 2004; Tortarolo et al., 2003). Finally the aberrant interaction between mtSOD1 

and the dineyn-dynactin complex could also disrupt retrograde transport of 

mitochondria (Strom et al., 2008; Zhang et al., 2007). The axonal tranport of 

mitochondria was shown to be impaired in either the anterograde direction (De Vos 

et al., 2007) or in both anterograde and retrograde directions (Magrane et al., 2009). 

Therapeutics targeting mitochondrial functions were delivered to SOD1 transgenic 

mice. In particular, creatine, which improves the metabolic functions of the 

mitochondria, ameliorated the pathological phenotype, increasing the motor 

function (Klivenyi et al., 1999). Unfortunately, different clinical trials (Drory and 

Gross, 2002; Groeneveld et al., 2003; Shefner et al., 2004) failed to demonstrate 

any therapeutic effect of this drug on clinical course of human cases. 
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Cytoskeletal disorganization 

The most abundant structural proteins in several types of motor neurons are 

neurofilaments, which are neuron-specific intermediate filaments appointed to the 

maintenance of the cell shape and axon diameter. The individual proteins are 

classified on the basis of their molecular mass into high- (NF-H), medium- (NF-M) 

and low- (NF-L) molecular weight neurofilaments. These subunits are assembled in 

the cell body and then transported down the axon by slow axonal transport with 

extensive phosphorylation during movement (Strong et al., 2005). 

Several findings led to hypothesis that damage to neurofilaments might be involved 

in the pathogenesis of ALS. First, it was observed that neuronal loss affects 

especially the largest caliber and neurofilament-rich motor neurons, in both patients 

(Kawamura et al., 1981) and in transgenic mice (Bruijn et al., 1997b). Moreover, 

neurofilament accumulation in motor neuronal cell body is a hallmark of ALS 

pathology (Hirano et al., 1984). Finally, mutations in NF-H gene was recognized in 

both sALS and fALS patients (Al-Chalabi et al., 1999).  

To further investigate the role of neurofilaments in the degenerative process, several 

transgenic mice harboring alterations in the filament subunits (reviewed in (Strong 

et al., 2005)) were generated. In some of these models, neurofilament 

overexpression was sufficient to cause axonopathy and selective motor neurons 

degeneration. Therefore, it was proposed that neurofilament subunit deletion in 

ALS models transgenic mice should be neuroprotective. According to this, 

eliminating NF-L in SOD1 transgenic mice significantly extended their lifespan 

(Williamson et al., 1998). Surprisingly, a positive effect on survival was achieved 

also by overexpressing NF-L and NF-H (Kong and Xu, 2000) or NF-H alone 

(Couillard-Despres et al., 1998). This apparent contradiction was explained by 

proponing a different role for the diverse subunits. NF-H was considered important 

to buffer toxic events in the perykarya and therefore its increase could afford further 

protection. On the contrary, NF-L slowed the slow axonal transport that is affected 

early in ALS (Williamson and Cleveland, 1999) and, consequently, its reduction 

may counteract this impairment. 

Another intermediate filament that seems to be involved in ALS pathogenesis is 

peripherin, since it was detected in neurofilament aggregates in motor neurons of 
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ALS patients (Corbo and Hays, 1992). This protein is encoded by a single gene and 

possesses three splice variants, named on the basis of their molecular weight as 

peripherin 56-58-61. Both peripherin 58 overexpression and peripherin 61 

expression seem to be toxic to motor neurons (Robertson et al., 2003). 

In a recent study, a novel human peripherin transcript, resulting in a truncated 

peripherin (Per28), was found upregulated in a case of human ALS, and an 

antibody specific for Per28 stained the filamentous inclusions (Xiao et al., 2008). 

These studies suggest that missplicing of peripherin could lead to disease. 

Additional reports have also implicated mutations in peripherin with ALS (Gros-

Louis et al., 2004; Leung et al., 2004). Several transgenic mice carrying alteration 

in peripherin gene were developed (reviewed in (Strong et al., 2005)) and displayed 

motor impairments. However, crossbreeding these lines with ALS models did not 

affect the course of the disease (Lariviere et al., 2003), suggesting that their actual 

role in ALS pathogenesis deserves further investigations. 

 

Trophic factors deficiency 

Trophic factors, sometimes referred to as neurotrophins, are a family of molecules 

that encourage the survival of the nervous tissue. As certain neuronal populations 

are strictly dependent on trophic factors supply for their survival, it was easily 

hypothesized that motor neurons demise in ALS might be due to their deficiency 

and several of them were investigated. 

Initial attention was focused on ciliary neurotrophic factor (CNTF), as autoptic 

samples from ALS patients displayed a reduced level of this protein (Anand et al., 

1995). Moreover, a mutation in the CNTF gene mutation has been related to a faster 

disease progression in a family carrying also a mutation in the SOD1 gene (Giess et 

al., 2002). Despite these findings indicating an involvement of CNTF in ALS 

pathogenesis, other observations did not corroborate this hypothesis. In particular, 

lack of CNTF gene neither cause motor neuron disease in patients (Takahashi et al., 

1994), nor modifies the clinical course of sALS or fALS carrying the SOD1-D90A 

mutation (Al-Chalabi et al., 2003). 

More attention was given to other trophic factors, such as the glial cell line-derived 

neurotrophic factor (GDNF) and the insulin-like growth factor-1 (IGF-1), as both 
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of them support motor neurons in vivo and in vitro (Elliott and Snider, 1996 1996 

#253), perhaps activating different cell survival pathways (Bilak et al., 2001). On 

the basis of these considerations, these factors were delivered to transgenic mouse 

models of ALS in order to test their capability to slow down disease progression. 

Interestingly, hSOD1-G93A mice, which were injected with an adeno-associated 

virus (AAV) expressing IGF-1 (Kaspar et al., 2003), displayed a marked increase in 

their lifespan, even if the treatment was started after the onset of the disease. On the 

contrary, GDNF had only moderate effect. This discrepancy raised questions about 

the mechanism through which IGF-1 might exert its benefic effect and it was 

postulated that the real targets might not be motor neurons, but muscle fibers, as 

demonstrated by the neuroprotective effect of a non-releasable form of IGF-1 

injected directly into skeletal muscle (Dobrowolny et al., 2005). 

Surprisingly, another growth factor seems to be involved in motor neuron 

maintenance, namely the vascular endothelial cell growth factor (VEGF). 

Particular attention was focused on this protein as transgenic mice harboring a 

mutation in the hypoxia-responding element of the VEGF gene unexpectedly 

developed a progressive motor impairment (Oosthuyse et al., 2001). Moreover, 

these animals displayed all the hallmarks of ALS pathology, namely neurofilament 

accumulation in motor neurons, axonal degeneration and progressive muscle 

atrophy (Oosthuyse et al., 2001). Furthermore reduced levels of VEGF have been 

reported in the spinal cord of ALS patients (Brockington et al., 2006). This finding 

led to perform a clinical study to determine whether mutation in VEGF gene may be 

correlated to human cases of ALS. In the European population, sALS was 

associated with three polymorphisms in the promoter region of the gene, leading to 

reduced circulating levels of the protein. However, it is worth mentioning that none 

of these alterations was localized in the hypoxia responding element (Lambrechts et 

al., 2003). Therefore, VEGF may be only a disease modifier, whose effects on ALS 

pathogenesis are strictly dependent on other unknown genetical, enviromental or 

lifestyle factors, as the observed association does not exist in other groups, such as 

an English subpopulation (Lambrechts et al., 2003) or the North Americans (Chen 

et al., 2006a). Nevertheless, the role of VEGF as a neuroprotective tool was 

extensively investigated. Initial in vitro studies demonstrated that this trophic factor 
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is necessary for survival of motor neurons (Van Den Bosch et al., 2004). hSOD1-

G93A mice crossbred with transgenic mice expressing reduced levels of VEGF 

died erlier due to more severe motor neuron degeneration (Lambrechts et al., 2003). 

Conversely hSOD1-G93A crossbred with mice overexpressing VEGF in neurons 

show delayed motor neuron loss, delayed motor impairment, and prolonged 

survival compared with SOD1-G93A single transgenics (Wang et al., 2007). 

hSOD1-G93A transgenic mice injected with a lentivirus encoding VEGF after the 

onset of symptoms showed delayed onset of paralysis, slower disease progression 

and increased lifespan (Azzouz et al., 2004).  

 

Neuroinflammation  

Neuroinflammation is a complex phenomenon characterized by the production of 

inflammatory mediators and by the activation of glial cells (reviewed in (McGeer 

and McGeer, 1995)), namely astrocytes and microglia, which undergo a 

morphological switch in response to CNS injuries. Though it is a shared feature of 

different neurological disorders, such as Alzheimer disease or Parkinson disease, it 

is still an incompletely understood manifestation and it is still debated whether it is 

beneficial or detrimental to the pathological process (Monk and Shaw, 2006).  

Different groups detected increased levels of various inflammatory biochemical 

mediators, namely the inducible enzyme cycloxygenase 2 (COX2) or some 

cytokines, such as interleukin-1β or TNFα in ALS patients as well as in hSOD1-

G93A transgenic mice (Alexianu et al., 2001; Elliott, 2001; Hensley et al., 2002; 

Yoshihara et al., 2002). Interestingly, in this mouse model, cytokine raise was 

reported at a presymptomatic age (Hensley et al., 2002). 

As antiinflammatory compounds are among the most utilized drugs worldwide, 

some of these molecules were delivered to transgenic mice to test their capability to 

slow disease progression. In particular, a COX2 inhibitor, celecoxib, was orally 

administrated to hSOD1-G93A mice, thus obtaining a significant survival 

prolongation (Drachman et al., 2002). Unfortunately, despite this promising result 

in preclinical models, a recent clinical trial failed to demonstrate analogous 

usefulness to treat the human disease (Cudkowicz et al., 2006).  
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As previously mentioned, reactive gliosis is a typical ALS hallmark in both human 

cases (Kawamata et al., 1992) and transgenic animals (Bruijn et al., 1997b; Gurney 

et al., 1994; Wong et al., 1995). Furthermore, in hSOD1-G93A mice, microgliosis 

preceeded the onset of symptoms and progressively worsened in parallel to the 

development of motor function impairment (Alexianu et al., 2001; Hall et al., 

1998b). This last observation gave rise to the possibility that other cell types besides 

motor neurons might be involved in ALS pathogenesis, a hypothesis that will be 

further discussed in the following paragraph. 

 

Detrimental actions of non-neuronal cells 

In the last few years, the contribution of non-neuronal cells to ALS pathogenesis 

has been first recognized, so that ALS is currently considered a non-cell 

autonomous disease. The exact contribution of each cellular population is however 

unidentified, although a potential pathogenetic role for both astrocytes (Barbeito et 

al., 2004) and microglia (Sargsyan et al., 2005) was postulated.  

Physiologically, astrocytes exert several functions ranging from providing trophic 

and metabolic support to neurons, to modulating synaptic activity (reviewed in 

(Volterra and Meldolesi, 2005)). The hypothesis of astrocyte involvement in ALS 

pathogenesis is supported by several observations. As largely discussed in the 

excitotoxicity section, astrocytes regulate extracellular levels of glutamate through 

the action of their specific transporter EAAT2/GLT1, which is down regulated in 

ALS (see above for details). Moreover, mtSOD1 seems to induce directly cell 

damage in astrocytes, as observed in hSOD1-G85R transgenic mice, who display 

ubiquitin-positive mtSOD1 inclusions in these cells earlier than in neurons (Bruijn 

et al., 1997b). 

To establish which is the actual cellular target of mtSOD1 toxicity, different 

transgenic mice lines were generated that express the pathological protein 

selectively in specific cellular populations of the CNS. Astrocyte-specific (Gong et 

al., 2000) mtSOD1 expression was unable to induce the pathological phenotype 

while neuronal-specific mtSOD1 expression was either not pathological 

(Pramatarova et al., 2001) or sufficient to induce the disease (Jaarsma et al., 2008). 

Furthermore, increasing the expression of mtSOD1 selectively in adult neurons did 
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not fasten the course of the disease in hSOD1-G93A mice (Lino et al., 2002). To 

investigate more accurately the contribution of different cell populations to ALS 

pathogenesis, an innovative experimental model was generated and characterized, 

namely chimeric mice harboring a mixture of normal cells and human mtSOD1 

expressing cells (Clement et al., 2003). These mice showed an increased lifespan 

depending on the percentage of wild type cells they possessed. Moreover, mtSOD1-

expressing motor neurons were rescued in the presence of a high percentage of non-

transgenic glial cells. Conversely, signs of cell sufferance in adjacent wild type 

motor neurons accompanied the presence of transgenic non-neuronal cells (Clement 

et al., 2003).  

Taken together, all these observations support the view that mtSOD1 toxicity 

implies the contribution of different cell types in ALS, although they do not provide 

detailed mechanistic insights, which were explored with in vitro studies. The first 

question was to determine if mtSOD1 might induce in non-neuronal cells sufficient 

alterations to trigger motor neuron sufferance. Initially, it was demonstrated that 

mtSOD1-expressing neurons might activate glial cells (Cassina et al., 2005; Ferri et 

al., 2004; Urushitani et al., 2006), which in turn may trigger motor neuron demise 

(Cassina et al., 2002; Pehar et al., 2004). In particular, activated microglia cells 

seems to be particularly detrimental to motor neurons, as they may induce neuronal 

demise through neurite beading by inhibition of mitochondrial respiration and 

axonal fast transport (Takeuchi et al., 2005), well described features in ALS 

histopathology. 

To investigate more sharply the contribution of microglia in vivo, transgenic mice 

carrying a deletable mtSOD1 gene were generated (Boillee et al., 2006). In 

particular, animals harboring the hSOD1-G37R sequence flanked by a pair LoxP 

sequences (LoxSOD1-G37R), which allowed recognition and regulated deletion by 

the Cre recombinase, were produced. These mice, who developed fatal progressive 

ALS-like phenotype, were then cross-breeded with mice expressing Cre 

recombinase under the control of either a neuron- or microglial-specific promoter, 

in order to shut down the expression of the toxic protein selectively in these cell 

populations. The effects on the pathological course resulted different. In particular, 

reduced mtSOD1 levels in motor neurons delayed disease onset without affecting 
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disease progression at later stages, whilst diminishing the mutant SOD1 expression 

in microglia prolonged survival by slowing the rate of motor neurons impairment 

(Boillee et al., 2006). The therapeutic utility of reducing microglial activation was 

also tested with a pharmacological approach. In particular, transgenic mice were 

treated with the antibiotic minocycline (Kriz et al., 2002; Van Den Bosch et al., 

2002; Zhu et al., 2002), a tetracycline derivative able to switch off microglial 

activation (Yrjanheikki et al., 1999). Clinical trials to validate the therapeutic 

efficacy of this molecule are currently underway. Taken together with the studies 

presented in the previous section, these results suggest that microglia and the 

inflammatory process may influence the course of the disease, rather than being a 

cause (McGeer and McGeer, 2002; Monk and Shaw, 2006). In keeping with this 

point of view, transgenic mice harboring the hSOD1-G37R gene under the control 

of the prion protein promoter (PrP:hSOD1-G37R) were generated (Wang et al., 

2005). The use of this specific promoter drives high expression levels of mtSOD1 

in neurons, astrocytes and muscles, but not in microglia or in the macrophage 

lineage. As these mice developed a pathological phenotype, it is possible to 

hypothesize that the expression of mtSOD1 in all the elements of the neuromuscular 

unit is sufficient to cause motor neuron disease (Wang et al., 2005).  

Interestingly Yamanaka and colleagues demonstrated that diminishing the 

expression of hSOD1-G37R by a CRE-lox system did not affect the onset of the 

pathology but delayed microglial activation and slowed late disease progression 

indicating that mutant astrocytes are possible pharmacological targets to counteract 

the process of non–cell autonomous killing of motor neurons in ALS (Yamanaka et 

al., 2008). Conversely, another recent study demonstated astrocyte mtSOD1 loss in 

G85R mice delayed disease onset and prolonged the early phase of disease 

progression, without affecting the late phase, confirming SOD1 mutation-specific 

effects on ALS pathogenesis (Wang et al., 2010). 

 

Mechanisms of cell death in ALS 

The main pathological hallmark in ALS is motor neurons degeneration, presumably 

occurring through the aberrant activation of programmed cell death pathways. The 

explanation of the molecular steps leading to neuronal death may have important 
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therapeutic implications as this may uncover specific targets to interrupt the 

harmful cascade. In the following paragraphs, the main hypothesis about this topic 

will be discussed. 

 

Apoptosis 

Apoptosis is more often utilized as a synonymous of programmed cell death, given 

that one of its main characteristics is to be a highly regulated mechanism, though 

the meanings of these terms are not identical, Apoptosis is a common phenomenon 

induced either by specific insults mediated through so-called "death receptors" 

(external pathway) or by non-specific insults leading mitochondrial alterations and 

release of detrimental molecules, such as cyotchrome c (internal pathway). Both 

these pathways converge on the executioner phase of the process, which is driven 

by proteolitic enzymes called “caspases”. 

An amount of biochemical and functional evidence of activation of the apoptotic 

pathways were provided in ALS (Przedborski, 2003), since the initial observation 

that the presence of mutations switches SOD1 function from an anti- to a pro-

apoptotic role (Rabizadeh et al., 1995). However, as dying motor neurons do not 

fulfil the morphology of classic apoptosis, it is still controversial whether or not the 

identified mechanisms determine neurodegeneration (Guegan and Przedborski, 

2003). 

The Bcl-2 family of proteins plays a fundamental role in regulating apoptosis, as the 

balance between the pro- and the anti-apoptotic members determines the fate of the 

cell. Therefore, their possible involvement in ALS was explored. Initially, the 

protective action of the anti-apoptotic human protein Bcl-2 on motor neurons was 

tested in hSOD1-G93A mice overexpressing Bcl2 selectively in neurons (Kostic et 

al., 1997). Bcl2 overexpression lead to a delay in the onset of motor impairment and 

an increased lifespan (Kostic et al., 1997; Vukosavic et al., 2000) so this 

encouraging result stimulated a more accurate analysis of the different proteins of 

the Bcl-2 family and led to the observations that the expression of the antiapoptotic 

protein Bcl-2 was reduced during disease, whilst the pro-apoptotic Bax was 

upregulated (Vukosavic et al., 1999) and translocates from the cytosol to the 

mitochondria (Guegan et al., 2001). The consequence of these events is likely the 
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activation of the intrinsic apoptotic pathway, as cytochrome c release from 

mitochondria and caspase-9 activation was detected in parallel with the 

neurodegenerative process (Guegan et al., 2001).  

Recently, efforts have been performed to understand the molecular link between 

mtSOD1 and apoptosis. A great advance in this field was produced by the 

demonstration that mtSOD1 interacts with Bcl-2 at the mitochondrial surface 

(Pasinelli et al., 2004): this interaction,, as it was more recently demonstrated by the 

same authors, converts Bcl2 into a toxic protein by uncovering its pro-apoptotic 

BH3 domain (Pedrini et al., 2010).  

Taken together, these observations strongly argue in favor of the involvement of the 

intrinsic apoptotic pathway in ALS, but different studies provided evidence also for 

the activation of the extrinsic pathway. In particular, in vitro experiments 

demonstrated that motor neurons are sensitive to the toxicity of Fas, a death domain 

containing receptor (Raoul et al., 2002) and transgenic mice expressing different 

mtSOD1 displayed a chronic activation of this pathway (Ackerley et al., 2004; 

Tortarolo et al., 2003; Wengenack et al., 2004) and an increased vulnerability to it 

(Raoul et al., 2002). As previously mentioned, both the intrinsic and the extrinsic 

apoptotic pathway converge on the activation of the caspases. In ALS mouse 

models, the mRNA of some of these enzymes, namely caspase-1 (Guegan et al., 

2002; Li et al., 2000; Pasinelli et al., 2000; Vukosavic et al., 2000), caspase-8 

(Guegan et al., 2002), caspase –9 (Guegan et al., 2001) and caspase-12 (Wootz et 

al., 2004) were found upregulated (Hensley et al., 2002) and activated. Subsequent 

activation of effector caspases like caspase -3 (Vukosavic et al., 2000) and caspase-

7 (Guegan et al., 2001) was detected in the spinal cords motor neurons of hSOD1-

G93A mice. Furthermore, caspase-1 and –3 activation was revealed also in glial cell 

(Pasinelli et al., 2000), thereby suggesting that motor neurons degeneration might 

not be the only cell demise involved in ALS (Rossi et al., 2008).  

As caspase activity implies so harmful consequences, the cell has to tightly control 

this event, regulating not only their activation, but also their functionality. In 

particular, different proteins are deputed to counteract their action, namely the 

Inhibitor of Apoptosis Proteins (IAPs). In ALS, evidence of disruption at this level 

of control was reported, especially regarding the X-linked inhibitor of the apoptosis 
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protein (XIAP) (Guegan et al., 2001 2002 #256, Wootz, 2006 #164). Consistently, 

upregulating XIAP in vitro (Ishigaki et al., 2002) and in vivo (Wootz et al., 2006) 

protects neurons from mtSOD1 toxicity. 

These studies provided extensive evidence of the presence of apoptotic markers in 

ALS and therefore therapies targeted to different molecular steps of these pathways 

were subsequently delivered to transgenic mice to demonstrate whether they 

actually contribute to the pathogenesis of the disease. 

Initially, hSOD1-G93A mice were intracerebroventriculary delivered with zVAD-

fmk, a broad-spectrum inhibitor of caspases and a delay in the onset and mortality 

was observed (Li et al., 2000). Differently, intraspinal delivery of Bcl-2 through a 

recombinant adeno associated virus, failed to increase lifespan (Azzouz et al., 

2000), despite the fact that genetic neuronal Bcl-2 overexpression positively 

influenced the course of the disease in transgenic mice (Kostic et al., 1997) and 

rasagiline, which induces Bcl-2 expression, also prolonged hSOD1-G93A mouse 

lifespan (Waibel et al., 2004). Consistently, the role of the mitochondrial pathway 

seems to be important in ALS pathogenesis as minocycline, which inhibits 

cytochrome c release, delayed the onset of symptoms and mortality in transgenic 

mice (Zhu et al., 2002). Unfortunately a phase III clinical trial revealed harmful 

effects of minocycline on ALS patients (Gordon et al., 2007) 

 

ALS as a distal axonopathy: the “dying back” hypothesis 

Despite the general belief that ALS pathology is a consequence of motor neuron 

loss, some observations from both transgenic mouse models and human autoptic 

samples do not perfectly agree with this conviction. Neuronal loss in hSOD1-G93A 

transgenic mice was normally reported at 80-90 days (Chiu et al., 1995). However, 

accurate analysis revealed that these animals displayed electromyographical 

alterations at 40 days of age (Kennel et al., 1996) and that denervation of motor 

neurons from muscles occurs in early stages of the disease pathogenesis prior to 

clinical symptoms in mtSOD1 animals (Gordon et al., 2009; Lemmens et al., 2007; 

Park and Vincent, 2008) with selective loss of fast-firing neuromuscular synapses at 

50 (Frey et al., 2000; Pun et al., 2006). Evidence of neuromuscular junction 

impairment therefore appears long before motor neurons loss. Recently, a 
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systematic count of both hindlimb muscle end-plates and motor neurons were 

performed in the same animal model (Fischer et al., 2004) and a temporal sequence 

of detrimental events was identified that begins with denervation, followed by 

axonal loss and finally neuronal cell body degeneration. In the same study, autoptic 

specimens from a patient died for other causes pretty soon after the ALS diagnosis 

were analyzed. In this case, muscle fibers showed signs of denervation and 

reinnervation, with little axonal degeneration at the ventral roots level and no 

evidences of motor neurons sufferance (Fischer et al., 2004). This pattern suggests 

that ALS might be a “dying back” neuropathy where distal axonal degeneration 

occurs early during the disease, before neuronal loss and onset of symptoms.  

In agreement with these findings, early selective degeneration of fast fatigable 

motor neurons axons seems to be a pathological event shared by different animal 

models, namely hSOD1-G93A and hSOD1-G85R transgenic mice. Furthermore, 

the process was partially reverted by the local application of CNTF, which is an 

axon-protective agent (Pun et al., 2006). 

The “dying back” hypothesis has been recently strengthen by the demonstration that 

motor neuron death is not required for disease (Gould et al., 2006). In this study, 

hSOD1-G93A mice were cross-breeded with a transgenic line genetically devoid of 

Bax, one of the most important pro-apoptotic proteins. The progeny displayed a 

delayed onset of the symptoms and a prolonged lifespan. Interestingly, this positive 

effect was a consequence of the delay in neuromuscular denervation, rather than of 

motor neuron rescue from mtSOD1 toxicity. Indeed, these animals never showed a 

reduction of motor neurons number, even at the end stage of the disease (Gould et 

al., 2006).  

 

Other mechanisms of cell death: paraptosis and autophagy 

The morphological incongruences between the classic apoptosis output and the 

appearance of dying motor neurons raised further proposals on the mechanisms of 

cell death in ALS.  

Paraptosis is a programmed cell death characterized by cytoplasmic vacuolization, 

late mitochondrial swelling, gene expression- and protein synthesis-dependency 

(Sperandio et al., 2000). Since these features were described in hSOD1-G93A 
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transgenic mice (Dal Canto and Gurney, 1994), an involvement of this pathway was 

postulated. Nevertheless, this supposition has never been confirmed by further 

studies. 

Autophagy is a Greek term that means “eat itself” and in biology indicates a 

lysosomal pathway for degrading organelles and long-lived proteins, characterized 

by the formation of intracellular vacuoles called “autophagosomes”. The 

significance of this mechanism is presently uncertain, as autophagy may be indeed 

a compensatory mechanism to counteract a nutritional starvation. On the contrary, 

excessive or aberrant activation of this pathway may lead to self-digestion of vital 

components with subsequent cell death. Evidence of a role for this pathway in ALS 

is only clues and relies on the presence of cytoplasmic vacuolization and 

disorganization of intracellular organelles in ALS transgenic mice (Dal Canto and 

Gurney, 1995). Recently, an in vitro study demonstrated that motor neurons 

exposed to chronic excitotoxicity switch their demise pathway from programmed 

cell death into an autophagic mechanism (Tarabal et al., 2005). 

 

Therapy 

 

Conventional 

Despite intense research, ALS is still an incurable disease. Up to now patient care is 

mainly limited to improve the quality of life through symptomatic therapy and 

orthotic devices. The sole approved drug to counteract neurodegeneration is 

riluzole, which has only a modest effect on survival (Bensimon et al., 1994; 

Lacomblez et al., 1996; Miller et al., 1996). 

As mentioned in the previous sections, basic research studies identified several 

drugs targeting different molecular pathways and some of them (listed in (Carri et 

al., 2006)) were successfully tested in animal models. Unfortunately, none of the 

investigated molecules was able to modify the clinical outcome of the human 

disease (reviewed in (Gordon, 2005) or 

http://www.als.net/OurResearch/ClinicalTrials.aspx). This strident contrast raises 

questions about the usefulness of transgenic models to test therapeutics, although 

the discrepancy in the outcome might be explained by different pharmacokinetics 
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properties of the drugs in humans and in mice, or to different routes of delivery. 

Moreover, in transgenic mice, the timing of drug intervention is often before the 

onset of the disease whereas ALS patients receive drug only after the diagnosis, 

which is drawn up sometimes late after symptom onset. Finally, transgenic mice are 

models of fALS and, therefore, drugs targeting SOD1 toxicity might not be useful 

to treat sALS, which is the majority of the occurrences (Rothstein, 2003). 

A list of the ongoing trials is available online at the web sites http://clinicaltrials.gov or 

http://www.als.net/OurResearch/ClinicalTrials.aspx. 

 

Gene therapy 

One of the most promising therapeutic tools is represented by the use of some 

trophic factors, such as IGF-1 or VEGF (see above), although early trials have been 

controversial (Gordon, 2005), likely because of the poor delivery of these drugs to 

motor neurons. In the next years, it will be hopefully possible to use recombinant 

viruses to deliver the active molecule to the active site, as validated in animal 

models (Azzouz et al., 2004; Kaspar et al., 2003; Storkebaum et al., 2005). 

 

Cell therapy  

The aim of the abovementioned therapies is to stop the progression of the disease. 

The full functional recovery, indeed, is impossible after neuronal loss, since these 

cells are post-mitotic. A new hope to regenerate damaged neural tissues comes from 

the discovery of stem cells that are “self-renewing progenitor cells that can generate 

one or more specialized cell type”. The utility of these cells is theorically threefold: 

(a) they might indeed regenerate motor neurons; (b) they might regenerate non-

neuronal cells, considering that ALS is a non-cell autonomous disease (see above); 

(c) they might be used as bioreactors to vehiculate an in situ synthesis of therapeutic 

molecules (Klein et al., 2005). Presently, only a few trials have been presented 

using autologous transplantation of blood (Janson et al., 2001) or marrow 

mesenchimal stem cells (Mazzini et al., 2003). These preliminary studies aimed at 

testing the safety of the method and evidence of a clinical improvement is still 

lacking.  
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Current evidence sustains an anti-inflammatory and neuroprotective role of 

Peroxisome Proliferator Activated Receptors (PPARs) agonists in many 

neurodegenerative diseases like Multiple Sclerosis, Parkinson’s disease, 

Alzheimer’s disease and Amyotrophic Lateral Sclerosis (Heneka et al., 2005; Kiaei 

et al., 2005; Natarajan and Bright, 2002; Niino et al., 2001; Schutz et al., 2005; 

Shimazu et al., 2005; Yan et al., 2003; Zhao et al., 2005). 

Particularly two independent groups recently demonstrated a neuroprotective 

acitvity of Pioglitazone in a mouse model of Amyotrophic Lateral Sclerosis (Kiaei 

et al., 2005; Schutz et al., 2005). These studies provided a strong evidence for a 

neuroprotective activity of Pioglitazone, a PPARγ agonist, in the hSOD1-G93A 

mice demonstrating that Pioglitazone administered before the onset of symptoms, 

improves the pathology outcome by extending the survival and delaying the onset, 

ameliorates the motor dysfunction, reduces the weight loss and attenuates the motor 

neuron death. Pioglitazone also reduces the microglial activation and the gliosis in 

the spinal cord, decreasing the production of proinflammatory mediators like iNOS, 

NF-kB and COX2. These studies suggest that Pioglitazone, which is currently used 

in the therapy of type II diabetes, could be a promising new drug for the treatment 

of ALS. 

 

The Peroxisome Proliferator Activated Receptors  
The Peroxisome Proliferator Activated Receptors (Berger et al., 2005) are members 

of the steroid/thyroid hormone nuclear receptor superfamily, belonging to the 

family of ligand dipendent transcription factors; they regulate different aspects of 

energy balance, lipid and lipoprotein metabolism and glucose homeostasis (Berger 

et al., 2005; Evans et al., 2004). The three different isoforms of PPARs which are 

known so far, α (NR1C1), β/δ (NR1C2) and γ (NR1C3), exhibit homology in their 

amino acid sequence and structure but differ in their ligand-binding domains, ligand 

specificity, tissue distribution and biological actions. The name “Peroxisome 

Proliferator Activated Receptors” is derived form the PPARα mediated peroxisome 

proliferation in rodent hepatocytes; PPARγ and PPARβ/δ activation does not elicit 

this response. PPARs are in an inactivated state bound to co-repressor proteins in 

the nucleus; upon binding to the ligand they heterodimerize with the retinoid X 
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receptors (RXRs) and form heterodimers that can regulate gene expression through 

different mechanisms, namely the ligand-dependent transactivation, the ligand-

indipendent repression and the ligand-dependent transrespression (Ricote and 

Glass, 2007) (Fig. 1). 

 
Fig. 1 Trancriptional activities of the Peroxisome Proliferator Activated receptors. PPARs can both 

activate and inhibit gene expression. (a) Ligand-dependent transactivation. PPARs activate 

transcription in a ligand-dependent manner by binding directly to specific PPAR-response elements 

(PPRE) in target genes as heterodimers with RXR. Binding of ligand leads to the recruitment of co-

activator complexes that modify chromatin structure and facilitate assembly of the general 

transcriptional machinery to the promoter. (b) Ligand-dependent transrepression. PPARs repress 

transcription in a ligand-dependent manner by antagonizing the actions of other transcription factors, 

such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). (c) Ligand-independent 

repression. PPARs bind to response elements in the absence of ligand and recruit co-repressor 

complexes that mediate active repression. This complex antagonizes the actions of co-activators and 

maintains genes in a repressed state in the absence of ligand. 

(Figure from Ricote M. and Glass C.K., Biochim. Biophys Acta. (2007) 1771(8):926-35.) 

 

PPARs activate transcription in a ligand-dependent manner by binding directly to 

specific PPAR-response elements (PPRE) in the promoter region of target genes as 

heterodimers with RXR. The binding of agonists leads to the recruitment of co-

activator complexes that modify chromatin structure and facilitate assembly of the 

general transcriptional machinery to the promoter. This activity enables PPARs to 

positively regulate gene networks involved in the control of lipid metabolism and 

glucose homeostasis in several tissues including adipose tissue, muscle and liver, 

ultimately influencing circulating lipid and glucose levels. In addition, PPARs also 

act directly to negatively regulate gene expression of proinflammatory genes in a 

ligand-dependent manner by antagonizing the activities of other transcription 
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factors, such as members of the nuclear factor-κB (NF-κB) and activator protein-1 

(AP-1) families (Devchand et al., 1996; Jiang et al., 1998; Lee et al., 2003; Marx et 

al., 1998; Ricote et al., 1998; Staels et al., 1998) (Fig. 1a). A major mechanism that 

underlies the ability of PPARs to interfere with the activities of these transcription 

factors has been termed transrepression and, unlike the transcriptional activity, it 

does not imply any interaction with the DNA (Fig. 1b). However despite the large 

amount of studies performed, the mechanisms whereby PPARs inhibit 

inflammatory gene expression are not completely understood. Recent studies using 

microarray analysis have shown that rosiglitazone inhibits only a subset of NF-κB 

target genes (Ogawa et al., 2005; Welch et al., 2003). This observation implies 

promoter-specificity in the mechanisms underlying transrepression. Many 

hypotheses have been suggested for the mechanisms of PPARs mediated 

transrepression, like the direct interaction of these receptors with other transcription 

factors, the regulation of Mitogen-activated protein kinase (MAPK) e c-Jun N-

terminal kinase (JNK) signalling pathways, the interaction with co-regulators and 

the co-repressor-dependent transrepression; the exact mechanism of PPARs 

mediated transrepression, however, has not still been clarified (Ricote and Glass, 

2007).  

PPARs can also suppress the transcription of a target gene through a ligand 

indipendent repression mechanism (Fig. 1c); in this case they recruit co-repressors 

that do not allow the binding of co-activators (Ricote and Glass, 2007).  

PPARs are composed by four domains with different functions: the DNA binding 

domain is highly conserved and is bound to the C-terminal region, which is 

responsible of the interaction with the ligand. The E/F domain is rather involved in 

the dimerization of PPARs with the RXRs and in the ligand-dependent 

transactivation. Finally the N-terminal domain is involved in the ligand-indipendent 

regulation of receptor activity (Kersten and Wahli, 2000); (Heneka et al., 2007). 

The interaction of agonists with their binding site determines a structural change 

which stabilizes the binding site of co-activators; the binding of antagonists, on the 

contrary, stabilizes a conformation promoting the binding of co-repressor 

complexes (Straus and Glass, 2007) (Yu and Reddy, 2007; Zoete et al., 2007). 
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It has been demonstrated that PPARs are sensors of different endogenous molecules 

(unsaturated fatty acids, eicosanoids and linoleic acid) produced by the metabolism 

of extracellular and intracellular fatty acids. It is difficult to establish which specific 

PPAR isoform is activated by these endogenous molecules in vivo, due to the low 

affinity of interaction and the low specificity of the ligands for the different 

isoforms. Furthermore, PPARs bind also to several synthetic compounds with an 

higher affinity and selectivity: among these, fibrates are PPARα agonists and are 

widely used in the treatment of hypertriglideridemia, while thiazolidinediones 

(TZD), like Rosiglitazone and Pioglitazone, are PPARγ ligands and are used in type 

II diabetes therapy (Fruchart et al., 1999; Ricote and Glass, 2007; Willson et al., 

1996). 

PPARα, β/δ and γ show distinct tissue distribution which mirrors their biological 

functions (Desvergne and Wahli, 1999; Heneka and Landreth, 2007; Willson et al., 

2001). Though their expression has been more deeply analyzed in humans 

compared to rodents, data suggest that PPARα is expressed mainly in tissues 

dedicated to fatty acids catabolism like liver, heart, kidney, large intestine and 

skeletal. PPARα indeed has the primary functions of regulating energy homeostasis, 

stimulating fatty acids and cholesterol catabolism, regulating the gluconeogenesis 

and reducing the plasma levels of triglycerides (Bright et al., 2008; Heneka and 

Landreth, 2007). PPARβ/δ is ubiquitously expressed (Escher and Wahli, 2000), it is 

activated by Very Low Density Lipoproteins (VLDL)-derived fatty acids and by 

eicosanoids (i.e. prostaglandin A1) and is involved in fatty acid oxidation in the 

muscle (Bright et al., 2008; Heneka and Landreth, 2007). PPARγ is abundantly 

expressed in the adipose tissue (white and brown) and, to a lesser extent, in the 

skeletal muscle, heart and liver, where it is activated by endogenous ligands like the 

15-deoxy prostaglandin J2 (15-d PGJ2) (Tontonoz and Spiegelman, 2008) (Heneka 

and Landreth, 2007). The primary activity of PPARγ is to stimulate the 

differentiation of adipocytes and to control the distribution of lipid metabolites in 

the tissues. Furthermore PPARγ agonists are able to reduce the plasma levels of 

glucose, probably due to the PPARγ mediated modulation of endocrine factors 

(Gervois et al., 2004; Tontonoz and Spiegelman, 2008). This property allowed the 
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development of PPARγ agonists for the therapy of type II diabetes (Gauglitz et al., 

2008; Kintscher and Goebel, 2009).  

 

Anti-inflammatory role of PPARs 

Besides the well studied activities of PPARs in metabolism and cell differentiation, 

many evidences suggest a possible role of these receptors in regulating the immune 

system. PPARs are indeed expressed in several immune cell types, including 

dendritic cells, macrophages and B and T lymphocytes. They are also present in 

epithelial cells where they play an essential role in the control of the immune 

response of mucous membranes. Worth to notice are the therapeutic effects 

demonstrated for some ligands of PPARα and PPARγ in many different models of 

inflammatory and autoimmune pathologies, namely Experimental Autoimmune 

Encephalitis (EAE) (Dunn et al., 2007), colitis (Cuzzocrea et al., 2004), allergic 

asthma (Woerly et al., 2003), edema and the carrageenan-induced pleuritis 

(Cuzzocrea et al., 2006; Straus and Glass, 2007). PPARβ/δ ligands have been less 

studied but they seem to be effective in EAE, too (Kielian and Drew, 2003). 

The molecular basis of these activities, need to be further investigated in the light of 

their possible use in therapy.  

It is well known that some ligand-dependent nuclear receptors, among these 

PPARs, can repress the expression of genes involved in the control of the 

inflammatory response through a ligand-dependent transrepression.  

PPARγ is able to negatively control the expression of the inducible nitroxide 

synthase (iNOS) induced by lipopolysaccharide (LPS) in macrophages interfering 

with the elimination of the corepressor-complex from the promoter (Pascual et al., 

2005). Furthermore, GW7845, a PPARγ ligand, represses the expression of genes 

coding for chemokines in LPS-stimulated macrophages (Ogawa et al., 2005).    

PPARα and PPARβ/δ have also been demonstrated to reduce inflammatory gene 

expression with a ligand-dependent molecular mechanism, but the molecular details 

have not yet been fully characterized (Straus and Glass, 2007). 

PPARγ is also expressed in dendritic cells where its activation inhibits the 

expression of membrane glycoproteins involved in promoting and maintaining 

inflammation (i.e. CD1a, CD40, CD83, CCR7), and of the costimulatory molecule 
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C80, of interleukin-12 (IL-12) and of other chemokines (Nencioni et al., 2002; 

Szatmari et al., 2006a; Szatmari et al., 2006b). Furthermore PPARγ seems to 

negatively regulate the immunogenicity of DC also in the absence of an exogenous 

ligand (Klotz et al., 2007). 

PPARα and PPARγ are espressed both in the T and B cells; the activation of T cells 

determines a reduction in the expression of PPARα and an increase in the 

expression of PPARγ (Cunard et al., 2002; Jones et al., 2002). 

Many studies demonstrated that PPARα agonists like fenofibrate and WY14643 are 

able to suppress the expression of Interferon γ (IFNγ) in T lymphocytes and the 

expression of interleukin-17 in activated splenocyte cultures (Cunard et al., 2002); 

the repression of IFNγ and IL-17 expression has never been observed in splenocyte 

cultures form PPARα -/- mice, thus it probably depends on PPARα (Lee et al., 

2007). 

A similar repressive activity of PPARγ agonists in human T cells and murine 

splenocytes has been observed (Cunard et al., 2002). 

Furthermore, PPARα is able to suppress the Tumor Necrosis Factor α (TNFα) 

induced expression of adhesion molecules in the vessels, suggesting a possible role 

in inhibiting the recruitment of leukocytes to the inflammation site (Marx et al., 

1999). 

In summary, PPAR agonists play a pivotal role in the inhibition of the recruitment 

of inflammatory cells.  

 

PPARs in the nervous system 

Studies performed on the nervous system of rats demonstrated that all of the three 

isoforms of PPARs are espressed during late embryogenesis, with the prevalence of 

PPARβ/δ. Nevertheless, while PPARβ/δ mantains high levels of expression also 

during the postnatal period, the amount of the isoforms α and γ decreases after birth 

(Braissant et al., 1996). 

The expression profile, which is isoform specific and highly regulated during 

development, suggests a possible role for PPARs in the CNS formation, even if this 

potential activity of PPARs has not been yet fully clarified.  
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The three isoforms of PPARs are all present in the brain and adult spinal cord. 

While PPARβ/δ is expressed in the neurons of different cerebral areas, PPARα and 

γ are localized in a lower number of regions. PPARs localization has been 

investigated also in non-neuronal cell cultures where PPARα is prevalently 

expressed in astrocytes, which present all the three isoforms in different amounts 

depending on the area and the age of the animal (Heneka and Landreth, 2007). 

PPARβ/δ is espressed also in immature oligodendrocytes where its activation 

promotes the differentiation, development and turn-over of myelin (Saluja et al., 

2001). PPARγ is the dominant isoform in microglia (Cullingford et al., 1998). 

The role of PPARs in the central nervous system is certainly inherent to lipid 

metabolism, even if this receptors are also implicated in cell migration and 

differentiation (Heneka et al., 2000; Inestrosa et al., 2005; Park et al., 2004b), in 

neuroinflammation and neurodegeneration (Heneka et al., 2000). 

 

Regulation of glial cell activation by PPARs and role in neurodegenerative 

diseases 

The CNS has always been considered an immune privileged site due to the capacity 

of the blood-brain barrier to prevent the immune cells from entrance and to protect 

the microenvironment from the changes in the blood levels of ions, amino acids, 

peptides and other substances. Nevertheless, resident glial cells like microglia and 

astrocytes are the effector of the innate immune system in the CNS and protect it 

from pathogens and injury. These cells readily activate to react to injury, modifying 

their morphology and their functions and proliferating. In particular microglia are 

normally quiescent but, when activated, can secrete pro-inflammatory cytokines, 

chemokines and oxygen reactive species, in addition to phagocyte pathogens and 

toxic debris. Astrocytes are involved in mantaining the extracellular environment 

optimal for neurons. Thus in physiogical conditions, they provide mechanic, trophic 

and metabolic support to neuronal cells. When challenged by toxic agents or 

pathogens, astrocyte, similarly to microglia, can become activated and produce 

nitric oxide and pro-inflammatory cytokines/chemokines. In such circumstances it 

has been hypothesized that glia remain cronically active and contribute to the 

neuronal damage typical of several CNS pathologies, including Multiple Sclerosis 
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(Smith et al., 2004; Sreedharan et al.), Alzheimer’s disease, Parkinson’s disease, 

Amyotrophic Lateral Sclerosis and ictus (Drew et al., 2006). 

Since the etiopathogenesis of most of these diseases is unknown, these pathologies 

represent an important challenge for the sanitary system due to the high social and 

economic expenses. The therapies available so far are most symptomatic and, 

therefore, the identification of new therapies is highly desirable.  

Recent evidence suggests that PPARs agonists could have a therapeutic potential in 

the treatment of these pathologies, thanks to their anti-inflammatory properties 

(McGeer and McGeer, 2004; Szekely et al., 2004; Wahner et al., 2007).  

All the three isoforms have been shown, indeed, to have an anti-inflammatory 

activity associated to the inhibition of glial activation.  

PPARα  

PPARα agonists have been demonstrated to reduce microglial and astrocyte 

activation in vitro. Gemfibrozil, a PPARα agonist, inhibits the induction by 

proinflammatory cytokines of NO and iNOS, NFkB and AP-1 in human astrocytes 

and murine primary astrocyte cultures (Pahan et al., 2002). Furthermore, 

gemfibrozil, when administrated with 9-cis-retinoic acid (RXR agonist), seems to 

inhibit the clinical symptoms of EAE in rodents (Lovett-Racke et al., 2004).  

Fenofibrate, in combination with 9-cis-retinoic acid, inhibits microglial production 

of NO, TNFα, IL-1β e IL-6 in an additive manner (Xu et al., 2005) and showed 

positive effects in EAE and ictus therapy (Deplanque et al., 2003; Lovett-Racke et 

al., 2004). 

PPARβ/δ 

Alhtough the activity of PPARβ/δ ligands has been less investigated compared to 

the other two isoforms, GW0742 (PPARβ/δ agonist) was reported to inhibit NO 

production in microglia and astrocyte primary cultures (Polak et al., 2005). This 

compound has been succesfully studied also on EAE animal models where it has 

been found to delay the progression of the pathology and to slightly improve the 

symptoms (Polak et al., 2005). 
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Several PPARβ/δ agonists have shown efficacy in the treatment of ictus, reducing 

the ischemic area and the oxidative stress produced in the CNS by the stroke 

(Arsenijevic et al., 2006). 

PPARγ 

Many PPARγ agonists show an inhibitory activity on glial production of pro-

inflammatory mediators. 15d-PGJ2, for instance, inhibits the production of NO, IL-

1β, and TNFα in murine microglial cultures (Koppal et al., 2000; Petrova et al., 

1999), but has also been shown to reduce the T cell proliferation and IFNγ, IL-10 

and IL-4 synthesis in EAE models (Diab et al., 2002; Niino et al., 2001). Many 

other studies on PPARγ ligands, like thiazolidinediones (Troglitazone, Ciglitazone, 

Pioglitazone) and PGA2, led to the conclusion that these molecules, similarly to 

15d-PGJ2, act both with a PPARγ-dependent mechanism and inhibiting the I-kB 

kinase activity, with subsequent reduction of NF-kB activity (Diab et al., 2002; Giri 

et al., 2004; Storer et al., 2005). These drugs, particularly Pioglitazone, have been 

succesfully studied on animal models of EAE, ictus, AD, PD and ALS and showed 

a notably ability to inhibit and control the inflammatory response, delaying the 

onset of the pathology and prolonging the survival of the animal models (Heneka et 

al., 2005; Kiaei et al., 2005; Natarajan and Bright, 2002; Niino et al., 2001; Schutz 

et al., 2005; Shimazu et al., 2005; Yan et al., 2003; Zhao et al., 2005).  

Many studies suggested that PPARγ agonists could positively influence EAE 

progression acting on the interaction between microglia and T cells and on T cells 

activation; the activity of these molecule seems to depend on the block of glial 

production of proinflammatory factors like NO, cytokines and chemokines (Diab et 

al., 2002; Kielian et al., 2004). 

Recently, the group of Bernardo reported a PPARγ-mediated inhibitory effect of 

HCT1026, a non-steroidal anti-inflammatory drug (NSAID) derived from 

flurbiprofen, on the activation of rat primary cultures of microglia (Bernardo et al., 

2005).  

Ibuprofen, another NSAID, seems to improve pathology symptoms in animal 

models of AD, reducing glial activation, amyloid deposition and neuritic dystrophy 

with a PPARγ-dependent mechanism (Lim and Dey, 2000).  
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Generally, the activity of PPARγ agonists consists not only in the inhibition of 

microglial activation with subsequent reduction of the production of pro-

inflammatory mediators, but also in the alteration of the expression of the same 

factors in astrocytes. Thus, it has been postulated that PPARγ agonists exert their 

neuroprotective activity by inhibiting the production of pro-inflammatory 

molecules, potentially neurotoxic, by monocytes and glial cells.  

Still, it is mentioned that PPARs, and particularly PPARγ, are espressed also in 

neurons and their activation could directly influence the transport and the 

transduction of these cells as well as their differentiation (Cimini et al., 2005; 

Inestrosa et al., 2005; Park et al., 2004b; Smith et al., 2004). Furthermore it has 

been demonstrated also a PPARγ-mediated neuroprotective effect, particularly in 

animal models of ischemia, through mechanisms that directly target neurons (Uryu 

et al., 2002; Zhao et al., 2006). Activators of PPARγ, administered in vivo before or 

after the onset of ischemia, reduce ischemic damage (Ou et al., 2006; Shimazu et 

al., 2005; Sundararajan and Landreth, 2004; Tureyen et al., 2007; Victor et al., 

2006). Recently Zhao and colleagues demonstrated that the expression of 

antioxidant genes catalase, SOD and GST and of genes that could improve neuronal 

resistance to ischemic and oxidative injury like LXRα and LPL, is reduced in 

neurons cultured from mice with selective neuronal PPARγ deficiency. Furthermore 

these mice showed significant increase in the infarct volume after cerebral ischemia 

(Zhao et al., 2009).  

Izawa and colleagues recently demonstrated that pioglitazone regulates the energy 

metabolism also in the brain enhancing the oxidative metabolism of glucose in 

neurons (Izawa et al., 2009). 

On these bases, it has been hypothesized that PPAR agonists could be able to exert 

a beneficial effect on the progression of chronic neurodegenerative diseases 

characterized by neuroinflammation, like ALS, inhibiting the glia-mediated 

neuroinflammatory process, directly protecting neurons, or both. 

Further studies to clarify the mechanisms of action of these receptors are certainly 

necessary, as they could identify specific signal transduction pathways controlled 

by PPARs and possible new therapeutic targets.  
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AIM 
During the last few years, a growing number of studies has demonstrated an anti-

inflammatory activity for the PPARs agonists, which in several pathological 

instances have been able to decrease the production of proinflammatory genes, 

including cytokines and chemokines (Klotz et al., 2007; Pascual et al., 2005; Straus 

and Glass, 2007). 

Based on these observations, the therapeutic impact of PPARs agonists has been 

more recently studied also in chronic neurodegenerative disorders characterized by 

neuroinflammatory processes, like Multiple Sclerosis, Alzheimer’s disease, 

Parkinson’s disease and Amyotrophic Lateral Sclerosis. In animal models of 

different neurodegenerative diseases, PPARs agonists proved to be efficacious in 

attenuating the manifestations of the pathology, and this effect was ascribed to their 

ability in reducing the production of proinflammatory mediators (Bright et al., 

2008; Deplanque, 2004; Drew et al., 2006; Heneka et al., 2007; Hirsch et al., 2003; 

Sastre et al., 2006). Particular attention was focused on the PPARγ agonist 

Pioglitazone because of its capacity to penetrate the blood brain barrier. This 

compound was shown to be beneficial in many animal models of neurodegenerative 

diseases (Combs et al., 2000; Heneka et al., 2005; Kiaei et al., 2005; Lim and Dey, 

2000; Schutz et al., 2005; Yan et al., 2003), including mice that reproduce several 

features of Amyotrophic Lateral Scerosis. Two independent groups demonstrated a 

neuroprotective acitvity of Pioglitazone on the hSOD1-G93A transgenic mouse 

model of ALS. In these studies, administration of Pioglitazone, before the onset of 

the symptoms, improved the motor performance and reduced the weight loss, 

attenuated motor neuron death and increased the survival delaying the onset. These 

effects were associated to reduced microglial activation and gliosis in the spinal 

cord as well as decreased production of proinflammatory mediators like iNOS, NF-

kB and COX2. 

As yet, different mechanisms of PPARs activation have been described, some of 

which directly related to gene transcription and other interfering with the activity of 

other transcription factors (Ricote and Glass, 2007), but the signalling pathways 

involved and the specific events responsible for their neuroprotective activity have 

not been clearly elucidated. 
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On these bases, the aim of my work was to study the transcriptional activity of the 

PPAR systems in vivo, in the central nervous system, throughout the course of ALS 

with the aim of clarifying the stage of the disease at which the activity of this class 

of receptors becomes relevant for the pathology. The comprehension of the 

molecular mechanisms that are responsible for their neuroprotective activity could 

then possibly lead to identify new targets for unprecedented therapeutic approaches.        
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METHODS 

Animal models 

hSOD1-G93A mice 

The transgenic mouse model of ALS used in this study, the hSOD1-G93A animals, 

has been generated by Mark Gurney and his collaborators in 1994 (Gurney, 1994; 

Gurney et al., 1994). hSOD1-G93A mice ubiquitously express a high copy number 

of the glycine to alanine base pair mutation at the 93rd codon of the cytosolic human 

Cu/Zn superoxide dismutase gene (Gurney, 1994). These mice develop progressive 

motor neuron disease that recapitulates in many aspects the human pathology: the 

symptoms manifest around 90 days of age when the animals show hindlimb 

weakness, the development of tremors and loss of weight (Chiu et al., 1995; Gurney 

et al., 1994). Motor functions progressively decrease leading to complete paralysis 

and death at around 130-150 days of age. At the histopathological level, the 

phenotype is associated to selective degeneration of spinal motor neurons, protein 

inclusions in surviving motor neurons and significant loss of myelinated axons 

originating from the ventral horns of the spinal cord. Female hSOD1-G93A are 

infertile, so the transgenic mice hSOD1-G93A are maintained in hemizygosity in the 

mixed background C57Bl6/SJL by mating of hSOD1-G93A mice with wild type 

C57Bl6/SJL females. 

PPRE-Luc mice 

The transgenic mouse line PPRE-Luc, generated in our laboratory, is a reporter 

mouse ubiquitously expressing the gene coding for the firefly luciferase under the 

control of a promoter responsive to PPARs. This model allows to evaluate the 

activation of PPARs and represents a novel opportunity for the characterization of 

PPAR transcriptional activity in physiopathological conditions.  

Transgenic PPRE-Luc mice were generated by pronuclear injection of the pMAR-

PPRE5X-tk-Luc-MAR transgene, which contains copies of the PPAR responsive 

element (PPRE) and the minimal promoter of the thymidine kinase, into murine 

oocytes (Ciana et al., 2007). Matrix attachment regions (MAR) from chicken 
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lysozyme (Stief et al., 1989) flanking the constructs were previously described as 

elements indispensable to obtain the generalized expression of the reporter (Ciana et 

al., 2001). 

 
Fig. 1: pMAR-PPRE5X-tk-Luc-MAR transgenic construct: the selected PPRE is the most 

responsive to the PPARs and is repeated five times in tandem and cloned upstream the 

minimal promoter of thymidine kinase (tk), controlling luciferase expression. The MAR 

sequences flanking the construct are needed to obtain an ubiquitous expression of the 

reporter. 

Generation of hSOD1-G93A+/-;PPRE-Luc+/- mice 

Eterozygous hSOD1-G93A female mice were crossed with omozygous PPRE-Luc 

male mice to obtain hSOD1-G93A+/-;PPRE-Luc+/- and hSOD1-G93A-/-;PPRE-Luc+/- 

mice which were used for subsequent experiments. 

 

Mice genotyping 

Tail biopsies (1-2 mm) were lysed in 100 µl of lysis buffer (10 mM TRIS/HCl pH 

9.0; 50 mM KCl; 0.45% Nonidet P40; 0.45% Tween 20; 0.1 mg/ml PK (proteinase 

K)) for 12 hours. The samples were then heated at 95°C for 10 min to inactivate the 

PK and then centrifuged at 13200 rpm for 20 min to precipitate the remaining tissue. 

The supernatant containing the genomic DNA was then used for subsequent PCR 

analysis.  

The primers used for hSOD1-G93A amplification were:  

5’ SOD: 5’ CAT CAG CCC TAA TCC ATC TGA 3’ 

3’ SOD: 5’ CGC GAC TAA CAA TCA AAG TGA 3’ 

IL-2 primers used in the same reactions as internal control were the following:  

5’ IL: 5’ CTA GGC CAC AGA ATT GAA AGA TCT 3’ 
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3’ IL: 5’ GTA GGT GGA AAT TCT AGC ATC ATC C 3’ 

The reaction mixture was the following: 0.4 µM primers, 200 µM dNTPs, 1X DNA 

Pol buffer and 32 U/ml DyNAzyme II DNA polimerasi. 0.5-1 µl of the supernatant 

of the lysed tail were added to 25 µl of reaction mixture. 

After 35 cycles (30 sec at 95°C, 30 sec at 60°C, and 30 sec at 72°C), the products 

were analyzed on 2% agarose gels stained with ethidium bromide in TAE buffer 

(0.04 M Trizma Base; 0.02 M acetic acid; 1 mM EDTA; 0.5 µg/ml ethidium 

bromide).  

The amplicons of hSOD1-G93A and IL-2 were fragments of 250 bp and 320 bp 

long, respectively. The amplification of genomic DNA from transgenic animals 

produced both the bands, while the PCR of genomic DNA from non transgenic 

animals resulted only in the 320 bp IL-2 band.  

Cellular models 

The NSC-34 cells produced by Cashman et al. (Cashman et al., 1992) have emerged 

as the most promising alternative to primary motor neurons. NSC-34 is a hybrid cell 

line produced by fusion of motor neuron enriched, embryonic mouse spinal cord 

cells with mouse neuroblastoma. The NSC-34 cell line has many of the 

morphological, physiological and neurochemical properties of motor neurons 

[reviewed in (Matusica et al., 2008)], including motor neuron-like functional 

responses to numerous growth factors (He et al., 2002; Turner et al., 2004; Usuki et 

al., 2001). The majority of differentiated NSC-34 cells resemble cultures of motor 

neurons. Typically, these are large cells with multi-polar neurite projections, with a 

small percentage of the cells exhibiting a flat fibroblast-like morphology with short 

neuritic projections. Thus, the NSC-34 cells are the best available model for the in 

vitro investigation of many aspects of motor neuron biology, including studies on 

ALS. NSC-34 cells were grown in DMEM 10% Fetal Bovine Serum, L-Glutamine 2 

mM, Sodium Pyruvate 1 mM, supplemented with Penicillin, streptomycin and anti-

mycotic solution. Cells were splitted when the 70% confluence was reached. 
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Transfection of NSC-34 cells with the hSOD1-G93A expression vector 

Cells were plated in 24-well plates until 70% of confluence. The medium was 

changed 2 hours before the transfection. For each well of a 24-well plate, 0.4 µg of 

pIRESGreen1 hSOD1-G93A or the empty vector were mixed with 3.6 µl of FuGene 

previously incubated with the growth medium (DMEM) for 5 min in a total volume 

of 20 µl, and left to incubate for 15 min at room temperature. The DNA-FuGENE 

complexes were then added to the cells. After 48 hours the cells were lysed and 

RNA wase xtracted for subsequent RT-PCR analysis. 

Luciferase enzymatic assay 

To quantify the luciferase activity in tissue extracts from luciferase reporter mice, 

animals were anesthetized with 78% ketamine and 15% xilazine in bdH20 and 

sacrificed. The tissues of interest were collected and immediately frozen in dry ice 

and stored at -80°C. Tissues were omogenized in 200 µl of lysis buffer (100 mM 

KPO4 pH 7.8, containing 1 mM dithiothreitol; 4 mM EGTA; 4 mM EDTA and 0.7 

mM phenylmethylsulfonyl fluoride) using a TissueLyser (QIAGEN GmbH, Hilden, 

Germany) with 3 cycles of 10 sec with a 22 Hertz frequency. After one cycle of 

freezing-thawing to promote the breaking of cellular membranes the samples were 

centrifuged at 5900nrpm for 30 min at 4°C. The supernatants containing the protein 

extracts were then collected and used for subsequent luciferase enzymatic assay. 20 

µl of tissue extract were added to the wells of a white 96 multiwell at 37°C, then the 

plate was positioned inside the luminometer (LUMAT LB 9501 Berthold) that 

injected sequentially 100 µl of a solution containing luciferine (470 µM Luciferine 

(Promega); 20 mM Tricine (Gibco); 0.1 mM EDTA (Merk); 1.07 mM 

(MgCO3)4Mg(OH) x 25H2O (Sigma); 2.67 mM MgSO4 x 7H2O (Merk) in bdH2O 

pH 7,8 with 33.3 mM DTT (Boheringer Mannheim) and 530 µM ATP (Boheringer 

Mannheim) in each well. The luminometer detected the photon emission (RLU, 

Relative Luminescence Unit) coming from the enzymatic reaction between the 

luciferase inside the samples and the luciferine in the buffer 10 sec after having 

injected the substrate in each well of the plate.  

The values of RLU were then normalized on the total protein content quantified 

with the Bradford Protein Assay.  
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Bradford Protein Assay 

The Bradford Protein Assay is a colorimetric assay in which the interaction between 

the basic groups of the protein present in the sample and the Comassie reagent in an 

acidic environment leads to the development of a blue color. The intensity of the 

blue color is directly proportional to the amount of protein present in the sample.  

The standard curve is based on serial dilutions of bovine albumine (BSA, Bovine 

Serum Albumine-Pierce) with the following concentration: 0,500-0,375-0,281-

0,211-0,158-0,119-0,089-0,067 µg/ml.  

200 µl of Comassie reagent were added to each well of a 96 well plate, then 4 µl of 

each point of the standard curve or of the unknown sample were added to the 

Comassie contained in each well. Every sample was analyzed in triplicate. The O.D. 

of each sample was read with a spectrophotmeter (Microplate reader, Bio-Rad) at 

the wave lenght of 595 nm.  

The concentration of the samples were then obtained referring to the BSA standard 

curve.  

Analysis of the expression of PPARα, PPARβ/δ and PPARγ target 

genes in the spinal cord of hSOD1-G93A mice 

 

RNA extraction from spinal cord 

hSOD1-G93A mice and their non-transgenic littermates were sacrificed and the 

spinal cord was immediately collected, frozen in dry ice and stored at -80°C. 

The RNA was extracted using the RNA extraction kit RNeasy Mini kit (Qiagen) 

accordingly to manifacturer’s instructions. Briefly: 

1. the entire spinal cord was homogenized (5% w/v) in RLT Buffer with 1% β-

mercaptoethanol using a Tissue Lyser (Qiagen) with 2 cycles of 15 sec with a 

frequency of 10 Hz. 

2. 600 µl of the homogenized sample were transferred to a new tube and the 

remaining sample was stored at -80°C for potential further utilization. 
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3. The samples were then centrifuged for 3 min at 16100 x g and the supernatants 

were carefully removed by pipetting and transferred to a new microcentrifuge tube. 

Only these supernatants (lysates) will be used in subsequent steps.  

4. 1 volume of 70% ethanol was added to the cleared lysate, and immediately mixed 

by pipetting. 

5. up to 700 µl of the sample were transferred to an RNeasy spin column placed in a 

2 ml collection tube. The samples were then centrifuged for 15 sec at 8000 x g . The 

flow-through was discarded and the procedure was repeated with the remaining 

lysate-ethanol mixture. 

6. 350 µl of Buffer RW1 were added to the RNeasy spin column and the samples 

were centrifuged for 15 sec at 8000 x g to wash the spin column membrane. The 

flow-through was discarded. 

7. 80 µl of DNase (Qiagen; resuspended in 550 µl of bdH2O and diluted 1:8 with 

RDD buffer (provided)) were added to each column and the samples were left to 

incubate for 15 min.  

8. 350 µl of Buffer RW1 were added to the RNeasy spin column and the samples 

were centrifuged for 15 sec at 8000 x g to wash the spin column membrane. The 

flow-through was discarded. 

9. the collection tube placed under the column was substituted with a new one and 

500 µl of RPE buffer (provided, ethanol addiction is required at the first use, as 

indicated by the manufacturer) were added to the column and the samples were 

centrifuged for 15 sec at 8000 x g to wash the spin column membrane. The flow-

through was discarded. 

10. another washing step with RPE Buffer identical to the previous one was 

perfomed. 

11. the columns were then placed on a new tube and centrifuged for 1 min at 16100 

x g to dry the excess of RPE Buffer. 

12. The columns were then placed on the collection tube and 40 µl of RNase free 

water (provided) were added to each column. The samples were then centrifuged for 

15 sec at 8000 x g. The RNA is in the flow-through. To increase the yeld fo RNA, 

as suggested by the manifacturer, the flow-through was pipetted again on the 

membrane inside the column and the centrifugation step was repeated. The RNA 
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obtained was an aqueous solution that was stored at -80°C. The RNA concentration 

was quantified using a Nanodrop-1000 Spectrophotometer (Thermo Scientific). 

 

RNA extraction from mouse motor neuron NSC-34 cell line 

The NSC-34 cells transiently transfected with the hSOD1-G93A or the empty vector 

pIRESGreen1 were grown on 24 well plates, transfected and lysated 48h after the 

transfection. Briefly 5 wells of the 24 well plate were disrupted with 350 µl of RLT 

lysis buffer supplemented with 1% β-Mercaptoethanol. The collected lysate was 

then homogenized by 5 passages through a 21 gauge needle fitted to a RNAse-free 

syringe. 

Then, the same procedure used for the spinal cord RNA extraction was followed 

(from step 4 to 12). 

 

Reverse transcription and cDNA synthesis 

1.5 µg of random primers (Promega) were added to 1 µg of RNA in a total volume 

of 15 µL. The samples were heated at 75°C for 5 min to allow RNA denaturation for 

random primers binding. 10 µl of the reaction mixture (dNTPs 1.25 mM, MMLV 

RT 20 U/ µl, 1X MMLV RT Buffer in bdH2O) were added to each sample and they 

were left to incubate for 1 h at 37°C to allow first strand cDNA synthesis. 

The samples were then heated to 75°C for denaturation and then placed on ice and 

stored at -80°C. 

 

RT-PCR for PPARs target genes 

The reaction mixture was the following: 0.8 µM primers, 200 µM dNTPs, 1X DNA 

Pol buffer and 10 U/ml GoTaq DNA polimerasi. 1 µl of cDNA was added to 24 µl 

of reaction mixture. 

The primers used for each gene are outlined in Table 1. 
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Table 1 

Gene Primers 
Medium chain Acyl CoA 

Dehydrogenase (MCAD) 

FW: 5’ GAAGAGTTGGCGTATGGG 3’ 

REV 5’ GCGGAGGGCTCTGTCACACA 3’ 

Acyl CoA synthetase long-

chain family member 6 

(Acsl6) 

FW: 5’ GAGGACAGGACAAAGGAGG 3’ 

REV: 5’ CACGACAATGCCAACCAAAAAG 3’ 

Lipoprotein lipase (LPL) FW: 5’ CACCGGGAGATGGAGAGCAAA 3’ 

REV: 5’ CCCAACTCTCATACATTCCC 3’ 

Catalase (Bernardo et al.) FW: 5’ CCTCGTTCAGGATGTGGTTT 3’ 

REV: 5’ GGCATCCCTGATGAAGAAAA 3’ 

Glutathione S-transferase 2 

(Gsta2) 

FW: 5’ AAGACTGCCTTGGCAAAAGA 3’ 

REV: 5’ GCCAGTATCTGTGGCTCCAT 3’ 

Peroxisome Proliferator 

Activated Receptor gamma 

coactivator 1 alpha 

(PGC1alpha) 

FW: 5’ CTTCTTGCTCTTCCTTTAACTCTC 3’ 

REV: 5’ CTTTCTGCTTCTGCCTCTCTCTC 3’ 

Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) 

FW: 5’ ACGACCCCTTCATTGACC 3’ 

REV: 5’ TGCTTCACCACCTTCTTG 3’ 

 

The PCR reaction was optimized for each different gene; the linear range of 

amplification was calculated by performing the amplification at different cycles and 

then choosing the number of cycles comprised in the range in which the 

amplification was exponential. Particularly a large scale volume master mix of the 

PCR reaction was prepared and the proper amount of cDNA was added, then equal 

25 µl aliquots were measured into 10 tubes. The reaction was initiated, with one 

tube removed every two cycles starting at 16 cycles. 

The thermal profle used for each gene are outlined in Table 2. 
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Table 2 

Gene Thermal profile Amplification 

fragment size 
MCAD (95°C 45 sec, 51 °C 45 sec, 72°C 1 min) 

x 27 cycles for spinal cords 

167 bp 

Acsl6 (95°C 45 sec, 55°C 45 sec, 72°C 1 min)  

x 26 cycles for spinal cords 

240 bp 

LPL (95°C 45 sec, 55°C 45 sec, 72°C 1 min) 

x 30 cycles for spinal cords  

x 28 cycles for NSC34 cells 

283 bp 

Cat (95°C 45 sec, 53°C 45 sec, 72°C 1 min) 

x 24 cycles for spinal cords 

x 30 cycles for NSC34 cells 

352 bp 

Gsta2 (95°C 45 sec, 53°C 30 sec, 72°C 1 min) 

x 39 cycles for spinal cords 

345 bp 

PGC1alpha (95°C 1 min, 63°C 45 sec, 72°C 1min)  

x 27 cycles for spinal cords 

x 41 cycles for NSC-34 cells 

402 bp 

GAPDH (95°C 1 min, 53°C 1 min, 72°C 1 min)  

x 22 cycles for spinal cords 

x 21 for NSC34 cells 

691 bp 

 

The products were analyzed on 3% agarose gels (1% for GAPDH, 2% for PGC1α) 

stained with ethidium bromide in TEB buffer (0.09M Tris; 0.096 M Boric acid; 0.01 

M EDTA pH 8.4).  

To perform a semi-quantitative assessment of the relative gene expression, 12,5 µl 

of each RT-PCR product was electrophoresed on agarose gel and stained with 

ethidium bromide. The optical density of each amplified band was calculated using 

the Gel Doc (BioRad) processing program and numerically expressed as the relative 

density in comparison to the optical density of the background. Furthermore, all 

results were normalized to the expression of the housekeeping gene Glyceraldehyde 
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3 phosphate dehydrogenase (GAPDH), which is constitutively expressed in all cells 

and serves therefore as an internal standard. Under these conditions, gross 

quantitative estimations were possible and broad differences in mRNA expression 

could be detected.  

Nuclear and cytoplasmic protein fractionation from spinal cord 

Frozen spinal cords were weighed and cut in small pieces with a scalpel on ice. The 

tissue was then omogenized in 3 ml per gram of tissue of hypotonic lysis buffer (20 

mM Hepes pH 7.5; 5 mM NaF; 10 µM Na2MoO4; 0.1 mM EDTA; 1mM DTT; 0.01 

% NP-40) and incubated on ice for 15 min. The samples were then centrifuged at 

850 x g for 10 min at 4 °C.The supernatant obtained from this centrifugation 

represents the cytosolic fraction which was transferred to another tube. 

The pellet was resuspended in 500 µl of hypotonic lysis buffer without DTT and 

NP-40. The samples were then incubated on ice for 15 min, then 50 µl of 10% NP-

40 were added to the samples and the tubes were centrifuged at 14000 x g for 30 sec 

at 4°C. The supernatant obtained was the cytosolic fraction and was transferred to 

the tube together with the fraction previously isolated. The cytosolic fraction then 

was stored at -80°C. The pellet was then resuspended in 50 µL of extraction buffer 

(10 mM Hepes pH 7.9; 0.1 mM EDTA; 1.5 mM MgCl2; 420 mM NaCl; 0.5 mM 

DTT; 0.5 mM PMSF; 1 µg/ml Pepstatin A; 1 µg/ml Leupeptin; 10 µg/ml Aprotinin; 

20 mM NaF; 1 mM Βeta-Glycerophosphate; 10mM Na3OV4; 25% Glycerol). 

The samples were vortexed at high speed and incubated at 4°C in slow agitation for 

30 min.  

The samples were then centrifuged at 14000 x g for 10 min at 4°C, the supernatant 

was the nuclear fraction and was stored at -80°C.  

The cytoplasmic and nuclear extracts were then quantified with the Bradford Protein 

assay and used for subsequent assay.  

 

Quantitative assay for PPAR DNA binding  

Nuclear presence of PPARα, PPARβ/δ and PPARγ was assayed using an enzyme-

linked immunosorbent assay-based PPARα,-δ,-γ Transcription Factor Assay Kit 
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(Cayman Chemical). Nuclear proteins were extracted from spinal cords of hSOD1-

G93A mice and non transgenic littermates according to the manufacturer's 

instructions and protein concentration was determined by the Bradford method using 

BSA as standard, as previously described. A double-stranded DNA sequence 

containing the PPAR response element was linked to the bottom of wells (96-well 

plate). PPARs within the nuclear fraction bound specifically to this sequence and 

isoforms were detected using primary antibodies directed against the individual 

PPARs. Clarified cell lysates were supplied for each PPAR isoform and acted as 

effective positive controls for PPAR DNA binding. Specificity of binding was also 

demonstrated using wells with no nuclear protein added and wells with positive 

control and an excess of consensus oligonucleotide (WT oligonucleotide) added 

which competes with the oligonucleotide bound to the wells. In these wells, no 

binding was detected. Binding activity was measured at 450 nm (minus the blank).  

Experimental procedure: 

 

The plate and the buffers were equilibrated at room temperature prior to opening.  

The binding buffer (25% 4X Transcription Factor Binding Assay Buffer, 73% 

bdH2O, 1& Reagent A, 1% 300mM DTT) was first added to the wells as follows: 

Blank and non-specific binding wells: 100 µl  

WT oligonucleotide plus positive control wells: 80 µl 

Positive control or sample wells: 90 µl 

Then 10 µl of WT oligonucleotide and 10 µl  of positive control were added to the 

WT oligonucleotide plus positive control wells; 

10 µl of positive control or of the samples to be analysed were added to the 

designated wells; 

The plate was sealed with the cover provided and incubated over night at 4°C. The 

wells were emptied and washed 5 times with 200 µl of 1X Washing Buffer 

(provided, to be diluted 1:400 in bdH2O 0,05% Tween-20). 

100 µl of primary antibody specific for the individual PPARs diluted 1:100 in 1X 

Antibody Binding Buffer (ABB; provided, to be diluted 1:10 with bdH2O) were 

added to each well except for the blank and the plate was incubated 1 h at room 
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temperature with agitation. The wells were emptied and washed 5 times with 200 µl 

of 1X Washing Buffer. 

100 µl oh HRP-secondary antibody diluted 1:100 in 1X ABB were added to each 

well except for the blank and the plate was incubated for 1 h at room temperature. 

The wells were emptied and washed 5 times with 200 µl of 1X Washing Buffer. 

100 µL of Developing Solution (provided) were added to each well and the plate 

was incubated with gentle agitation and protected from light, at room temperature, 

until the wells turn medium to dark. 

After 45 min the reaction was stopped with 100 µl of Stop Solution (provided) 

added to each well and the plate was quickly positioned in a microplate reader 

(Microplate reader, Bio-Rad) and the colorimetric reaction was quantified at the 

wave lenght of 450 nm.  

The data obtained were then expressed like medium optical density (O.D.)/µg of 

proteins. 

 

Immunohistochemistry 
 

hSOD1-G93A mice and non-transgenic littermates were sacrificed and the spine 

was fixed in parafomaldehyde 4% p/v in Phosphate buffered saline (PBS: 142 mM 

NaCl, 2.5 mM NaH2PO4, 7.5 mM Na2HPO4 pH 7.4) for 24 h. The spinal cord was 

extracted and dehydrated through the following ethanol-xilene series: 

Phosphate buffer (PB) 24h 2 times 

70% ethanol 24 h 

80% ethanol 24 h 

95% ethanol 1 h 3 times 

100% ethanol 1 h 3 times 

Xilene 45 min 4 times 

 

The tissue was then paraffin embedded and the lumbar tract was cut in 10 µm slices 

using a microtome (Boeckeler).  
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The sections were then deparaffinated trough the following ethanol-xilene series: 

Xilene 5 min 3 times 

100% ethanol 5 min 3 times 

95% ethanol 5 min  

75% ethanol 5 min 3 

50% ethanol 5 min 

The sections were the rehydrated in bdH2O (5 min) and the antigen retrival was 

performed by boiling them in 10 mM citrate buffer pH 6 for 15 min in a microwave 

oven. The sections were then water-cooled for 30 min. The sections are then washed 

with bdH2O and permeabilized in TNT buffer (100 mM Tris-HCl pH 7.5, 150 mM 

NaCl (TN) 0.05 % Tween 20) for 5 min. The samples are then incubated in a 

blocking solution (TNB: 0,5% p/v of Blocking provided with the amplification kit 

Tyramide Amplification System-TSA (Perkin Elmer) in TN) for 1 h to saturate 

aspecific binding sites.   

The sections were then incubated with the primary antibody diluted in TNB 

overnight. 

Primary antibodies against PPARα, PPARβ/δ,PPARγ, SMI32 (neuronal marker 

which stains non-phosphorylated neurofilaments), GFAP (Glial Fibrillar Acidic 

Protein: astrocyte cyotskeletal marker) and Licopersicum esculentum Lectin (which 

stains microglia) have been used at the working dilutions indicated in the section 

“Materials”.  

The sections were then washed 3 times with TNT and incubated with the fluorescent 

secondary antibody diluted in TNB at room temperature and protected from the 

light. Secondary antibodies utilized and their working dilutions are indicated in the 

section “Materials”.  

The sections were washed 3 times with TNT and incubated with Hoechst 33342 

1µg/mL in PBS for 15 min to stain the cellular nuclei.  

The samples were finally washed 3 times with TNT and cover glass were mounted 

on the sections using the Dako mounting medium (Dako Mounting Medium).  
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Microscopy 

The staining was captured with a 40X magnification using a Zeiss Axioskop 40, 

equipped with a digital camera (Nikon Coolpix 9900).  

The immunofluorescence images in the ventral horns of the spinal cord sections 

were recorded. 

 

Quantification of the nuclei positively stained for PPARs 

 
The quantification of the number of nuclei positively stained for PPARs in the 

different cell types was performed manually by counting the number of cells which 

had a predominant nuclear staining compared to the cytoplasm in the ventral horns 

of spinal cord sections of hSOD1-G93A mice and, in the case of motor neurons, 

their non transgenic littermates. The results were reported as percentage of the total 

number of cells considered. 

Quantification of the nuclear fluorescence of PPARγ  

The quantification of the nuclear fluorescence of PPARγ was performed using 

ImageJ, a software from NIH. The application measures the signal intensity per 

pixel in a previously identified region of interest (ROI). The result is the mean of all 

the signals reported in that area. ROIs of 1188 pixels were created on the images of 

lumbar spinal cord sections previously stained for PPARγ and the neuronal marker 

SMI32. The fluorescence intensity of both PPARγ and the marker Hoechst 33342 

were determined in the nucleus of motor neurons and non neuronal cells. Since 

Hoechst 33342 is a fluorescent stain which binds the DNA, we considered its 

intensity as a measure of the quantity of DNA. Since the nuclei of motor neurons are 

bigger that those of non neuronal cells, their DNA content is more diluted. Thus, the 

intensity of fluorescence coming from PPARγ labeling has been normalized on the 

intensity of the fluorescence signal of Hoechst 33342. 
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Statistical analyses 

Statistical analysis data were obtained by means of analysis of variance (ANOVA) 

using GraphPad Software (PRISM) (San Diego, CA). Difference between groups 

was determined by Bonferroni comparision; a P<0.05 was considered statistically 

significant. 

 

 

MATERIALS 
Acetic acid     Riedel-de Haen 

Agarose     Sigma Aldrich 

Aprotinin     Sigma Aldrich 

ATP      Boheringer Mannheim 

BSA (Bovine serum albumin)   Pierce 

Beta-glycerophosphate    Sigma Aldrich   

Boric acid     Sigma Aldrich 

Citric acid      Sigma Aldrich 

Comassie     Sigma Aldrich 

dNTPs (deoxynucleotide triphosphates)  Amersham Pharmacia Biotech AB 

DTT (Ditiotreithol)    Sigma Aldrich 

EDTA (ethylendiamminotetraacetic acid) Sigma Aldrich 

EGTA (ethylene glycol tetraacetic acid)  Sigma Aldrich 

Ethanol, absolute    Merck 

Ethidium bromide    Sigma Aldrich 

FuGene     Roche 

Glycerol     Fluka 

Hepes      Sigma Aldrich   

Hoechst 33342     Sigma Aldrich  

Hygromycin B     Sigma Aldrich  

KCl      Merck 

Ketamine     Intervet Productions 

K2HPO4     Merck 

KH2PO4     Merck 

MgCl2      Merck 



Materials and methods 
___________________________________________________________________ 

 59

(MgCO3)4 Mg(OH)2 x 2 H2O   Sigma Aldrich  

MgSO4 x 7H2O     Merck 

Mounting medium    Dako 

Leupeptin     Sigma Aldrich  

Licopersicum esculentum Lectin  Sigma Aldrich     

Luciferine     Promega 

NaCl      Sigma Aldrich  

NaF      Farmitalia Carlo Erba 

Na2HPO4     Merck 

NaH2PO4     Merck 

Na2MoO4     Merck 

Na3OV4      Sigma Aldrich   

NP-40 (Nonidet P-40)    Sigma Aldrich   

Paraffin     Merck 

Paraformaldehyde    Fluka 

Pepstatin A     Sigma Aldrich   

(PMSF )Phenylmethylsulfonil fluoride  Sigma Aldrich  

Primers     Sigma Aldrich   

Proteinase K     Sigma Aldrich  

Random primers    Promega 

MMLV Retrotranscriptase (H-)point mutant Promega   

Sodium citrate     Sigma Aldrich   

Taq GoTaq polimerase    Promega 

Taq polimerase     GeneSpin 

Transcription Factor PPARs assay  Cayman 

Tricine      Gibco 

TRIS HCl     Sigma Aldrich   

Trizma base     Sigma Aldrich  

TSA Amplification kit    Perkin Elmer 

Tween 20     Sigma Aldrich   

Xilazine     Rompun (Bayer) 

Xilene      Merck 
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Primary antibodies: 

Neurofilament H Non-Phosphorylated (SMI 32) Monoclonal Antibody (1:500) Sternbergen 

Monoclonals Incorporated)  
Anti-PPARα polyclonal antibody (1:100)  Affinity Bioreagents 

Rabbit serum anti-PPARβ (1:300) Kind gift from Dr. Herve Schon – 

University of Metz - France  

Anti-PPARγ polyclonal antibody (1:100)  Affinity Bioreagents 

Mouse anti-GFAP 488 conjugated (1:1000)  Chemicon 

 

Secondary antibodies  

Goat anti-mouse 488 (1:200)    Molecular Probes 

Donkey anti-rabbit Cy3 (1:400)    Jackson Immuno Research 
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RESULTS 

As mentioned in the “Introduction” section, increasing evidence demonstrates that 

PPARγ plays neuroprotective and anti-inflammatory roles in various 

neurodegenerative diseases, including ALS (Heneka and Landreth, 2007). 

Furthermore several indications suggest that PPARs are implicated in a number of 

signaling transduction pathways potentially involved in neuronal activity and 

survival, suggesting that dysfunction of these receptors may influence the neuronal 

pathophysiology. However the specific mechanisms by which PPARs exert their 

neuroprotective roles remain to be further elucidated. 

 

Analysis of PPAR transcriptional activity in the spinal cord of 

hSOD1-G93A mice 

To investigate the activity of Peroxisome Proliferator Activated Receptors in the 

central nervous system during the progression of Amyotrophic Lateral Sclerosis, we 

decided to analyse the transcriptional activity of these receptors in the spinal cord of 

hSOD1-G93A mice during the course of the disease taking advantage of the 

reporter PPRE-Luc mouse line (Ciana et al., 2007), available in our laboratory, in 

which the luciferase reporter gene is expressed under the control of a promoter 

responsive to PPARs.  

Omozygous female PPRE-Luc mice (PPRE-Luc +/+) were crossed with 

eterozygous male hSOD1-G93A+/- animals, obtaining emizygous PPRE-Luc mice 

(PPRE-Luc +/-) transgenic or non transgenic for the human mutated SOD1 

(hSOD1-G93A).  



 Results 
___________________________________________________________________ 

 62

The animals were sacrificed at the critical stages of the pathology: 30 days (pre-

symptomatic stage), 75 days (intermediate stage in which the motor neuron starts to 

detach form the motor plaque), 100 days (onset of the symptoms) and end stage, i.e. 

when the mice are unable to right themselves within 30 sec when being placed on 

their side. Since the endstage of hSOD1-G93A mice is around 120-140 days of age, 

non-transgenic mice were sacrificed at 30 days, 75 days, 100 and 130 days as 

controls. The cervico-thoracic and thoraco-lumbar spinal cord, the motor cortex, the 

hippocampus, the thalamus and the cerebellum were collected. We collected also 

the liver, the kidney and the lung to verify possible influences by the disease in the 

peripheral organs, which are not involved in the pathological process. The 

harvested tissues were immediately frozen at -80°C until subsequent analysis. To 

reduce the variability linked to the gender we focused our studies only on female 

mice. Five mice per each stage of the pathology were analysed.  

The data showed that, in non-transgenic mice, PPAR activation is fairly constant 

throughout the progression of the pathology in all CNS areas taken into 

consideration, with the exception for non- statistically significant differences. The 

hSOD1-G93A mice showed a similar trend in the spinal cord, motor cortex and 

cerebellum until the onset of the pathology at 100 days, then luciferase activity 

increases abruptly and significantly at the end stage (p<0.001). The hippocampus 

and thalamus showed non-significant decreases in luciferase activity from 30 to 100 

days, then the signal increased at the end stage (p<0.001) [Fig. 1]. 
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Fig. 1: Evaluation of PPARs activity in the different CNS areas of hSOD1-G93A mice at the 

different stages of the pathology. The cervico-thoracic and thoraco-lumbar spinal cord, the motor 

cortex, the cerebellum, the hippocampus and the thalamus of female PPRE-Luc +/- mice transgenic 

or not for the mutated (G93A) human SOD1 were harvested at the critical stages of the pathology: 

30, 75, 100 days (d=days), end stage (ES). The luciferase activity was normalized to the total protein 

content. The data are expressed as RLU (Relative Luminescence Unit)/µg of total proteins ± SEM. 

Two-way analysis of variance (ANOVA) followed by Bonferroni Post Test was used to compare the 

means of the different stages in the transgenic and non transgenic groups. *=p<0,05 , **=p<0,01 , 

***=p<0,001.  
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The luciferase activity in the peripheral tissues was variable but we never observed 

the increase in luciferase activity observed in the CNS of hSOD1-G93A mice at the 

endstage. [Fig. 2]. 
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Fig. 2: Evaluation of PPARs activity in the peripheral organs of hSOD1-G93A mice at the different 

stages of the pathology. The liver, the kidney and the lung of female PPRE-Luc +/- mice transgenic 

or non-trangenic for the mutant (G93A) human SOD1 were harvested at the critical stages of the 

pathology,i.e. 30, 75, 100 days (d=days), end stage (ES). Luciferase activity was normalized to the 

total protein content. The data are expressed as RLU (Relative Luminescence Unit)/µg of total 

proteins ± SEM. The data were analyzed using GraphPad Software (PRISM) (San Diego, CA). Two-

way analysis of variance (ANOVA) followed by Bonferroni Post Test was used to compare the 

means of the different stages in the transgenic and non transgenic groups. *=p<0,05 , **=p<0,01 , 

***=p<0,001.  

 

The increase in PPAR activity which is detectable only in the CNS of hSOD1-

G93A mice was a very interesting data that we decided to further investigate.  
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Influence of starvation on PPAR transcriptional activity 

PPARs are known to be widely involved in the regulation of multiple metabolic 

processes. Therefore, we decided to verify whether the starvation that the hSOD1-

G93A mice experience in the last period of their life, due to dysphagia and 

complete paralysis which prevents them from reaching for food and water, could 

influence PPARs activity The effect of starvation was analysed on selected CNS 

areas (spinal cord and cerebellum) and peripheral organs (liver and kidney) of 

PPRE-Luc +/- mice.  

PPRE-Luc female mice were divided into two groups: one group was fed ad libitum 

(ad libitum, al) while the other group was deprived of food and water for 48 h 

(starvation, s). The animals were sacrificed and the spinal cord, the cerebellum, the 

liver and the kidney were collected and immediately stored at -80°C for subsequent 

luciferase enzymatic assay.  

The results show that the luciferase activity in the spinal cord and cerebellum is 

constant between the two experimental groups [Fig. 3]. 
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Fig. 3: Evaluation of PPARs activity in the spinal cord and cerebellum of PPRE-Luc +/- female 

mice after starvation. Female PPRE-Luc +/- mice were fed ad libitum (al) or starved (s) for 48 h. 

Luciferase activity was normalized on the total protein content. The data are expressed as RLU 
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(Relative Luminescence Unit)/µg of total proteins ± SEM. The data were analyzed using GraphPad 

Software (PRISM) (San Diego, CA). T test was used to compare the means of the different stages in 

the transgenic and non transgenic groups. No statistical significance resulted.  

 

In the liver of starved animals, luciferase activity decreases slightly compared to 

controls, while no significant variability was detected in the kidneys [Fig. 4].  
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Fig. 4: Evaluation of PPARs activity in the liver and kidneys of PPRE-Luc +/- female mice after 

starvation. Female PPRE-Luc +/- mice were fed ad libitum (al) or starved (s) for 48 h. The luciferase 

activity was normalized on the total protein content. The data are expressed as RLU (Relative 

Luminescence Unit)/µg of total proteins ± SEM. The data were analyzed using GraphPad Software 

(PRISM) (San Diego, CA). T test was used to compare the means of the different stages in the 

transgenic and non transgenic groups. *=p<0,05.  

 

The results obtained led us to conclude that the starvation does not influence PPAR 

activity neither in the peripheral organs of PPRE-Luc +/- mice nor in the CNS areas 

analysed, particularly the spinal cord which is the tissue primary compromised in 

ALS. On these bases, we concluded that the increase in PPAR activity detected in 

the PPRE-Luc+/-;hSOD1-G93A female mice was not dependent on nutritional 

defects.  
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Quantitative assay for PPARs DNA binding 

PPARs activation implies their translocation into the nucleus where they bind to the 

responsive elements in the promoter of target genes and regulate gene transcription. 

To evaluate if the nuclear translocation of PPARα, PPARβ/δ and PPARγ is 

modulated during the progression of the disease and if an increased nuclear 

translocation could be responsible for the increase in PPARs transcriptional activity 

at the end stage of the disease, we decided to quantify the amount of PPARα, 

PPARβ/δ and PPARγ in the nuclear fraction of spinal cord homogenates from 

hSOD1-G93A mice and non transgenic littermates at the different stages of the 

pathology, using an ELISA-based Transcription Factor assay specific for each 

isoform of PPARs. Female hSOD1-G93A and non transgenic littermates were 

sacrificed at 30, 75, 100 days or at the end stage and the spinal cords were 

collected.   

We found that the presence of PPARα in the nucleus undergoes a progressive non-

significant decrease in the spinal cord of hSOD1-G93A mice during the course of 

the disease and does not mimic the increase at the end stage seen with the luciferase 

assay [Fig. 5].  
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Fig. 5: Evaluation of the nuclear presence of PPARα in the spinal cord of hSOD1-G93A and non 

transgenic mice. Spinal cords of female PPRE-Luc +/- mice transgenic or non-transgenic for the 

mutant (G93A) human SOD1 were harvested at the critical stages of the pathology, i.e. 30, 75, 100 

days (d=days), end stage (ES). The nuclear fraction was utilized for an ELISA-based assay. The data 

were expressed as optical density (O.D.)/mg of total proteins ± SEM. The data were analyzed using 

GraphPad Software (PRISM) (San Diego, CA). Two-way analysis of variance (ANOVA) followed 

by Bonferroni Post Test was used to compare the means of the different stages in the transgenic and 

non transgenic groups. *=p<0,05 , **=p<0,01 , ***=p<0,001.  

 

The nuclear presence of PPARβ/δ decreases at the onset of symptoms, i.e. 100 days 

of age, and then increases but not significantly at the end stage [Fig. 6].  
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Fig. 6: Evaluation of the nuclear presence of PPARβ/δ in the spinal cord of hSOD1-G93A and non 

transgenic mice. The spinal cords of female PPRE-Luc +/- mice transgenic or non transgenic for the 

mutant (G93A) human SOD1 were harvested at the critical stages of the pathology, i.e. 30, 75, 100 

days (d=days), end stage (ES). The nuclear fraction was utilized for an ELISA-based assay. The data 

were expressed as optical density (O.D.)/mg of total proteins ± SEM. The data were analyzed using 

GraphPad Software (PRISM) (San Diego, CA). Two-way analysis of variance (ANOVA) followed 

by Bonferroni Post Test was used to compare the means of the different stages in the transgenic and 

non transgenic groups. The statistical analysis does not show any significance.  
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The assay on the nuclear presence of PPARγ shows a decrease until 100 days of age 

and then a non significant increase at the end stage [Fig. 7].  
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Fig. 7: Evaluation of the nuclear presence of PPARγ in the spinal cord of hSOD1-G93A and non 

transgenic mice. The spinal cords of female PPRE-Luc +/- mice transgenic or non transgenic for the 

mutant (G93A) human SOD1 were harvested at the critical stages of the pathology, i.e. 30, 75, 100 

days (d=days), end stage (ES). The nuclear fraction was utilized for an ELISA-based assay. The data 

were expressed as optical density (O.D.)/mg of total proteins ± SEM. The data were analyzed using 

GraphPad Software (PRISM) (San Diego, CA). Two-way analysis of variance (ANOVA) followed 

by Bonferroni Post Test was used to compare the means of the different stages in the transgenic and 

non transgenic groups. The statistical analysis does not show any significance.  

 

In summary, these data reveal that the worsening of the pathology does not cause an 

increased PPAR translocation into the nucleus. These assays have been performed 

on lysates from the entire spinal cord and, therefore, they do not provide any 

information on the different neural cell types. We postulated that the increase of 

PPARs activity at the end stage of the pathology could be due to an enhanced 

presence of the PPARs only in selected cell types. Furthermore ligand-dependent 
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effects derived from the interaction of PPARs with cofactors and regulatory 

molecules cannot be excluded.  

 

Analysis of the subcellular localization of PPARα, PPARβ/δ and 

PPARγ in motor neurons, astrocytes and microglia in the spinal 

cord of hSOD1-G93A mice 

To study extensively the expression and subcellular localization of the isoforms of 

PPARs in the different cell types of the spinal cord, we decided to perform 

immunohistochemical analyses on lumbar sections of spinal cords of hSOD1-G93A 

mice at different stages of the pathology.  

 

Motor neurons 

The cell type primarily involved in ALS is represented by motor neurons and, thus, 

we initially focused on these cells. Sections were double-stained with SMI32, an 

antibody specific for the non-phosphorylated neurofilaments, and antibodies 

directed against the isoform of PPAR to be analysed. The cell nuclei were stained 

with Hoechst 33342, a fluorescent dye that binds to the DNA.  

The results obtained show that PPARα is localized predominantly in the nucleus or 

equally distributed between the nucleus and the cytoplasm in motor neurons [Fig. 

8].  
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Fig. 8 PPARα shows a cytoplasmic and nuclear distribution in motor neurons. Spinal cord sections 

of female hSOD1-G93A mice at 30 days, 100 days and end stage were stained with an anti-PPARα 

antibody(red) and SMI32 antibody (green). Nuclei are stained with Hoechst 33342 (blue).  

 

PPARβ/δ is localized both in the nucleus and cytoplasm of motor neurons but it is 

more abundant into the nucleus [Fig. 9].  
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Fig. 9 PPARβ/δ shows a cytoplasmic and nuclear distribution. Spinal cord sections of female 

hSOD1-G93A mice at 30 days, 100 days and end stage were stained with an anti-PPARβ/δ rabbit 

serum (red) and SMI32 antibody (green). Nuclei are stained with Hoechst 33342 (blue).  

 

PPARγ is exclusively localized in the nuclei of motor neurons [Fig. 10].  
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Fig. 10 PPARγ shows an exclusively nuclear distribution. Spinal cord sections of female hSOD1-

G93A mice at 30 days, 100 days and end stage were stained with an anti-PPARγ antibody (red) and 

SMI32 antibody (green). Nuclei are stained with Hoechst 33342 (blue). 

 

Astrocytes 

Sections were double-stained with GFAP, an antibody directed to Glial fibrillar 

acidic protein which is widely used as an astrocytic marker, and antibodies directed 

against the isoform of PPAR to be analysed. The cell nuclei were stained with 

Hoechst 33342. PPARα [Fig. 11], PPARβ/δ [Fig. 12] and PPARγ [Fig. 13] are 

localized in the nucleus of astrocytes, but PPARα is more abundantly expressed, 

while PPARβ/δ has the lowest expression. 
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Fig. 11 PPARα shows a nuclear distribution in astrocytes. Spinal cord sections of female hSOD1-

G93A mice at 30 days, 100 days and end stage were stained with an anti-PPARα antibody(red) and 

anti-GFAP antibody (green). Nuclei are stained with Hoechst 33342 (blue).  
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Fig. 12 PPARβ/δ shows a low expression and a nuclear distribution in astrocytes. Spinal cord 

sections of female hSOD1-G93A mice at 30 days, 100 days and end stage were stained with an anti-

PPARβ/δ rabbit serum (red) and anti-GFAP antibody (green). Nuclei are stained with Hoechst 33342 

(blue).  
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Fig. 13 PPARγ shows a nuclear distribution in astrocytes. Spinal cord sections of female hSOD1-

G93A mice at 30 days, 100 days and end stage were stained with an anti-PPARγ antibody (red) and 

anti-GFAP antibody (green). Nuclei are stained with Hoechst 33342 (blue). 
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Microglia 

Sections were double-stained with Tomato lectin, which recognizes microglia, and 

antibodies directed against the isoform of PPAR to be analysed. The cell nuclei 

were stained with Hoechst 33342. PPARα [Fig. 14] and PPARβ/δ [Fig. 15] were 

undetectable in microglia cells. PPARγ [Fig. 16] shows a nuclear localization. 

 
Fig. 14: PPARα is undetectable in microglia. Spinal cord sections of female hSOD1-G93A mice at 

30 days, 100 days and end stage were stained with an anti-PPARα antibody (red) and Tomato lectin 

(green). Nuclei are stained with Hoechst 33342 (blue).  
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Fig. 15: PPARβ/δ is undetectable in microglia. Spinal cord sections of female hSOD1-G93A mice at 

30 days, 100 days and end stage were stained with an anti-PPARβ/δ rabbit serum (red) and Tomato 

lectin (green). Nuclei are stained with Hoechst 33342 (blue).  
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Fig. 16 PPARγ shows a nuclear distribution in microglia. Spinal cord sections of female hSOD1-

G93A mice at 30 days, 100 days and end stage were stained with an anti-PPARγ antibody (red) and 

Tomato lectin antibody (green). Nuclei are stained with Hoechst 33342 (blue). 

 

Evaluation of cells with immunopositive nuclei for PPARs during 

the pathology 

We next decided to evaluate the number of neuronal and glial cells showing 

PPARα, PPARβ/δ or PPARγ in the nucleus during the progression of the disease in 

order to identify the specific cell type(s) in which PPAR activity is modulated. 

Images of spinal cord ventral horns from hSOD1-G93A mice stained for both 

PPARs and cell specific markers were taken and motor neurons, astrocytes and 

microglia with PPARα, PPARβ/δ or PPARγ nuclear expression were counted. 
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The results show that none of the three isoforms of PPARs increases their nuclear 

translocation in the different cell types at the end stage of the disease compared to 

the earlier ages [Fig. 17, 18, 19], confirming the results obtained with the ELISA-

based Transcription Factor Assay. 

30d 130d 30d 100d ES
0

50

100

%
 o

f M
N

 w
ith

 P
PA

R
β

/δ
 in

 th
e 

nu
cl

eu
s

30d 130d 30d 100d ES
0

50

100

%
 o

f M
N

 w
ith

 P
PA

R
α

 in
 th

e 
nu

cl
eu

s

30d 130d 30d 100d ES
0

50

100

%
 o

f M
N

 w
ith

 P
PA

R
γ 

in
 th

e 
nu

cl
eu

s

Motor neurons
PPARα PPARβ/δ PPARγ NTG

hSOD1G93A

30d 130d 30d 100d ES
0

50

100

%
 o

f M
N

 w
ith

 P
PA

R
β

/δ
 in

 th
e 

nu
cl

eu
s

30d 130d 30d 100d ES
0

50

100

%
 o

f M
N

 w
ith

 P
PA

R
α

 in
 th

e 
nu

cl
eu

s

30d 130d 30d 100d ES
0

50

100

%
 o

f M
N

 w
ith

 P
PA

R
γ 

in
 th

e 
nu

cl
eu

s

Motor neurons
PPARα PPARβ/δ PPARγ

30d 130d 30d 100d ES
0

50

100

%
 o

f M
N

 w
ith

 P
PA

R
β

/δ
 in

 th
e 

nu
cl

eu
s

30d 130d 30d 100d ES
0

50

100

%
 o

f M
N

 w
ith

 P
PA

R
α

 in
 th

e 
nu

cl
eu

s

30d 130d 30d 100d ES
0

50

100

%
 o

f M
N

 w
ith

 P
PA

R
γ 

in
 th

e 
nu

cl
eu

s

Motor neurons
PPARα PPARβ/δ PPARγ NTG

hSOD1G93A
NTG
hSOD1G93A

 

Fig. 17 Motor neurons with PPARα, PPARβ/δ and PPARγ predominantly localized in the nucleus 

are expressed as percentage of the total number of motor neurons considered.  
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Fig. 18: Astrocytes with PPARα, PPARβ/δ and PPARγ predominantly localized in the nucleus are 

expressed as percentage of the total number of astrocytes considered.  
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Fig. 19 Microglia with PPARα, PPARβ/δ or PPARγ predominantly localized in the nucleus are 

expressed as percentage of the total number of microglia considered.  
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In summary, the results obtained so far show a strong activation of PPAR 

transcriptional activity at the end stage of the disease. The data obtained with the 

Transcription Factor Assay on the entire spinal cord and then with the 

immunohistochemical analysis on the specific cell types show that the increase in 

PPAR transcriptional activity at the end stage of the disease is not due to an 

increased translocation into the nucleus, suggesting that ligand-dependent 

mechanisms and/or different molecules recruitment are involved.  

 

Analysis of the expression of the isoform-specific PPAR target 

genes in the spinal cord of hSOD1-G93A mice 

We next sought to identify the isoform of PPARs responsible for the increase of 

luciferase activity at the end stage of hSOD1-G93A mice by analysing the 

expression of the target genes of PPARα, PPARβ/δ and PPARγ in spinal cords of 

hSOD1-G93A mice by semi-quantitative RT-PCR. We identified a target gene for 

each isoform of PPARs, i.e. medium chain acyl-CoA dehydrogenase (MCAD) for 

PPARα (Cullingford et al., 2002) Acyl CoA synthetase long chain 6 (Acsl6) for 

PPARβ/δ (Basu-Modak et al., 1999) and lipoprotein lipase (LPL) for PPARγ 

(Victor et al., 2006). 

The RT-PCR analysis of MCAD, Acsl6 and LPL showed that MCAD [Fig. 20] and 

Acsl6 [Fig. 22] levels remain fairly constant throughout the disease while LPL 

expression slightly increases at the onset of the disease (100 days), and further 

increases at the end stage [Fig. 21]. 

 

 



 Results 
___________________________________________________________________ 

 82

 

30d 75d 100d 130d 30d 75d 100d ES
0.0

0.2

0.4

0.6

0.8

1.0

A
dj

. V
ol

. (
In

t/m
m

2 )

NTG
hSOD1G93A

30d 75d 100d 130d 30d 75d 100d ES
0.0

0.2

0.4

0.6

0.8

1.0

A
dj

. V
ol

. (
In

t/m
m

2 )

NTG
hSOD1G93A

NTG
hSOD1G93A

MCAD

30d 75d 100d 130d 30d 75d 100d ES
0.0

0.2

0.4

0.6

0.8

1.0

A
dj

. V
ol

. (
In

t/m
m

2 )

NTG
hSOD1G93A

30d 75d 100d 130d 30d 75d 100d ES
0.0

0.2

0.4

0.6

0.8

1.0

A
dj

. V
ol

. (
In

t/m
m

2 )

NTG
hSOD1G93A

NTG
hSOD1G93A

MCAD

 

Fig. 20: RT-PCR analysis of MCAD expression in the spinal cord of hSOD1-G93A mice. The spinal 

cords of female PPRE-Luc +/- mice transgenic or non-transgenic for the mutant (G93A) human 

SOD1 were harvested at the critical stages of the pathology, i.e. 30, 75, 100 days (d=days), end stage 

(ES). The RNA was extracted, reverse transcribed to cDNA, and used as template for RT-PCR. 
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Fig. 21: RT-PCR analysis of Acsl6 expression in the spinal cord of hSOD1-G93A mice. The spinal 

cords of female PPRE-Luc +/- mice transgenic or non-transgenic for the mutant (G93A) human 

SOD1 were harvested at the critical stages of the pathology, i.e. 30, 75, 100 days (d=days), end stage 

(ES). The RNA was extracted, reverse transcribed to cDNA, and used as template for RT-PCR. 
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LPLLPL

 

Fig. 22: RT-PCR analysis of LPL expression in the spinal cord of hSOD1-G93A mice. The spinal 

cords of female PPRE-Luc +/- mice transgenic or non-transgenic for the mutant (G93A) human 

SOD1 were harvested at the critical stages of the pathology, i.e. 30, 75, 100 days (d=days), end stage 

(ES). The RNA was extracted, reverse transcribed to cDNA, and used as template for RT-PCR. 

 

These results suggested that PPARγ is the isoform involved in the increase of 

PPARs activity at the end stage of the disease. 

To confirm this observation we decided to analyse the expression of other PPARγ 

target genes and we selected genes involved in the antioxidant system, like Catalase 

(Bernardo et al.; Okuno et al., 2008) and Glutathione S-transferase alpha 2 (Gsta2) 

(Park et al., 2004a), as well as the Peroxisome Proliferator Activated Receptor γ 

Coactivator α (PGC1α), a coactivator of PPARγ which is known to be regulated by 

PPARγ itself (Hondares et al., 2006). 

The RT-PCR analysis of the expression of Cat, Gsta2 and PGC1α showed that Cat 

[Fig. 23] and PGC1α [Fig. 25] show a similar trend of reduction till the onset of the 

disease, 100 days, then the levels of PGC1α slightly increase while the Cat 

expression increases in a significant manner at the end stage of the disease. Gsta2 
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expression remains fairly constant till the end stage when it increases significantly 

[Fig. 24].  
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Fig. 23: RT-PCR analysis of Cat expression in the spinal cord of hSOD1-G93A mice. The spinal 

cords of female PPRE-Luc +/- mice transgenic or non-trangenic for the mutant (G93A) human 

SOD1 were harvested at the critical stages of the pathology, i.e. 30, 75, 100 days (d=days), end stage 

(ES). The RNA was extracted, reverse transcribed to cDNA, and used as template for RT-PCR. 
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Fig. 24: RT-PCR analysis of Gsta2 expression in the spinal cord of hSOD1-G93A mice. The spinal 

cords of female PPRE-Luc +/- mice transgenic or non-trangenic for the mutant (G93A) human 

SOD1 were harvested at the critical stages of the pathology, i.e. 30, 75, 100 days (d=days), end stage 

(ES). The RNA was extracted, reverse transcribed to cDNA, and used as template for RT-PCR. 
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Fig. 25: RT-PCR analysis of PGC1α expression in the spinal cord of hSOD1-G93A mice. The spinal 

cords of female PPRE-Luc +/- mice transgenic or non-trangenic for the mutant (G93A) human 

SOD1 were harvested at the critical stages of the pathology, i.e. 30, 75, 100 days (d=days), end stage 

(ES). The RNA was extracted, reverse transcribed to cDNA, and used as template for RT-PCR. 

 

These results further confirmed our hypothesis that PPARγ activation increases at 

the end stage of the disease. 

 

Quantification of the nuclear fluorescence of PPARγ 

Based on the abovementioned observations, we decided to identify the cell type 

involved in the increase in PPARγ activity observed in the hSOD1-G93A mice at 

the end stage of the disease. The nuclear staining of PPARγ in the lumbar sections 

of spinal cord of nontransgenic and hSOD1-G93A mice seemed to be much more 

intense in the nuclei of motor neurons compared to the nuclei of non-neuronal cells. 

Therefore, we decided to confirm this observation by quantifying the intensity of 

the fluorescence of the signal obtained with the immunostaining for PPARγ and 

normalizing it versus the intensity of the nuclear staining obtained with Hoechst 

33342. The reason why we used this approach is because the DNA content in the 
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nuclei of motor neurons is more diluted when compared to that of the non neuronal 

cells, due to the bigger size of motor neuronal nuclei. A normalization on Hoechst 

33342 signal would take into account the component of the larger magnitude of 

motor neuronal nuclei. The quantification of fluorescence intensity was obtained 

using the NIH software ImageJ. 

The results obtained show that the intensity of the fluorescence signal of PPARγ 

staining normalized to the intensity of Hoechst 33342 staining is much more 

elevated in the nuclei of motor neurons compared to the nuclei of non-neuronal 

cells [Fig. 26]. These results demonstrate that PPARγ is abundant in motor neurons 

and led us to hypothesize that the motor neurons are the most likely cell type to be 

involved in the increase in PPARγ activity at the end stage. 
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Fig. 26: Quantification of the intensity of PPARγ staining in the nuclei of motor neurons (MN) and 

non neuronal cells (NNC) in lumbar spinal cord sections stained for PPARγ and the nuclear dye 

Hoechst 33342 from non transgenic (NTG) and hSOD1-G93A mice.   
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Analysis of the expression of PPARγ target genes in the NSC-34 

motor neuron cell line 

On the basis of the high amount of PPARγ identified in the nuclei of motor neurons, 

we decided to focus on this cell type and to switch to a in vitro system. Thus, we 

investigated the expression of the PPARγ target genes in the NSC-34 cells, an 

immortalized mouse motor neuron cell line. 

RT-PCR analysis of LPL, Cat and PGC1α transcripts in NSC-34 cells transiently 

transfected with an expression vector coding for hSOD1-G93A showed that the 

presence of the mutant protein significantly increases the levels of the PPARγ target 

genes taken into consideration [Fig. 27]. Gsta2 expression could not be analysed in 

this cellular model due to its low expression which renders it undetectable by RT-

PCR. 
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Fig. 27: RT-PCR analysis of LPL, Cat and PGC1α expression in the NSC-34 cells transiently 

transfected with an expression vector encoding hSOD1-G93A or an empty vector. The RNA was 

extracted, reverse transcribed to cDNA, and used as template for RT-PCR. 

 

In summary, our results demonstrate an increase of PPARγ activity at the end stage 

of the disease that, in our hypothesis, could represent a late attempt to counteract 

the neurodegenerative process. Pharmacologically anticipating the activation of 

PPARγ could result in a delay of the onset of the pathology and, thus, ameliorate 
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the disease outcome. Our results on NSC-34 cells transiently transfected with a 

vector encoding for hSOD1-G93A clearly indicate that motor neurons are the cell 

type involved in the activation of PPARγ during the degenerative process.  
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DISCUSSION 
The vast majority of neurodegenerative disorders are adult-onset, incurable 

diseases. Understanding the pathogenetic mechanisms underlying these disorders 

and finding molecules apt to correct such processes are, therefore, among the 

hottest topics of biomedical research. The need of effective therapy is also an urgent 

social need, especially in western countries, where the incidence of these conditions 

is growing up as a consequence of the aging of the populations and the increased 

lifespan.  

Amyotrophic Lateral Sclerosis is one of the most common adult-onset 

neurodegenerative diseases characterized by progressive degeneration of upper and 

lower motor neurons leading to paralysis and death due to respiratory failure within 

3-5 years from the onset. The incidence and prevalence of ALS are 1-2 and 4-6 per 

100,000 each year, respectively, with a lifetime ALS risk of 1/600 to 1/1,000 

(Pasinelli and Brown, 2006). Only one drug, riluzole, has proved effective in 

extending the lifespan of patients with ALS, but only by 3-6 months (Bensimon et 

al., 1994; Lacomblez et al., 1996). For this reason the development of effective 

therapies for this pathology is highly invocated, but to date all attempts to develop 

novel treatments have failed. In this context, two recent reports on the 

neuroprotective activity of the PPARγ agonist Pioglitazione in ALS mice result of 

considerable interest: in these studies, two independent groups demonstrated that 

Pioglitazone, an agent which is currently used in therapy for the treatment of type II 

diabetes, is neuroprotective in a mouse model of Amyotrophic Lateral Sclerosis, the 

hSOD1-G93A transgenic mice. Pioglitazone treatment started before the 

appearance of the symptoms, improved the motor performance and reduced the 

weight loss, attenuated motor neuron death and increased the survival. In addition, 

Pioglitazone reduced microglial activation and gliosis in the spinal cord, decreasing 

the production of pro-inflammatory mediators, such as iNOS, NF-kB and COX2 

(Kiaei et al., 2005; Schutz et al., 2005).While the activity of the PPARs has been 

extensively characterized in peripheral organs, due to their well-known involvement 

in different metabolic pathways, the functions of the different isoforms in the 

central nervous system have been investigated only in the last few years (Bright et 

al., 2008; Heneka and Landreth, 2007). Nevertheless, the beneficial properties of 
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the PPARs towards the diseases of the CNS has recently gained more and more 

consideration based on the anti-inflammatory and neuroprotective activities recently 

demonstrated in a variety of animal models of neuroprotective disease, like 

Multiple Sclerosis, Parkinson’s disease, Alzheimer’s disease and Amyotrophic 

Lateral Sclerosis (Heneka et al., 2005; Kiaei et al., 2005; Natarajan and Bright, 

2002; Niino et al., 2001; Schutz et al., 2005; Shimazu et al., 2005; Yan et al., 2003; 

Zhao et al., 2005).  

On this ground, we decided to investigate the transcriptional activity of PPARs in 

the the central nervous system of the hSOD1-G93A mouse line, a well-

characterized animal model of Amyotrophic Lateral Sclerosis, with the aim of 

identifying the stage of the disease at which the activity of PPARs becomes relevant 

to the pathology. To this end, we took advantage of the transgenic mouse PPRE-

Luc, available in the laboratory, in which the reporter gene luciferase is expressed 

under the control of a promoter responsive to PPARs (Ciana et al., 2007). Thus, we 

crossed the PPRE-Luc mice with the hSOD1-G93A animals to obtain mice that are 

heterozygous for the PPRE-Luc transgene and heterozygous or null for the hSOD1-

G93A transgene. These mice represent a invaluable tool to investigate the 

transcriptional activity of PPARs during the progression of the disease, because 

luciferase activity is taken as a surrogate of PPAR activity and can be more easily 

measured. The analysis of the enzymatic activity of luciferase in the spinal cord and 

the brain areas of PPRE-Luc;hSOD1-G93A mice shows an abrupt increase of 

PPAR activity at the end stage of the disease in the spinal cord, which is the organ 

principally involved in the pathology, and in all the brain areas analysed. We 

demonstrated that this phenomenon clearly depends on the pathology because it is 

not shared by the peripheral organs (e.g. kidney and liver). Furthermore, it is not 

dependent on the metabolic modifications induced from the starvation that the 

animals experience during the last days of their life when they are almost 

completely paralysed and, thus, unable to reach food and water. We suggest that the 

increase in PPAR activity at the end stage of the disease could represent a 

compensatory mechanism aimed at counteracting the intense neurodegenerative 

process which takes place at this time. We subsequently decided to further 

investigate this mechanism by identifying the isoform(s) responsible for the 
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increase of PPARs activity at the last stage of the disease and the cell type(s) 

involved. We first analysed the nuclear translocation of PPARα, PPARβ/δ and 

PPARγ in the spinal cord of hSOD1-G93A mice with an ELISA-based 

Transcription Factor Assay. The results obtained from these experiments showed 

that the overall nuclear presence of the different isoforms of PPARs does not 

change during the course of the disease. In order to obtain a cell specific 

information about the distribution of PPARs in the spinal cord, we next analysed 

the localization of PPARα, PPARβ/δ and PPARγ by immunohistochemistry on 

sections from the lumbar spinal cord of hSOD1-G93A mice at the different stages 

of the pathology using primary antibodies for the specific isoforms of PPARs and 

cell specific markers. 

Our stainings revealed that all the three isoforms of PPARs are expressed in spinal 

cord motor neurons; PPARα and PPARβ/δ are localized prevalently into the 

nucleus but show also a cytoplasmic staining, while PPARγ is exclusively nuclear. 

All the three isoforms are present also in astrocytes where they are exclusively 

nuclear and, in keeping with data published by other groups, PPARα is the most 

abundant isoform (Heneka and Landreth, 2007). Only PPARγ was detectable in 

microglia, and was localized into the nucleus. Accordingly to the literature 

microglia should express also PPARα and PPARβ/δ but PPARγ is the dominant 

isoform (Cullingford et al., 1998).  

Immunohistochemical analysis confirms that the increase in PPAR activity at the 

end stage of the disease is not dependent on the increase in the nuclear presence of 

the receptors in the different cell types of the spinal cord, suggesting that it possibly 

derives from ligand-dependent effects and/or the differential recruitment of co-

regulators. To identify the specific isoform whose activity is important during the 

pathology we analysed the expression of isoform-specific target genes, i.e. MCAD 

for PPARα (Cullingford et al., 2002), Acsl6 for PPARβ/δ (Basu-Modak et al., 

1999) and LPL for PPARγ (Victor et al., 2006). Only the expression of LPL 

abruptly increases at the end stage of the disease strongly suggesting that the 

increase in luciferase activity detected at the later stage of ALS is due to the 

activation of PPARγ. To confirm this result we analysed other PPARγ target genes, 

i.e. Catalase (Okuno et al., 2008), Glutathione S-tranferase alpha-2 (Park et al., 
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2004a) and Peroxisome Proliferator Activated Receptor gamma coactivator 1-alpha 

(Hondares et al., 2006). The RT-PCR analysis of the expression of Cat, Gsta2 and 

PGC1α showed that Cat and PGC1α show a similar trend of reduction till the onset 

of the disease, 100 days, then the levels of PGC1α slightly increase while the Cat 

expression increases in a significant manner. Gsta2 expression remains fairly 

constant till the end stage when it increases significantly. LPL, the first PPARγ 

target gene analysed in our work, is a lipase which transfers lipids to tissues by the 

hydrolysis of triglycerides in chylomicrons and VLDL particles (Davies, 1994). Its 

function in the brain has not been yet fully characterized but it was demonstrated 

that it transports membrane components such as lipids, cholesterol and vitamin E to 

neurons (Ben-Zeev et al., 1990; Nunez et al., 1995). Furthermore, LPL stimulates 

the endocytosis of lipids in neuronal cells (Paradis et al., 2003). Thus, it is 

reasonable to hypothesize that the increase in LPL expression at the end stage of the 

disease could lead to enchanced endocytosis of lipoproteins limiting the 

propagation of lipid peroxidation in the highly oxidative environment that is typical 

of ALS and possibly toxic for motor neurons (Keller et al., 1999). Furthermore, in 

keeping with our results, another group demonstrated an increase in LPL levels in 

the context of a wide analysis of differentially expressed genes in the spinal cord of 

hSOD1-G93A mice at the onset of the pathology (Chen et al., 2010). Catalase is an 

anti-oxidant enzyme which catalyzes the decomposition of hydrogen peroxide to 

water and oxygen while PGC1α is a transcriptional co-activator of PPARγ which 

has also been demonstrated to be transcriptionally regulated by PPARγ itself 

(Hondares et al., 2006). PGC1α has been reported to play a protective role on 

mitochondrial biogenesis. Interestingly, recent data showed that the levels of genes 

controlling cellular bioenergetics, expressed in response to PGC1α activation, are 

under-expressed in PD patients. Furthermore, activation of PGC1α was described to 

block dopaminergic neuronal loss in animal models of PD (Zheng et al., 2010). It is 

not surprising that catalase and PGC1α tend to decrease during the progression of 

the disease when the anti-oxidant system and the mitochondrial function become 

progressively impaired. Conversely, their increase at the end stage of the disease is 

probably dependent on PPARγ activation in an attempt to provide a late protective 

reaction. Glutathione S-transferase alpha-2 belongs to the family of Glutathione S-
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transferases which detoxify a wide variety of compounds, such as xenobiotics or 

endogenous compounds like peroxidised lipids, by conjugating reduced glutathione 

to the electrophilic center of the substrate (Berhane et al., 1994). Its PPARγ-

dependent activation at the last stage of the disease could represent a protective 

action directed to scavenge the peroxidised lipid that are present in the degenerated 

nervous tissue.  

Several lines of evidence indicate that the activity of PPARγ is involved in a wide 

variety of biological processes. It follows that the pharmacological activation of 

PPARγ in the context of Amyotrophic Lateral Sclerosis could represent a sort of 

“multi-targeted” approach that could address different mechanisms that are de-

regulated in the neurodegenerative process. In their studies, Kiaei and Schutz (Kiaei 

et al., 2005; Schutz et al., 2005) slowed the progression of the pathology by 

reducing neuronal cell death and ameliorating the symptoms with a chronic 

treatment with Pioglitazone started before the onset of the pathology. In view of the 

data obtained in the course of this thesis, we postulate that the protective effect of 

Pioglitazone could be due to an anticipation of the protective reaction that we 

observe at the end stage of the pathology. Pharmacologically bursting this multi-

faceted protective reaction could help counteracting the degenerative process before 

overt neuronal death takes place. Furthermore, it could also contribute to maintain 

in an active status the compensatory mechanisms of the CNS that have possibly 

been triggered in response to the early neurodegenerative events, but that fail soon 

when neuronal dysfunction reaches a critical threshold.  

On these bases we decided to further investigate the mechanisms of PPARγ 

activation at the end stage of the disease by identifying the cell type involved. 

The analysis of the fluorescence intensity into the cellular nuclei of lumbar spinal 

cord sections stained for PPARγ demonstrated that the intensity of the receptor 

signal is greater in motor neurons than in non- neuronal cells. This result is in line 

with the demonstration provided by Sarruf and colleagues that the levels of PPARγ 

are markedly reduced in both whole brain and hypothalamus of neuron-specific 

PPARγ knock out mice, thus indicating that neurons are the predominant source of 

PPARγ in the central nervous system (Sarruf et al., 2009). This data led us to 

hypothesize that motor neurons could be the most likely cell type involved in the 
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activation of PPARγ at the end stage of the disease in vivo. Thus, we decided to 

analyse the expression of the PPARγ target genes previously analysed in the spinal 

cords of hSOD1-G93A mice in an immortalized motor neuronal cell line, the NSC-

34 cells. NSC-34 is a hybrid cell line produced by fusion of motor neuron enriched, 

embryonic mouse spinal cord cells with mouse neuroblastoma (Cashman et al., 

1992) and represents the best available model for the studies on motor neuron 

biology. 

The expression of LPL, Cat and PGC1α in NSC-34 cells transiently transfected 

with the hSOD1-G93A-encoding expression vector is significantly increased as 

compared to the NSC-34 cells transfected with the empty vector. These data clearly 

confirm the involvement of motor neurons in PPARγ activation at the last stage of 

the disease; future studies will be aimed to further elucidate the molecular 

mechanisms of PPARγ protective activity on motor neurons in ALS. 
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