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Introduction

A brief history on quasiconvex duality on vector spaces and ur
contribution in the conditional case

Quasiconvex analysis has important applications in seo@tamization prob-
lems in science, economics and in finance, where convexity Imealost due to
absence of global risk aversion, as for example in Prospesbiy [56].

The first relevant mathematical findings on quasiconvextians were provided
by De Finetti [18], mostly motivated by Paretian ordinalityti Since then many
authors, as [13], [14], [26], [57], [69] and [71] - to menti@rst a few, contributed
significantly to the subject. More recently, a Decision Tityemomplete duality in-
volving quasiconvex real valued functions has been prapbg¢10]: in this theory
a key role is played by the uniqueness of the representatidrirasuch a way a
one to one relationship between the primal functional arsddiial counterpart is
provided. For a review of quasiconvex analysis and its appiin and for an ex-
haustive list of references on this topic we refer to Pen@L[7

Our interest in quasiconvex analysis was triggered by therepaper [11] on
quasiconvex risk measures, where the authors show thatasonable to weaken
the convexity axiom in the theory of convex risk measurespauced in [31] and
[35]. This allows to maintain a good control of the risk, ifeoalso replaces cash
additivity by cash subadditivity [25]. The choice of relénetaxiom of cash addi-
tivity is one of the main topics nowadays, especially whemkais present lack of
liquidity. Maccheroni et al. [11] point out that loosing stproperty convexity is not
anymore equivalent to the principle of diversification:velisification should not
increase the risk '. The recent interest in quasiconvexcstek measures is also
testified by a second paper [19] on this subject, that wasredpy [11].
Furthermore when passing to the dynamics of the risk thelwsiams of risk
measures seem too restrictive and incompatible with tinmsistency: Kupper and
Schachermayer [54] showed that the only law invariant tiowescstent convex risk
measure turns out to be the entropic one.

A function f : L — R := RU{—w} U {0} defined on a vector spateis qua-
siconvex if for allc € R the lower level set§X € L | f(X) < c} are convex. In a
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general setting, the dual representation of such functi@sshown by Penot and
\olle [71]. The following theorem, reformulated in ordertie compared to our re-
sults, was proved by Volle [76], Th. 3.4. and its proof rel@sa straightforward
application of Hahn Banach Theorem.
Theorem ([76]). Let L be a locally convex topological vector spacebe its dual
spaceand fL — R :=RU{—o}U{»} be quasiconvex and lower semicontinuous.
Then
f(X) = supR(X'(X),X") (C.1)
Xrel!

where R RxL’ — R is defined by

R(t,X’) :=gr;fL{f(é) | X'(&) >t}

The generality of this theorem rests on the very weak assangpimade on the
domain of the functiorf, i.e. on the spack. On the other hand, the fact that only
real valuedmaps are admitted considerably limits its potential appions, spe-
cially in a dynamic framework.

To the best of our knowledge,@nditionalversion of this representation was
lacking in the literature. Whe(Q, .#, (% )i>0,P) is a filtered probability space,
many problems having dynamic features lead to the analysizapsm: L; — Lg
between the subspadasC LY(Q,.%,P) andLs C L%(Q,.%,P), 0< s < .

In the first chapter of this thesis we consider quasiconvegane this form
and analyze their dual representation. We provide (seeréhea.2 for the exact
statement) a conditional version of (C.1):

n(X) =ess sup R(Eq[X|%],Q), (C.2)
Qel{nz

where
R(Y,Q) i=essinf {m(&)| Eql¢|7d > ¥}, Y € Ls

L; is the order continuous dual spacelpfaind &7 =: {g—g | Q<< ]P’}.

Furthermore, we show that if the mags quasiconvex, monotone and cash additive
then it is convex and we easily derive from (C.2) the well knawpresentation of

a conditional risk measure [17].

The formula (C.2) is obtained under quite weak assumptiortse spacé; which
allow us to consider mapsa defined on the typical spaces used in the literature
in this framework1*(Q,.%,P), LP(Q,.%,P), the Orlicz spacet” (Q,.%,P). In
Theorem 1.2 we assume thatis lower semicontinuous, with respect to the weak
topologyo (L, L;). As shown in Proposition 1.2 this condition is equivalentdéa<
tinuity from below, which is a natural requirement in thisntext. We also provide

in Theorem 1.3 the dual representation under a strong upp@centinuity assump-
tion.
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The proofs of our main Theorems 1.2 and 1.3 are not based bnitpes sim-
ilar to those applied in the quasiconvex real valued cask fit8 to those used for
convex conditional maps [17]. Indeed, the so called scatian of it via the real
valued mapX — Ep[(X)] does not work, since this scalarization preserves convex-
ity but not quasiconvexity. The idea of our proof is to applyX) to the real valued
quasiconvex mapi : L; — R defined bym (X) := essup,.a m(X)(w), A € Zs,
and to approximate(X) with

m(X) = A%_ T (X)1a,

wherel is a finite partition ofQ of .%s measurable setd € I'. As explained in
Section 1.6.1, some delicate issues arise when one trigsply this simple and
natural idea to prove that:

ess sup essinf {11(§)|Eq[¢|-Fs] >q Eq[X|Zs|}
QeLiny &<kt

=essnf ess sup essinf {1 (§)|Eq[&| %] >qEq[X| 4} (C.3)
r QeLing  &ekt

The uniform approximation result here needed is stateddrkéy Lemma 1.8 and

Section 1.6.3 is devoted to prove it.

The starting point of this Thesis: Stochastic Utilities andthe Con-
ditional Certainty Equivalent

In the last decade many methodologies for pricing in incatgmarkets were
build on expected utility maximization with respect to témal wealth: classic ex-
amples of this approach are the notions of fair price [15fatety equivalent [32]
and indifference price [5], [16], [43].

These techniques were developed both in a static framewuatkraa dynamic
context [22]. In the dynamic case however, the utility fuoctrepresents prefer-
ences at a fixed time T, while the pricing occurs at any time&beeh today and the
expiration T (backward pricing). The martingale propertyte indirect utility (the
value function of the optimization problem [24]) is an auttio consequence of the
dynamic programming principle.

This classic backward approach has recently been arguédi ii#2], [62], [63]
and a novel forward theory has been proposed: the utilitgtfan is stochastic, time
dependent and moves forward.

In this theory, the forward utility (which replaces the iretit utility of the classic
case) is built through the underlying financial market andtsatisfy some appro-
priate martingale conditions.

Our research is inspired by the theory just mentioned, bifferent approach is
here developed: our preliminary object will be a stochasfitamic utilityu(x,t, w)
- i.e. a stochastic field [52] - representing the evolutiorthef preferences of the
agent (see Definition 2.1).
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The definition of the Conditional Certainty Equivalent (OQQBat we propose
and analyze (Definition 2.9), is the natural generalizatiorthe dynamic and
stochastic environment of the classical notion of the @efteequivalent, as given
in [74]. The CCE, denoted b{s;(-), provides the times value of ank measur-
able claim 6 <'t) in terms only of the Stochastic Dynamic Utility (SDU) and the
filtration.

The SDU that we consider does not requrpriori the presence of a financial
market; neither it will have any specific recursive strueturor will necessarily be
an indirect utility function based on optimal trading in timarket. However appro-
priate conditions are required on the SDU in order to dedutsésting properties
for the CCE.

The next step, which is left for future research, would beitrestigation of the
compatibility conditions between the value assigned byO@& and existing prices
when an underlying market indeed exists. Clearly, not alUSPe compatible with
the market. One extreme case is when the SDU can be deterimntbeé market
and the initial preferences structure, as in the case oftitveaird utility theory.

When we first bumped into the notion of Conditional CertaiBtyuivalent we
immediately realized that this was in general a non concaap: ranyway it was
a monotone and quasiconcave operator between vectoekatfor this reason a
theory of duality involving quasiconcavity instead of camity was necessary to
start a rigorous study of this topic. Due to the particulancture of the CCE, we
were soon able to provide a direct proof of the dual repregiemt (see Section 2.5):
we exploit directly the results of Maccheroni et al. [10]paling any intermediate
approximation argument. In this way the reader can appeettia value of the result
-that confirms what have been obtained in Chapter 1- withettirm crazy in a thick
maze of technical lemmas.

However, in order to show the dual representation of the C@Enwst first de-
fine it on appropriate vector lattices. A common approach iestrict the view to
bounded random variables, so that no further integratubtyditions are requested.
But as soon as we try to extend the scenario to unboundedmawvadables it im-
mediately appears that the distortion provoked by utilitydtion can be mastered
only in ad hocframeworks.

To this end we introduce in Section 2.4, in the spirit of [7generalized class
of Orlicz spaces which are naturally associated to the SBEnténto account. We
show with some examples that these spaces also play a funtiEmae for time
compatibility of the CCE, sinc€s; : M®% — M%, whereM® is the generalized
Orlicz space of% measurable random variables associatadxd, w).

Further comments

Chapter 2 appears as a short parenthesis in this work andecasad as a self
contained discussion. But as a matter of fact this was tha neaison that lead us in
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our research: one of the simplest example of evaluation e it is the Certainty
Equivalent, fails in general to be concave. Since the stahdaality theory for
concave maps fails we were forced to look for a generalinatfdhe duality results
provided by Penot and \olle.

For this reason we report here the original proof of the deptesentation theorem
for the CCE (Theorem 1.2), which gave us the motivation aedstrength to look
for the more general and involving one provided in Chapter 1.

A brand new point of view: the module approach

The concept of module over a ring of functions is not new indkierview of
mathematical studies but appeared around fifties as in[[@]},[41] and [68]. Hahn
Banach type extension theorems were firstly provided faiqadar classes of rings
and finally at the end of seventies (see for instance [9]) ggloedered rings were
considered, so that the casel8fwas included. Anyway, until [28], no Hyperplane
Separation Theorems were obtained. It is well known thatymfiamdamental results
in Mathematical Finance rely on it: for instance Arbitragee®ry and the duality
results on risk measure or utility maximization.

In the series of three papers [27], [28] and [53] the authdltamtly succeed in
the hard task of giving an opportune and useful topologicatsure toL°-modules
and to extent those functional analysis theorems which elevant for financial
applications. Once a rigorous analytical background has barefully built up, itis
easy to develop it obtaining many interesting results. lagiér 3 of this Thesis we
are able to generalize the quasiconvex duality theory toghrticular framework.

It is worth to notice that this effort to extend the resultsGhapter 1 tol°-
modules, is not a mathematical itch. Whenever dealing watid@ional financial
applications - such as conditional risk measures - vectareppresent many draw-
backs as it has been argued in Filipovic et al. [27]. In theepdpproaches to
Conditional Risk, the authors compare the two possibletpafview using vector
spaces (as it is common in the present literaturd)®ermodules. The results ob-
tained are crystalline and highlight how the second choétigebsuites the financial
scopes.

The intuition hidden behind the use of modules is simple aatdinal: suppose a
set. of time-T maturity contingent claims is fixed and an agentomputing the
risk of a portfolio selection at an intermediate time T. A flow of information

- described by#: - will be available at that timé: as a consequence, all thg-
measurable random variables will be known. Thusfheneasurable random vari-
ables will act as constants in the process of diversificadfoour portfolio, forcing

us to consider the new sef - L(Q,.%,P) as the domain of the risk measures. This
product structure is exactly the one that appears when womkith L°-modules.

The main result of quasiconvex duality is given in Theoreth @&d Corollar-
ies 3.1 and 3.2. Differently from Theorems 1.2 and 1.3 heeerépresentation is
obtained dropping the assumption of monotonicity, as itpeaed for real valued
quasiconvex maps. The map E — L°(%) can be represented as
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nX)=  sup  R(U(X),W),
ueZ(E,L0(9))

whereE is aL%-module andZ (E,L%(¢)) the module of continuous’-linear func-
tionals ovelt.

A posteriorj adding the assumption of monotonicity, we can restrictapgémiza-
tion problem over the set of positive and normalized funwipas we show in The-
orem 3.2.

The proof of these results are plain applications of the lylame Separation
theorems and not in any way linked to some approximation alasization argu-
ment. If one carefully analyzes them then he would apprecizny similarities
with the original demonstrations by Penot and \olle.

A remarkable upgrade compared to Chapter 1, which appedine d®st evidence
of the power an novelty brought by modules, is the stronguerigss result for con-
ditional risk measures (see Theorem 3.2 for the preciserstait), which perfectly
matches what had been obtained in [10] for the static case.

Under suitable conditiong : L{‘;(ﬁ‘) — L9(%) is a conditional quasiconvex risk
measuréf and only if

p(X)= sup R(E {—%XW} ,Q> (C.4)

Qe

whereR is unique in the class#PP(L°(%) x 229). In this sense, in agreement
with [10], we may assert that there exists a complete quageoduality between
quasiconvex risk measures andPP(L%(¥) x 29).



Chapter 1
On the dual representation on vector spaces

Conditional maps are a characteristic feature of the Piibst@Ebenvironment. We
may hazard that the ‘red line’that distinguishes Probgifilom Analysis is the con-
cept of Conditional Expectation, which is the simplest eglnof conditional map.
The conditional expectatioBp[X|¥] filters a random variabl¥ with the informa-
tion provided by the sigma algeb#, giving a sort of backward projection .
When Probability crashes in Mathematical Finance and Brodcsa great number
of questions arise: in fact any linear property -such thasisfeed by the conditional
expectation- crumbles under the heavy load of the risk awexs the agents play-
ing in the markets. This affects the properties of the camail maps taken into
account in Pricing Theory and Risk Management. A peculiangxe can be found
in [73] where a general theory of Nonlinear Expectationsagatoped relying on
Backward Stochastic Differential Equations.

The current literature is rolling around four mainstreaimsig conditional maps: the
discussion of the axioms, the right domain (usually vecparcgs of random vari-
ables), the robustness of the method and the time consystenthis Chapter we
would like to make a tiny step forward on these themes: cemisig general vec-
tor spaces and quasiconvex conditional maps we will negkssls obtain a robust
representation which is a crucial prerequisite for disitigsén the future research)
time consistency.

1.1 Conditional quasiconvex maps

The probability spacéQ, .7, P) is fixed throughout this chapter and supposed to be
non-atomic¥ C .# is any sigma algebra contained.4f. As usual we denote with
L%(Q,.7,P) the space of# measurable random variables that &ra.s. finite and

by L9(Q,.7,P) the space of extended random variables that take valiRs/ifvo}.

We also defind? (#) ={Y € L% |Y >0} andL® (#) ={Y e L% |Y > 0}.
Eq[X] represents the expected value of a random varighiéth respect to a given
probability measur®. For every seA € .% the indicator functioris belongs to
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L%(Q,.#,P) and is valued 1 foiP-almost everyw € A and 0 forP-almost every
w € AC.
The Lebesgue spaces,

LP(Q,.7,P) = {X € L%(Q,.Z,P) | Ep[|X|P] < +0} p € [0,00]
and the Orlicz spaces (see next Chapter for further details)

LYQ,7.P) = {XeL%Q,#,P)| 3a>0 Ep[i(aX)]<w}
M?(Q,7,P) = {XeL%Q,Z,P)|Ep[®@(aX)] <o Va >0}

will simply be denoted by.P/L%/MY, unless it is necessary to specify the sigma
algebra, in which case we writé, /L% /M%.

It may happen that given a TVE we denote byL* either the topological dual
space ot or the order dual space (see [2] p. 327 for the exact definitimpolog-
ical/order dual spaces may coincide as lfBrspaces or Morse spacht®, but in
general they can differ as for the Orlicz spac® (for an opportune choice ap).
Anyway we will specify case by case what we are intendind hy

In presence of an arbitrary measyreif confusion may arise, we will explic-
itly write =, (resp.>,), meaningu almost everywhere. Otherwise, all equali-
ties/inequalities among random variables are meant tolhalc..

The essential{ almost surely)supremum essip, (X, ) of an arbitrary family
of random variableX, € L°(Q,.%,P) will be simply denoted by sygX;), and
similarly for the essentiahfimum The supremunsup, (X, ) € L°(Q,.#,P) gives
by definition the smallest extended random variable gredteny X, ; similarly the
infimumis the greatest extended random variable smaller odgnyBoth of them
are unique up to a set @#measure equal to 0. The reader can look at [30] Section
A.5 for an exhaustive list of properties. Here we only ret¢adit 1asup, (X)) =
sup, (1aX, ) for any.# measurable se.

V (resp./\) denotes the essentid @lmost surelymaximum(resp. the essential
minimun) between two random variables, which are the usual latterations.
Hereafter the symbols denotes inclusion and lattice embedding between two lat-
tices; a lattice embedding is an isomorphism between tweovepaces that pre-
serves the lattice operations.

We consider a lattice 7 := L(Q,.#,P) C L°(Q,.Z,P) and a latticeLy :=
L(Q,9,P) C L%(Q,¥,P) of Z (resp.4) measurable random variables.

Definition 1.1. Amap1: Lz — Ly is said to be

(MON) monotone increasing if for eve,Y € L »
X<y = nX)<mny);
(QCO) quasiconvexif foreverf,Y e Lz, A € L% and0< AN <1

MMAX+ (1=A)Y) <m(X) Vv (Y) ;
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(LSC) 1—lower semicontinuous if the s€iX € Lz | m(X) <Y} is closed for
everyY € Ly with respect to a topologyonL .

(USCy t—strong upper semicontinuous if the §&t € Lz | i(X) < Y} is open
for everyY € Ly with respect to a topology onL # and there exists at least one
0 € Lz such thatr(0) < +oo.

Remark 1.1. On the condition (QCO)
As it happens for real valued maps, the definition of (QCO}isiealent to the fact
that all the lower level sets

dY)={Xels|MX)<Y} VYely

are conditionally convex i.e. for ai,X; € &/(Y) and any?-measurable r.vA,
0<A <1,onehat\X;+ (1-A)Xy € Z(Y).
Indeed letrr(X;) <Y, i=1,2: thanks to (QCO)

TAXL+ (L= A)Xz) <max{m(X),n(Y)} <Y
i.e..o(Y) is conditionally convex.
Viceversa seY = max{ 1(X1), 11(X2) } thenXy, X € 27 (Y) implies from convexity
thatAXg + (1-AN)Xp € &Z(Y) and thenrm(A Xy + (1 —-A)Xz) <.

Remark 1.2. On the condition (LSC)

The class of closed and convex sets is the same in any topotogpatible with a
given dual system (Grothendieck [38] Chapter 2, Section\W&)remind the reader
that a topologyr is compatible with a dual systelt, E’) if the topological dual
space ofE w.r.t. T is E’. Therefore - assuming priori (QCO) - if two topologies
71, T give rise to the same dual space, then the conditipi{tc SC), 72 -(LSC), are
equivalent. This simplifies the things up when dealing witterspaces such &<
spaces.

Remark 1.3. On the condition (USC)
When¥ = g(Q) is the trivial sigma algebra, the mapis real valued and (USC)
is equivalent to

{XeLg | n(X) >Y} is closed for every € R.
But in general this equivalence does not hold true: in fact
{Xels|mX)<Y*={Xels |P(mX)>Y)>0} 2{Xels|nmX)>Y}

Anyway (USCY implies that considering a n€Kq }, Xo — X then lim sup, 1(Xqg) <
1i(X). For sake of simplicity suppose thatX) < +oo: letY € Ly, 1(X) <Y thenX
belongs to the open set={& € Lz | (&) < Y}. If X4 - X then there will exists
ap such that for everyg € V for every3 > ao. This means thatt(Xg) <Y for
everyf > ap and

limsupr(Xq) < supm(Xg) <Y VY > m(X).
a

B>ao
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Conversely it is easy to check thé — X = limsup, 11(Xy) < 1(X) implies that
the set{X € Lz | m(X) > Y} is closed. We thus can conclude that the condition
(USCY is a stronger condition than the one usually given in theditere for upper
semicontinuity. The reason why we choose this one is thaillitoe preserved by
the mapra.

Finally we are assuming that there exists at least ®reL s suchm(0) < +co:
otherwise the sefX € Lz | m(X) < Y} is always empty (and then open) for every
Y eLynLy.

Definition 1.2. A vector spacé & C L%; satisfies the property @) if
XelgyandAe . F = X1lpcLs. Q%)

Suppose thdt & (resp.Ly) satisfies the propertil ) (resp L).
Amapr:Lgs — Ly is said to be

(REG) regularifforever)X,Y e Lz andAe ¥
n(X1a+Y1ac) = m(X)1a+ 11(Y) Lpc.
or equivalently ifrt(X1a)1a = 11(X)1a.
Remark 1.4The assumption (REG) is actually weaker than the assumption
m(X1lp) =nm(X)ly VA€ Y. (1.1)

As shown in [17], (1.1) always implies (REG), and they areiesjent if and only
if 71(0) =0.

Itis well known thatrr(0) = 0 and conditional convexity implies (REG) (a simple
proof can be found in [17] Proposition 2). However, such icgtion does not hold
true any more if convexity is replaced by quasiconvexityviobsly, (QCO) and
(REG) does not imply conditional convexity, as shown by tregom

X— fHE[F(X)9)))

whenf : R — R is strictly increasing and convex d

1.2 The case of real valued maps whed = o(Q).

In this section we resume what has been already fully studi¢ige case? is the
trivial sigma algebra and then, reduces to the extended real llReWe report also
the proofs which matches those given by Penot and Volle,lfpthe understanding
of the role played by Hahn Banach Separation Theorem. Inwhig the reader
will be helped to appreciate the analogies between thevallp proofs and the
generalizations to the modules framework in Chapter 3.
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HereL » =L can be every locally convex topological vector spacelardenotes
its topological dual space. Consider. L — R := RU {e} satisfying (QCO) and
define:R:L* xR — R by

R(X*,t) :=sup{m(X) | X € L such thaX*(X) >t}.

Theorem 1.1.Let T as before
() If is (LSC) then:
m(X) = sup R(X',X'(X)).
X'eL*

(ii) If ris (USCY then:

m(X) = maxR(X’, X" (X)),
X'eL*

Proof. (i)By definition, for anyX’ € L', R(X’(X),X’) < r(X) and therefore

supR(X'(X),X") < m(X), X € L.

X'el!
Fix anyX € L and takee € R such thag > 0. ThenX does not belong to the closed
convex set{ e L: (&) < m(X) — €} := € (if m(X) = +oo, replace the set;
with {& € L: (&) < M}, for anyM). By the Hahn Banach theorem there exists a
continuous linear functional that strongly separatemd®;, i.e. there existsr € R
andX{ € L’ such that

XL(X) > a > X[ (&) for all & € €. (1.2)
Hence:
[EeL:iX(@)2XMX)} C (@) ={fcl:m&)>mX) e}  (1.3)
and

m(X) = supR(X'(X),X’) > R(X(X), Xe)
X'el!

=inf{m(&)| & € L such thai (&) > X/ (X)}
> inf{m(&) | & € L satisfyingr(§) > n(X) — e} > m(X) — €.

(iFor any fixedX € L, the set{é e L : (&) < r(X)} := & is convex open and
X ¢ &. By the Hahn Banach theorem there exists a continuous lifueational
that properly separates and &, i.e. there existex € R and X* € L* such that:
X*(X)>a>X*(&) forall § € &.
Hence{& e L:X*(&) > X*(X)} C (&) ={&cL:m(&)>mn(X)}and
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mX) > sup RY",Y*(X)) > RX", X" (X))
Y*elL*

= inf{m(&) | & € L such thaX*(&) > X*(X)}
> inf{n(&) | & € (&)} > mX).

Proposition 1.1.Suppose L is a lattice,*L= (L,>)* is the order continuous dual
space satisfying’L— L* and(L,o(L,L*)) is a locally convex TVS. If fL — R is
quasiconvexg (L,L*)-Isc (resp usc) and monotone increasing then

n(X)= sup R(Q(X),Q),
QeL: QD=1

resp. m(X) = max R(Q(X),Q).
pX) = max | RQMX).Q)
Proof. We apply Theorem 1.1 to the locally convex TVIS o(L,L*)) and deduce:

n(X)= sup R(Z(X),2).
ZelxCL?

We now adopt the same notations of the proof of Theorem 1.1ea@d= L, Z > 0.
Obviously if § € 6¢ thené —nZ € % for everyn € N and from (1.2) we deduce:

_X(E-X)
n

XL(E—nZ)<a<X.(X) = X2 , VneN

i.e.X, €L CLYandX{ # 0. HenceX/(1) = Ep[X{] > 0 and we may normaliz¥,
to X./X{(1).

1.3 Dual representation for an arbitrary ¢

From now or¥ is anyo-algebrad c .%.

1.3.1 Topological assumptions

Definition 1.3. We say thatt: Ly — Ly is
(CFB) continuous from belovf
X 1tX Pas. = nX)tmnX) Pas

In [8] it is proved the equivalence between: (CFB), orderdsdo(L#,L%;)-
(LSC), for monotone convex real valued functions. In thetpegposition we show
that this equivalence holds true for monotone quasiconeexitional maps, under
the same assumption on the topolagiL », L") adopted in [8].
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Definition 1.4 ([8]).Let{Xy} C L& be anet. Alinear topologyon the Riesz space
L # has the C-property X, 5X implies the existence of of a sequer{¢§,, }» and
a convex combinatiod, € conXy,, ...) such tha, 2 X.

As explained in [8], the assumption thatfL ~,L%;) has the C-property is very
weak and is satisfied in all cases of interest. When this is#éise, in Theorem 1.2
the (L #,L%;)-(LSC) condition can be replaced by (CFB), which is oftenyetas
check.

Proposition 1.2.Suppose thatr (L 7, L) satisfies the C-property and thatsLis
order complete. Givem: Lz — Ly satisfying (MON) and (QCO) we have:
(i) mis o(L#,L%)-(LSC) if and only if (ii)rris (CFB).

Proof. Recall that a sequende,} C L order converge tX € Lg, Xq S X, if
there exists a sequenf¥,} C L satisfyingY, | 0 and|X — Xn| < VYy.

()= (ii): ConsiderX, 1 X. SinceXy 1 X implies X, 2 X, then for every order
continuousZ € L% the convergenc&(X,) — Z(X) holds. FromL*, — L,

Ep[ZX)]) — Ep[ZX] VZ el
and we deduce thag, U(ﬁ%) X.
(MON) impliesmi(Xn) T andp := limn 11(Xn) < 11(X). The lower level set7, = {& €
Lz | m(&) < p}iso(Lz,LY) closed and theX € o7, i.e. i(X) = p.
(iiy=-(i): First we prove that ifX, 5 X thenm(X) <liminf, 11(Xn). Definez, :=
(infk=n X¢) A X and note thaX — Y, < X, < X+ Y, implies

X >Zo=[inf X ) AX > [inf(=Yi) +X | AX T X
k>n k>n

i.e.Zn 1 X. We actually have from (MONJ, < X, implies(Z,) < 11(X,) and from
(CFB) m(X) = lim, 11(Z,) < liminf, 11(X,) which was our first claim.
ForY € Ly considerekd = {& € Lz | m(&) <Y} and a net{Xys} C L such

La,L* ) L .
that Xq o ,7_},9) X € L. Sincel s satisfies the C-property, there exisfs €
ConYXa,....) suchY, 2 X. The property (QCO) implies that4 is convex and then

{Yn} C 4. Applying the first step we get

m(X) < Iimninf ) <Y ieXek

Standing assumptions on the spaces

(a) ¥ C .7 and the lattice L (resp. ly) satisfies the propert{l ) (resp k).
Both Ly and Lz contains the constants as a vector subspace.

(b) The order continuous dual ¢t ~,>), denoted by L, = (L #,>)*, is a lattice
([2], Th. 8.28) that satisfies}, — L{lg,- and property(1%).

(c) The space ki endowed with the weak topologyL #, L") is a locally convex
Riesz space.
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The condition (c) requires that the order continuous dudgalis rich enough to
separate the points afz, so that(L z,0(L #,L%;)) becomes a locally convex TVS
and Proposition 1.1 can be applied.

Remark 1.5Many important classes of spaces satisfy these conditsoich, as

- TheLP-spacesp e [L,o]: Ly =L, L =L — LY.

- The Orlicz space&” for any Young functiort¥: Lz =LY%, L =LY% — LY,
whereW* denotes the conjugate functionéf

- The Morse subspadd? of the Orlicz spac&?, for any continuous Young func-
tionW: Ly =M%, L =LY — LY.

1.3.2 Statements of the dual results
Set

P =: {3—?}3 |Q << PandQ probability} ={&ecll |Epf]=1}

From now on we will write with a slight abuse of notatiQhe L%, N & instead of
Qe 1*, N2, DefineK : Ly x (L5 NP) — LY andR: LY x LY, as

K(X.Q) = inf {7(€) | EQl€[#] >q EqX#]} (1.4)
RY.&) = inf {(&) | Ecl€'&|#] > ). (1.5)

K is well defined orl_ 7 x (L% N 27). On the other hand the actual domainRis
not on the whold.9, x L7, but we must restrict to

S={(Y,&) el xL%|3E cLs stEp[E'E|Y] >V} (1.6)
Obviously(Ep[E'X|¥],&") € X foreveryX € L#, ' € L%;. Notice that (X, Q) de-
pends orX only throughEqg[X|¥]. MoreoverR(Ep[E'X|¥4],E") = R(Ep[A E'X|4],A &)
for everyA > 0. Thus we can consid&®(Ep[E'X|¥],&), &' > 0,&’ #0, always de-

fined on the normalized elemer@@ss L% N 2.
It is easy to check that

dQ dQ
Ep [ﬁs | g] > Ep {ﬁx |g:| = EQ[E|g] >Q EQ[X|g],
and forQ € L N % we deduce

K(x,@—R(EP H—EXW] ,Q).
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Remark 1.6Since the order continuous functional bg are contained i1, then
Q(¢&) := Eg[&] is well defined and finite for ever§ € Ly andQ € L, N #. In
particular this and1 ) imply thatEg[& |¢] is well defined. Moreover, sinde; —
L1¢ satisfies propertyl ) then g—glA € L% wheneveQ € L; andAc .7.

Theorem 1.2.Suppose that(L#,L?;) satisfies the C-property andsis order
complete Ifrr: Lz — Ly is (MON), (QCO), (REG) and (L #,L%;)-(LSC) then

m(X)= sup K(X,Q). (1.7)
QeLyNZ

Theorem 1.3.1f m: L#z — Ly is (MON), (QCO), (REG) and-(USCY then

nX)= sup K(X,Q). (1.8)
QeLNZ

Notice that in (1.7), (1.8) theupremunis taken over the sdt?; N .Z2. In the
following corollary, proved in Section 1.6.2, we show tha wan match the con-
ditional convex dual representation, restricting our mation problem over the
set

gzg::{?j—smegzandQ:Pon%}.

Clearly, wherQ € 2 thenL%(Q, %, P) = L°(Q2,¥,Q) and comparison ¥ mea-
surable random variables is understood to hold indiffdyéat P or Q almost surely.

Corollary 1.1. Under the same hypothesis of Theorem 1.2 (resp. Theorens@3)
pose that for Xe L4 there existsn € Lz and & > 0 such thatP(m(n) + d <
(X)) =1. Then
mX)= sup K(X,Q).
QGL%Q@@

1.4 Possible applications

1.4.1 Examples of quasiconvex maps popping up from the
financial world

As a further motivation for our findings, we give some exarapé quasiconvex
(quasiconcave) conditional maps arising in economics arahfie. The first one is
studied in detail in the second chapter: as explained innttreduction this was
the main reason that moved us to this research and the coitypbéxhe theme
deserves much space to be dedicated. The analysis of DyRiskidleasures and
Acceptability Indices was out of the scope of this thesisfanthis reason we limit
ourselves to give some simple concrete examples. For sergutbstions arisen on
the meaning of diversification will play a central role in filath Finance academic
world in the next few years.
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Certainty Equivalent in dynamic settings

Consider a stochastic dynamic utility
U:Rx[0,0) x Q =R

We introduce theConditional Certainty EquivalenfCCE) of a random variable
X € Ly, as the random variabl(X) € Ls solution of the equation:

u(r(X),s) = Ep [u(X;t)|-Fsl,

whereL; andLg are appropriate lattices of random variables. Thus the C&aes
thevaluationoperator

m: Ly — Ls, m(X) = u 1 (Ep[u(X,t)|.Z4),9).

The CCE, as a map: Ly — Lg is monotone, quasi concave, regular.

Dynamic Risk Measures

As already mentioned the dual representation of a conditimonvexrisk measure
can be found in [17]. The findings of the present paper showltla¢representation

of conditionalquasiconvexisk measures when cash additivity does not hold true.
For a better understanding we give a concrete example:demsi [0, T] and a non
empty convex seft € L”(Q, %7,P) suchthaCr +L7 C Cr. The seCr represents
the future positions considered acceptable by the supegwgency. For alin€ R
denote by (m, w) the price at time of m euros at timeT. The functionv; (m,-)

will be in general%; measurable as in the case of stochastic discount factorewher
vi(m, w) = Dt (w)m. By adapting the definitions in the static framework of [3Han
[11] we set:

pcru (X)(w) =ess inf {w(Y,w)[X+YeCr}.

0
el

Whenv is linear, thenoc,, is a convex monetary dynamic risk measure, but the
linearity ofv; may fail when zero coupon bonds with maturityare illiquid. It seems
anyway reasonable to assume thdt, w) is increasing and upper semicontinuous
andv (0, w) = 0, for P almost everyw € Q. In this case

Por (X)(@) = w(ess inf {Y |X+Y € Cr},w) = (o, (X), ),

0
YeLz

wherepc, (X) is the convex monetary dynamic risk measure induced by therse
Thus in generapc; y, is neither convex nor cash additive, but it is quasiconvek an
eventually cash subadditive (under further assumptiong)on
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Acceptability Indices

As studied in [12] the index of acceptability is a mapfrom a space of random
variablesL(Q,.Z#,P) to [0, +) which measures the performance or quality of the
randomX which may be the terminal cash flow from a trading strategyoss
ated with each levek of the index there is a collection of terminal cash flows
o ={X e L|a(X) > x} that are acceptable at this level . The authors in [12] sugges
four axioms as the stronghold for an acceptability indexagtatic case: quasicon-
cavity (i.e. the set# is convex for every € [0,+)), monotonicity, scale invari-
ance and the Fatou property. It appears natural to genetbkse kind of indices to
the conditional case and to this aim we propose a couple o baamples:

i) Conditional Gain Loss Ratio: | C .7

Er[X|¥]

CGLRX|¥) = Wl{aﬁxypoy

This measure is clearly monotone, scale invariant, anddedihed orL!(Q,.7 P).
It can be proved that it is continuous from below and quasiawe.

i) Conditional Coherent Risk-Adjusted Return on Capitet:¢4 € .% and sup-
pose a coherent conditional risk measpreL(Q,.#,P) — L%(Q,¥,P) is given
with L(Q,.7,P) C LY(Q,.7,P) is any vector space. We define

Ep[X|¥]

CRAROQX|%): p(X) 1{E]p[X\‘f]>O}

We use the convention th®RAR0GX|¥) = 4+ on the¥-measurable set where
p(X) < 0. AgainCRARO0G:|¥) is well defined on the spadg Q,.7,P) and takes
values in the space of extended random variables; moresveonotone, quasi-
concave, scale invariant and continuous from below whengigcontinuous from
above.

1.4.2 Back to the representation of convex risk measures

In the following Lemma and Corollary, proved in Section 2,5ve show that the
(MON) property implies that the constraiig [ |¥] >q Eq[X|¥] may be restricted

to Eq[é|¥] =g Eg[X|¥] and that we may recover the dual representation of a dy-
namic risk measure. Whe@ € L%; N &y the previous inequality/equality may be
equivalently intende@-a.s. orP-a.s. and so we do not need any more to emphasize
this in the notations.

Lemma 1.1.Suppose that for every QL% N #y and& € L we have [¢|¥] €
Lz. fQel, NPy andifm: Lz — Ly is (MON) and (REG) then

K(X,Q) = Eiean?{"(E) | Eql§|¥] = Eq[X|4]} . (1.9)
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Proof. Let us denote withr(X,Q) the right hand side of equation (3.20) and
notice thatk(X,Q) < r(X,Q). By contradiction, suppose th&(A) > 0 where
A=:{K(X,Q) <r(X,Q)}. As shown in Lemma 1.4 iv), there exists a éve L »
satisfying the following conditions

o Eg[¢|¥] >0 Eq[X|¥] andQ(Eg[§|¥] > Eq[X|¥4]) > 0.
o K(X,Q)(w) <m(&)(w) < r(X,Q)(w) for P-almost everyw € BC Aand
P(B) > 0.

SetZ =g Eq[¢ — X|¥]. By assumptionZ € L z and it satisfieZ >q 0 and, since
Qe Hy,Z> 0. Then, thanks to (MONyx(§) > ni(é — 2).
FromEg[¢§ — Z|9] =q Eg[X|¥] we deduce:

K(X,Q)(w) < m(&)(w) < r(X,Q)(w) < n(é —Z)(w) for P-a.e.w € B,

which is a contradiction.

Definition 1.5. The conditional Fenchel convex conjugateof rtis given, forQ €
L% N Py, by the extended valugd—measurable random variable:

m(Q) = sup {Eql¢|¥] —m(&)}-

éeLy
Amapr:Lgs — Ly is said to be

(CAS) cashinvariantif for all Xe Lz andA € Ly
(X +A) =n(X)+A.

In the literature [36], [17], [29] a map : Ls — Ly that is monotone (decreas-
ing), convex, cash invariant and regular is calletbavex conditional (or dynamic)
risk measureAs a corollary of our main theorem, we deduce immediatedydhal
representation of a map(-) =: m(—-) satisfying (CAS), in terms of the Fenchel
conjugatert, in agreement with [17]. Of course, this is of no surprisecsithe
(CAS) and (QCO) properties imply convexity, but it suppahis correctness of our
dual representation.

Corollary 1.2. Suppose that for every QL*; N 4 andé € Lz we have B[¢|¥] €
L.

HIfQelyznNPyandifrm: Lz — Ly is (MON), (REG) and (CAS) then
K(X,Q) = Eq[X[¥] - 7(Q). (1.10)

(i) Under the same assumptions of Theorem 1.2 amsitisfies in addition (CAS)
then
mX)= sup {EqX|¥]-m(Q)}.
QGL}Q@@
so thatp(-) = r(—-) is a conditional convex risk measure and can be represented
as
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p(X)= sup {Eq[-X|¥]-p"(-Q)}.

Qely; Ny

with p*(—Q) given by
p*(—Q) = sup {Eq[-¢|¥]—p(&)}-

¢ely
Proof. The (CAS) property implies that for eveXye L andd > 0,P(1i(X —29) +
0 < (X)) = 1. So the hypothesis of Corollary 1.1 holds true and we ongdrte
prove (3.23), since (i) is a consequence of (i) and Corpllat. LetQ € L% N Py .
Applying Lemma 1.1 we deduce:

K(X.Q = inf {1(&)|Eol¢|¥] = EolX[¥]}

F

= BolX|#]+ inf {m(&) — EolX[]| Eql¢[#] =q EolXI¥]}

= BolX[#]+ inf {1(&) —Eql¢|#]| Bol¢|¥] =0 BalX[#]}
= Eq[X|¥]— Sup {Eql¢|¥] - () | EQlé|¥] =q EolX|#]}
= Eo[X|9]-m(Q),

where the last equality follows fro®@ € %24 and

m(Q) = sup{Eq[¢ +Eq[X —&[¥]|¥] - m(§ +Eq[X - £[¥])}

éeLy
= Sup {Eqln|9]—m(n) | n =& +Eq[X-¢&|9]}
< Sup {EQlE 9]~ () | Eqlé ] =q EqX|4]} < (@)

1.5 Preliminaries

In the sequel of this section it is always assumed that > — Ly satisfies (REG).

1.5.1 Properties oR(Y, &’)

We remind that denotes the actual domainifs given in (1.6). Given an arbitrary
(Y,&') € £, we haveR(Y,&') = inf.7(Y,&’) where

o (Y,&) :={m(&)|& €Ly, Ep[§'§|9] > Y}

By conventiorR(Y, &') = +oo for every(Y,&’) € (L) x L)\ =
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Lemma 1.2.For every(Y, ') € X the seteZ (Y, ¢') is downward directed and there-
fore there exists a sequenfgm},_; € Lz suchthat B['Nm|¥] >Y and as nf oo,

Proof. We have to prove that for every(&1), mi(&2) € 7 (Y, ') there exists(§*) €
 (Y,&") such thar(£*) < min{m(&1), m(&2)}. Consider thé7-measurable s& =
{n(&1) < m(&)} then

min{rt(&1), 11(§2) } = m(&1)1e + m(&2) 1gc = M(é1lc + &2lge) = (&),

whereé* = &1+ Ezch. HenceE]p[E/E*M] = Ep[f/fﬂg] 1+ E]p[flfz|g] lec >
Y so that we can dedugg ) € «7(Y,&’).

Lemma 1.3.Properties of RY, &’).

i) R(-,&’) is monotone, for ever§’ € L%,

i) R(AY,AE") =R(Y,&’) foranyA >0,Y €LY and&’ € L.
iii) Forevery Ac ¢, (Y,&{') e Z

R(Y,&")1a = Eiean {m(&)1a | Ep[E'E|9]) > Y} (1.11)

= ziean {m(&)1a| Ep[E'E1A|¥9] > Y1a} = R(Y1a,E")1a. (1.12)

iv) R(Y, ") is jontly quasiconcave orf)_x L.
v)infy o R(Y, &) = infy o R(Y, &) for everyé;, & € L.
vi) For every Y, Y, € LY,
(@) R(Y1, &) AR(Y2,&") = R(Y1 A Y2,&)
(b) R(Yl, E/) V R(Yz, El) = R(Yl\/Yz, E/)
vii) The map R, &’) is quasi-affine in the sense that for every¥, A € L% and
0< A <1 wehave
RAY1+ (1—A)Y2,E") > R(Y1,&') AR(Y2,€")  (quasiconcavity)
RAY1+ (1—A)Y2,E") <R(Y1,&) VR(Y2,€’)  (quasiconvexity).

Proof. (i) and (ii) are trivial consequences of the definition.

(iif) By definition of the essential infimum one easily ded(tel 1). To prove (1.12),
for everyé € Lz such thaEp[€'E1a|¥4] > Y 1a we define the random variabfe=
E1a+ {1xc WhereEp[E'(|¥] > Y. ThenEp[E'n|¥] > Y and we can conclude

{n1aln €Lz Epl&'nl9] =Y} = {1l § € Ls, Ep[¢'E1AY] 2 Y1}
Hence from (1.11) and (REG):
LR(Y.&") = inf {n(n1a)1a | Ecl€'n|#] > V)
= ;EHL; {(&1a)1a | Ep[§'E1n|9] > Y1a}

= ger\LfP{n(E )1a| Ep[E'E1al%] > Y1a} .
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The second equality in (1.12) follows in a similar way singaia
{nialnelsz Ep[E'n9] =Y} ={&1a|& €Lz, Ep[E'E|Y] > YA}

(iv) Consider(Yy, &]), (Y2,&3) € LY x L% andA € (0,1). Define(Y,&') = (AY1 +
(1-A)Y2,A&] +(1—A)&)) and notice that for everpA € ¢ the set{ € L |
E[§'E1a] > E[Y14]} is contained in

{& €Ly | E[§181a > EM1A}U{E € Lz | E[£5¢1a] > E[Y21a]}.

Taking the intersection over alh € ¥ we get that{é € L | E[§'E|¥] > Y} is
included in

{§elz |E[&E19] =2} U{E € Ly | E[§¢]9] > Yo},

which impliesR(Y,&") > R(Y1,&1) AR(Yz2,&5).
(v) This is a generalization of Theorem 2 (H2) in [10]. In factone hand

R(Y,& > inf m(&) vYyel%
éeLy
implies
inf R(Y,&") > inf m(&).
Yel§ ¢ely

On the other

m(&) > REp[£E19].8') > inf R(Y.E) VEels
YeLy

implies
inf R(Y,&") < inf m(&).
veld ¢ely
vi) a): SinceR(+,&’) is monotone, the inequalitig’(Y1, &) AR(Y2,&’) > R(Y1 A
Y2,&") andR(Y1, &) VR(Y2,&) < R(Y1V Yz, &) are always true.
To show the opposite inequalities, define #heneasurable set& := {R(Y1,&’) <
R(Y2,&€")} andA:= {Y1 <Y,} so that

R(Y1,&") AR(Y2,€") = R(Y1,&") 18+ R(Y2,&") 1gc < R(Y1,&)Ia+R(Y2,€")1pc

(1.13)
R(Y1,&" ) VR(Y2,&") = R(Y1,&")1gc + R(Y2,€")18 > R(Y1,&)1pc + R(Y2,€)1a

Set:D(AY) ={&1a| & € Lz, Ep[E'E1a|4] > Y1a} and check that
D(A Y1) +D(A%)Y) = {& € L | Ep[E'E|9] > Y1la+Yalpc } :=D

From (3.10) and using (1.12) we get:
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R(YL, &) AR(Y2,&") < R(Y1,E")1a+R(Y2,&") e
= inf >{7T(<71A)1A}+’7 inf {m(nlac)lact

E1aeD(AY; 1,c€D(ACY2)

= inf (é1p)Ia+m(Nnlc)l
LU {m(&1a)Ia+ (N 1pc)Lpc}
N1,c €D(AC.Y2)

- inf {m(&1a+n1xc)}

(§1a+n1,c)€D(AY1)+D(AC.Y;)
= EinfD{"(f)} =RM1a+Yolpc, &) =R(M1A Y2, E').
€

Simile modovi) b).
(vii) Follows from point (vi) and (i).

1.5.2 Properties of KX, Q)

Foré’ e L% N (LY); andX eLs
R(Ep[§'X|9],&) = ;Ean {n(&) | Ep[€'E|9] > Ep[E'X[9]} = K(X,&).
F
Notice thatk (X, ") =K (X,A &’) for everyA > 0 and thus we can considé(X,&’),

&' # 0, always defined on the normalized elemets L', N 2.
Moreover, it is easy to check that:

d d
Ep [d—EQDE | g} >Ep {d_]IQDX |€4 — Eg[&|9] >q Eq[X|¥].

ForQe L% N we then set:

K(X.Q)i= inf {n(E) | Eolé[9] 2o EolXl4T) ~R (& | gx 19| .53 ).

Lemma 1.4.Properties of KX,Q). Let Qe L; N7 and Xc L #.

i) K(-,Q) is monotone and quasi affine.

if) K (X, -) is scaling invariant: KX,AQ) = K(X, Q) for every/A € (LY),.

iii) K (X,Q)1a =infecp , {11(§)1a | Eq[E1a|¥] = Eq[X1a|¥]} forall Ac ¥.

iv) There exists a sequen{éng.} L € L# such that
m=
EQléR|¥] >QEolX|¥] ¥m>1, m(&3) LK(X,Q) asmf.

v) The set? = {K(X,Q) | Q € L', N 2} is upward directed, i.e. for every(K, Q1),
K(X,Q2) € £ there exists I(X,(j) € % suchthat I(X,(j) >K(X,Q1) VK(X, Qo).
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vi) Let Q and Q be elements of . N & and Be ¢. If %%13 = ‘L%?lg then
K(X,Q1)1s = K(X,Q2)1s.
Proof. The monotonicity property in (i), (ii) and (iii) are triviafrom Lemma 1.3 v)
it follows thatK (-, Q) is quasi affine; (iv) is an immediate consequence of Lemma
3.1 R

(v) Define F = {K(X,Q1) > K(X,Q2)} and letQ given byg—% = 1Fdd—%+
1chd—?PZ; up to a normalization factor (from property (ii)) we may pageQ €
L% N &2, We need to show that

K(X,Q) = K(X,Q1) VK(X,Qz) = K(X,Q1)1r + K(X,Q2)1xc.

FromEg[€|%] =g Eq,[€|9]1r +Eq, €[] 1ec We getE5[¢|#]1r =q, Eq,[§|¥]1r
22:;E6[Elg]ch =0, Eq,[§|¥]1cc. In the second place, for= 1,2, consider the

A= (& els |EglE|9] 26 EglXI¥]} A ={& €Lz |Eq[|9] >q Eq[X|¥]}.
For everyé € A definen = §1F + X1c

Q<<P = nlf=q é{lr = Egnl¥9lr 25 Es[X|9]1r
Q2 <<P = Nl =, Xlgc = Eé[f”g]lpc =6 EA[X|g]1FC

Thenn € Aandi(§)1r = m(E1e) — m(0)1ee = m(n1e) — 1(0)1pc = 1(n)1r.
Viceversa, for everyn € A defineé = nlg + X1lc. Thené € A; and again
m(&)1g = m(n)1e. Hence

inf 7(&§)1g = inf ri(n)1g.
§eA neA

In a similar way: infcp, 1(€)1gc = inf,_z7(n)1c and we can finally deduce

K(X,Qu) VK(X,Q2) = K(X,Q).
(vi). By the same argument used in (v), it can be shown that jpfri(¢)1s =
infgca, 71(¢)1p and the thesis.

neA

1.5.3 Properties of H(X) and an uniform approximation

ForX € L we set

H(X):= sup K(X,Q = sup inf {r(&)|Eq[¢|¥]>qEq[X|¥]}
QeLynz QeLynzéels

and notice that for alh € ¢
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H (X)].A = sup inf {T[(E)lA | EQ[E|%] >Q EQ[X|%]}.
QeLynzéels

In the following Lemma we show thad is a good candidate to reach the dual
representation.

Lemma 1.5.Properties of HX). Let X€ L.
i) H is (MON) and (QCO)
i) H (X1a)1a = H(X)1a for any Ac ¢ i.e. H is (REG).
iii) There exist a sequenc§Qk}k>1 € L% and, for each k> 1, a sequence

K L K
{53 }mzl € Ly satisfying By[én | 4] >« Eg[X|#] and

rr(En(?,k) 1 K(X,QK) as mt oo, K(X,Q¥) 1 H(X) as k7 o, (1.14)
H(X) = lim lim (&S, (1.15)

Proof. i) (MON) and (QCO) follow from Lemma 1.4 (i); ii) follows apping the

same argument used in equation (1.12); the other propesdn isnmediate con-
sequence of what proved in Lemma 1.4 and 3.1 regarding theepies of being
downward directed and upward directed.

The following Proposition is an uniform approximation riésvhich stands under
stronger assumptions, that are satisfied, for examplePlspacesp € [1, +]. We
will not use this Proposition in the proof of Theorem 1.2, m¥kough it can be
useful for understanding the heuristic outline of its praad sketched in Section
1.6.1.

Proposition 1.3.Suppose thatt — L1¢ is a Banach Lattice with the property: for
any sequencénn}in C (LE)+, Nnim = O for every n# m, there exists a sequence
{ak}k C (0,+o) such thaty , annn € (LE)+. Then for everg > O there exists Q¢
Lg N & such that

H(X) —K(X,Qg) < € (1.16)

on the set P = {H(X) < +o}.

Proof. From Lemma 1.5, eq. (1.14), we know that there exists a segu@ne
>N < such that:
K(X,Qu) TH(X), ask 1 co.

Define for eactk > 1 the sets
Dk =t {we F* |H(X)(w) - K(X,Q)(w) < €}

and note that
P(F*\Dg) | 0ask1 co. (2.17)
Consider the disjoint familyfF},.., of ¥ —measurable set&; = Dy, Fc =D\
- n
Dy_1, k > 2. By induction one easily shows that) Fx = Dy, for all n > 1. This
k=1



1.5 Preliminaries 25

and (1.17) imply thaP <F°°\ EOJ Fk) = 0. Consider the sequent{@d%lpk}. From
k=1

the assumption oh*; we may find a~sequenq€ak}k C (0,+e0) such tha% =:
Z_E:_l_ak%—% 1r € L — LY. Hence Qe € (L), N(LY), and, since{Re},., are
disjoint, N

dQe dQ

=1 — g —=X
ap <~ Tkgp
Normalize 65 and denote withQ,; = )\65 € L% N & the element satisfying
% HL%: 1. Applying Lemma 1.4 (vi) we deduce that for aky> 1

1r,, foranyk > 1.

K(XvQS)le = K(Xaéé‘)lﬁ( - K(Xaaka)le - K(Xan)lev

and
H(X)1r, — K(X,Q¢) 1R = H(X) 1R — K(X, Qi1 < £1f,.

The condition (3.7) is then a consequence of equation (1.17)

1.5.4 On the mapmn

Consider the following

Definition 1.6. Givenrt: Lz — Ly we define for evenA € ¢, the map

m: Lz — R by m(X):= esssupm(X)(w).

weA

Proposition 1.4.Under the same assumptions of Theorem 1.2 (resp. Theorgm 1.3
and for any Ac ¢4

m(X)= sup inf {m(&)|Eql§|¥]=qEq[X|¥]}. (1.18)
QeLpnz éels

Proof. Notice that the mapr, inherits fromr the properties (MON) and (QCO).
1) Under the assumptions of Theorem 1.2, applying Propositi2 we get that
ris (CFB) and this obviously implies thak is (CFB). Applying toria Proposition
1.2, which holds also for real valued maps, we deducerthat o (L #, L% )-(LSC).
2) Under the assumptions of Theorem 1.3 we proverRas 7-(USC) by show-
ing that%. := {& € L#|m(&) < c} is T open, for any fixed € R. W..0.g.%¢ # 0.
If we fix an arbitraryn € %., we may findd > 0 such thatm(n) < c— J. Define

#:={{ely|m() <(c—93)la+(m(n)+3)lac}

Since(c—0)1a+ (11(n) + 0)1xc € Ly and i is (USC) we deduce tha# is T
open. Moreoveri (&) < c— 0 for everyé € 4, i.e. B C %, andn € A since
n(n) <c—odonAandn(n) < m(n)+ 6 onAC.
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We can apply Proposition 1.1 and get the representation 6bth in the (LSC)
and (USC) case. Only notice that in cageis (USC) the sup can be replaced by a
max. Moreover

m(X) = sup inf {m(§) | Eq[é] > Eq[X]}
QeLynzéels

< sup inf {1a(&) [ EQl§|¥] 2o Eo[X|¥]} < T(X).
QeLynzécls

1.6 Proofs of the main results

We remind that a partitioh = {Ar} is a collection of measurable sets such that
P(A'1NA2) = 0 andP(U,rA") = 1. Notations: in the following, we will only
consideffinite partitionsI” = {Ar} of & measurable se®®’ < I" and we set

m(X):= r (X) 147,
A elr
K'(X,Q) @ = Eieflfy{ﬂr(f) | Eql§]¥] 2q Eq[X|9]}
H'(X):= sup K'(X,Q)
QeLyNZ

1.6.1 Outline of the proof

We anticipate an heuristic sketch of the proof of Theorem fidinting out the
essential arguments involved in it and we defer to the fdlgwsection the details
and the rigorous statements.

The proof relies on the equivalence of the following coradis:

1. m(X) =H(X).
2. Ve >0,3Q € Lz N such that(X) — K(X,Qg) < €.
3. Ve >0,3Q¢ € L% N such that

{¢ €Lz |EQ.[E19] 2. Eo.[X|¥]} C{& €Lz | (&) > m(X) —&}. (1.19)

Indeed, 1= 2. is a consequence of Proposition 1.3 (when it holds truej; 3.
follows from the observation that(X) < K(X, Q)+ € impliesm(X) < (&) + € for
every¢ satisfyingEq, [£|¥] >q, Eq, [X|¥]; 3. = 1. is implied by the inequalities:

n(X) —e <inf{r(&) | m(&) > n(X) — €}
< Eieang{ﬂ(E) | EQ:[§14] Zqe Eq. [X|#]} < H(X) < m(X).
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Unfortunately, we cannot prove Item 3. directly, relyingldahn-Banach Theorem,
as it happened in the real case (see the proof of Theoremduatien (1.3), in
Appendix). Indeed, the complement of the set in the RHS dfy}lis not any more

a convex set - unlessis real valued - regardless of the continuity assumptionamad
OoNnTT.

Also the method applied in the conditional convex case [af]mot be used here,
since the maX — Ep[m(X)] there adopted preserves convexity but not quasicon-
vexity.

The idea is then to apply an approximation argument and thieelof approxi-
matingri(-) by 7" (-), is forced by the need to preserve quasiconvexity.

| The first step is to prove (see Proposition 1.5) thak:(X) = " (X). This is
based on the representation of thal valuedquasiconvex mag in Proposition
1.4. Therefore, the assumptions (LSC), (MON), (REG) and@®&nrrare here
all needed.

Il Then it is a simple matter to deduggX) = infr i’ (X) = infr H' (X), where
the inf is taken with respect to all finite partitions.

Il As anticipated in (C.3), the last step, i.e. proving tlaft- H" (X) = H(X), is
more delicate. It can be shown easily that is possible toapmateH (X) with
K(X,Q¢) on a setA¢ of probability arbitrarily close to 1. However, we need the
following uniformapproximation: For ang > 0 there exist®; € L; N .27 such
that for any finite partitior” we haveH” (X) — K" (X,Q¢) < € on the same set
A¢. This key approximation result, based on Lemma 1.8, shoaigliie element
Q¢ does not depend on the partition and allows us (see equdti?@)f to con-
clude the proof .

1.6.2 Details

The following two lemmas are applications of measure theory

Lemma 1.6.For every Ye L% there exists a sequen€én) of finite partitions such
that s ) (SURyr(m Y) 15w converges in probability, anB-a.s., to Y .

Proof. Fix &,5 > 0 and consider the partitiofs(n) = {Ag,A],...Al,.1 , , } Where

A?) — {Y S (—007—n]}
1 , _
A22n+1+1 = {Y € (n7+°°)}
SinceP(AGUAT 1, ,) — 0 ash — o, we consideN such thatP(A)) UAmzNH) <

1— . Moreover we may find/ such thatilm < o, and hence fof = (MVN) we
have:
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]P’{weQ| Z (squ)lAr(w)—Y(w)<6}>1—e. (1.20)
Aler AT

Lemma 1.7.For each Xe Lz and Qe L;; N &
infK" (X,Q) =K(X,Q)

where thanfimumis taken with respect to all finite partitiors.

Proof.

infK"(X,Q) = inf inf {1 (€) | EqlE|#] 2o EqlX|]}

= inf {ipfnr(é) | Eql€1¥] >q EQ[X|€f]}

éely
= Eieflfb{ﬂ(f) | Eql¢|¥] =g Eq[X|¢]} =K(X,Q). (1.21)

F

where the first equality in (1.21) follows from the convergershown in Lemma
1.6.

The following already mentioned key result is proved in thgpandix, for it
needs a pretty long argument.

Lemma 1.8.Let Xe Lz and let P and Q be arbitrary elements dfl0) &7. Suppose
that there exists B ¢ satisfying: KX,P)1g > —oo, m3(X) < +o and

K(X,Q)1ls < K(X,P)1lg + £1g,

for somee > 0. Then for every partitio = {BC,F}, wherer” is a partition of B,
we have
K" (X,Q)1g <K' (X,P)1g+ £lg.

Sincer” assumes only a finite number of values, we may apply Propaosité4
and deduce the dual representatiombf

Proposition 1.5.Suppose that the assumptions of Theorem 1.2 (resp. Theddgm 1
hold true and™ is a finite partition. Then:

HE(X) =" (X) > m(X) (1.22)

and therefore
irl]er(X) = m(X).

Proof. First notice thak (X,Q) <H' (X) < i (X) forall Q € L N &2. Consider
the sigma algebrg” := o(I") C ¢, generated by the finite partitigh. Hence from
Proposition 1.4 we have for eve®y €I
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Ty (X)= sup inf {1 (&) [ Eql¢[¥] 2q EqlX|¥]} (1.23)
QeLynzécly

MoreoverH' (X) is constant orA” since it is¢" -measurable as well. Using the
fact thatn' (-) is constant on each’ , for everyA” € I" we then have:

H’_(X)]-AF = sup inf {Tlr(f)lAl' | Eqlé]¥] >a EQ[X|§§]}
QeLyneécls
= sup inf {mr (&)1l | Eqlé|¥] >0 Eq[X|¥]}
QeLyneécls
= T ()3 = 10 (X) 1 (1.24)

where the first equality in (1.24) follows from (1.23). Then&ning statement is a
consequence of (1.22) and Lemma 1.6

Proof (Proofs of Theorems 1.2 and 1.8hbviouslym(X) > H(X), sinceX satisfies
the constraints in the definition &f(X).
Step 1First we assume thatis uniformly bounded, i.e. there exigts> 0 such
that for allX € Lz [1(X)| < c. ThenH (X) > —oo.
From Lemma 1.5, eq. (1.14), we know that there exists a seg@nc L N &
such that:
K(X,Qq) 1 H(X), ask 1 co.

Therefore, for anye > 0 we may findQ: € L, N &2 andA; € 4, P(As) > 1—¢
such that
H(X)1a, — K(X,Qe)1a, < €la,.

SinceH (X) > K(X,Q) VQe L, N2,
(K(X,Qe) +€)1a. = K(X,Q)1a, VQELF N .

This is the basic inequality that enable us to apply Lemmarg@acing therd®
with Q¢ and B with A;. Only notice that sug m(X) < ¢ andK(X,Q) > —oo for
everyQ € L N #. This Lemma assures that for every partitiorof Q

(K™ (X,Qe) +€)1a. > K (X,Q)1a, VQ€E L N 2. (1.25)

From the definition okessential supremuwf a class of r.v. equation (1.25) implies
that for everyl

(KT (X,Q¢) +€)1a, > sup K™ (X,Q)1a, =H" (X)1a,. (1.26)
QeL}zﬂf}

Sincer’ < c, applying Proposition 1.5, equation (1.22), we get
(KM (X,Qe) +€)1a, > 1(X)1a, .

Taking theinfimumover all possible partitions, as in Lemma 1.7, we deduce:
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(K(X,Q¢) +€)1a, > m(X)1a,. (1.27)
Hence, for anyg > 0
(K(X,Qe) +€)1a = T(X)1a. = H(X)1a, = K(X,Qe)1n,

which impliesm(X) = H(X), sinceP(As) — 1 as€ — 0.

Step 2.Now we consider the case whenis not necessarily bounded. We de-
fine the new mapp(-) := arctariri(-)) and notice thatp(X) is a ¥-measurable
r.v. satisfying|y(X)| < % for everyX € L. Moreovery is (MON), (QCO) and
Y(X1s)1ls = Y(X)1g for everyG € ¢. In addition,y inherits the (LSC) (resp. the
(USCY") property fromrt. The first is a simple consequence of (CFBYynfor the
second we may apply Lemma 1.9 below.

Y is surely uniformly bounded and by the above argument we roaglade

P(X) =Hy(X):= sup Ky(X,Q)
QeLLNZ

where
Ky(X,Q) = Eieflfg{tlf(f) | Eq[¢|¥] =q Eq[X|¥]}.

Applying again Lemma 1.5, equation (1.14), there exi@ts L% such that
Hy (X) = lim Ky (X, Q).
We will show below that
Ky (X, Q¥) = arctark (X, Q). (1.28)
Admitting this, we have folP-almost everyw € Q
arctari(X)(w)) = Y(X)(w) = Hy(X)(w) = lim Ky (X, Q) (w)

= lim arctark (X, Q) (w)) = arctarilim K(X,Q") (w)),

where we used the continuity of the function arctan. Thidiespr(X) = lim, K (X, Q%)
and we conclude:

m(X) =limK (X, Q) < H(X) < m(X).
It only remains to show (1.28). We prove that for every fixgd L% N &
Ky (X,Q) = arctar(K(X,Q)).

Sincerrandy are regular, from Lemma 1.4 iv), there ex{qﬁ €Ly andnr? €lLs
such that



1.6 Proofs of the main results 31
Eql&y|9] >q EqX|9], Eq[n|¥] >q EqlX|¥], ¥h> 1, (1.29)

W(ED) L Ky(X,Q) andm(n) | K(X,Q), ash 1 co. From (1.29) and the definitions
of K(X,Q), Ky (X,Q) and by the continuity and monotonicity of arctan we get:

Ky(X,Q) < Ii'r1n w(n,?) = Ii'r1n arctanrr(nr?) = arctan I'imn(nr?)

= arctark (X, Q) < arctan Iri]mn(Er?) = lim WED) =Ky (X, Q).

and this ends the proof of both Theorem 1.2 and 1.3.

Remark 1.7LetD € .#. If U is a neighborhood of € L » then also the set
Ulp+Ulpe={Z=X1p+Ylpe | X€U,Y €U}

is a neighborhood of. Indeed, sinc&J is a neighborhood o, there exists an
open seV¥ such tha€ € V CU. SinceU C Ulp+U1pc, we deduce thaf eV C
U1p +U1c and therefore is in the interior ofU 1p +U 1nc.

LetY be¥-measurable and define:
A={éclLs|mé)<tan)} B:={& elLy |arctadm(&)) <Y},

where

tan(x) = { tanx) -2 <x<
oo x>0

Notice thatA = {& € B| m(&) < on {Y > J}} C B but the reverse inclusion
does not hold true in general: in fact evefyy € A satisfiesr(§p) < +o on the
set{Y > %} but it may happen that& < B brings tor(&p) = +e on{Y > %}.

Lemma 1.9.Suppose thatt is regular and there exist8 € Lz such thatr(0) <
+00. For any¥-measurable random variable ¥ A is open then also B is open.
As a consequence if the maps (USCY so it is the magmrctarrt.

Proof. We may assum¥ > —7, otherwiseB = 0. Let& € B, 6 € Lz such that
m(0) < 4. Defineéy := El{vg’g} + 91{Y>g}- Thenéy € A (sincerris regular
andr(0) < tg(Y)). SinceA is open, we may find a neighborhoddof 0 such that:

é+UCA
Define:
Vis Gt Uliyey + (4 UL gy = §4ULvepp +U10e gy

Thené €V and, by the previous remarlkl,l{YSg} +U 1{Y>g} is a neighborhood
of 0. HenceV is a neighborhood of . To show thaB is open it is then sufficient to



32 1 On the dual representation on vector spaces
show thal C B. Letn €V. Then

n=mlyp +n2ly. o me(Go+U),ne(E+U).
Since&o+U C A, ny € A; thereforer(n,) <tg(Y). Sinceris regular and

is ¢ measurabler(n) = r(n1) on the sefY < 7}, which implies:(n)
on{Y < J} andn €B.

< 1)

N <

Remark 1.8ConsideiQ € &7 such thaQ ~ P on<¥ and define the new probability

- dp¥
Q(F) :=Eq [ﬁ 1

%

dQ

F] where = Eq {S%W], FeZ.

ThenQ(G) = P(G) for all G € ¢, and soQ € Z. Moreover, it is easy to check
that for allX € Lz andQ € L N &7 such thaQ ~ P on% we have:

EslX|¥] = Eq[X|¥] (1.30)
which impliesK (X, Q) = K(X, Q). To get (1.30) consider any € &

Ep[Es[X|¥]1a] = Es[Es[X|¥]1a] = Eg[X1A]

dr¥
Eo lxE 1A\%H
dp¥

Eoq [Xlg]d—Q 1A1 = Eg[EQ[X|¥] 14]

= Ep[Eq[X[|#]14]

dp¥
xE 1A] = Eq

Proof (Proof of Corollary 1.1)Consider the probabilitQ. € L% 1.2 built up in

Theorem 1.2, equation (1.27). We claim tlgat is equivalent tdP on A,. By con-
tradiction there existB € ¢, B C A, such thaf?(B) > 0 butQ¢(B) = 0. Consider
n € Lg, 8 >0 such thatP(r(n) + 6 < n(X)) = 1 and define§ = X1zc +nls

so thatEq, [§|¥] >q, Eq,[X|¥]. By regularity (&) = m1(X)1gc + 11(n)1g which

implies forP-a.e.w € B

1(§)(w) + 6 = 1(n)(w) + 9 < T(X)(w) < K(X,Qe)(w) +& < 1(&)(w) + &

which is impossible fog < d.S0Q: ~PonA; for all smalle < 9.

Consider(j£ such thatdd% = dd%lAg + 3—5%)0- Up to a normalization factdﬁg S
L% N & and is equivalent t@. Moreover from Lemma 1.4 (vi),((X,Qs)lAs =
K(X,Q¢)1a, and from Remark 1.8 we may defife € 24 such thaK(X,és)lAg =
K(X,Q¢)1a, = K(X,Q¢)1a,. From (1.27) we finally deduct(X, Q¢ )1, + £1a, >
1(X)1a,, and the thesis then follows fro@e € 2.
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1.6.3 Proof of the key approximation Lemma 1.8

We will adopt the following notations: If; and /> are two finite partitions of/-
measurable sets thénN ;= {A1NAx | A € 7, i = 1,2} is a finite partition finer
than eachi; andls.

Lemma 1.10 is the natural generalization of Lemma 3.1 to figa&imated
problem.

Lemma 1.10.For every partition/, X € Lz and Qe L*; N &2, the set
A (X) = {n' (&)|& € Lz and By[¢|¥] >q Eq[X|¥]}

is downward directed. This implies that there exists e>eistequenc{ n,%} L S
m=
Lz such that

EqnR|9] >q Eq[X|9] Ym=>1, 1 (nR) LK (X,Q)as mte.

Proof. To show that the se#/ (X) is downward directed we use the notations and
the results in the proof of Lemma 3.1 and check that

(&) =1 (1le+ &lee) <min{n (&).7 (&)}

Now we show that for any given sequence of partition therstexine sequence
that works for all.

Lemma 1.11.For any fixed, at most countable, family of partitioffs(h) },~1 and
Qe L5 N, there exists a sequeng{e.ffﬁ}00 € L such that
m=1
EqléQ|%] >q Eq[X[¥4] forallm>1
méx) | K(X.Q) asmte
andforallh 7 MW(EYQ) | K'W(X,Q) asmtw.

Proof. Apply Lemma 3.1 and Lemma 1.10 and fild$}m, {dm}m, -, {@fh}m, --.
such that for everyandmwe havekg|¢), | 4] >q Eq[X|¥] and

M%) L K(X,Q) asmte
andforallh 7" ™W(¢h) | KT (X, Q) asmt .
For eachm > 1 c_onsider/\i”;0 ni(¢},): then there will exists a (non unique) finite
partition of Q, {F,}"; such that
m

(9 = 3 T8kl

i=0 1=

>3
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Denotefm =: 31 $i1¢; and notice thay " (¢} g, (REG rr(EnQ.) andEq[£%|¥] >0

Eq[X|¥] for everym. Moreoverm(&S) is decreasing antt(&S) < m(¢2) implies
n(Em) L K(X,Q).

For every fixech we haver(&R) < ni(¢h) for all h < mand hence:

MW (ERQ) < " M (ph) impliesn” M (£Q) L K"MW (X, Q) asm1 o.

Finally, we state the basic step used in the proof of Lemma 1.8

Lemma 1.12.Let X€ L# and let P and Q be arbitrary elements of,l00 &2. Sup-
pose that there exists B¥ satisfying: KX, P)1g > —oo, 1g(X) < + and

K(X,Q)1ls < K(X,P)1lg + £1g,

for somee > 0. Then for anyd > 0 and any partitionly there existd™ 2 Iy for
which
KM(X,Q)1g <K' (X,P)1g+ €1z + 613

Proof. By our assumptions we havero < K(X,P)1g < 1mg(X) < +e andK (X,Q)1g <
ms(X) < +o0. Fix & > 0 and the partitiofy. Suppose by contradiction that for any
I O Ip we haveP(C) > 0 where

C={weB|K(X,Q)(w)> K" (X,P)(w)+&+5}. (1.31)

Notice thatC is the union of a finite number of elements in the partition
Consider that Lemma 1.4 guarantees the existen({é@f}h_l € L # satisfying:
(&) L K(X,Q), ashto, , Eql§ll¥] >qEqIX[4] vh>1. (1.32)

Moreover, for each partitioh andh > 1 define:

o
Df, = {we Q|1 (&) (w) — m(&)(w) < Z} €4,
and observe that” (E,?) decreases if we pass to finer partitions. From Lemma 1.6
equation (1.20), we deduce that for edch 1 there exists a partitioﬁ(h) such that

F h -

P (Dg(h)) >1- Elﬁ For everyh > 1 define the new partition (h) = | N I'(h)) N
=1

I so that for allh > 1 we haver (h+1) D I (h) D o, P (Dg“‘)) >1- % and

(n(fr?) + %) 1Dg(h) > (nr(m(&?)) 1D£<h)’ vh> 1. (1.33)
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Lemma 1.11 guarantees that for the fixed sequence of pasifio(h) }n>1, there
exists a sequendgih} | € Lz, which does not depend dm satisfying

Ep[&nl¥] >p Ep[X|9] ¥m > 1, (1.34)
n WPy | KFW(X,P), asmte, Vh>1. (1.35)

For eachm > 1 andr™ (h) define:

C;I;.(h) — {weCl nl'(h)(ErI;)(w)_Kr(h)()(’P)(o)) < g} €Y.

Since the expressions in the definition @’f,(h) assume only a finite number of

values, from (1.35) and from our assumptions, which implgt t" (" (X, P) >
K(X,P) > —w on B, we deduce that for eadh(h) there exists an indem(I" (h))

r(h
such thatP (C\Cm((r)(m)) =0and

0

SetEn = Dg(h) mC,’;((P(h)) € ¢ and observe that
lg, - 1c P-as. (1.37)

From (1.33) and (1.36) we then deduce:
o
<n(«shQ> + Z) e, > (" ™(&)) e, vh= 1, (1.38)
o
KM (X, P)g, > (nr<h>(g;n’(r )~ Z) e, vh>1  (139)

We then have for anki > 1

(&) Le, + glEh > (&) 1e, (1.40)
> K'M(X,Q)1g, (1.41)
> (KT (X,P)+£+3) 1g, (1.42)
> <nr(h> (Enﬁ(r(h))) — g + &+ 5) 1g, (1.43)
> (n@;(r(h))) +e+ 25) 1g,. (1.44)
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(in the above chain of inequalities, (1.40) follows from38); (1.41) follows from
(1.32) and the definition ak” (" (X, Q); (1.42) follows from (1.31); (1.43) follows
from (1.39); (1.44) follows from the definition of the magg-)).

Recalling (1.34) we then get, for eabhl» 1,

o o
(&) 1e, > (n(g‘g(r(h))) +e+ §> 1g, > <K(X,P) +e+ E) 1g, > —o0. (1.45)

From equation (1.32) and (1.37) we han(aEf)lEh — K(X,Q)1c P-a.s. ash T
and so from (1.45)

1eK(X,Q) = lim (&) 1g, > lim 1g, (K(X, P)+ e+ g)

= 1c (K(X,P)—i—£+ g)

which contradicts the assumption of the Lemma, sid¢ceB andP(C) > 0.

Proof (Proof of Lemma 1.8First notice that the assumptions of this Lemma are
those of Lemma 1.12. Assume by contradiction that theretsekgs= {B°, o},
wherely is a partition ofB, such that

P(we B|K°(X,Q)(w) > K(X,P)(w) +¢) > 0. (1.46)

By our assumptions we hawe/o(X,P)1g > K(X,P)1g > —o0 andK'o(X,Q)1g <

ms(X)1g < +oo. SinceK'o is constant on every elemeafo € Iy, we denote with
KA (X, Q) the value that the random variabié° (X, Q) assumes oW/0. From
(1.46) we deduce that there exi&l® C B, Ao € [, such that

+oo > KAO(X,Q) > KAY(X,P) + £ > —o.
Let thend > O be defined by
d=:KA°(X,Q) - KA®(X,P) —¢. (1.47)

Apply Lemma 1.12 withd = %: then there exist§ D o (w.l.o.g.l = {BC,F}
wherel™ D o) such that

K™ (X,Q)1s < (K" (X,P) + &+ ) 1s. (1.48)

Considering only the two partitior’s andl, we may apply Lemma 1.11 and con-
clude that there exist two sequend&§ }i_; € L# and{&}i_; € L# satisfying
ash 1 o
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Ep[&F|9) >p Ep[X|9], T0(EP) LKP(X,P), 7" (§)) LK (X,P) (1.49)
Eql&%] >0 EolX|¥], m0(§2) LK(X,Q), " (&%) LK (X,Q) (1.50)

SinceK'0(X, P) is constant and finite 0A"™, from (1.49) we may findh; > 1 such
that

Taro (&) — KA (X,P) < g ,Vh>hy. (1.51)

From equation (1.47) and (3.3) we deduce that

Taro (EF) < Kf\r°(x,P)+g —KA(X,Q) —e—d+ g, vh>hy,

and therefore, knowing from (1.50) théf\ro(X,Q) < n/gro(Er?),

d
Mo (&) + 5 < o (&) — & ¥h>hy (1.52)

We now take into account all the séts C Alo C B. For the convergence @ir (Er?)

we distinguish two cases. On those sftfor which KA" (X, Q) > —eo we may find,
from (1.50),h > 1 such that

mr (§3) — KA (X,Q) < g vh>h.

Then using (1.48) and (1.49) we have

My (§3) < KAF(X,Q)-i-E < KAF(X,P)+£+6+E < nAr(5h'°)+e+5+E
so that a5
M (&) < Ty (&) +e+ 5 vh=h

On the other hand, on those s@fs for which KA (X,Q) = —o the convergence
(1.50) guarantees the existencenof 1 for which we obtain again:

35 ~
M (69) < (&) +e+ 5 vh=h (1.53)

(notice thak” (X,P) > K(X,P)1g > —o0 and (1.49) imply thatr (&) converges
to a finite value, foA” C B).

Since the partition is finite there existd, > 1 such that equation (1.53) stands
for everyAl C A'o and for evenh > h, and for our choice 0 = % (1.53) becomes

nAr(E,?)<nAr(E,f)+e+g vh>hy, VA" C A, (1.54)
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Fix h* > max{hy, ho} and consider the valugr, (£3). Then among al” C A
we may findB" C A" such thatyr (§3) = T, (&) Thus:

(1.54 (1.52)

) d d
Mo (&) = Tor (&) < Tlr (&) +8+ 5 < Mo (GF) T+ 5 < T (&),

which is a contradiction.

1.7 A complete characterization of the mapt

In this section we show that any conditional magan be characterizeda the
dual representation (see Proposition 1.6): we introdueecthss#°™® of maps
S:2 — L% such thatS(-,¢’) is (MON), (CFB) and (REG) (i.eS(Y1a,Q)1a =
SIY,Q)1a VA€ ¥).

Remark 1.9. S2 — I:% such thatS(-,&’) is (MON) and (REG) is automatically
(QCO) in the first component: [&t,Y>, A € L%, 0<A <1anddefinB={Y; <
Y2}, §(-,Q) = S().

S(Y11g) < §(Y21g) andS(Yalge) < §(Y1lgc) so that from (MON) and (REG)

SAYL+ (L A)Yo) < S(Yalp + Yilge) "= S(Yp)1p + S(Y1)1ge
< S(Y1) VE(Y2).

Notice that the clasgz°? is non-empty: for instance consider the nRp(-,&’)
defined by

R"(Y,&") = esssupR(Y’, &’) (1.55)

Y'<Y

As shown in the next Lemm&" inherits fromR (MON), (REG) and is automati-
cally (CFB). This function plays an important role in the pfof Proposition 1.7.
Proposition 1.6 is in the spirit of [10]: as a consequencéefdual representation
the maprrinduces orR (resp.R™) its characteristic properties and so d&gsesp.
RM)onm.

Lemma 1.13.If m: Lz — Ly is (REG) and (MON) thenRe Z.

Proof. Clearly R"(-,Q) inherits fromR(-,Q) the properties (REG) and (MON).
From Remark 1.9 we then know thBt (-, Q) is (QCO). We show that it is also
(CFB). LetY, 1Y. It is easy to check that (MON) d®(-,&’) implies that the set
{R(n,&")|n <Y} is upward directed. Then for eveeyd > 0 we can findjs <Y
such that

P(RY(Y,&')—R(ne, &) <€) >1-96 (1.56)

There exists am; such thatP(Y, > ne) > 1— 0 for everyn > n.. Denote by
An = {Yn > n¢} so that from (REG) we havBR" (Yy, &)1, > R(Ne, &’)1a,. This
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last inequality together with equation (1.56) implies
P(R"(Y,&)—R"(Yn,&') <€) >1-25 Vn>n;

i.e.R"(Yh,Q) LA R*(Y,Q). SinceR" (Yy, Q) 1 we conclude thaR" (Y5, Q) T R (Y, Q)
P-almost surely.

Proposition 1.6.Consider a map S> — Lg.
(@) Lety CL%,XelLgand

m(X) = supS(E[X&'|9],&).
gex

(Recall that(E[E'X|¥],&") € X for every Xe Lz, & € LY;).
Thenforevery £ 9, (Y,§) e X, AN elLynLsz and Xe Ly
) S(Y1a, &) 1a = S(Y,§')1a = m(REG);
i)Y — S(Y,&") (MON) = 7 (MON);
i)Y — S(Y,&’) is conditionally convex=> ris conditionally convex;
iv) Y — Y, &) (QCO) = m(QCO);
V) SAY,E) =AS(Y, &) = m(AX) = Am(X), (A > 0);
vi) S(AY, &) = S(Y, &) = n(AX) = n(X), (A > 0);
vii) Y — S(Y,&’) (CFB) = m(CFB).
viii) S(E[(X+A)E'9],&") = S(E[XE'|9],E) + A = (X +A) = 1i(X) + A.
iX) S(E[(X+A)E'9],&") > S(EXE'|9],E)+ N = (X +A) > r(X) +A.

(b) When the map S is replaced by R defined in (1.5), all theaaltemns - except
(vii) - hold true replacing =" by “ <=".

(c) When the map S is replaced by Befined in (1.55), all the above items - except
(iii) - hold true replacing “—=" by " <=-".

Proof. (a) Items from (i) to (ix) are trivial. To make an example weosh(iv):
for every¥-measurablé\, 0 < A <1, andX;, X € L&, we haveEp[(AX; + (1—
N)X2)&'|G] = NEp[X1&'|9] + (1— A )Ep[X2¢"|9]. Thus
SIAEp[X1&'|[9] + (1 - A)Ep[X2¢9].&)
S maX{S(E]P?[x1£/|g],E/),S(E]P[XZE/|g],E/)}
< maX{ supS(Ep[X:€'|¥],&"), SUDS(EP[XzE’I%],E’)}
&'ex &'ex

thus
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MAXL+ (1= A)X) = suBS(/\ Eo[X|#] + (1- A)EqlY|#],Q)
Qe o

< max{ supS(Eq[X|¢],Q), SUPS(EQ[YW],Q)}
Qex Qex
= 11(X1) V 11(Xy).

(b): The ‘only if’in (i) and (ii) follow from Lemma 1.3. Now we@rove the remaining
‘only if’ conditions.
(iii): let Y1,Y2,A €LY, 0< A < 1then

RAY1+ (1-A)Y2, &)
= Eief?_f?{”(f) |E[EE|9] > AYi+ (1-A)Y2}

F

= inf {mAni+(1-A)n2) |E[(Ani+ (1= A)N2)&'|9] > AYi+ (1-A)Yz}

n.n2€L s

< inf  {mAN+(1—=A)no) | E[Ni&’|9] > YA NE[N€'|9] > Yo}

T onuneeElsz

< ARYLE) +(1-NA)R(Yz, &)

(iv): follows from Remark 1.9 sincRis (MON) and (REG).
(v):
RAY, &) = fierlfa{ﬂ(f) |EREE 9] > Y}

= nf {nAn) |ENE'[¥] > Y} = AR(Y.E)
neLy

(vi): similar to (v).
(viii):
R(E[(X+A)¢E'19].&)
= dnt {n&) | E[(£-A)¢l¥] > EXE9))

= inf {m(n+A)|E[n&'|¥] >E[XE'|9]} = REXE¥],Q) +A
n+Ael g
(ix): similar to (viii).
(c): by definitionR" inherits fromR (MON) and (REG) so that we can also conclude
by Remark 1.9 that the ‘only if 'in (i), (ii) and (iv) holds teu
(v): we know thatrt(A-) = A m(-) impliesR(A-, ') = AR(-,&’). By definition

R (Y,€) = SUpR(Y'.&') = sup TR’ €)

Y'<Y Y'<Y
— L supRYLE) = TR, €.
A Y/ <AY A

(vi), (vii) and (ix) follows as in (v).
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(vii): is proved in Lemma 3.10.

Proposition 1.7.Suppose that’(L #, L) satisfies the C-property andz is order
completert: Lz — Ly is (MON), (QCO), (REG) and (L #, L )-(LSC)if and only
if there exists & %°P such that

n(X)= sup S<E {d—QXW} ,Q> . (1.57)
Qeln dP

Proof. The ‘if 'follows from Proposition (1.6). For the ‘only if 'welready know
from Theorem 1.2 that

n(X)= sup R<E [dQX|E¢] ,Q) .

QeLzNZ ﬁ

whereR s defined in (1.5). For ever® € L%, N %7 we consideR" (-,Q) < R(-,Q)
and denot&X®@ = E [g—gxw} . We observe that

mX) > sup RY(X%,Q = sup supR(Y,Q)
QeLna QeLNZ Y <XQ
5>0
> sup  sup R(X®-3,Q)
QeLHNP XQ-5<XQ
(CFB)
= sup sup R(E[(X—9)-dQ/dP|¥4],Q) =supm(X—9) =
6>0QeL,Ny o>0

(X)

and so foR" € %gfb we have the representation

n(X)= sup R"(Eq[X|¥4].Q).
QeLy, N2

1.7.1 A hint for further research: on the uniqueness of the
representation

In [10] the authors provide a complete duality for real valgeasiconvex function-
als when the spadey is anM-space (such ds”): the idea is to reach a one to one
relationship between quasiconvex monotone functionmasd the functiorR of the
dual representation. ObvioudRwill be unique only in an opportune class of maps
satisfying certain properties. A similar result is obtaine [11] for theLP spaces
with p € [1,+), which are noM-spaces.

Other later results can be found in the recent preprint byoBaa and Kupper [19]
where a slightly different duality is reached, gaining oa ¢fenerality of the spaces.
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Uniqueness is surely a more involving task to be proved fercttnditional case
and a complete proof need further investigation in the wesgiace case. Fortunately
we are able in Chapter 3 to succeed it for the clad®ahodules oL type, which
is the counterpart of the findings presented in [11].

For what concerns vector spaces, we provide only a partiatl mch rigorous -
result wher¥ is countably generated. For sake of simplicity we restnigtdiscus-
sion to the spacke# = L% in order to exploit directly the uniqueness results in [10]
section 5. The following argument can be adapted to the cak&, @ < [1,+»),
combining the results in [11] and [10].

Consider the following conditions

H1 S(-,Q)isincreasing for ever® € L; N .27,

H2 |an€Lo S(Y,Q1) = IaneLo SY,Q2) for everyQi,Qz € L; N7,

H3  S(Y,Q)1a = S(Y1a,Q)1a = S(Y1a, Qla)La;

H4  foreveryn, §(-,Q)1a, = S™(-,Q)1a,, whereS™ (-, Q) is jointly {-evenly qua-
siconcave oiR x Q€ L% N .27,

H5 foreveryX el

sup S(E[XdQ/dP|¥].¢') = sup S'(E[XdQ/dP|¥].&")
QeLzNZ QeLzNZ

with S" as in (1.55).

Claim: let ¢ = g({An}nen) Where{An}nen is @ partition ofQ and T satisfying
the assumptions of Theorem 1.2. The functi®dis the unique in the clas%é)cx of
functionsS satisfying H1, H2, H3, H4 and H5.

Idea of the proofSurely from Lemma 1.R € //lc“)cx (the last item is explained
in the second part of the proof). By contradiction suppoaéttiere existS € ///(?CX
such that

nX)= sup S<E {d—QXW} ,Q> . (1.58)
QeL;n2 dP
andP(S(Y.Q) #R(Y,Q)) > 0 for some(Y, Q) € LY x (L% N ). Hence we can find
A = A, for somen such thaR1a # Sla.

As previously mentionedr induces onra the properties (MON), (QCO), (CFB).
The spacd %15 = {£14|¢ € L%} is an M-space so we may apply Theorem 5 in
[10] on the mapm : L% 1a — R Clearly the order duglL% 1a)* = L1 14 and then
we get

m(X)= sup R‘\( [de1A} QlA): sup Rﬁ(E [zﬁ?xu\} QlA)
QeLLnz QelLny
(1.59)
RM: R x (LN 2) — Ris given by
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. dQ
=EI€Q;{TME)IE[@51A] Zy}

andR? (t,Q1a) = sup  RA(t’,Q1a). R*is unique in the class7g.,(A) of functions
SR x (LL N 2) — R such thas" is increasing in the first argument in the first
component, jointly>-evenly quasiconcave, iaf S\(t,Q11a) = infier SN(t, Q214)

for everyQ1,Q. € L%; N2 and the second equality in (1.59) holds true.

Now notice thaR*1, = Rl and from (1.58)

Ma(X)1a= sup S<E {d—QXJ-A} 7Q1A) 1a
QelLny dP

RA(ya Q]-A)

hence from uniquene&ia = R 15 = Rla which is absurd.






Chapter 2

An application to Finance and Economics: the
Conditional Certainty Equivalent

2.1 An intuitive flavour of the problem

A non-atomic probability spadg2,.7,P) and a right continuous filtratioh# }i>o
are fixed throughout this chapter. All the other notatioress@nformed to those in
Chapter 1.

It is well known in Mathematical Finance literature that en@pportune No-
Arbitrage assumptions we can guarantee the existence aftavadent probability
measurd) ~ P such that the price processes are martingales. Let us evasidpli-
cable claimC, with time T maturity (i.e..#T measurable). The Black and Scholes
time+ value, is given by the formula

\A(H)=7I,T(C)=éEQ[BTC|%] t<T 2.1)

whereVy (H) =C, H is the replication strategy ar@@lithe discount stochastic factor.

In order to introduce the main purpose of this chapter we wambok to this
formula from an utility point of view. Suppose that an inw& preferences are
described by the stochastic field

it @) = B () T (@)

Where% = EP[% | %t]. If one consider & -measurable random variab{e then

the solutionYs of the equation
u(Ys,s, w) = Ep[u(X,t) | F

gives the the times-equivalent random endowment Xfwith respect to the prefer-
ences induced by. It is well known that a proceséturns out to be & martingale
if and only if Ep[Y; % | Zs] = YS%; applying this result to the equation
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dQs dQr,
B — e |AX S | 22)

we get that the proceq$sYs}o<s<t is aQ-martingale. Then
BsYs = E@[th | 98]

i.e. whenevekK is replicableYs is exactly the pricex; (X) given by (2.1).

From this point of view Black and Scholes theory appears a@ticplar case of a

general theory involving dynamic stochastic preferenoesshich the linearity of

the utility functions implies the complete absence of thegtor’s risk aversion.
Moreover the formula (2.2) highlights another troublesdesture arising when

we work with stochastic fields: it concerns with tfifeintegrability of B[X%,

namely

E [mm%} <o (2.3)

One may overcome it assuming thais deterministic or satisfies some boundary
conditions. Another approach could be introducing thetrggtace of random vari-
ables for which condition (2.3) is naturally satisfied, witih any further assumption
on 3. As we will show later Musielak-Orlicz spaces seem to fit pettfy to our aim:

for each timet the utility u(x,t, w) induces a generalized Young functionwhich
defines a spac®(Q,.%,P). Thus we are dealing with a time-indexed class of
spaces for which the pricing functionad; is compatible with time consistency.

2.2 Definitions and first properties

Definition 2.1. A stochastic dynamic utility (SDU)
u:Rx[0,00) x Q - RU{—00}

satisfies the following conditions: for ahye [0, ) there exist# € % such that
P(A)=1and

(a) the effective domainz(t) := {x € R: u(x,t,w) > —oo} and the rangez(t) :=
{u(x,t,w) | x € 2(t)} donotdepend ow € A;; moreover Gz intZ(t), Ep[u(0,t)] <
+o andZ(t) C Z(s);

(b) for all w € A andt € [0, +) the functionx — u(x,t, w) is strictly increasing on
2(t) and increasing, concave and upper semicontinuous.on

(€) w— u(x,t,-) is Fy—measurable for allx,t) € Z(t)x |0, +)

The following assumption may turn out to be relevant in theust of the paper,
even if not necessary for the definition of SDU.

(d) Forany fixedk € 2(t), u(x,t,-) <u(x,s,-) for everys<t.
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Remark 2.1We identify two SDUu ~ U, if for everyt € [0, +), the two domains
are equal @(t) = Z(t)) and there exists af;-measurable sé& such thaf?(B;) =
1 andu(x,t, w) = U(x,t, w) for every(x,w) € 2(t) x B.

In the sequel, we denotgx,t,-) simply byu(x,t), unless confusion may arise.

In order to define the conditional certainty equivalent wedduce the set
U (t) = {Xel%Q,#,P)|uX,t) e LYQ,.Z,P)}.
Lemma 2.1.Let u be a SDU.

i) (Inverse) Let te [0,0) and A € .%; as in Definition 2.1: the inverse function
ut: Z(t)x[0,00) x A — 2(t)

uluxt, w),t, w) = x (2.4)

is well defined. For eachw € A, the function u?(-,t,w) is continuous and
strictly increasing orZZ(t) and u1(y,t,-) is % — measurable for all y= Z(t).

ii) (Comparison) Fix any & [0,); if X,Y € % (t) then UX,t) < u(Y,t) if and only
if X <Y. The same holds if the inequalities are replaced by equalitie

iii) (Jensen) If Xe L;‘ﬂl and UX,s) is integrable, then, for all s t,

Ez [U(X,5)|.Z4] < u(Ep[X|.Zd,9).

iv) (Extended Jensen) Suppose,s) is integrable for every ¥ %(s). Let X e qut'
such that ¢X,s) ™ is integrable. Then

Ep [U(X, )74 < U(E2[X|F4).9). (2.5)
where the conditional expectation is meant in an extendad wa

Proof. i) Since both assumptions (a) and (b) holdAnthe existence of a continu-
ous, increasing inverse function follows straightforwgrérom assumption (c) we
can deduce that (y,t,-) is % -measurable for aly € Z(t).

i) Is also immediate since is strictly increasing as a function &f

iii) This property follows from the Theorem p.79 in [59].

iv) First we suppose thai(0,s) = 0. This implies thau(X,s)1a = u(X1,,s) for
everyA € 7. Recall thatifY LS@E andY > 0 thenEp[Y|.Zg] :=limn Ep[Y1ly<n|-Z4]

is well defined.

First we show thati(X,s)~ integrable implie€p[X1x gy |- #s] > —o0 and there-
fore both terms in (2.5) are well defined. From the equakty(X,s)1ix-q} =
u(X,s)~ we get thatu(X,s)1ixq is integrable. From iii) we have that0,s) >
U(XL{o>x>-n},S) > u(—n,s) implies:

Ep[U(X1{0>x>—n},9)[Fs] < U(Ep[X1{0ox>—n}| 75, 9). (2.6)

By monotone convergence, from (2.6) we then get our claim:
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—o0 < Ep[u(X1{x<0},5)|Fs| < U(Ep[X1ix<0y|F],9).
Applying iii) in the second inequality below we get:
Ep[u(X,s)|-Zs] = Iirl;n Ep[u(X,8)Ljo<u(x,<n}|Fs|+Ep[U(X,S)11yx s)<0} |- Fsl

(2.7)
< lim Ep[u(X,8)Lioex<ny |- 7s] = lim Ep[U(X1j0<x<ny, S)[- 3]
< lim u(Ep[XLjo<x<nyl #¢],5) = u(Ep[X [ F4],9). (2.8)
Notice that on theZs-measurable s&” := {Ep[X|.%s] = +} the equation (2.5)
is trivial. SinceEp[—X~|.%s| > —oo, itis clear thaEp[|X||.%s] = +o onaseA € .7
iff Ep[X|.%s] = 4+ on the same se&t. Therefore, by defining, := {we Q\ G|

Ep[|X| | Zs](w) < n}, we haveG, T Q \ G*. Since eacl®, is .#s-measurable, the
inequality (2.7)-(2.8) guarantees that

—E]p[U(XJ.Gn,S)Wys] < E]p[U(XlGn,SMyS] < U(Ep[x+1(3n|ys],$)
< u(Ep[[X[|-74].9)1a, < u(n,s)

and thereforeu(X1g,,s) is integrable. ObviouslyX1lg, is also integrable and we
may apply iii) (replacing< with X1g,) and deduce

Ep[U(X,Sﬂys]lGn = Ep[U(XlGn,Sﬂys] < U(E]p[x1gn|ys]75) = U(E]p[X|ys],S)1@n.

The thesis follows immediately by taking the limitas+ o, sinceG, T Q \ G”.
For a generali(x,s), apply the above argumentwx, s) =: u(x,s) — u(0,s).

A SDU allows us to define the backward conditional certairguiealent, that
represents the timgvalue of the timea-claim X, for 0 < s<t < oo,

Definition 2.2. (Conditional Certainty Equivalent) Let u be a SDU. The back-
ward Conditional Certainty Equivale@k;(X) of the random variabl¥ € % (t), is
the random variable it (s) solution of the equation:

U(Cst(X),8) = Eg [U(X,t)] 7. (2.9)
Thus the CCE defines thaluationoperator
Cst: % (t) = % (9), Cst(X) = u 1 (Ep [u(X,1)|.Z]) ,9). (2.10)

Observe thaEp [u(Cst(X),s)] = Ep[u(X,t)] and so indee@s; (X) € % (s).

The definition is well posed

1. Forany giverX € % (t), Ep [u(X,t)|.% € LY(Q, %5, P).
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2. Choose two arbitrary versions of the conditional expemteand of the SDU at
times, namelyEp [u(X, )|, Ep [u(X,t)|Z] andli(x,s), G(x,).

3. Forallw e A, Ep [u(X,t)]|.%] (w) € Z(t) C Z(s). We find a unique solution of
0(Cst(X),s) = Ep [u(X,t)|.%4 defined as

Cst(X)(w) = 0 HEp [u(X,1)|.Zd (w),5w) YweA.

4. Repeat the previous argument for the second version ath@4iiX ) which dif-
fers from@t (X) only on aP-null set.

We could equivalently reformulate the definition of the CGHallows:

Definition 2.3. The conditional certainty equivalent process is the onlgcpss
{Ys}o<s<t such that; = X and the procesfu(Ys,s) }o<s<t iS @ martingale.

In the following proposition we show some elementary prépsrof the CCE,
which have however very convenient interpretations. Iné)skow the semigroup
property of the valuation operator; iii) show the time caitsincy of the CCE: if the
time-v-values of two time claims are equal, then the two values should be equal at
any previous time; iv) and v) are the key properties to obsaitual representation
of the maCs; as shown in Chapter 1; property vi) shows that the expeciafithe
valuation operator is increasing, as a function ofitakiation time @nd the second
issue expresses the risk aversion of the economic agent.

Proposition 2.1.Letube a SDUp <s<v<t<oand XY € % (t).

i) Cs,t(x) = Cs,v(c\/,t (X))

i) Cet(X) = X.

iii) If Cyt(X) < Cyt(Y) then for all0 < s < v we have: G (X) < Csy
X <Y implies that for all0 < s <t we have: Gt(X) < Cst(Y).
if the inequalities are replaced by equalities.

iv) Regularity: for every Ac Fs we have

(Y). Therefore,
The same holds

CS,t (X]-A + Y]-AC) = C&t (X)1A+ Cs,t (Y)]-AC

and then Gt (X)1a = Cst(X1a)1a.

v) Quasiconcavity: the upper level SeX € % | Cst(X) > Y} is conditionally con-
vex for every Ye LY, .

vi) Suppose u sat|sf|es (d) and for evegy[D, +), u(x,t) is integrable for every x
2(1). Then G¢(X) < Ep[Cyt(X)|Fs] and Bp [Csy(X)] < Ep [Cyt (X)]. Moreover
Cst(X) < Ep[X|.%s] and therefore k[Cst(X)] < Ep[X].

Proof. By definition:

U(Cu(X),v) < Ep[uX,t)| A, X € 2 (t)
U(Cs(X),8) ) Er X, D74, X € 2 (1)
U(Csv(2),9) 2 Ep[U(Z V)| T, Z e % (V)
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i) Let Z = Cyt(X) and compute:

U(Csu(Cut(X)),8) = U(Csu(Z),9) 2 Ep[u(z, V)7
()

Y By [Bp [u(X, 0|5 | 7] = Es [u(X,1)].7d 2 u(Csi(X),9)
ii) Obvious, sincau(Ce (X),t) 2 Ep [uX,t)| %] L u(x.t).
ii)

N2

IF

U(Gst(X),8) = Ep[u(X,1)|-Fs] = Ep[Ep [U(X,1)[ 7] 7]
Ep [U(Cut(X),V)|-Fs] < Ep[u(Cu(Y),V)|.F]

Es [Ep [U(Y, 1) 7] |79 2 u(Cst(Y),9).

—
N

—
N

If X <Y thenG;(X) <G t(Y) and the statement follows from what we just proved.
The same for equalities.
iv) Consider evenA € .%s and notice that

Cst(X2a+Y1ac) = u 1 (Ep[u(X,t)1a+ U(Y,t)1ac | .7, 9)
= u HEp[u(X,t)|.Fe|1a,9) + U H(Ep[u(Y,t) | Fglxc,S)
= Cst(X)Ia+Csr(Y) 1
v) Fix an arbitraryY € qus and consider the sé¥ = {X € % | Cs;(X) > Y}. Take
X1, X € % andA €L, 0<A <1
Ep[U(AXy+ (1—A)Xo,1)[.Fs] > AEp[u(Xq,t)|-Zs] + (1—A)Ep[u(Xa,t)[-Fs] > u(Y,s)

hence we get the thesis composing both sides witlf-,s) .
Vi)

&

U(Cst(X),8) = Ep[u(X,t)|Fs| = Ep[Ep [U(X,t)|Fv] | 7]
(

=
7
=
%
X
=
&
A
7
=
O
X
)
b

IN
&

U(Ep [Cyt(X)|F,9).

We applied in the last inequality the extended Jensen iniggusince (u(Cyt (X),s))
is integrable. The second property follows by taking- t and observing that

Ge(X) =X.

Remark 2.2Comparing the definition of SDU with the existing literatadgout for-
ward performances ([6],[62],[63]), we may notice that tHeE_does not rely on the
existence of a market: this allows a higher level of genralihd freedom in the
choice of the preferences of the agent. We recall that antedgocesd) (x,t) is
said to be a forward utility if
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1. itis increasing and concave as a functiox édr eacht.

2.U(x,0) =up(x) e R

3.forall T >t and each self-financing strategy representedrpthe associated
discounted wealtX™ (see Section 2.3 for the rigorous definitions) satisfies

Ep[U(X,T) [ A] <UL
4. for all T >t there exists a self-financing strategysuch thaiX”™ satisfies

Surely if one take into account this stronger definition aresbtto apply it for the
computation of the CCE of these self-financing discountatf@ams X™ then only
for the optimal strategyg” we have that

Cst (th*) =X

whereas in general
Cst (X)) <X

This points out an economic interpretation of the CCE: githenfinal outcome of
some risky position we backwardly build up a process whidegainto account
the agent’s random risk-aversion. For replicable contmgdaims it means that
XI'—Cst (X)) measures the gap between the real value of the claim atsfiared
the smallest amount for which the decision maker would mglly sell the claim if
he had it. The gap will be deleted whenever we move througtptimal strategy.

The previous remark suggests the following

Definition 2.4. Let 0< s<t < o and letu be a SDU. Theonditional risk premium
of the random variablX € % (t) is the random variablps;(X) € L%(Q, %, P; 2)
defined by:

Pst(X) = Ep[X[.Fs| — Cst(X).

We now consider some properties of the dynamic stochaslity ut when it is
computed on stochastic processes.

Proposition 2.2.Let{S }1>0 be an{.% }i>0— adapted process such that&% (t)
and consider the proceg# }1o defined by V= u(S,t).

i) {M}t>0 is a ({ %t }1>0,P)—supermartingale (resp. submartingale, resp martin-

gale) if and only if G¢(S) < S (resp. Gi(S) > S5, resp Gi(S) = S) for all
0<s<t< oo,

Moreover if in addition u satisfies (d) and for everg {0, ), u(x,t) is integrable
for every xe Z(t) then

i) If {S}=0is a ({% }i>0,P)—supermartingale, then the procedé }+~o defined
by M = u(S§,t) is a({ % }t>0,P)—supermartingale and thussg S ) < Ssfor all
0<s<t <o,
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iii) IfCst(S) =Ssforall 0 < s<t < wthen{S }t>0isa({% }i>0,P)—submartingale.
Proof. i) If u(§,t) is a supermartingale, then

U(Cst(S),9) YV Er [U(S,1)]. 74 <u(S,,8) forall 0< s<t

and therefor€s;(S) < Ss. Conversely itCst (S ) < Ssthen

2.9
Er [u(S.0)| 75 2 u(Cat(8).9) S u(Ss 9)
andu(§,t) is a supermartingale. Similarly, for the other cases.
if) From extended Jensen we get:

(d)
Ep[U(S,t)|F¢] < Ep[U(S§,9)|F] < u(Ep[S|F.5) <u(Ss,s).
iif) From Proposition 2.1 vi) we deduc& = Cst(S) < Ep [S|.%].

Remark 2.3When u satisfies (d) and for everyc [0,+), u(x,t) is integrable
for everyx € 7(t) and {S}t>0 is @ ({Zt }t0,P)—martingale, then{\i },-, is a
({-# }1>0,IP)— supermartingale, not necessarily a martingale.

2.3 A local formulation of the CCE

Let (Q,.#,{-% }i>0,IP) be afiltered probability space where the filtratips: }i~0
is generated by d-dimensional brownian motiow = { (W, ..., W) }1~0, where
t indicates the transposed of a matrix. Fer1,...,k, the price of the'" risky asset
and the bond are described respectively by

d§ =9 (dt+ 0o -dW), dB =rBdt

with §; > 0,Bg = 1; g = (¢;") is thed x k volatility matrix and- the usual vector
product, which will be often omitted. Following Musiela addriphopoulou, we
assumely —ryl € Lin(atT), i.e. the linear space generated by the columnstTof
Denote by(o{r)+ the Moore-Penrose pseudo-inverse of the mamﬁmnd define
A = (6" (1 — 1ry), which is the solution of the equatias)'x = i — 1r,. The
present value of the amounts investeding are denoted by, 77, respectively.
The present value of investment is then givendy= K ;i and satisfies the SDE

X = 07 (At + dW)

whererg = (1¢8, ..., ).
LetU (x,t) be a dynamic stochastic utility of the form
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U (x,t xO+Z/qus x0+/ (x,8)-dls

dgl = aJ(Zt,t)dt+_zib"1(zt,t)dw' =al(&,t)dt+ b (,t) - dW

where everyl (x,t) belongs taC?1(R x [0,T]) and is a strictly increasing concave
function ofx. We denote bys thed x mrmatrix (b"! (s, s)).

Proposition 2.3.Suppose that for every:t 0,
't 't
/ Ep [(bsu(XZ%,5))2] ds< +o and / Ep [(Ux(XT,5)0575)2] ds < +o0
JO JO
The conditional certainty equivalent can be approximated a

Cur (XF) = Ex P17 — 300 (G7m)2(T 1) ~ B 0)(T 1) +0(T 1)

where we have denoted respectivelyahefficient of absolute risk aversiamd the
impatience factoby

-, Uxx (X, 1)
abot) =~ Uy (x,1)
B(x,t) == _u(xvt)'a(Zt,t)—i-btuX(x,t).GtrE

Ux(x,1)

As a consequence the risk premium is given by

AT OF) = + 3008 (GRA(T 1) + BT 1) +o(T 1)

Proof. For simplicity we denote{™ by X;. We apply the generalized 1td’s formula
(see [52], Chapter 2), so for everye [t,T]

U %) = UWJH/IVU(XS,S) 'dZs—F/tVUx(Xs,S)dXS
1 v , N
T é./t Uxx(Xs, ) (0sT) “ds+ <'/t Uy (Xs, ds), Xy)

Notice that in this case

</t'vux(xs,ds),xv>:</t' Ue(Xs, S) - s, X0) = i/v (X,) (Zb'JZS, og@))d

and then we have
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U(Xy,v) = U (X,t)
vV
=+ /t (U(Xs,s) - a(Ls, ) + OsTeASUx (X, S)
1
+ éuxx(x& S) (057T5)2 + bsuy (Xs, S) 057'[5)d3

+ /I (bsu(Xs, S) + Ux(Xe, S) 0sTE) dVI6

From the assumption of the theorelm= jg (U(Xs, S) - bs+ Uy (Xs, S) 0sTE) AV is
a martingale: so the conditional expectation is given by

v 1
+/ Ep [ua+0n/\ux+EUXX(UH)2+quon\% ds
t

From the definition of CCE we have
U (Cv(X),t) = Ep[U (X, V)|-F4]

If we denote{Z, }c 1) the stochastic process defineddyy=: Ep[U (Xy,V)|.7t] then
the stochastic differential

-1
dU(xt
dGy(X,) = dU(Zy,t) = oMU x) az,
ay ‘X:U71(Zv7t)
= ;E ua+omiu +}U (0ﬂ)2+bu orr|3¢‘t dv
UX(C[N(XV)at) ¥ X 2 XX X

Hence, sinc&) ~1(Z,t) = X

)
Cor(Xr) =X+ | Exl(x) | Filds

where
(%) = u(Xs, S)a(Z&5)+Usrﬁs/\sux(xs,3)+%uxx(xs, S) (0sTE)%+bsuy(Xs, S) Os T,
Ux(Gis(Xs),1)
Notice that

T
Ep[Xr|%] = % +Ep Ut OsTEASAS | %] =X+ A (T —t) +0o(T —t)
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C1(X) =X+ A (T —t) + %%(qng 1)
UGS BUGORTE 1) 4 o7

Ux (X, t)
= Ex eI — 504 (@TT ~1) — BOG(T ~t) 0T —)

Remark 2.4If the utility U(x,t) is deterministic (i.e. the matrik; = O for every
t > 0) we deduce that

u(x,t)a(¢,t) Ui (x,t)

B =0kt~ Gxy)

which is the usual definition of impatience factor.

2.4 The right framework for the CCE

Until now we have considerdds; as a map defined on the set of random variables
% (t) which is not in general a vector space. In order to show thérdpaesentation
of the CCE it is convenient to define it on a Banach lattice.

Orlicz spaces have become an important tool whenever weoapprto the
utility-maximization framework and we are dealing with unimded random vari-
ables (see for instance [7] and [8]).

The question which naturally arise is: what happens if wesiter a utility functions
which has some explicit dependence on the randomness? Magtually define a
class of “stochastic” Orlicz spaces?

Therefore we now introduce the general class of Musieldicspaces induced by
the stochastic dynamic utility taken into account.

2.4.1 Generalities on Musielak-Orlicz Spaces

Given a non-atomic probability spa¢@,.%,P) and a functio¥ : R x Q — RU
{40}, with 7 = {x e R | ¥(x,w) < +o} # 0, we say thatV is a (generalized)
Young function if¥(x,-) is .#-measurable and fdt a.e.w € Q

1. ¥Y(-,w) is even and convex;
2. the effective domaity does not depend am and 0< int(2);
3. WY(oo,w) =40, ¥(0,w) =0.

Note that¥’ may jump to+ outside of a bounded neighborhood of 0. In césis
finite valued however, it is also continuous wx.by convexity. Whenever possible,
we will suppress the explicit dependenceidfrom w.
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The Musielak-Orlicz space?, on (Q,.Z,P) is then defined as
LY ={XeL?|Ja > 0Ep[W(aX)] < +w}.
endowed with the Luxemburg norm
Ny (X) =inf{c>0|Ep [ (X -c )] <1}.

Although there are no particular differences with Musielakk (see [67]), here
we are dropping the hypothesis ghto be finite (and so continuous). But since the
domainZ does not depend a2 we have that non continuod4s always induce the
spacd.”(Q,.#,P) and the Luxemburg norm is equivalent to the supremum norm.

It is known that(L¥ Ny ) is a Banach space (Theorem 7.7 in [67]), and with the
usual pointwise lattice operatioris’ is a Banach lattice.

There is an important linear subspacé.8f which is also a Banach lattice

M¥ ={X € L°| Ep [W(aX)] <+ Va >0} .

In generalM¥ S LY and this can be easily seen wH¢ris non continuous since in
this caseM? = {0}, but there are also non trivial examples of the strict comtagnt
with finite-valued, continuous Young functions, that welwdnsider soon.

Other convenient assumptions ghthat we will use in the forthcoming discus-
sion are

(int) Ep[W¥(x)] is finite for everyx € Z;

(sub) there exists a Young functign R — RU {4} such thatg(x) < ¥(x, w) for
P-a.ewe Q

(A2) There existK € R, h e L andxg € R such that

W(2x,-) <KW(x,-)+h(-) forallx>xy, P—as.

When¥ satisfies (int) and thé\,) condition (and it is henceforth finite-valued
and continuous) the two space®’,L¥ coincide and_* can simply be written as
{X € L9 | Ep[¥(X)] < +w} (see [67], Theorem 8.14). This is the case of the
spaces whet does not depend oe.

In[67] (Theorem 7.6) it is also shown that whehis (int) and continuous oR,
thenM? =T=" with closure taken in the Luxemburg norm. Whéris continuous
but grows too quickly, it may happen that¥ = = G LY. As a consequence,
simple functions are not necessarily densk'fn

If both (int) and (sub) hold, it is not difficult to prove that

L s MY 5 LY 19 1T

with linear lattice embeddings (the inclusions).
As usual, the convex conjugate functi#ti of ¥ is defined as

Wy, w) =: sup{xy— ¥(x, w)}

XeR
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and it is also a Young function. The functi&fi in general does not satisfy (int), but
a sufficient condition for it is tha®’ is (sub). The Musielak-Orlicz spa¢é” will
be endowed with the Orlicz (or dual) norm

[Xllg = sup{Es[IX ]| f € LY : Ex[W(1)] <1},

which is equivalent to the Luxemburg norm.

2.4.2 The Musielak-Orlicz spacke” induced by an SDU

In the spirit of [7], we now build the time-dependent stocltaSrlicz space induced
by the SDUU(x,t, w). The even functioi: R x [0, +) x Q — RU{+o} defined

by
U(tha (A)) = U(O,t) - U(—|X|,t, (A))

is a Young function and the induced Orlicz spaces are
L% = {X € L%, | Ja > OEp[G(aX,1)] < +oo}

M% = {X € LY, | Ep[G(aX,t)] <+ Var > 0}

endowed with the Luxemburg norNy, (-).
Notice the following important fact:

M% C % (t).

Indeed, for any giverd > 0 andX € LS@E such thatEp[U(A X,t)] < 4+ we have:
Ep[u(AX,t)] > Ep[u(—A|X],t)] > —. On the other hand(x,t) —u(0,t) < T(x,t) so
thatEp[u(AX,t)] < Ep[UG(AX,t)+u(0,t)] < 4+ and the claim follows. In particular
this means that (int) implies(x,t) is integrable for everyx € 2(t).

This argument highlights one relevant feature: evérg M belongs to the
set7 (t) so that the CCE is well defined avi®. In the following examples also
Cst(X) € MU holds true, so thaEs; : M% — MU% and it make sense to study the
time consistency ofs;.

2.4.3 Examples

Exponential random utilities

Let us considen: Rx[0,0) x Q — R defined by

u(xt, w) = —e @(@xth(w)
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wherea; > 0 andf; are adapted stochastic processes.
In this example the CCE may be simply computed inverting timetionu(-,t, w):

Cai(X) = o n {Exle 7} + 2 (2.12)

Notice the measurability requirement on the risk aversi@mt@ssa;, which is dif-
ferent from what can be found in some examples in the liteeatelated to dynamic
risk measures, as e.g. in [1], where then (2.12) is replaced bws.

Assumptions: We suppose thgk belongs to_*(.%;) for anyt > 0 and thag™*
L%, foreveryxeR.

These assumptions guarantee that (int) holds. In partidula (w) = a € R and

B: = 0 thenCs;(X) = —pst(X), whereps; is the dynamic entropic risk measure in-
duced by the exponential utility. Unfortunately when trekraversion coefficient is
stochastic we have no chance ti@at has any monetary property. On the other
hand monotonicity and concavity keep standing. The firstus tb Proposition
2.1, whereas the second is a straightforward applicatiddadder-conditional in-
equality. This means that in geneg} (X) =: —Cs¢(X) satisfies all the usual as-
sumptions of dynamic risk measures, only failing the cadlita® property. We
now show a sufficient condition by whigb:(X) is at least cash subadditive, i.e.
Pst(X+Y) > psi(X) —Y whereY € L7 andY > 0.

Proposition 2.4.Under the previous assumptions, the functional

1
pst(X) = * In {ElP[efatxwt |<J§Zs]} + %

S

is cash subadditive if the process; }+~o is almost surely decreasing.

Proof. For everyY € L% andY > 0:

1
Pst(X+Y) = o In {E]P[efgftsasYe—atX+Bl|js]} _%
S s

1 oy B
> = asY o—otX+L6t | g _ s RV
> @ In {E]p[e e |Js]} o Pst(X) =Y.
Proposition 2.5.Under the previous assumptions
Mi s &L o 2Py p>2
where | j are isometric embeddings given by the set inclusions.

Proof. The first inclusion is trivial since the two spaces are endbwigh the same
norm. MoreoveM" is a closed subspace bft.
For the second inclusion we simply observe that since
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duxt) s
dx o
for almost everyw € Q then for everyp > 2 andA >0
XP<O(Axt,w) VXER, forP—ae.weQ

which implies
[IX[]p < kNg (X) (2.13)

Proposition 2.6.Under the the previous assumptions

Cst: M&E — MUs

Us(ACst (X)) — us(0) = —Us (-% —InEple %R 2] + Bs

S

Proof. Let A > 1, and since no confusion arises we denotetly) = u(x,t). Define
A= {InEpe" 9%+ |.Z¢ < Bs} and notice that

= P expA| - InEp[e X TR | .7 + B|)
= ePsexp(A (Bs— InEple” R |.2))) 14

+ P exp(A (INEp[e R |75 — Bs)) 1c
) =R A R PR e = R A O

Since onA we haveEp[e @*+A|.Z] < éf and in generat®(11) <ae R, then

E [Gs(ACst(X))]

IN

Ep[es(tTA N1, +aE { Eple R Zg 1ac } + Ep[us(0)]

IN

—Ex[us(0)] + aBe [ € ("] 1 Exus(0)]
< +al|(é* V) B [G(AX) + 6] < KEs [G(AX)]

Notice that the second step is a simple application of Jemgmequality, in fact:
E[Y|9)* <Ep[Y}|¥]VA > 1. Moreover we have thatfor@A < 1E [Us(ACs;(X))] <
E[Us(Cst(X))] < 0 and therCs;(X) € MU,

Random-power utilities

Consider the utility function given by
u(xt, @) = —(@)X* V1 ag

wherey, p; are adapted stochastic processes satisfying0 andp; > 1. We have
U(x,t) = y|x|™. Here assumption (int) is troublesome but not needed fott ¥aha
lows. On the other hand the utility fails to be strictly inaséng so that we won't
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have uniqueness of the solution for the equation definin@€®E, namely
—¥6Cst (X)|PLycqy (x) <0y = Ep [~ HIX [P Lix <0} | Fs] (2.14)

Notice thaiCs; (X) = Cst (X~ +K1x>0) WhereK is any positiveZ; r.v.; moreover if
G = {Ep[%|X|PLix0y| #5|] > O} thenP (G \ {Cst(X) < 0}) = 0. If we decompose
X asX* — X~ we can conclude that

1 _ 1
Cst(X) = % (Ep[n(X7)P[F) P +Klge
S
it's the class of solutions of (2.14) wheke e Lf’% andK > 0. This is a natural
consequence of the choice of a preference system in whichgtbet is indifferent
among all the positive variables. If in particukare MY then it is easy to check that
Cst : MM — M,

Stochastic transformations of static utilities

One may wonder what happens for an arbitrary SDU. ClearlyabithatCs; is a
map between the the two corresponding Orlicz spaces at timés s a key feature
for the time-consistency. We take into account a partictlss of SDU, which are
a stochastic transformation of a standard utility function

LetV :R — R a concave, strictly increasing function: take an adaptechststic
process{ at }t>0, such that for every > 0, oy > 0. Thenu(x,t, w) = V (ot (w)X) is

a SDU and 1
C&t(X) = FSV%L (E]P’[V(atx) | ﬁs])

Proposition 2.7.Let & = {X € L% | Ep[u(—X",t)] > —o} D M%, Then
Cst 16— Os
Moreover ifli(x,s) satisfies th€A,) condition, then
Cst : MU — MY,
Proof. Denotel (x) = U(x,t); from Jensen inequality we have

aivﬂ(EP[v(atX) | 7)) < aiSEP[atx EA (2.15)

S

Define theZ#s measurable sets
F={Ep[V(aiX) | F|>V(0)}, G={EplaX|Fs| >0}

and deduce from equation (2.15) that
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1 1
0<Cou(X)" = VBV (@X) | #d)) 1k < —Bel(arX) 16 | 7
S S
For everyX € L% we may find @ > 0 such thaEp|[G(AX1g)] < +:

Ep {05 (%Vl(Ep[V(atX) | Z]) 1F)] < Ep | Gs <§SEP[(mX)1G | ﬁs]ﬂ
— EpV(0) ~V(~Epl(AatX)1s | Fd])] < Ep[V(0) —V(~A atX1g)]
< Ep[G(AX1g)].

HenceX € L% impliesCst(X)* € L.
Now let's consider a r.\X € 6 —Csi(X) ™ = O%SV*1 (EpV (a0t X) | F)) 1gc.
We can conclude that

0 < Ep[0s(—Cst(X) )] = Ez [~V oV (Ep[V (atX)1pc| Fs)) +V(0)] =

= Ep[-V(atX)1gc +V(0)] < +o0

where the last inequality follows froid € &, {X >0} CF and
V(aX)Lee = (V(aX ) Lixz0y+V (=X ") Lix<0y) e =V (=atX 7)1y o)pe

This shows that surel@st(X) € O, if X € 6.

2.5 Dual representation of CCE

In this section we prove a dual formula for the CCE, which sikir to the general
result that can be found in [33]: due to the particular stitebf the CCE the proof
is simpler and more readable.

Consider the condition:

there existX* € (L%)* s.t.Ep[f*(X*,t)] < 400 (2.16)

wheref*(x,t, w) = SURcg {xy+u(y,t,w)}.
As a consequence of Theorem 1 [75], we may deduce that if Yhdldls, if
U(x,t) is (int) andX € L™ thenEp[u(A X,t)] < 4o for everyA > 0.

Remark 2.5The condition (2.16) is quite weak: it is satisfied, for exaenpf
u(xt,w) < ax+bwith a,b € R since

f*(—at,w) <sup{(—a+a)y+b}=h.
yeR

We now take into accourft.¥')*, the norm dual of¥ and consider the following
three cases which cover a pretty large class of possiblegrunctions.

1. W(-,w) is (int) and discontinuous, i.eZ S R.
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In this casel.¥ = L® and from the Yosida-Hewitt decomposition for elements of
ba(Q,.#,P) we have
ba= (L®)" =L@ &9,

where.er? consists of pure charges, i.e. purely finitely additive nees (which
are not order continuous).
2. Y(-, w) is continuous¥ andy¥* are (int) and satisfy:

Y(x,w
% — 4o P—as, asx — .
These conditions are not restrictive and hold as sooW as (int) and (sub)

with limy_e @ — +o0. For such Young functions it can be easily deduced from

Theorem 13.17 in [67] thaM¥)* = L¥": i € (M¥)* can be identified with its
density% ¢ LY so that we will write its action oiX € LY aspr (X) = Ep[prX].
Moreover(M*)* is a band in the dual spa¢e*)* (see [2] Section 8) so that we
may decompose

(LW)* _ (MHU)* @ (M‘P)J_

i.e. everyX* € (L¥)* can be uniquely representedXs= i + us whereps be-
longs to the annihilator ¥ (us(X) = 0 for everyX € M¥) andy, € (M¥)* =
L*". Notice that every element. € (M¥)* is clearly order continuous. More-
over it can be shown, applying an argument similar to the eee in Lemma 10
[7], that everyus € (M¥)* is not order continuous.

3. ¥Y(-,w) is continuous and

o Y(xw) .
0 <a=essinf lim ———— < esssuplim
weQx—eo X weQ X

]

X
Here (int) automatically holds for bot# and¥*. It follows thatL¥ = L' and
theL'-norm is equivalent to the Luxemburg norm, so tiaf )* = LY = L*.

Assumptions for the dual result

In this sectioru(x,t, w) is a SDU, such that:

1. For allt > 0, the induced Young functiofi(x,t, w) belongs to one of the three
classes mentioned above
2. The condition (2.16) holds true.

As shown above, under the assumption (1) the order dual sgfac® is known
and is contained ih!. This will also allow us to apply Proposition 1.1. The second
assumption implies thap[u(-,t)] : L% — [0, 4-00) is a well defined convex func-
tional ([75]).

Thus we haveu(X*,t) € Ll% but in general we do not have integrability for

u(—X",t). This means that iX ¢ & = {X € L% |Ep[u(—X",t)] > —oo} we are
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forced to consider the generalized conditional expeatatio

Ep[u(X,t) [ Fs] 1= Ep[u(X,)" | F| = lim Ep[u(X,t) " 1{_nc_ux g-<o0 | Fsl;
which can be equivalently written as:

Ep[u(X,t) [ F] = Ep[u(X", 1) 1ix=0) | F] + M Ep[u(=X", 1)1 _nex<o} | Fs.

ThereforeEp[u(X,t) | Z¢] € If%s andCs; (-) is defined on the entire spaté. We
fix throughout this section & s <t and define

Pz ={X* e (L), | Ep[X*] =1} C {Q << P | Q probability}

U :L% - LY given byU(X) := Ep[u(X,t) | 7

The mapU is concave and increasing and admits the dual represansitited in
Lemma 2.2. From equation (2.18) we deduce the dual repiesemdf Cs;(-) =
u~(U(),s) as follows.

Theorem 2.1.Fix s<t. For every Xe L%

Cst(X) = Qeir}fyt G(Eq[X|#4],Q) (2.17)

0
where for every ¥e L ,

G(Y.Q) = ;»Ul? {Cst(8) | EQl¢|#s] = Y}
el

Moreover if Xe M% then the essentiahfimumin (2.17) is actually aninimum
The proof is based on the following Lemma.

Lemma 2.2.Let s<t. For every Xe L%

UX)= inf S(EQIX|#.Q) (2.18)

where $Y,Q) = sup & {U () | Eq[é|.# =q Y} forany Ye LY.
Moreover if Xe M then the essentiahfimumin (2.18) is actually aninimum

Proof. ObviouslyVQ € Z 4

Ep[u(X,t) | 7| < gSlig {U(&) | Eql&|-7s] =q Eq[X|74]}

and then

ErluX.t) | ] < inf sup{U(&)|Eqlé|# —o EqlX|.Z}.  (2.19)
QE‘@%EELQ
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Important remark: we have thE{U (X)) = E(u(X,t)); this means that
E(U(-): L% — [—e0,40)

is a concave functional. From the monotone convergenced¢heand Jensen in-
equality the functiondE (u(X,t)) is continuous from above (i.%, | X = E(u(Xn,t)) |
E(u(X,t))). Applying Lemma 15in [8]E (U (X)) is order u.s.c. and thus(L%, L% )-
u.s.c. (Proposition 24 [8]).

From Proposition 1.1 in Section 1.2:

BUX)) = inf leig {Ep[U(&)] | Eql¢] = Eq[X]}

> it Sup{E(U(E) | Eolé]:74 =o EalX\7d) = EU(X)
€T A el

EU(X)) = it sup (EU(E)) | Eolt|# o EolXIZ)  (220)

Surely the magp) is regular (i.e. for everA € Fs, U(X1a+ Y1) = U (X)1a+
U(Y)1xc) and then the set? = {U (&) | Eq[é|.%s] =g Eq[X|Zs]} is upward di-
rected. In fact giverd, & € o7 we have

U(&1) VU (&) =U (&)1 +U(&2)1ec = U (&11F + &1c)

whereF = {U (&) > U(&2)} andEqg[&11F + &21rc|.%s] =g Eq[X|.Z4|. By this last
property and the monotone convergence theorem we deduce

Ep[S(Eq[X|-74],Q)] = gSlig {Ep[U(&)] | EQ[&|Fs| =q Eq[X| 7}

Hence

BUX)) = inf ESliapt {E(U(&)) | Eql€|-#s| =q Eq[X|-F4|}

= inf E ( sup {U (&) | Eql¢|7d =q EQ[XI%]}>
QEZ % fellt

>E ( inf sup {U(&) | Eqé| %< =0 EQ[XWs]})

Qe'@.?[ gELG[
This last chain of inequalities together with inequalityl@) gives

U(X)=_inf sup{U(&)|Eql¢|F]=qEq[X|ZJ} VvXel%  (2.21)

QEP A geLt
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Moreover from generalized Namioka-Klee theorem, the fiomet E(u(-)) : L% is
norm continuous oint (@) 2 M (see [8] Lemma 32) and thé®(U (X)) as well
sinceE (U (X)) = E(u(X)).

Again from Proposition 1.1 we have that:

E(U(X)) = min sup {E(U(&)) | Eql¢] = Eq[X]}

Q<P EeMb
= ESthAIg[ {Ex[U(&)] | Equnl¢] = Equn[X]}
Z ESL'J'E[ {EP[U (E)] | Elen[E|yS] :Qmin Elen[X|yS]} Z E]P[(U (X))

The remaining proof matches the previous case and then we get

U(X)= min sup {U(§) | Eql¢|# =g Eq[X|#} vXeM™  (222)

Qe'@.?[ EEMGt
where the minimizer is exacti@min.
Proof (of Theorem 2.1)Since s,t are fixed throughout this proof we redefine
Cst(-) = C(+), u(x,t) = u(x) and u(x,s) = v(x). We show that for every fixed

Q€ Pz, v 'S(EqlX|-F4,Q) = G(Eq[X| 74, Q).
SinceC,U are regular, for every fixe@ € & 2 the sets

{C(8) € € L™, Eql¢| T =qEqlX|F4}, {U(§) | € € L™, Eq[€| T =qEqlX| 74|}
are upward directed and then there ei;%m,? such thaEQ[E,? | #s] =q Eq[X|-Z4],
EQ[nr?|§s] =q Eq[X|.%4], for everyh > 0, and
C(&) T G(EqX| 74, Q). U(nd) T S(EqlX|#4.Q) P-as.
Thus sincev—1 is continuous in the interior of its domain:
G(Eq[X|.74.Q) = imC(n?) =v limU (n?) = v 'S(EqlX| 7. Q)

> v HimU (&) = imC(&) = G(EqlX| 74, Q)

and this ends the first claim.

It's not hard to prove that the infimum is actually a limit (ugithe property of
downward directness of the set as has been shown in Chaptemina 1.4 (v)):
therefore we deduce from the continuitywof! that

CX)=v1 inf Eo[X|%4,Q) = inf vl Eo[X|.Z4,
() =v* inf S(EQX|7.Q) = inf v ISIEQIX|F.Q

= inf G(Eq[X|.Z
ol G(EalX| 74, Q)






Chapter 3

Conditional quasiconvex maps: d.°-module
approach

This last Chapter -compared to Chapter 1- is not a mere glezegian to a different
framework. Our desire is to motivate future researcherhitortew tool that shows
huge potentiality in the financial and economic applicaticDonvex/quasiconvex
conditional maps (see also [27]) is only one of these nunsapplications. It was
our surprise and pleasure to discover Hd\{# )-modules naturally fitted to our pur-
poses and simplified most of the proofs.

Anyway there is a drawback that still urges to be answerettheire a way to com-
bine modules with a time continuous financial problem? Iseteenotion of time
consistency in agreement with modules?

3.1 A short review onL°% modules

The probability spacéQ,.7,P) is fixed throughout this chapter ad C .# is
any sigma algebra contained i#A. We denote with.%(Q,.7,P) = L°(.%) (resp.
L9(%) ) the space ofZ (resp.¥) measurable random variables that &e.s.
finite, whereas byL°(.%) the space of extended random variables which may
take values inR U {«}; this differs from the previous chapters, but this choice
is needed not to mess the things up with the notations linketthé presence of
modules. In general sindg2,P) are fixed we will always omit them. We define
L2 (#)={Y eL%%)|Y>0}andL® (#)={Y L) |Y > 0}. We remind
that all equalities/inequalities among random variablesraeant to holdP-a.s..
Since in this chapter the expected vakid-] of random variables is mostly com-
puted w.r.t. the reference probability we will often omitP in the notation.
Moreover the essentialP(almost surely)supremum essip, (X, ) of an arbitrary
family of random variableX;, € L°(Q,.Z,P) will be simply denoted by sygX; ),
and similarly for the essentiahfimum Vv (resp.A) denotes the essentidP @l-
most surelynaximun{resp. the essentialinimun) between two random variables,
which are the usual lattice operations.
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We choose the framework introduced by Filipovic et al. arsd jecall here some
definitions. To help the reader in finding further details vge the same notations
asin [28] and [53].

L%(¢) equipped with the order of the almost sure dominance is iagatrdered
ring: define for everg € LY , (%) the ballB; = {Y € L% | |Y| < €} centered in &
L9(%), which gives the neighborhood basis of 0. A¥et L°(%) is a neighborhood
of Y € LO(@) if there existse € L°_ (%) such thaty +B; C V. A setV is open if
it is a neighborhood of al¥ € V. (L%(%),|-|) stands foiL.°(¢) endowed with this
topology: in this case the space looses the property of beitagpological vector

space. It is easy to see that a net converges in this topoiagyelyYN_u Y if for
everye € L2 (¢) there exist\ such thatY — Yy| < ¢ for everyN > N.
From now on we suppose thatC L%(.%).

Definition 3.1. A topological L°(¢)-module (E, 1) is an algebraic modul& on
the ringL°%(%), endowed with a topology such that the operations

() (E,1) x (E, 1) = (E,T), (X1,X2) — X1+ Xp,

(i) (LOD),] - ) x (E,1) = (E.T), (I Xo) = X
are continuous w.r.t. the corresponding product topology.
A set% is said to bd.%—convex if for everyXy, Xo € € andA € L@), 0<AN K],
we haveA X; + (1-A)X € 7.
A topologyT onE is locally L°(%)-convex if (E, 7) is a topological.%(¢)-module
and there is a neighborhood bage of 0 € E for which eachU € % is L%(¥)-
convexL%(¢)-absorbent ant®(¥)-balanced. In this cag&, 1) is alocally L°(%)-
convex module

Definition 3.2. A function || - || : E — L% (%) is aL°(%)-seminorm orE if
() IFX]| = |F|IX| forall I € L%(%) andX € E,
(i) ||X1+X2|| < HX1|| + HX2|| for all X1, X, € E.

|| - || becomes &°(%)-norm if in addition
(i) [|X|| = 0impliesX =0.

Any family 2 of L9(%)-seminorms orE induces a topology in the following
way. For any finite? ¢ 2 ande € L% (¢) we define

Ugsei={X€E]| sup|[X| <e}
-l

U ={Uy | C Z finite ande € LY, (¥)}.

% gives the neighborhood base of 0 and then we induce a topa®dyrL°(¥)
obtaining a locallyL%(%)-convex module. In fact Filipovic et al. proved (Theorem
2.4 [28]) that a topologicdl®(%)-convex moduléE, 1) is locally L°(%)-convex if
and only ift is induced by a family of %(¢)-seminorms. Whetj - || is a norm we
will always endowE with the topology induced by - ||.

Definition 3.3 (Definition 2.7 [28]).A topologicalL®(¥)-module has the countable
concatenation property if for every countable collectidy}, of neighborhoods
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of 0 € E and for every countable partitiofAn}n C ¢ the sety,14,Un is again a
neighborhood of & E.

This property is satisfied by’(%)-normed modules.

From now on we suppose théE, 1) is a locallyL%(¢)-convex module and we
denote byZ(E,L%(%)) theL°(¢)-module of continuouk®(¥)-linear maps.
Recall thatu : E — L%(%) is LO(¢)-linear if

p(aXy+BX) = apu(Xy) +Bu(Xe) Va,B eL%%)andXy, X, € E.

In particular this impliesu(Xi1a + Xo1ac) = p(X1)1a + H(X2)1ac Which corre-
sponds to the property (REG) in Chapter 1. On the other han& — L%(%) is
continuous if the counterimage of any open set (in the tapotid almost sure dom-
inance provided oh%(%)) is an open set im.

Definition 3.4. A set% is said to be evenly®(%)-convex if for everyX € E such
that1g{X} N 1g% = 0 for everyB € ¢ with P(B) > 0, there exists &4°(%)-linear
continuous functiongl : E — L9(%) such that

HX)>p(E) vie?

Example 3.1We now give an important class &f(%)-normed modules which
plays a key role in the financial applications and is studiedetail in [53] Sec-
tion 4.2.
The classical conditional expectation can be generalizeB[{¥] : L (F) —
L9(#) by
EX|4]=: lim E[XAN¥Y]. (3.1)
N—-o0

The basic properties of conditional expectation still hiolee: for everyX,; Xy, X, €
L% (%) andY € L%(¥9)

o YEX|¥9] =E[YX¥];
o E[X1+Xo|¥] = E[X4|¥] + E[X|9];
e E[X]=E[E[X|¥]].

For everyp > 1 we introduce the algebrai®-module defined as
L(7) = {X e L%(Q,.Z,P) | [IX|%|p € L%Q,%,P)} (3.2)

where| - |¢||p is aL®(%)-norm given by

1
_. E[|X|P|4]® if p<+o
X|%||p =: 1l 3.3
IXIlle {inf{YeLO(g)|Yz|X|} if p= o 33)

We denote byr, the L°-module topology induced by (3.3). We remind th@(ﬁz)
has the product structure i.e.
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LP(Z) = LYZ)LP(Z) = {YX|Y e LY¥), X e LP(F)}

b

This last property allows the conditional expectation towsdl defined for every
X eLh(F):sinceX =Y XwithY € L°(%) andX € LP(F) thenE[X|¥] =Y E[X|¥]
is a finite valued random variable.

For p € [1,+®), anyL%(%)-linear continuous functiongt : L} (#) — L%(%) can
be identified with a random variablec Lg, () asp(-) = E[Z-|4] where; + ¢ = 1.

3.2 Quasiconvex duality on general® modules

Definition 3.5. A map: E — L°(%) is said to be

(MON) monotone: for everX,Y € E, X <Y we havern(X) < r(Y);
(QCO) quasiconvex: for evet¥,Y € E,A € L%(%) and 0< A < 1

MAX+ (L=A)Y) < (X)) v (YY),

or equivalently if the lower level set&f € LP (%) |m(&) < areL%-convex
(oreq y % n 7
foreveryn € LY.)

(REG) regular if for ever)K,Y € E andAc ¥,

7T(X1A+Y1Ac) =m(X)1a+ T[(Y)lAC;

(EVQ) evenly quasiconvex if the lower level s€ts € E|ri(&) < n} are evenly

LY,-convex for every) € LY.
Finally the following optional assumptions will be impantan the dual result

(PRO) there is at least a coupg, Xp € E such thatr(X;) < m(Xp) < +co.
(TEC) if for someY € L°(¥) {& € L}(Z) | n(§) <Y} = 0 thenm(§) >Y for

everyé € LY (7).

Remark 3.1Remarks on the assumptions.

Notice that surely an evenly®(%)-convex set is als&.?(%)-convex and then
(EVQ) implies (QCO).

(PRO) assure that the mapis in some sense a proper map. In fact we want
to avoid that the magpr is constant on some sétc ¢ i.e. m(&1)1a = m(&2)1a

for every&y,&, € E. If this is the case, it appears reasonable to split the mea-
sure space? in the two partsA, A and threat them separately, sinceAdthe
representation turns out to be trivial. This is anyway atgneteak assumption.
(TEC) is obviously satisfied ifé € E | (&) < Y} # 0 for everyY € L9(¢), and

in general by maps liké(E[u(-)|¢]) wheref,u are real function.

As shown in Chapter 1 the dual representation is linked tatminuity proper-
ties of the map: it can be shown (see for instance Proof of l2oy3.1 and 3.2)
that (EVQ) is implied by (QCO) together with either
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(LSC) lower semicontinuity i.e. the lower level s€t§ € E | i(§) <Y} are
closed for every € L°(%))

or

(USC)y strong upper semicontinuity i.e. the strict lower levelssgf € E |
n(&) <Y} are open for every € L%(%).

This is basically consequence of Hahn Banach Separatioor&ims for modules
(see [28] Theorems 2.7/2.8).

3.2.1 Statements of the main results

This first Theorem matches the representation obtained logMaoni et al. in [10]
for general topological spaces. Respect to the first chagbierinteresting feature
here, is that in the module framework we are able to have a mymesentation
for evenly quasiconvex maps: as shown in the corollarievaliois is a weaker
condition that (QCO) plus (LSC) (resp. (USTxand is an important starting point
to obtain a complete quasiconvex duality as in [10]. From wowve suppose that
F C L%%) is a lattice of extended random variable, which represéetsodomain
of the maprt.

Theorem 3.1.Let E be a locally £(¥)-convex module. Iit: E — F is (REG),
(EVQ) and (TEC) then

mX)=  sup  R(U(X).p), (3.4)
HeZ(ELY(9))

where
R(Y,u) = Eigl;{ﬂ(f) [ H(§) =Y}

If in addition E satisfies the countable concatenation propthen (TEC) can be
replaced by (PRO).

Corollary 3.1. Let E be a locally £(¢)-convex module satisfying the countable
concatenation property. it : E — F is (QCO), (REG), (TEC) and-(LSC) then

n(X)=  sup  R(U(X),H). (3.5)
HEZL(ELO(¥))

In alternative, since the concatenation property holdet(@EC) can be switched
into (PRO).

Corollary 3.2. Let E be a locally £(¢)-convex module. Ift: E — F is (QCO),
(REG), (TEC) and-(USCY then

mX)=  max  R(U(X),u). (3.6)
ueZ(E,L0(9))
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If in addition E satisfies the countable concatenation propthen (TEC) can be
replaced by (PRO).

In Theorem 3.1 can be represented as a supremum but not as a maximum.
The following Corollary shows that nevertheless we can fil§ia(X), u) arbitrary
close tor(X).

Corollary 3.3. Under the same assumption of Theorem 3.1 or Corollary 311, fo
everye > 0 there existyu; € .2 (E,L%(¥)) such that

m(X) — R(Ue(X), He) < € on the sef 17(X) < 4o} (3.7)

3.2.2 General properties dr(Y, 1)

In this sectiont: E — F C EO(%) always satisfies (REG). Following the path traced
in the first Chapter, we state and adapt the proofs to the reddaumhework, of the
foremost properties holding for the functi®(Y, ). Notice thatR is not defined on
the whole product spad€ (%) x .Z(E,L%(%¥)) but its actual domain is given by

S={(Y,u) €LY x Z(E,L%¥))|3E cEst.u(&)>Y}. (3.8)

Lemma 3.1.Letp € Z(E,L%(%)) and X€ E.
i) R(-, 1) is monotone non decreasing.

i) RIA(X),Au) = R(u(X), ) for everyA € L%(9).
iii) For every Y € L%(%) andu € Z(E,L%(%)), the set

Au(Y) ={m(&)|§ € E, u(&) =Y}

is downward directed in the sense that for eva(¥), 1(Xp) € 47, (Y) there exists
(X ) € o7,(Y) such thatr(X*) <min{r(Xy), m(Xz) }. Thus there exists a sequence

{&h},_, € E such that
pER) =Y vm>1 m(éh) LR(Y.u) asmie.

In particular if for a € L°(%), R(Y, ) < o then there exist§ such thatu(&) >Y
andmn(é) < a.
iv) Forevery Ac ¢, (Y,u) € &

RY, u)1a = gg‘;{"(f)lA | YIa = p(X1p)} = R(Y1a, 1)1A (3.9)

V) Forevery X, X, € E

(&) R(p(Xe), M) AR(H(X2), 1) = R(1(X1) A p(X2), 1)

(b) R(p(X1), 1) VR(H(X2), 1) = R(u(X1) V p(X2), 1)
vi) The map Ru(X), 1) is quasi-affine with respect to X in the sense that for every
X1,X2 €E, A €L9%) and0 < A < 1, we have
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R(H(AXa+ (1= A)Xp), 1) > R(u(Xa), 1) A R(H(X), 1) (quasiconcavity)
RU(AXL+(1=A)Xo), 1) < R(U(X1), 1) VR(u(X2), 1) (quasiconvexity).
vii) infy ¢ o) R(Y, 1) = infyc o) R(Y, L) for everypa, pp € Z(E, L9(9)).

Proof. i) and ii) follow trivially from the definition. Most of the lgover items are
proved in similar way than the properties in Lemma 1.3. Werepere all of them
for sake of completeness.

iif) Consider the-measurable s& = {m1(X;) < 1(Xz)} then

min{ 71(Xe), (%)} = T(Xa) Lo + T(Xe) Lge =0 m(Xale + Xolee)

Sincept (X11g+X218) = p(X1)1g + 1 (X2)1gc > Y thenm(Xilg + X215) € 7, (Y).
The existence of the sequenfcgh },_; € E such thatt(&h) L R(Y, ) for p(&h) >
Y is a well known consequence for downward directed sets. NOR(Y, 1) < a:
consider the sety = {71(&h) < a} and the partition of2 given byG; = F; and
Gm = Fm\ Gm_1. We have from the properties of the mod&end (REG) that

&= i Ehlg,€E, up(é)>Yandn(é)<a
m=1

iv) To prove the first equality in (1.12): for eveéye E such thaiu(1a) > Y1a we
define the random variable = £1p + {1,c with p({1xc) > Y1ac, which satisfies
u(n) >Y. Therefore

{nialne€eE uin)>Y}={&1a[§ €E, u(éla) > Y1a}

Hence from from the properties of tlessinfand (REG):

IAR(Y, ) = JQ‘CE{”(UlA)lA lpu(n) =Y}
= E'QfE {m(&1a)1a | H(E1a) > Y 1A}

— Ei?;{n(s)lA | L(ELp) > Y1a}

and (1.12) follows. Similarly for the second equality.

v) a): SinceR(-,u) is monotone, the inequalitieR(u(X1), U) A R(u(X2), 1) >
R(p(X2) A p(X2), 1) andR(u(Xe), 1) VR(H(X2), 1) < R(H(X1) V H(X2), 1) are al-
ways true.

To show the opposite inequalities, define#heneasurable setB::= {R(u(Xy), 1) <
R(u(X2), u)} andA:= {u(X1) < p(Xz)} so that

R (X1), ) AR(H(X2), 1) = R(p(X1), )1+ R(p(X2), 1) 1ge

< RU(X)1, 1) Ia+R(U(X2), H)1ac  (3.10)
R(u(X1), 1) VR(H(X2), 1) = R(U(X)1, 1) 1ge + R(H(X2), 1) 1B

> R(U(X)1, 1) Lac + R(H(X2), 1) 1A
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Set:D(A,X) ={&1a| & € E, u(§1a) > u(X1a)} and check that

D(AX1) +D(A,Xp) = {& € E| p(&) > p(Xala+Xolpc)} =D
From (3.10) and using (1.12) we get:

R(U(X), M) AR(H(X2), 1) < R(U(X1), H)1a+R(U(X2), 1)1
= inf ){rr(ElA)}—i— inf {m(nlx)}

E1peD(AXy N1l,c€D(ACX)

= inf n(é1p) +m(nl
LA {r(§1a) +1(N1pc)}
N1,c €D(AC Xo)

(ElAJrf]lAc)ED(A,Xl)JrD(AC’xz){ (E AN AC)}

= Eigl;{ﬂ(é)} = R(U(X1)Ia+ p(X2)1ac, 1)
= R(H(X) Ap(X2), p).

Simile modov) b).
vi) From the monotonicity ofR(-, i), R(u(X1) A u(X2), 1) < R(H(AXy + (1 —
A)X2), 1) (resp.R(H(X1) V H(X2), 1) = R(U(AXL + (1= A)Xp), 1)) and then the
thesis follows from iv).
(vii) Notice that
R(Y,u) > gm:z &) vyel%
S

implies
inf  R(Y,u) > inf r(&).
Yel0(#) (Y. h) T &cE (&)

On the other hand

m(&) = R(u(&),u) = inf R(Y,u) VEEE
YeLo(@)

implies
inf R(Y,u) < inf i(&).
vy (Y, ) < Jnf (&)

3.2.3 Bridging the gap between convex and non convex maps

In this short section we would like to analyze how the Fenclejugate is related
to the functionR in the quasiconvex representation. The above simple reaalbe
used in order to obtain a risk/economic interpretation ef thle acted byR (see
later Remark 3.3).

Considert: E — F andu € ES where
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E; = {u € Z(E,L%Y)) | u(X) >0, for everyX > 0}.
We define forX € E andu € ES
r(X,p) = ggl;{ﬂ(é) | u(§) = u(X)}
r*(u) = sup{u(&) —r(&, m)}

écE
RY(u) = ?gg{u(f) —R(u(&), 1)}
T (() = ?ug{u(&—n(a}

Proposition 3.1.For an arbitrary it we have the following properties

Lor(X, ) = R(H(X), H) > pU(X) = 1T°();
2.1 (p) =R (2) = ' ().

Proof. 1. For all§ € E we haverr (i) = sup g {u (&) — (&)} > u(&) — m(é).

Hence:p(X) — 1 (1) < u(X) — u(&) + m(&) < m(&) forall & € Es.t. (&) >
u(X). Therefore

p(X) =1 (u) < Eigl;{ﬂ(é) (&) > u(X)} = R(p(X), 1) <r(X,p)

2. From 1. we havel (&) — R(u(&),u) < () and
r(u) = §u§{u(5) —r(&,u}< gug{u(f) —R(u(§), W)} =R (1) < (1)
(3.11)
sincer (&, u) < (&) we have
HE) —r(& ) zp@)—mn&) = r(p)=m(u)

and together with equation (3.11) we deduce

£ (1) > 10 () > RE() > 1 (1),

3.2.4 Proofs

Proof (Proof of Theorem 3.1Fix X € E and denot& = {11(X) < +}; for every
g € L9, (¢) consider the evenly convex set

G = {E €E| (&) < (M(X) - €)ls+ elec).

Step 1If € = 0 then by assumption (TEC) we hamé) > (r(X) — €)1g +
elgc for everyé € E. In particular it follows thatR(p(X), 4) > (n(X) — €)lg +
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gl for everyu € Z(E,L%(%)) and thus

nX)>  sup  R(u(X),u) > (m(X)—&)lc+ €l (3.12)
HEZL(ELO(9))

Step 2Now suppose thét: # 0. For evenB € ¢, P(B) > 0 we havelg{X} N
1g%: = 0: in fact if £1g = X1g then by (REG) we geft(&)1g = m(&1lg)ls =
n(X1g)1g = 11(X)1s. Since?; is evenlyl %-convex then we can find; € £ (E,L%(%))
such that

He(X) > pe(§) V& € Ce. (3.13)

Let nowA € ¢ be an arbitrary element such tigtA) > 0 and define
EPh = {& cE|m(&)1a < (T(X) — €)1anG + E1aae)

We want to show thatts (X) > piz (&) on A for everyé € €A Leté € €A n € ¢
and defing = &1+ n1,c which surely will belong toé:. Hencepe (X) > e (&)
so thatpis (X1a) = He(X)1a > pe(&)1a = pe(E1a) andpe(X) > pe(€) on A We
then deduce thatr C 22 =: {& € E|us(X) > pe (&) on A} for everyA € & which

means that c c
N (7)< N (&)

Ac¥ Ac¥

By definition
(€2 = {E cE|IBCA P(B) > 0and[+]}
where
(&) (w) > m(X)(w) — e(w) fora.e.weBNG
[x] +— or

(&) (w) > &(w) fora.e.w e BNG®

so that

N (€)= {§ cE|VAe¥, IBCA, P(B) >0 and[x]}
Ac9

={fcE|n(&)> (m(X)—€)lg+ €lgc}.

Indeed if £ € E such thatri(§) > (1(X) — &)1 + €lgc thené € Nacy (%”SA)C.
Viceversa let € Nacy (%”gA)C: suppose that there existddac ¢, P(D) > 0 and
(&) < (r(X) — €)1 + £1gc onD. By definition of (%°) we can findB C D such
thatr(&) > m(X) —e onGND or i(§) > +& onDNGE and this is clearly a con-
tradiction. Henc§\acy (%EA)C ={& e E|n(&) > (m(X) — €)1g + €1lgc }. Matching
the previous argument we can prove thgt., (@?)C ={& € E|ue(X) < pe(&)}.
We finally deduce that
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mX) > sup  R(u(X),H) > R(He(X), te) = inf {71(&) | pe(X) < pe(€)}
HEZL(ELO(9)) Ee€E

> gm;{rr(f) | (&) > (m(X) —&)lg+€lgc} > (M(X) — €)1+ elc.
S
By equation (3.12) and this last sequence of inequalitiesameassure that for ev-
erye € LY. (%) m(X) > SUP,c #(g 10()) RIU(X), 1) > (T(X) — €)16 + €1gc. The
thesis follows taking arbitrary small orG and arbitrary big orG®.

Step 3Now we pass to that the second part of the Theorem and assate th
have the concatenation property. We follow the notatiorik@first part of the proof
and introduce th&Z measurable random variabte =: (11(X) — €)1 + €15 and
the set

o ={Ac¥ |3 cEs.t.n(§)<Y:onA}

For everyA,B € o7 we have thalhUB. Consider the sefla|A € <7}: the set is
upward directed sincka, V 1a, = 1a,0a, fOr everyA;, As € o/ Hence we can find
a sequencéa, 1 sup{1a|A € 7} = lamax whereA™™ = UyA, € 9.
By definition for everyA, we can findé, such thatri(&,) < Yz onA,. Now rede-
fine the sequence of sBh = As\ By_1, so thatn = 3,&n1g, has the property that
m(n) <Y, on AT je AMX ¢ o7

As a consequence of the definition.af and sinceA™®is the maximal element
in o7 we deduce thatr(€) > Y on (A" for everyé ¢ E.
In particular it follows thaR(u(X), u) > Ye on (A€ for everyu € £ (E,L%(9))
and thus

m(X)>  sup  R(u(X),u) > ((X) —€)lg+ lgec on (A™C  (3.14)
HeZ(ELO¥))

We know by (PRO) that there exists@a, {» € E such thatri({y) < 1({>) €
L%(%). Introduce the evenly convex set

Gl =1 {& € E| M(&) < Yelamax+ 11({1) L pmaxc } # 0.

SurelyX = X1amax+ o1 amaqc has the property thatg{X} N 1s%7 = 0 for every
B € ¢ so that we can fingi, € Z(E,L°%(%)) such that

He(X) > pe(8)  VE € %L (3.15)
Repeating the argument of Step 2 we get
nX)>  sup  R((X),H) > R(pe(X), He) = ggg{ﬂ(f) | be(X) < pe(€)}

HeZ(EL9(9))
> EII;IfE{T[(E) | T[(E) > Yelpmax+ T[(Zl)l(Amax)c} > Yelpmax+ T[(Zl)l(Amax)c.

Restricting to the seA™®we deduce
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T[(X 1Amax) 1Amax > sup R(IJ (x 1Amax), I_,l)lAmax > Yg 1Amax,
HeZ(E L))

This last inequality together with equation (3.14) givegREG)
1(X) = R(pe(X), He) = (1(X) — €)1 + €lge (3.16)

and the thesis follows taking agaérarbitrary small orG and arbitrary big orG°.

Proof (Proof of Corollary 3.1)Assuming (TEC). We only have to show that the set
%t - which is now closed - defined in the previous proof can bersgpd as in (3.13).
For everyB € 4, P(B) > 0 we have already shown thk{{X} N 1g%; = 0. We thus
can apply the generalized Hahn Banach Separation Theoeefid8] Theorem 2.8)
and findys € Z(E,L%(%)) andd € L% (¢) so that

Pe(X) > Ue(§)+0 V& € Ce. (3.17)

Similarly when we assume (PRO).

Proof (Proof of Corollary 3.2)In order to obtain the representation in terms of a
maximumwe prove the claim directly. FiX € E and consider the open convex set
¢ ={& E|m&) < mX)}.
If € = 0 then by assumption (TEC) we havgé) > m(X) for every& € E. In
particular it follows thatR(p(X), 1) > m(X) for everyu € .Z(E,L%(%)) and thus
the thesis follows since

n(X)=  sup  R(u(X),u) = m(X) (3.18)

HEZL(ELO(Y))

Now supposes” # 0: notice thatlg{X} N1g% = 0. We thus can apply the gener-
alized Hahn Banach Separation Theorem (see [28] Theorenaldrfind Lmax €
Z(E,L%(9)) so that

HUmax(X) > Hmax(§) VE € €.

Let nowA € ¢ be an arbitrary element such tH&tA) > 0: repeat the argument of
the previous proof considering

A = {& cE|m(&) < m(X) onA}.

P" =1 {& € E|tmax(X1a) > Hmax(& 1a) ONA}
and find that

{€ € Elumax(X) < Umax(§)} € {& € E[m(&) > m(X)}

Again the thesis follows from the inequalities
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n(X) =  sup  R(U(X),u) = inf{7(§) | tmax(X) < Hmax(§)}
pEZ(ELO(%)) EeE

> Eir;l;{ﬂ(f) | (&) = m(X)} = m(X)

When we assume (PRO) instead of (TEC) we just have to repeat¢fument in
the proof of Theorem 3.1.

Proof (Proof of Corollary 3.3)Follows directly from the last three lines of Step 2
(or Step 3) in the proof of Theorem 3.1.

3.3 Application to Risk Measures

In Section 1.4 we briefly discussed the application of quamsiex analysis to the
theory of Risk Measures. Now we would like to better detai thowerful tool
in the module environment. It's important to notice thatte aictuaktatusof the
research on this subject, not all of the following results ba adapted to the vector
space case. Hopefully this will be developed in the future.

First of all we specify the definition of risk measure.

Definition 3.6. A quasiconvex (conditional) risk measure is a nmpL;(ﬁz) —
LO(%) satisfying

(MON) monotonicity: for everyX,Y € LY (%), X <Y we havep(X) > p(Y);
(QCO) quasiconvexity: for everq,Y € Lg(ﬁ), Aeld¥)and0<A <1

PIAX+(1-A)Y) < p(X) Vp(Y),
(REG) regular if for ever),Y e Lf;(ﬁ‘) andAc ¥,
P(X1a+Y1sc) = p(X)1a+ p(Y)1ac;

Recall that the principle of diversification states thavé&isification should not in-
crease the risk ', i.e. the diversified positidiX + (1 — A)Y is less risky than both
the positionsK andY. Under cash additivity axiom convexity and quasiconveaity
equivalent, so that they both give the right interpretatibthis principle. As already
mentioned with an example in Section 1.4 (and vividly diseasby El Karoui and
Ravanelli [25]) the lack of liquidity of the zero coupon band the primary reason
of the failure of cash additivity. Thus it is unavoidable &bax the convexity axiom
to quasiconvexity in order to regain the best modeling oédiification.
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3.3.1 A characterizatiorvia the risk acceptance family

In this subsection we assume for sake of simplicity i) € L°(%): in this way
we do not loose any generality imposipg0) = 0 (if not just defined(-) = p(-) —
p(0)). We remind that ifo(0) = 0 then (REG) turns out to he(X1a) = p(X)1a.
Given a risk measure one can always define for eVery °(¢) the risk acceptance
set of levelY as

Ay ={XeLy(F)|p(X) <Y}

This set represents the collection of financial positionssetrisk is smaller of the
fixed levelY and are strictly related to the Acceptability Indices [1@]Jven a risk
measure we can associate a family of risk acceptance sme]m@szfg IY € L%9)}
which are called Risk Acceptance Family of the risk meaguaie suggested in [19].
In general

Definition 3.7. A family A = {</¥|Y € L%(%)} of subsets#” C L) (%) is called
risk acceptance family if

(i) convex:a7¥ is LO(¥4)-convex for everyt € L%(%);

(i) monotone:

o X1 €Y andX; € LY (F), Xo > Xq impliesX; € &7Y;
e foranyY’ <Y we havewY C &V;

(iii) regular: X € 27 then for everyG € 4 we have
inf{Ylg € L%%) | X € &7} =inf{Y € L%¥Y) | X1g € &/}

(iv) right continuous:a?Y = y..y &Y for everyY e LO(%).

These four properties allows to induce a one to one reldtiprizetween quasi-
convex risk measures and risk acceptance families as we prdkie following

Proposition 3.2.For any quasiconvex risk measype L;(ﬂ) — L9(#) the family
Ap={a,|Y € L°(%9)}

with ,szfg ={XeLy(F)|p(X) <Y} is arisk acceptance family.
Viceversdfor every risk acceptance family the map

pa(X) =inf{Y e L%%) | X € &7}

is a well defined quasiconvex risk measpye L (.7) — L%(%) such thaip, (0) =
0.
Moreoverp,, = p andAp, = A.

Proof. (MON)" and (QCO) ofp imply that,c%g is convex and monotone. Also notice
that
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inf{Y € L°%¥) | X1g € &) } =inf{Y € L°%¥) | p(X1c) < Y} = p(X1g)
=p(X)le=inf{Ylg e L%¥) | p(X) <Y} =inf{Y € L°(¥) | X1 € & },

i.e..o7) is regular.
Obviously.a) C Nyr.y " foranyY € L%(%). If X € Nyy «¥ thenp(X) <Y’
for everyY’ >Y and hencg(X) <Y i.e.xzfg S Nyray @Y.

Viceversawe first prove thap, is (REG). For eveng € ¢4

ps(X1g) =inf{Y € LO%) | X1g € "} Winf{Y1s € L°%) | X € ¥} = pa(X)1s

Now consideX;, X, € LY (), X1 < Xp. LetGE = {py (X1) = +} so thatos (Xalgc) >
pa(Xolge). Otherwise consider the collection ¥& such thaiX;1g € /. Since
7Y is monotone we have thXblg € 7Y if X11g € 7Y and this implies that

pa(X1)le = inf{Y1lg e L%9) | Xg € &Y} =inf{Y € L%¥) | Xslg € &7}
>inf{Y € L99) | Xolg e &Y} =inf{Y1lg € LO(¥) | Xo € &7} = p(X2) s,

i.e.pa(X11g) > pa(X21lg). And this shows thap, (-) is (MONY.

Let X1,X% € L§(Z) and take anyA € L%(%), 0 < A < 1. Define the seB =:
{Pa(X1) < pa(X2)}. If Xedge + Xolg € 7Y for someY’ € LO(¥) then for sure
Y' > pa(X1) Vpa(X2) = p(X) fori = 1,2. Hence als@(X;) € ¥ fori = 1,2 and
by convexity we have that X; + (1—A)X € &Y. Thenpy (AXy + (1—A)Xp) <
pa(X1) V pa(X2).

If X11gc +Xolp ¢ Y for everyY’ € LO(%) then from property (iii) we deduce that
pa(X1) = pa(X2) = +o and the thesis is trivial.

Now consideB = {p(X) = +e}: py, (X) = p(X) follows from

P, (X)1g = inf{Y1g € L%(¥) | p(X) < Y} = +wlg
Pa,(X)1ge = inf{Y1gc € L%G) [ p(X) <Y}
=inf{Y € L%%) | p(X)1gc <Y} = p(X)1gc

For the second claim notice that ¥ € 7Y then p, (X) <Y which means that
Xe ,a%‘};. Conversely ifX € g{& thenp, (X) <Y and by monotonicity this implies

thatX € <Y’ for everyY’ > Y. From the right continuity we take the intersection
and get thaX € «7".
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3.3.2 Complete duality

This last Section is devoted to one of the most interestisgltef this thesis: a
complete quasiconvex duality between the risk meaguaad the dual mag. We
restrict the discussion to the particular casé-8)-modules oﬂ.@(ﬂ«‘) type for
one main reason: actually it is the only class of modules foictvthere is a full
knowledge of the dual modul&’(E,L°(%¢)). When analytical results will be avail-
able on modules of the Orlicz type (see [53] for the exact d&fim) or others the
following proof will be easily adapted.

We transpose the definitions of Section 3.2, with some lilifieerences of signs.

RY,Z):= inf {p(§)|E[-£Z|9]>Y} (3.19)
gell(7)

is well defined on the domain
S={(Y,2) eLY x L§(F)| 3¢ € LL(F) st.E[-ZE|9] > Y}.
Let also introduce the following notations:
PV={z2€LY(F)|Z2>0,E[Z|9]=1}

dQ 4 o [dQ, 1
{d]P’ € Ly (F) | Q probability, E [@W =1
and the class# (L%(%) x 229) composed by magsé : L%(%) x 29 — L%(¥) s.t.

e Kisincreasing in the first component.

o K(Y1a,Q)1a=K(Y,Q)1a for everyAc ¢ and(Y, 99) € =.

o infyc o K(Y,Q) = infyc o) K(Y,Q') foreveryQ,Q € 24.

e Siso- evenIyLO( )-quasiconcave: for everfy,Q) € L%(%) x 229, Ae ¢ and

a € L%(%) such thaK(Y,Q) < a onA, there exist§S X) € L9 (¥) x LE ()
with

YS+E [X—|E¢] <YS+E [ |€4 OonA

uch thaK(Y, Q) > o onA.

for every(Y, ) su
= { EX$219],Q) | Qe ﬁq} is upward directed for every €

e the set’#’ (X
LY (7).
We will write with a slight abuse of notatioR(Y,Q) instead ofR( \ dp) The

class 7 (L°(%) x 229) is non empty in general as we show in the following Lemma.

Lemma 3.2.The function R defined in (3.19) belongs#(L%(¥) x £29)

Proof. First: Rmonotone in the first component follows from 3.1 ).
SecondR(Y1a,Q)1a = R(Y, Q)14 follows from 3.1 iv).
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Third: observe thaR(Y,Q) > infEeL(;(% p(&) forall (Y,Q) € LO(¥) x 29 so that

inf  R(Y, inf .
vallg, (Y,Q) > . >p(«f)

Conversely notice that the sgp(€)|¢ € LY (.#)} is downward directed and then
there existp(&n) | infgeL(;(y) p(&). For everyQ € &4 we have

o =R(E|-6n 7] Q) = nf RY.Q)

Yelo(%)

so that

inf R(Y,Q) < inf .
vl (Y,Q) < EeL(;(y)p(E)

Fourth: fora € L%(%) andA € ¢ defineU} = {(Y,Q) € L%¥) x Z9R(Y,Q) >

a onA}, and suppose & UZ # L%(¥) x 229. Let (Y,Q) € L%(¥) x 229 such
thatR(Y,Q) < a on A. From Lemma 3.1 (iii) there exist& € L) (%) such that
E[-X32]|%] > Y andp(X) < a onA. SinceR(Y,Q) > a onAfor every(Y,Q) € U
then E[—)Zg—ﬁpﬂfﬁ] <Y for every (Y,Q) € Uy on A: otherwise we could define
B={weA| E[—)Zﬂ—&%] >Y},P(B) > 0and then from Lemma 3.1 (iv) it must be
thatR(Y1g,Q) < a on the seB. Finally we can conclude that for evefy, Q) € U

-, o [+d9Q ~dQ
—g| < —= :
Y+E{Xdp|€4 _O<Y+E{Xdp|€4 onA

Q)| Qe gZQ} is upward directed. Tak@;,Q, € 24

Fifth:%/:{R( X9
X9 |9) Q) > REXIZ[9],Q,)} and letQ given by

and defind= = {R(E

dQ
dP

do dQ

dP +1FC d]P) qu.

=1p—=

It is easy to show, using an argument similar to the one in Lartird that

Q.| &) _ 9% dQ
R<E lxﬁ|%],Q>_R< [ |€4,Q1)\/R<E [Xﬁy],(}z).
Lemma 3.3.Let Qe 224 andp satisfying (MON), (REG) then

R(Y,Q) = inf ){p(f)|E[—Eg—§|E4 _Y}. (3.20)

selh(7

Proof. For sake of simplicity denote hy(-) = E[- d—Q| | andr (Y, i) the right hand
side of equation (3.20). Notice th&(Y, 1) <r(Y,u). By contradiction, suppose
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thatP(A) > 0 whereA =: {R(Y, i) <r(Y,u)}. From Lemma 3.1, there exists a r.v.
e L}}(ﬁ«‘) satisfying the following conditions

e u(=&é)>YandP(u(-&)>Y)>0.
o R(Y,u)(w) <p(&)(w) <r(Y,u)(w) for P-almost everyw € A.

SetZ=u(-§)-Y € L%¥) C LY (Z) and it satisfieZ > 0,P(Z > 0) > 0. Then,
thanks to (MON), p(&) > p(& +2Z). Fromu(—(& +2Z)) =Y we deduce:

R(Y, 1)(@) < p(&)(@) < r(Y, 1)(w) < p(& +2)(w) for P-a.e.w € A
which is a contradiction.

_ Consider the clasg7P™P(L9(%) x 229) composed by mags : L%(¥4) x 29 —
L9(%) such thaK € .7 (L°(¢) x 279) and there exisKy, X, such that

supz (Xy) < supr (Xp) < +oo.

Theorem 3.2.p : L}}(ﬁ) — L9(%) satisfies (MON) (REG), (EVQ) and (PRO) if
and only if

p(X)= sup R(E {—3—5&%} ,Q> (3.21)

Qe
where

R~ ot {ece1e]-e530] v}

seLlb(z
is unique in the class7 PP(LO(¥) x 229).
Remark 3.2SinceQ << [P we can observe

dQ

€ | GE 19| —E¢ | 53X 1] = Eolt1#] o Eolx),

so that we will write sometimes with a slight abuse of notatio

R(Eq[X|¥],Q) = Eeli_glzﬁ) {p(&) | EQl¢|¥] =q Eq[X|¥]}

From this last proposition we can deduce the following int@ot result which
confirm what we have obtained in Chapter 1.

Proposition 3.3.Suppose thab satisfies the same assumption of Theorem 3.2. Then
the restrictionp := p1.p.#) defined byp(X) = p(X) for every Xe LP(Z) is a
quasiconvex risk measure that can be represented as

p(X) = inf _ {p ~&|9) =q Eq[-X|9]}.
p(X) QselL;ggelLrg(y){p(EHEQ[ §19] =q Eo[-X|¥1}

Proof. For everyX € LP(#), Q € £29 we have
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pX) >, int_ {p() | Eq[~£|#] =g Eql-XI¥])

> inf ){P(E) | EQ[=¢|¥] =q Eo[-X|¥]}

sell (7

and hence the thesis.

It's a moot point in financial literature whether cash adtiyi (CAS) (o(X +
A) = p(X) = A for A € L9(¥) is a too much restrictive assumption or not. Surely
adding (CAS) to a quasiconvex risk measure it automaticallgws thatp is con-
vex. The following result is meant to confirm that the duakesgntation chosen for
quasiconvex maps is indeed a good generalization of theegorase. Differently
from Corollary 1.2 here there are no restrictive additidngdothesis and it becomes
clear how a powerful tool the modules are in this kind of aggtions.

Corollary 3.4. (i) If Q € 229 and if p is (MON), (REG) and (CAS) then

R(Eq(—X|9),Q) = Eo(—X|¥) — p"(-Q) (3.22)
where
P (—Q = sup {Eq[-§|9]-p(¢)}. (3.23)
Eelf(7)

(i) Under the same assumptions of Proposition 3.2 and #atisfies in addition
(CAS) then
p(X) = sup {Eq(—X|¥) - p"(-Q)}.
Qe 4

Proof. Denote byu(-) =: E [g—%- | %}; by definition ofR

REQ(-X|9),Q = _inf {p(&)|u(=&)=u(=X)}

gLy ()
= H(=X) +E€iLrgl;g) {p(&) = u(=X) | u(=&) = u(=X)}
= u(—X>+€€iLrg§y) {p(&) —u(=&) [u(=&) = u(=X)}
= u(—X>—E fg(r;){p(f)—u(—x) | u(=&)=p(=X)}
= H(=X)-p*(-Q),
where the last equality follows from
PQE st (u(-E—p(X =)= p(E - u(X =)
— s {u(=n)—p)[n=&+pnX-24)}

neLy(#)

< sup {u(=n)—pn)|u(=n)=pu-=X)}<p*(-Q).

neLh(#)



86 3 Conditional quasiconvex mapst &module approach

Remark 3.3If we look at equation (3.21) in the light of Proposition 3.% would
naively claim that the inequality

(e[ $257] e[ 9] w10

can be translated into : ‘If the preferences of an agent aerited by a quasiconvex
- not convex - risk measure | can’t recover the risk only tgkasupremunof the
Fenchel conjugate over all the possible probabilistic ades. | shall need to choose
a more cautious and conservative penalty function.’

3.3.3 Proof of Theorem 3.2

We recall thaLw( #) is a normed module so that the concatenation property always
holds true. During the whole proof we fix an arbitra¢ye Lp (%#). We are assuming
(PRO) and for this reason we refer to proof of Theorem 3.13tep the definitions

and notations. There exists(a, {» € E such thatp({1) < p({2) € L°(%) and we
recall that the evenly convex set

=. {E S L;(ﬁ) | p(é) < VYelpmax+ p(Z]_)l(AmaX)C} 75 0.
may be separated frod = X1amax+ (o1 amaxc by ple € L(LE(F),L0(9)) i.e.

pe(X) > pe(8) VE e €l

ONLY IF.

Letn e LY (F),n >0.1f & € €} then (MON) |mpI|esE +nn € €} foreveryne N,

In this caseu (- ) E[Z: 9] for someZg € L, (%) and from (3 17) we deduce:
. E[Z:(§ - X

E[Ze(E +m)|9] <E[ZeX|¥] = E[-Zen|¥]> M , VneN

i.e. E[Z:n|¥] < O for everyn € Lw( #), n > 0. In particularZ; < 0: only not|ce
thatlz, .o € LY(Z) so thatE[Ze1(7,.y] < 0if and only if P({Z > 0}) =

If there exists &-measurable s&b, P(G) > 0, on whichZ, = 0, then we have a
contradiction. In fact fix € €} from E[Z:£|¥] < E[Z:X|¥] we can find &5 €
L2, (%) such that

E(Z:&|9]+ 0 <E[Z:X|9] = 06le=E[Z1cE|¥]+0slc <E[Z:1cX|¥] =

which is absurd becaug¥ s 1 > 0) > 0.
We deduce the[Z:1g] = E[E[Z¢|¢]18] < O for everyB € ¢ and therP(E[Z¢|¥] <
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0) = 1. Hence we may normaliz& to ﬁ = g—g cLY(7).

From equation (3.16) in the proof of Theorem 3.1 we can dethaie

p(X)=mn(-X) = sup inf {n(é) |E [53—%{4 >E [—Xi—%g]}

Qe 9 &Ll ()
| ] =5[]}
= su inf E|-¢—=|9|>E|-X—=1|¥4
Qeﬁ}r’:)qéeLg(,?){p(EH [ "rdIE"| - d]}DI
(3.24)

Applying Lemma 3.3 we can substitutein the constraint.

To complete the proof of the ‘only if 'statement we only needshow thatR €
M PP(LO(¥) x 229). By Lemma 3.2 we already know thBtc .7 (L°(¥) x 229)
so that applying (PRO) and (3.24) we have tRat .7 P°P(LO(4) x 229).

IF.

We assume that(X) = supye zq R(E[—Xg—ﬁlﬂ%] ,Q) holds for som&R € . PP(LO(%) x
Z9). SinceRis monotone in the first component aR(Y 14, Q)14 = R(Y, Q)14 for
everyA € 4 we easily deduce thatis (MON) and (REG). Als is clearly (PRO).
We need to show that i (EVQ). _

Let Vg = {& € LY (F)|p(§) < a} wherea € L%(%) andX € L) (.#) such that
X1aNVala = 0. Hencep(X) = Supye »a RE[-XR1¥],Q) > a.

Since the se{R(E[—Xg—ﬁ§|€¢],Q)|Q e 24} is upward directed we find

R<E [—)de%%} ,Qm) T p(X) asmt 4oo.

Consider the sef, = {R(E[-X %21 (9] Qm) > a} and the partition of2 given by
Gy = F; andGy = Fm\ Gm-1. We have from the properties of the modu&(ﬂ«‘)
that

dQ & dQm .
d]P’_WZl ap Lon €Ls(F)

and therQ € 29 with R(E[—)?g—g%],@ >a. ) )

Let X € Vq: if there existsA € & such thatE[X 21a|%] < E[X214|%] on A
thenp(X1a) > R(E[-XR1al9],Q) > RE[-X1A|¥],Q) > a on A This im-
pliesp(X) > a onAwhich is a contradiction unles¥A) = 0. HenceE[Xg—%%] >
E[X3R|¥] for everyX € V.
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UNIQUENESS.

We show that for everiK € .#PP(L%(4) x 29) such that

p(X) = sup K(E[-XT2

SUp K(ELX 9.,

K must satisfy

<= it {oce)1e[-e ] >v}.

sl (7

Define the set7(Y, Q) = {5 clb(#)|E [—sg—gy] > Y}.

Lemma 3.4.For each(Y,Q) € L%(%) x 24

K(Y,Q) = sup inf__)K(E[ OIQ| },Q) (3.25)

Qe 7aXed (Y.Q dP

Proof (Proof of the Lemma)o prove (3.25) we consider

—c dQ
v@a¥)= it K (E[-xPw|.Q)

Xed (Y.Q)

Notice thatE[—Xg—%%] Y for everyX € <7 (Y, Q) implies

e QT = _
P(Q.Q)Y) = XE%_@K (E [ dp|£4 ,Q) >K(Y,Q)

On the other hanE[\?g—gﬁé] Y sothat-Y € (Y, Q) and the the second inequal-
ity is actually an equality basically

v@QY) <k (€|-(-nF].Q) —k¥.Q)

If we show tha’up(Q,(i,\?) < 4’(6, (5,Y) for everyQ € £29 then (3.25) is done. To
this aim we define

_ d6 _ dQ P/og
¢ = {Ae% E {x@w} —E [xﬁy] onA, VX € L (7)
9 = {Ae g |3IXelh(F)stE [xj—%g] <E [xz—%g} onA}

For everyC € ¥ we have for ever) L}}(ﬁ)
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dQ _ dQ
_ dQ N Q] 5
which impliesg(Q,Q,Y)1c = ¢(Q.Q,Y)1c. )
For everyD €  there will existsX € L} oz (F) such that whethe [ g%%} >

E [—Xd—Q%} on D or < on D. Let us defineZ =X —E [—Xﬁ%} Surely

E LZ } 0 bute {ZdQ|£¢} < 0 onD. We may deduce that for evesyc L°(%),

-Y+azZe M(Y Q) and also notice that any € L%(%) can be written ay =
E[(— Y+ayZ) |£¢] on the seD. Finally

Y(Q,QY)lp < inf )K (E {—(—Y_+ m‘j—?w} ,Q> 1p

acl0(y
= inf K(Y1p,Q)lp= inf K(Y1p,Q)1
YeLo(¥) (¥10,Q) Yel9(¥) ( DQ) b
=K(Y,Q 1p

Now we need to show that there exists a maximal element in dlats%” and
2. To this aim notice that ifA|B € ¥ then AUB, AN B belong to%. Consider
the set{1¢|C € ¢’}: the set is upward directed sindg, V 1c, = 1c,uc, for every
C1,C; € %. Hence we can find a sequentg, 1 sup{1c|C € €'} = 1cmax where
CM&=UnCp € 4. Through a similar argument we can get a maximal elemer#for
namelyD™#: notice thatP(C"**UD™#) = 1 so that we conclude thgt(Q,Q,Y) <
W(Q,Q,Y) =K(Y,Q) and the claim is proved.

Back to the proof of uniqueness. By the Lemma

K(Y,Q) = sup inf _)K <E [—de—%%} ,Q>

Qe 2dXed (Y,Q

< inf _ supK <E [—de—%%} ,Q> = inf_p(X)

Xed (Y.Q) Qe 24 Xed (Y,Q)

We need to prove the reverse inequality and then we are dayenAve consider
two classes o¥-measurable sets:

¢ ={AcY|K(Y,
2 ={Ae9|3(Y,Q

1a > K(Y,Q)1a ¥ (Y,Q) € L°(%) x 29}

€ L%(9) x 29s.1.K(Y,Q) <K(Y,Q) onA}

\'/\/

For everyC € ¥ the reverse inequality is obviously true.
For everyD € 2 there exists somgQ,Y) € LO(¥) x 229 such thatK(Y,Q) >
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K(Y, (5)_0r_1 D. This means that it can be easily build ugBac L%(%) such that
B >K(Y,Q) onD and the set)p’ = {(Y,Q) € L°(¥) x Z9K(Y,Q) > B onD} will
be non empty. There exist§, X) € L, (¢) x L) () with

e e [dQ = e [dQ
YS+E [Xﬁw] <YS+E {X@M} onD
D
forevery(Y,Q) € Ug.

All the following equalities and inequalities are meant te holdingP al-
most surely only on the s@. SetA = —Y — E[299|¢] andX = é#—/\, so that

— — SW
E[X$R|9] = —Y: for every(Y,Q) € Up

YS+E {)?g—gw} <YS+E [_d—ﬁlﬂ%}
implies Y +E [(%Jr/\) g_gw} <Y+E [(§+A) d—%%}
implies Y+E {)?d—gw <Y+E [)?g—&%}

ie.Y+E [)A(g—ﬁlﬂ%} > 0 for every(Y,Q) € Ug.

For everyQ € &9 defineYo = E {—)?ﬂ—&%}. If there exists &8 C D € ¢ such

thatK (Yo, Q) > B onBthenYgo+E [)?g—%%] >0onB.
In fact just take(Y1,Q1) € UE and definel = Yolg + Y1lge and® € 229 such that

dQ _dQ,  d&
ﬁ = ﬁlB—’— ﬁlBC

ThusK(Y,Q) > B onD andY + E {)?g—gw} > 0 on D, which impliesYq +
E {)?3—&{4 > 0 onB and this is absurd.
HenceK (Yo, Q) < . SurelyX € .«7(Y, Q) and we can conclude that

K(Y,Q1lp < inf _ supK (E [—xd—Qw} ,Q) 1p
Xed (Y.Q) Qe 24 dP

< supK <E [—i‘;—fjw] ,Q) 1 < Blp

Qe

The equality follows sinc@ can be taken near as much as we wark {¢, Q) and
then we conclude that

K(Y,Q) = inf _p(X).

Xed (Y.Q)
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Repeating the argument in Lemma 3.4 we can find a maximal elebfe™ ¢ &
andC™® e ¢ and conclude fronP(C™*U D) = 1.
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