Pollen morphology of alpine butterworts (Pinguicula L., Lentibulariaceae)

Graziella Rodondi, Mario Beretta, Carlo Andreis *

Sezione di Botanica Sistematica e Geobotanica, Dipartimento di Biologia, Università degli Studi di Milano, via G. Celoria 26, 20133 Milano, MI, Italy

A R T I C L E I N F O

Article history:
Received 17 December 2009
Received in revised form 11 March 2010
Accepted 18 March 2010
Available online 27 March 2010

Keywords:
Pinguicula
pollen morphology
perforate
rugulate–microreticulate
taxonomy

A B S T R A C T

The pollen morphology of Pinguicula alpina, P. arvettii, P. grandiﬂora subsp. grandiﬂora, P. grandiﬂora subsp. rosea, P. hirtiﬂora, P. leptoceras, P. poldinii, P. reichenbachiana, and P. vulgaris, belonging to the Alpine flora, was studied.

The pollen grains, coming from different populations, were investigated using light microscopy and scanning electron microscopy. The pollen size, the shape (P/E ratio), the number of colpi and the exine ornamentation are, for Pinguicula, important diagnostic characters.

Pinguicula pollen grains are medium sized (~30 μm), trinucleate, isopolar, radially symmetric. The shape of the grains is variable from oblate spheroidal to prolate spheroidal and they are (4)–5–9–(10)-zonocolporate.

The prevalent ornamentation is rugulate–microreticulate, P. alpina has a rugulate–reticulate ornamentation and only P. hirtiﬂora has a perforate ornamentation.

A pollen key, based on micromorphological data, is presented.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Pinguicula L., the second largest genus of the family Lentibulariaceae, contains about 100 currently accepted species. They are distributed in arctic, temperate, mediterranean and tropical areas of Eurasia, North America (Mexico has the largest number of species = 44; Zamudio, 2005), Central America, South America and Africa only in the northernmost region of Morocco (Zamora et al., 1996; Steiger, 1998; Değtjareva et al., 2004, 2006; Cieslak et al., 2005). In Europe, 12 species were reported by Casper (1972), but this number was expected to change due to the description of new species; the most recent were described in Italy (Tammario and Pace, 1987; Casper and Steiger, 2001; Conti and Peruzzi, 2006; Ansaldo and Casper, 2009) and in Spain (Blanca et al., 1999). Alpine species are P. alpina L., P. arvettii Genty (endemic of Cozie Alps), P. grandiﬂora Lam. subsp. grandiﬂora, P. grandiﬂora subsp. rosea (Mutel) Casper (endemic in the calcareous mountains near Grenoble, France), P. leptoceras Rchb., P. reichenbachiana Schindler (endemic of Maritime Alps) and P. vulgaris L. (Casper, 1966; Pignatti, 1982; Aeschimann et al., 2004; Pascal et al., 2008; Compostella et al., 2010). P. hirtiﬂora Ten. is reported by Aeschimann et al. (2004) and only one population is known in Roya Valley, France: this population is considered to have been introduced by man because it is out of the typical area of the species (Central-Eastern Mediterranean according to Casper, 1966) (Peruzzi et al., 2004; Steiger and Tassara, 2006). Recently Casper and Steiger (2001) described P. poldinii Steiger et Casper, a new endemic species in the hilly region of North-Eastern Venetian Prealps, Italy.

Alpine Pinguicula are herbaceous perennial insectivorous plants having leaves in a basal rosette, zygomorphic flowers and capsular fruits. They grow in nutrient-poor and partially sunny wet habitats: mainly vertical dripping limestone cliffs (Cratoneuron plant communities often involved in the processes of the travertine formation), hydromorphic alpine meadows but also banks of oligotrophic marshes and acidic Sphagnum bogs. The geographical distribution, for all the species of the genus, is highly fragmented due to the peculiarity and rarity of these habitats.

The published data on the pollen morphology of butterworts are still few, old, incomplete and based mainly on light microscopy observations. We focused on previous papers about the same species even if studied in different areas of the world. Concerning the alpine species, the pollen grains of P. vulgaris (but also P. alpina and P. villosa) are polycolporate (number of colpi 6–8), prolate spheroidal (39 × 37 μm), the exine is 2 μm thick and the exine is finely reticulate (Erdtman et al., 1961). P. vulgaris was studied also by Sohma (1975) and Moore et al. (1991). Morphological data about P. grandiﬂora pollen grains were provided for the first time by Heslop-Harrison (2004) which reported a similarity with the ones of P. vulgaris. Recently Tsymbalyuk et al. (2008) described, using LM and SEM, the pollen grains of Ukrainian populations of P. vulgaris and P. alpina. P. alpina is also reported by Hesse et al. (2009). Albanian populations of P. hirtiﬂora (var. hirtiﬂora and var. louisii) have been studied by Shuka et al. (2007) where a slight difference between the pollen grains of the two varieties was noticed.

Fossil pollen of Pinguicula has been recorded only by Mitchell (1954).
2. Materials and methods

Pollen grains of 9 taxa of the genus Pinguicula (belonging to the flora of the Alps) were studied. Specimens of different populations were collected in the field (Table 1; Fig. 1) during springs 2003–2008 and identified according to Casper (1966, 1974), Pignatti (1982), Casper and Steiger (2001), Aeschimann et al. (2004) and Pascal et al. (2008). Only flowers at the anthesis were picked up for a total of ~10 flowers for each population.

The exsiccata are housed in the herbarium of the Department of Biology, University of Milano: Herbarium Universitatis Mediolanensis (MI).

The palynological terminology used is according to Punt et al. (2007) and Hesse et al. (2009).

2.1. Light microscopy (LM)

Only flowers with mature anthers were used. Some pollen grains, removed from the anthers, were hydrated with distilled water on filter paper as in Rodondi et al. (2004), fixed in 2.5% glutaraldehyde, and stained with 4,6-diamidino-2-phenylindole (DAPI) dissolved in thiocarbohydrazide (T) solutions known as OTOTO method (Chissoe and Skvarla, 1974) or stained in a sequence of osmium (O) and thiocarbohydrazide (T) solutions known as OTOTO method (Chissoe et al., 1995), was observed using a Leo 1430 and a Cambridge Stereoscan 360 scanning electron microscopes.

3. Results

3.1. LM survey (Plate I; Table 2)

The mature pollen grains of the investigated species of Pinguicula are released as free monads of medium size (~30 μm) (Plate I, 1–8). The pollen colour varies from whitish to yellow. Each grain is trinucleate (3-celled) (Plate I, 1).

Moreover, the grains are isopolar, stephanoaperturate, zonocolporate. Each aperture is associated with a colpus that is perpendicular to the equator and a bridge or constriction which seems to divide the colpus into two parts is often visible (Plate I, 3, 7). The number of colpori varies from species to species with a minimum of (4)–(5)–(6) colpori in P. grandiflora subsp. rosea, and a maximum of 8–9–10 colpori in P. hirtiflora. Moreover the two subspecies of P. grandiflora show a different shape and number of colpori: suboblate and (5)–6–7–8 colpori in subsp. grandiflora (Plate I, 2); oblate spheroidal and (4)–5–6 colpori in subsp. rosea (Plate I, 3). Pollen grains of P. poldinii show a large number of anastomosing colpori. Around 60%, of the approximately 800 grains observed, has this characteristic feature, which makes these grains asymmetric and anomalous (Plate I, 7). The pollen grains of Pinguicula in polar view have a circular equatorial outline and the shape is oblate spheroidal. In P. reichenbachiana prolate pollen grains are the most frequent (Plate I, 8).

3.2. SEM survey (Plates II–V; Table 2)

Each grain is stephanocolporate and its pores have a rectangular profile (Plate IV, 5; Plate V, 5, 9). The colpus membrane is often covered with granular elements (Plate III; 4) and the colpori are not normally fused at the polar edge. The inner structure of the sporoderm of some broken pollen grains was observed: there are two patterns of exine, one with a nearly continuous tectum like in P. hirtiflora, the other with a discontinuous tectum like in P. reichenbachiana (Plate II, 1–2).

2.2. Scanning electron microscopy (SEM)

Acetylated pollen, concentrated and purified according to Chissoe and Skvarla (1974) or stained in a sequence of osmium (O) and thiocarbohydrazide (T) solutions known as OTOTO method (Chissoe et al., 1995), was observed using a Leo 1430 and a Cambridge Stereoscan 360 scanning electron microscopes.

Table 1

<table>
<thead>
<tr>
<th>Species</th>
<th>Site (see also Fig. 1)</th>
<th>Elevation (m a.s.l.)</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. alpina L.</td>
<td>1a – Alpe Gera (SO, Italy)</td>
<td>2100</td>
<td>Neutrophile alpine grasslands</td>
</tr>
<tr>
<td></td>
<td>1b – Monte Albén (BG, Italy)</td>
<td>1500</td>
<td>Carex firma, hydromorphic alpine grasslands, NE slope</td>
</tr>
<tr>
<td>P. aveti Getsy</td>
<td>2 – Pian del Re, Monviso, Cisallo (CN, Italy)</td>
<td>1600</td>
<td>Carex firma, hydromorphic alpine grasslands, SE slope</td>
</tr>
<tr>
<td>P. grandiflora Lam. subsp. grandiflora<sup>a</sup></td>
<td>3 – Rotor Valley (AO, Italy)</td>
<td>2135</td>
<td>Alpine heath</td>
</tr>
<tr>
<td>P. grandiflora subsp. rosea (Mulet) Casper</td>
<td>4 – Chapareilian (Département Isère, France)</td>
<td>1000</td>
<td>Wet banks of a sandy stream</td>
</tr>
<tr>
<td>P. hirtiflora Ten.</td>
<td>5 – Fontain, Val Roya (Département Alpes-Maritimes, France)</td>
<td>520</td>
<td>Dripping limestone cliffs</td>
</tr>
<tr>
<td>P. leptoceras Rhbb.</td>
<td>6a – Monte Albén (BG, Italy)</td>
<td>1500</td>
<td>Carex firma, hydromorphic alpine grasslands, SE slope</td>
</tr>
<tr>
<td></td>
<td>6b – Alpe Lago, Chiesa Val Malenco (SO, Italy)</td>
<td>1620</td>
<td>Marshes</td>
</tr>
<tr>
<td></td>
<td>6c – Val Parcellizzio, Val Masino (SO, Italy)</td>
<td>1800</td>
<td>Wet acidophilous grasslands</td>
</tr>
<tr>
<td></td>
<td>6d – Piano dell’acqua nera, Passo S. Marco (BG, Italy)</td>
<td>1750</td>
<td>Acidophilous bog</td>
</tr>
<tr>
<td>P. poldinii Steiger et Casper</td>
<td>7 – Camponne, Tramonti di Sotto (PN, Italy)</td>
<td>450</td>
<td>Dripping limestone cliffs</td>
</tr>
<tr>
<td>P. reichenbachiana Schindler<sup>b</sup></td>
<td>8a – Fontain, Val Roya (Département Alpes-Maritimes, France)</td>
<td>520</td>
<td>Dripping limestone cliffs</td>
</tr>
<tr>
<td></td>
<td>8b – Villaggio Rocca Barbena (SV, Italy)</td>
<td>800</td>
<td>Dripping limestone cliffs</td>
</tr>
<tr>
<td></td>
<td>9a – Sauze D’Oulx (TO, Italy)</td>
<td>1500</td>
<td>Wet meadows</td>
</tr>
<tr>
<td></td>
<td>9b – Passo Campo Carlo Magno, Pinzolo (TN, Italy)</td>
<td>1620</td>
<td>Wet meadows</td>
</tr>
<tr>
<td></td>
<td>9c – Col de Tende (Département Alpes-Maritimes, France)</td>
<td>1250</td>
<td>Dripping limestone cliffs</td>
</tr>
<tr>
<td></td>
<td>9d – Chapareilian (Département Isère, France)</td>
<td>1000</td>
<td>Wet meadows</td>
</tr>
</tbody>
</table>

^a As P. grandiflora Lam. subsp. grandiflora I. grandiflora.
^b As P. longifolia Ram. var. reichenbachiana (Schindler) Rosy or P. longifolia subsp. reichenbachiana (Schindler) Casper.
3.2.1. *P. alpina* (*Plate III*, 1–2)

The grains are suboblate, radially symmetric, isopolar and zonocolporate with (5)–6–7–(8) colpores. Rare anastomoses of colpores apices are visible. The profile of colpus margin is irregular and there are granules on the colpus membrane. The sexine ornamentation is rugulate–reticulate with thick curved muri (~1.0 μm thick), irregular narrow lumina (often wider than 1.0 μm) and rare perforations on the mesocolpium margin. There is usually no differentiation of the sexine towards the poles and/or colpores.

3.2.2. *P. arvetii* (*Plate III*, 3–4)

The grains are oblate spheroidal, radially symmetric, isopolar and zonocolporate with 5–6–7–(8) colpores. Anastomoses of colpores between the polar margins are very rare. The sexine ornamentation is rugulate–microreticulate, near the margin of the colpi, the muri merge and lumina become smaller, resembling perforations. Lumina are very variable in size and shape (rounded or polygonal) and they are rarely wider than 1.0 μm. The muri are thick (thickness 0.5–1.0 μm).

3.2.3. *P. grandi* (*Plate III*, 5–6; *Plate IV*, 1–2)

In *P. grandi* the grains are suboblate in *subsp. grandi* and oblate spheroidal in subsp. *rosea*. The grains are radially symmetric, isopolar and zonocolporate with (5)–6–7–(8) colpores in *subsp. grandi*; (4)–5–(6) colpores in subsp. *rosea*. Rare anastomoses of colpores apices are visible. The sexine ornamentation is rugulate–microreticulate with thin curved muri (0.2–0.5 μm thick) and the lumina are very variable in size and shape (rarely wider than 1.0 μm). There is usually no differentiation of the sexine towards the poles and/or colpores.

3.2.4. *P. hirti* (*Plate II*, 1; *Plate IV*, 3–4)

The grains are oblate spheroidal, radially symmetric, isopolar, zonocolporate and parasyncolporate with 8–9–(10) colpores. The tectum is nearly continuous and perforated. Puncta (diameter <0.5 μm) have different shapes and sizes and their density on the mesocolpium margins and on the apocolpium is lower. The splitting of some pollen grains allowed observation of the thickness of the sporoderm layers: foot layer (0.2 μm), columellae (0.4 μm), tectum (0.4 μm). The whole thickness is around 1.0 μm.

Table 2

Biometric measures, based on 50 pollen grains for each population, of the examined taxa. Abbreviations: *P* = polar axis; *E* = equatorial diameter; *SO* = suboblate; *OS* = oblate spheroidal; *PS* = prolate spheroidal; *S* = spheroidal.

<table>
<thead>
<tr>
<th>Species</th>
<th>P (μm)</th>
<th>E (μm)</th>
<th>P/E</th>
<th>Shape</th>
<th>Sexin ornamentation</th>
<th>Muri width (μm)</th>
<th>Number of colpores</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. alpina</td>
<td>27.5 ± 0.15 (23.4–32.0)</td>
<td>32.1 ± 0.15 (28.8–36.0)</td>
<td>0.86</td>
<td>SO</td>
<td>Rugulate–reticulate</td>
<td>~1.0</td>
<td>(5)–6–7–(8)</td>
</tr>
<tr>
<td>P. arvetii</td>
<td>28.5 ± 0.29 (24.3–32.9)</td>
<td>29.9 ± 0.28 (26.1–33.8)</td>
<td>0.96</td>
<td>OS</td>
<td>Rugulate–microreticulate</td>
<td>0.5–1.0</td>
<td>5–6–(7)</td>
</tr>
<tr>
<td>P. grandi</td>
<td>26.9 ± 0.28 (23.4–31.5)</td>
<td>32.1 ± 0.28 (27.0–36.0)</td>
<td>0.84</td>
<td>SO</td>
<td>Rugulate–microreticulate</td>
<td>0.2–0.5</td>
<td>(5)–6–7–(8)</td>
</tr>
<tr>
<td>P. hirti</td>
<td>28.6 ± 0.31 (24.3–33.3)</td>
<td>31.2 ± 0.29 (27.0–34.2)</td>
<td>0.92</td>
<td>OS</td>
<td>Rugulate–microreticulate</td>
<td>0.2–0.5</td>
<td>(4)–5–(6)</td>
</tr>
<tr>
<td>P. leptoeceras</td>
<td>29.4 ± 0.25 (25.2–33.3)</td>
<td>33.3 ± 0.26 (28.8–36.9)</td>
<td>0.88</td>
<td>OS</td>
<td>Perforate</td>
<td>–</td>
<td>8–9–(10)</td>
</tr>
<tr>
<td>P. polandinii</td>
<td>28.9 ± 0.28 (23.4–39.2)</td>
<td>31.1 ± 0.26 (26.1–41.0)</td>
<td>0.93</td>
<td>OS</td>
<td>Rugulate–microreticulate</td>
<td>0.5–1.0</td>
<td>5–6–7</td>
</tr>
<tr>
<td>P. reichenbachiana</td>
<td>31.3 ± 0.20 (27.0–34.2)</td>
<td>34.7 ± 0.27 (28.8–39.6)</td>
<td>0.90</td>
<td>OS</td>
<td>Rugulate–microreticulate</td>
<td>0.5–1.0</td>
<td>6–(7)</td>
</tr>
<tr>
<td>P. vulgaris</td>
<td>30.2 ± 0.26 (23.4–35.1)</td>
<td>28.1 ± 0.23 (22.5–34.2)</td>
<td>1.04</td>
<td>PS</td>
<td>Rugulate–microreticulate</td>
<td>0.2–0.5</td>
<td>5–6</td>
</tr>
<tr>
<td>P. rosea</td>
<td>32.3 ± 0.14 (27.0–37.8)</td>
<td>32.4 ± 0.13 (27.0–36.0)</td>
<td>1.00</td>
<td>S</td>
<td>Rugulate–microreticulate</td>
<td>0.5–1.0</td>
<td>6–7–(8)</td>
</tr>
</tbody>
</table>
3.2.5. *P. leptoceras* (Plate IV, 5–6)

The grains are oblate spheroidal, radially symmetric, isopolar and zonocolporate with 5–6–(7) colpori. Anastomoses of colpori between the polar margins are very rare. The sexine ornamentation is rugulate–microreticulate, near the margin of the colpi, the muri merge and lumina become smaller, resembling perforations. Lumina...
are very variable in size and shape (rounded or polygonal) and they are rarely wider than 1.0 \(\mu m \). The muri are thick (thickness 0.5–1.0 \(\mu m \)).

3.2.6. *P. poldinii* (Plate V, 1–3)

The grains are oblate spheroidal, radially symmetric or asymmetric, isopolar and zonocolporate with 6–7 colpori. Many different types of anastomosing colpori are often visible on the grain. The sexine ornamentation is rugulate–micoreticulate, near the margin of the colpi, the muri merge and lumina become smaller, resembling perforations. Lumina are very variable in size and shape (rarely wider than 1.0 \(\mu m \)) while the muri are thick (thickness 0.5–1.0 \(\mu m \)).

3.2.7. *P. reichenbachiana* (Plate II, 2; Plate V, 4–6)

The grains are prolate spheroidal, radially symmetric, isopolar and zonocolporate with 5–6 colpori and rarest anastomoses close to the polar margins. The sexine ornamentation is rugulate–micoreticulate, near the margin of the colpi, the muri merge and lumina become smaller resembling perforations. Lumina are very variable in size and shape often circular (rarely wider than 1.0 \(\mu m \)). The muri are thin (thickness 0.2–0.5 \(\mu m \)). The splitting of some pollen grains allowed observation of the thickness of the sporoderm layers: foot layer (0.4 \(\mu m \)), columellae (0.4 \(\mu m \)), tectum (0.5 \(\mu m \)). The whole thickness is around 1.3 \(\mu m \).

3.2.8. *P. vulgaris* (Plate V, 7–9)

The grains are spheroidal, radially symmetric, isopolar and zonocolporate with 6–7–8 colpori. Anastomoses between the polar margins are very rare. The sexine ornamentation is rugulate–micoreticulate, near the margin of the colpi, the muri merge and lumina become smaller, resembling perforations. Lumina are very variable in size and shape (rarely wider than 1.0 \(\mu m \)). The muri are thick (thickness 0.5–1.0 \(\mu m \)).

Table 2 summarizes the main features.

4. Discussion

The institution of *Pinguicula poldinii* as a new species (Casper and Steiger, 2001), the discovery of new sites for *P. arvetii* (Pascal et al., 2008) and *P. grandiflora* subsp. *grandiflora* (Compostella et al., 2010) as new species of the Italian flora, together with the fact that the palynological data are still few, old and based mainly on light microscopy investigations, induced a methodical research on the micromorphology of the pollen grains of butterworts belonging to Alpine flora.

The comparative LM and SEM analysis of the pollen grains of the nine investigated taxa confirmed the general typology of the pollen grains of *Pinguicula*. Detailed palynomorphological characteristics of the not yet investigated species *P. arvetii*, *P. grandiflora* (two subspecies), *P. leptoceras*, *P. poldinii*, *P. reichenbachiana* are provided for the first time.

In all the species of *Pinguicula* the pollen grains are released as monads which are isopolar, radially symmetric, stephanopaperturate, zonocolporate and trinucleate (3-celled). The pollen colour, on fresh material, does not have any diagnostic relevance. The number of colpori rises up to 10. The shape is from suboblate to oblate spheroidal (P< E), except for *P. reichenbachiana*, that is prolate spheroidal (P>E) (Table 2).

According to the pollen terminology (Punt et al., 2007; Hesse et al., 2009) the rugulate–micoreticulate or rugulate–reticulate ornamentation characterizes the pollen wall of the butterworts investigated; only *P. hirtiflora* has a perforate ornamentation. *P. alpina* shows a rugulate–reticulate ornamentation characterized by very thick (around 1.0 \(\mu m \)) and twisted muri that make the lumina very narrow and irregular; the lumina sometimes are simple perforations. The micoreticulum of *P. arvetii*, *P. leptoceras*, *P. poldinii* and *P. vulgaris* present thick muri (0.5–1.0 \(\mu m \)) in contrast with the thin muri (0.2–0.5 \(\mu m \)) of *P. grandiflora* (subsp. *grandiflora* and subsp. *rosea*) and *P. reichenbachiana*. The reticulum meshes of these last two species are larger than the one of the previous four species but nevertheless the ornamentation is still micoreticulate. *P. grandiflora* and *P. reichenbachiana* differ because the first one has the muri more twisted and...
its sexine ornamentation usually do not differentiate towards the poles and/or colpori. The microreticulate ornamentation of the mesocolpium margin (around 2.0 μm) changes from reticulate to perforate and the tectum varies from discontinuous to nearly continuous in almost all the taxa but not in P. alpina and P. grandiflora (subsp. grandiflora and subsp. rosea).

The perforate sexine ornamentation of P. hirtiflora shows a drastic reduction of puncta density nearly the margin of mesocolpium and on apocolpium.

The pollen of P. poldinii is very peculiar: around 60%, of the nearly 600 pollen grains observed, showed a large number of anastomoses between colpori and the grains are often asymmetric and anomalous. The anastomoses are very irregular and involve each part of the grain.

Often it is impossible to distinguish between the polar and the equatorial region (Table 2); a similar feature has been reported also in Utricularia brennii Heer (Lentibulariaceae) (Huynh, 1968; Casper and Manitz, 1975; Käsermann and Moser, 1999). Casper and Steiger (2001) described briefly the pollen grains of P. poldinii and they found 6–8-colporate grains; even if we have never found 8-colporate grains we use this value to complete the proposed pollen key (Table 3).

The exine micromorphology by itself does not allow a clear separation of P. arvetii, P. leptoceras, P. poldinii and P. vulgaris. There are small differences regarding; the shape, the size and the number of colpori. Grains of P. vulgaris are spheroidal while they are oblate spheroidal in the other three species. Pollen grains of P. vulgaris and P. poldinii are larger than the ones of P. arvetii and P. leptoceras. 5-colporate pollen grains are frequent in P. arvetii and P. leptoceras while they have never been observed in P. poldinii and P. vulgaris (their minimum is 6-colporate). (Table 2). P. arvetii is so close to P. leptoceras that it is difficult to separate them properly using palynological data.

LM observations confirmed the general pollen morphology of P. vulgaris described by Sohma (1975) from Japanese herbarium specimens, and by Tsyymbalyuk et al. (2008) from Ukrainian herbarium specimens. The SEM observations of Sohma (1975) of P. vulgaris, described the ornamentation fairly irregular reticulate to rugulate. Tsyymbalyuk et al. (2008) describe a perforate ornamentation, while our data show a rugulate-microreticulate ornamentation. Also our data about the rugulate-reticulate sexine ornamentation of P. alpina differs from Tsyymbalyuk et al. (2008) and Hesse et al. (2009) because they describe a micro-perforate ornamentation and an incomplete reticulum respectively.

The pollen grains of P. vulgaris and P. grandiflora from Alps are smaller than the one reported by Heslop-Harrison (2004) from English plants.

Finally a recent work of Shuka et al. (2007) exhaustively described two varieties of P. hirtiflora in Albania: var. hirtiflora and var. louisii. They described the grains stephano-7–9(–10) colporate, the shape from oblate to spheroidal and the ornamentation strongly micro-reticulate on equatorial mesocolpi and somewhat perforated on apocolpi in var. hirtiflora; microreticulate to verruculate on equatorial mesocolpi in var. louisii. Our data cannot be properly compared with theirs because they worked on non-acetolyzed pollen grains. Be that as it may the ornamentation of our samples is always perforated and never microreticulate or verruculate (as described in the Albanian varieties).

Our observations improve the knowledge on alpine butterworts and provide the diagnostic characters for the identification of their pollen grains. The diagnostic characters are: the size, the shape, the number of colpori and the exine ornamentation. These characters are combined to draw up a pollen key (Table 3) for the identification of the different species. This pollen key is an important tool for pollen diagrams and consequently for the reconstruction of paleo-wet oligotrophic-environments through the Holocene.

Acknowledgements

The authors are grateful to Filippo Tassara for the specimens from Rocca Barbena and Szaue D’Oulx and for the detailed informations about the location of some sites. We are thankful to Roberto Cavatorta (Dip. di Biologia, Università degli Studi di Milano) for his assistance in computer graphics.

SEM micrographs were provided by CIMA (Centro Interdipartimentale di Microscopia Avanzata, Università degli Studi di Milano) and some by Agostino Rizzi, CNR (Centro Geodinamica Alpina e Quaternaria).

Plate III. SEM micrographs of acetolyzed pollen grains. Scale bars: 1, 3, 5=10 μm; 2, 4, 6=1 μm. (see on page 7).

1. P. alpina: pollen grain in polar view.
2. P. alpina: rugulate-reticulate ornamentation with thick and twisted muri, and rare perforations (arrows).
3. P. arvetii: pollen grain in polar view.
4. P. arvetii: rugulate-microreticulate ornamentation with perforations (arrows) near the colpus margin and granular elements on the colpus membrane.
5. P. grandiflora subsp. grandiflora: pollen grain in polar view.
6. P. grandiflora subsp. grandiflora: rugulate-microreticulate ornamentation on apocolpium with thin and twisted muri; the reticulum has the same pattern even on mesocolpium margin.

Plate IV. SEM micrographs of acetolyzed pollen grains. Scale bars: 1, 3, 5=10 μm; 2, 4, 6=1 μm. (see on page 8).

1. P. grandiflora subsp. rosea: a 4-colporate pollen grain. Inset: the reticulum has the same pattern even on mesocolpium margin.
2. P. grandiflora subsp. rosea: rugulate-microreticulate ornamentation with thin and twisted muri.
3. P. hirtiflora: pollen grain in polar view.
4. P. hirtiflora: the number of perforations is reduced close to the apocolpium and the mesocolpium margin.
5. P. leptoceras: pollen grain in equatorial view showing a rectangular pore (arrowhead).
6. P. leptoceras: rugulate-microreticulate ornamentation with perforations (arrows) near the colpus margin.

Plate V. SEM micrographs of acetolyzed pollen grains. Scale bars: 1–2, 4, 7–8=10 μm; 3, 5–6, 9=1 μm. (see on page 9).

1. P. poldinii: pollen grains showing anastomosing colpori close to the polar margins (arrow).
2. P. poldinii: pollen grain with an extreme irregularity in its colpori.
4. P. reichenbachiana: pollen grain in equatorial view showing a bridge (arrow). The alteration of the ornamentation pattern on mesocolpium, near the colpus margin, is also visible.
5. P. reichenbachiana: perforations (arrows) near the colpus margin and a rectangular pore (arrowhead).
7. and 8. P. vulgaris: pollen grain in oblique equatorial view, showing a small difference in the size of the polar regions.
9. P. vulgaris: rugulate-microreticulate ornamentation with perforations (arrows) near the colpus margin and a rectangular pore (arrowhead).
Plate III.
Plate IV (caption on p. 6).
Table 3
Pollen key.

1. Tectum nearly continuous with a perforate ornamentation, number of colpori ≥8
2. Tectum discontinuous with a rugulate-microreticulate or rugulate-reticulate ornamentation, number of colpori ≤8

<table>
<thead>
<tr>
<th>1a. Tectum nearly continuous</th>
<th>P. hirtiflora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b. Rugulate-microreticulate</td>
<td>P. reichenbachiana</td>
</tr>
<tr>
<td>2. Tectum discontinuous</td>
<td>P. grandiflora subsp. grandiflora</td>
</tr>
<tr>
<td>3. Rugulate-reticulate</td>
<td>P. grandiflora subsp. rosea</td>
</tr>
</tbody>
</table>

* Our data, (6–7) colpori, combined with Casper and Steiger (2001), 6–8 colpori.

References

