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Abstract— The paper presents two different methods to deal
with the problem of iris segmentation: an agent-based method
capable to localize the center of the pupil and a method to
process the iris boundaries by a multiple views approach. In
the first method, an agent corresponds to the coordinates of
a specific point of analysis in the input image. A population
of agents is deployed in the input image, then, each agent
collects local information concerning the intensity patterns
visible in its region of interest. By iterations, an agent changes
its position accordingly to the local properties, moving towards
the estimation of the pupil center. If no available information
is present in its region of interest, the agent will move itself
along a random walk. After few iterations, the population
tends to spread and then concentrate in the inner portion of
the pupil. Once the center of the pupil has been located, the
inner and outer iris boundaries are refined by an approach
based on multiple views analysis. This method starts with a
set of points that can be considered as an approximation of
the pupil center. For each point, a detailed estimation of the
iris boundaries is computed, and the final description of the iris
boundaries is obtained by merging all the obtained descriptions.
The two methods were tested using CASIA v.3 and UBIRIS
v.2 images. Experiments show that the proposed approaches
are feasible, also in eye images taken in noisy or non-ideal
conditions, achieving a total error segmentation accuracy up to
97%.

I. INTRODUCTION

The segmentation of the iris pattern in the input eye
images is one of the most critical steps in iris biometric
systems. Failures in the iris segmentation can produce rel-
evant errors in the template creation, and hence the enroll
and verification/identification procedures can be jeopardized.
The research is now facing new challenges, in order to
guarantee an accurate and trustworthy behavior of the system
also in non ideal and noisy environments [1], [2]. The
difficulty to perform reliable iris segmentation is related
to the great variability associated to the aspect, position,
occlusions and illumination that can be present in an eye
image. Furthermore, the user cooperation, acquisition setup
and environmental effect are important factors that play a
decisive role in the iris segmentation, and, hence in the final
behavior of the biometric systems [3], [4], [5]. In literature,
the problem of the iris segmentation has been studied by
different approaches. A first cluster of algorithms models
the inner and outer boundaries as two circles. This category
encompasses the methods where the boundaries segmenta-
tion of the iris is based on integro-differential operators
[3], [6], the Hough transform [7], [8], [9], and methods
based on the characteristics obtained applying global image
operators (e.g., the Fourier transform or statistic operators)
[10], [11], [12]. A second group of algorithms models
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Fig. 1. Multi Agent Pupil Localization. Starting from an initial spatial
configuration (left), agents search for the pupil center by an iterative
approach. When the stopping criterion is reached, the area with the highest
concentration of agents in the image (right) estimates the pupil center.

Fig. 2. Multiple Views Boundary Refining. Starting from a set of
observation points inside the pupil (red circles in the left subplot), the inner
and outer iris boundary are reconstructed by processing the radial gradient
transitions for each observation point (colored curves in the center subplot).
The different boundaries are fused in order to estimate the iris edges (right).

the iris boundaries using a best-fit approach with a priori
models [13], [14], or they locate the iris by analyzing /ocal
image features [15], [16]. Other iris segmentation methods
follow hybrid/incremental approaches that initially estimate
the position of the iris, and then they refine the localiza-
tion/segmentation [17], [18]. The work we propose belongs
to this latter category.

The contribute of the paper is twofold: we present an agent-
based approach capable to effectively locate the center of
the pupil starting with a set of candidate points displaced in
the input image, then we propose a method to exploit the
estimation of the pupil position and capable to identify the
iris boundaries by a multiple views method. In following, we
refer to the first method as Multi-Agent Pupil Localization
(MAPL) and to the second method as Multiple Views Iris
Boundaries Refining (MVBR).

In our previous studies [17], we demonstrated that neural
networks can estimate with good accuracy the distance from
the pupil center of a point in the iris with different image
types. Starting from a set of points in the image, the MAPL
method exploits two trained neural networks to find the pupil
center position by an iterative method and a voting criterion.
In MAPL, a specific point of analysis in the input image



corresponds to the coordinates of an agent. A population
of agents is deployed in the input image (Fig. 1, left sub-
plot), then, each agent collects local information concerning
the intensity patterns visible in its region of interest. By
iterations, the agents change their position accordingly to
the local properties, and they try to move toward the pupil
center. If no available information is present in their region
of interest, the agents will perform a random walk. After a
few iterations, the population tends to spread and concentrate
in the inner portion of the pupils (Fig. 1, right subplot). Once
the termination condition is reached by the agents set, the
center of the most numerous and dense cluster of agents
can be effectively considered as the most probable candidate
point of the pupil center.

The position of each agent near to the estimated pupil center
(or the estimated center itself) can now be exploited as
an observation point by MBVR (Fig. 2). Methods based
on the radial gradient can produce different segmentation
boundaries for different center positions, being more or less
affected by occlusion and reflections. Changing the starting
point of this algorithm, we change the “view point” of the iris
boundaries. As a consequence, the iris boundaries, reflections
and occlusions have very different shapes and positions in
the linearized space obtained by different center positions.
Differently, real iris boundaries tend to be more stable, even
if observed by different viewpoints.

The MBVR method exploits these different behaviors in
order to effectively segment the real iris boundaries. The
proposed method applies in an innovative fashion the tech-
nique presented in [17], that identifies the iris boundaries
by searching the peculiar pattern transitions in the radial
gradient image around an observation point. In particular,
we proposed to exploit a set of N observation points and
then to properly fuse the extracted information in order to
better interpolate the inner and outer iris boundaries. Both
presented methods exploit the gray level transitions of the
iris pattern, hence they can work with gray level images and
color images. Furthermore, they are designed to work with
different types of images. For example, the method can be
applied to images acquired with specific illumination systems
in controlled environments (e.g., the CASIA dataset [19]) or
with noisy images with the presence of many reflections and
occlusions (e.g., the UBIRIS.v2 dataset [20]).

The paper is structured as follows. Section II presents the
agent-based algorithm for the search of the pupil center.
Section III presents the algorithms for the search and the
regularization of the iris boundaries. In Section IV, the two
proposed methods are applied to different public iris image
datasets, and the obtained results are then discussed and
compared with state of the art methods for iris segmentation.

II. MULTI-AGENT PUPIL LOCALIZATION (MAPL)

The proposed method for the searching of the pupil center
is based on a set of M agents 4(m)(m=1,...,M), each
of them characterized by the x and y coordinates in the
image. Starting from an initial position, each agent computes
an estimation of the pupil center coordinates and it moves

itself in the estimated point. When an agent is situated far
from the inner iris boundary, its movement is designed to
be comparable to a random walk. When an agent is near to
the real center, its movement tends to be limited or absent.
When the termination criterion is reached, the final position
of the pupil center is estimated observing the area of the
image with the best concentration of agents. Let us detail
the steps of the algorithm.

A. Initial condition of the agentes

In our implementation, the agents are distributed in the
input image along a grid that regularly partitions the input
eye image in a matrix of (K + 1) x (Q + 1) rectangles. Hence
N4 = K x Q agents are displaced in the inner intersection
points of the grid. In our tests, we used K =5 and O = 10.
Fig. 1 plots the described initial configuration of the agents.
Results indicate that the proposed method is not strongly
influenced by the starting positions, a random-based initial
placement of the agents can be considered as well.

B. Movementes of the agentes

In our approach, each agent is a distinct computational unit
that executes the following algorithm: it collects information
in its local Region of Interest (Step B.1); it decides the
direction and the distance of the movement according to
the gray level intensity transitions in the ROI (Step B.2);
it repeats previous steps until the (collective) termination
criterion is reached (Step B.3).

In Step B.1, the agent processes from the input image 7 (x,y)
the radial gradient image R (x,y) centered in the current
position {xc,yc} (Fig. 3) and it extracts a circular strip
image R, (x,y) centered on its current position {xc,yc}
inside the two radii rp;, and rpe. Then, the delimited
ROI is linearized into a rectangular image R, (p,0) by a
Cartesian-Polar conversion (Fig. 3, bottom left subplot) as
described in [17]. The vector 8 = {6}, 05,...,0x} expresses
the angular resolution of the analysis (typically M = 360°,
and 6,.1 — 6, = 1). The radius rjz, must be fixed to a value
larger than the expected iris radius in the image for the
current dataset (for example 1/2 of the minor size of the
input image).

The step B.2 aims to detect in the linearized strip R, (p,0)
the specific gray level transitions of the iris boundaries
and then to exploit this information to estimate the proper
movement of the agent {Ax,Ay} needed to get closer to
the iris center. If no estimated iris transitions are present
in the linearized strip R, (p,0), the agent will perform a
random jump in order to try to catch new hints of the
presence of the iris pattern in a different location in the
image. Fig. 4 shows the relationship existing between the
shape of the iris transition (related to the observation point)
and the real iris center. Let us pick a random point belonging
to the pupil in the eye image (Fig. 4.a). The corresponding
strip image R, (p,0) will show a quasi sinusoidal gray
level transition along the 6 axis, which corresponds to the
pupil/iris transition (Fig. 4.b). For an ideal circular pupil,
the transition is perfectly sinusoidal, and the phase and the
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Fig. 3. Step B.1: ROI extraction. The agent extracts a linerized strip of
the radial gradient image around the current position of the agent {x,yc}.
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Fig. 4. Step B.2. Iris boundary detection and approximation: (a) example
of observation point (central cross); (b) the related linearized strip image
of the radial gradient and the estimation of the inner iris boundary 4, (6)
(green curve); (c) the third-order polynomial approximation (dashed curve)
of the extracted iris boundary b, (6) (solid curve).

amplitude of the sinusoidal curve are directly related to the
displacement of the observation point {Ax, Ay} with respect
to the real center of the pupil.

Unfortunately, in real images, the pupil is not perfectly cir-
cular, reflections and occlusions can be present and superim-
posed to the pupil pattern, hence the relationship between the
transition pattern and the displacement {Ax, Ay} is not trivial.
In [21] we demonstrated that a feed-forward neural network
can effectively learn this non linear mapping if trained with
a proper set of examples. Let us now detail the method used
to estimate the presence of the iris transition b, (6) (Fig. 4.b)
in the strip image R, (p,0) and the evaluation of the agent
movement {Ax,Ay}. The proposed algorithm searches the
longest curve obtained from the maximum intensity columns
of the bigger objects in the strip image R, (p,0) by the
following steps.

B.2.1) A filtered radial gradient image R (p, ) is pro-
cessed by the radial gradient image R, (p,0) con-
volved with an horizontal mean filter with a K x 1

kernel k; , where

Ry(p,0)=Ry(p,0) k.

B.2.2) A binarized mask Ry (p, 6) is created by the thresh-
olding approach with a fixed threshold value 7 as
follow

1 ifR(p,0)>T
Ry (p,0) _{ 0 otherwise

B.2.3) Within the mask R, (p, 0), the N largest connected
objects {Oj,...,0y} are selected. These objects
possess high radial transitions, hence they will be
considered as the candidate boundary areas.

B.2.4) For each candidate boundary area
{01(p,0),...,0n(p,0)}, the p position in
each column 6 with the maximum intensity value
is selected, obtaining a set of candidate boundary
vector {b},(0),...,bY(0)}, where

b, (0) = argmax 0i(p,0).

rp(l=e)<p<rp(l+a)

B.2.5) A matrix C(f3,0) (where B = 1...N) is created
inserting the value of the radii of the candidate
boundary for each 6 as follows

by (61) bo (Ou)
c=| :
By(6) - bY(6w)

The matrix C(f3,0) can be thought as the list for
each 0 of the radial positions of the boundary
candidates.

B.2.6) In this step, we merge different segments belong-
ing to the candidate boundaries in C, in order to
obtain a new boundary pattern b,(0) (Fig. 4.b)
that minimize the discontinuities. Hence, starting
from the candidate objects in matrix C(f3,6), for
each column 0 of the matrix C (3, 0) it is extracted
the radius value that is nearest to the precedent,
obtaining the vector b, (0), where

by(6) = min |C(B.6)~C(B.61).

B.2.7) The curve b,(0) is then fitted with an approxi-
mated D-order polynomial

f/:wo—l—wlx—l—wzxz—i—...—l—waD

by a linear regression function (Fig. 4.c).

B.2.8) The coefficients W = {wqy,wy,...,wp} are pro-
cessed by two trained feed-forward neural networks
in order to obtain the estimated displacement of the
real pupil center as follows

A= NN, (W),A, = NN, (W).

Further details on the described algorithm and the training
of the neural networks are given in the result section.



C. The termination condition

In our approach we propose a termination criterion com-
posed by two distinct conditions: the algorithm arrives to the
maximum iteration number N; (condition TA) or it detects a
concentration of agents in a circle of radius »p major than a
fixed percentage C4 (condition TB). Notably, the condition
TB can produce runs of the MAPL method with a different
number of iterations. Moreover, it requires that each agent
must control the number of other agents in its local ROI,
hence producing a collective behavior about the termination
condition.

D. Estimation of the pupil center

Starting from the final configuration of the agents, it is
possible to estimate the position of the pupil center by
searching the area of the image with the higher concentration
of agents. In particular, our estimation algorithm follows the
subsequent steps.

D.1) An image D(x,y) is created by counting for each
pixel the number of agents that are inside a radius
ri.

The point in D(x,y) with the highest number of
agents n, is considered as the pupil center {x.,y.},
as follow

D.2)

ng=max(D(x,y)),

{XCaJ’c} = argmax (D (xvy))'

D.3) If there are two or more points with the same value
of ny, the steps D.1 and D.2 are repeated with | =
rl—1;

If 1 is equal to 1 and there are two or more
points with the same value of 74, the pupil center

is obtained by the mean of their coordinates.

D.4)

This method can effectively manage all final agent configu-
rations when the termination criterion is reached.

[II. MULTIPLE VIEWS IRIS BOUNDARIES
REFINING (MVBR)

In this section we propose a method capable to identify
the iris boundaries starting from one or N points that can
be considered as an approximation of pupil center (Fig. 2).
Notably, these points are not necessary obtained by using
the MAPL method, but they can be gathered with different
methods capable to properly estimate the pupil center. In
particular, the algorithm works with two input configurations:

o it is given a single observation point P = (x;,y;) that
belongs to the pupil;

e it is available an array of K observation points P =
{Ge1,21),(x2,02) ..., (xk,yk)}, where the majority of
them belongs to the pupil.

This method exploits the technique presented in [17] where
the boundaries of the iris are located by analyzing the pattern
transition in the radial gradient image in an observation
point. Differently, the MVBR method (by using in a different
fashion the radial gradient image) exploits a set of N obser-
vation points, and then it fuses the extracted information in

order to better interpolate the inner and outer iris boundaries.
Due to the multiple view feature, the proposed method
can effectively deal with reflections and occlusions. This
characteristic is related to the fact that the radial gradient
pattern of the reflections and occlusions is very dependent
on the observation angle, for this reason, the iris boundaries
description is more stable. The main steps of the proposed
algorithm are the following: (A) the image enhancement; (B)
in the case when only one estimated pupil center is given,
K —1 new points are selected in the neighborhood and added
to the P vector in order to better observe the iris boundaries;
(C) for each point in P, the estimated iris boundaries are
processed; (D) the processed boundaries are fused together
in order to obtain a continuous and reliable description of
the inner and outer boundary of the iris. Let us now detail
the presented steps.

A. Image enhacement

This method does not need a specific image prefiltering
or image enhancement. In the case of the tested datasets,
only a simple histogram stretching has been used. In case,
the designer can apply a specific method to enhance the iris
boundary transitions, tuned with respect to the specific image

type.

B. Management of the candidate obervation points P

The MVBR method produces better results if the obser-
vation points are suitably positioned around the real pupil
center position. When the vector P contains only one ob-
servation point (preferably the estimated pupil center), more
observation points should be added. Fig. 5 plots different
configurations that can be used with a number of observation
point K =1,3,4,5.9,13. Differently, if a set of observation
point is available, it can be directly used. For example,
Fig. 5.1 plots the final position of the candidate observation
points obtained with the MAPL method in the corresponding
image.

C. Boundaries estimation by a single obervation points

Once the observation vector P is created, the MVBR
method processes the estimated inner and outer boundary of
the iris for each observation point. In Step C, the procedure
is very similar to the one in step B.1 of the MAPL method.
In particular, the inner and the outer boundary of the iris are
processed, hence two different strips (like the one plotted in
Fig. 3.b) will be extracted. The minimum and maximum radii
used for the inner and outer iris boundary estimation(r’,;,,
Phraes Rogins Ry are related to the image dataset. In this
case, an enhancement Gaussian filtering was adopted for the
linearized images in order to reduce the effects created by
the eyelashes and by small reflections.

Given the j-th observation point in P, after this step the
method processes the filtered image strips Ry (p,60) and
R!(p,0) of the inner and outer iris boundary, respectively.
The estimation of the inner iris boundary b7 () and of the
outer iris boundary b/ (0) is processed by searching the
vector of pixels that has the best intensity value in every



Fig. 5. Management of the candidate observation points. Starting from
one single point considered as the pupil center (central point in the subplots
(a)-(h)), more points can be added in different configurations to improve
the behavior of the MVBR method. Subplot (i) shows a configuration of
the observation points produced by using the MAPL method.

Fig. 6. Merging the multiple external boundaries. The external boundaries
B/ (6) (left subplot) obtained with 5 observation points (with j=1,...,5)
are merged on a common pivot point in the polar space (right subplot). The
arrow indicates the position of a candidate boundary in the Polar plane.

column of the linearized images R{, (p,0) and R{ (p,0),
hence

b{, (6)= argmax R, (p,0)
rp(1—a)<p<rp(l+a)
b{ (0) = argmax  R;(p,0)

ri(1—0)<p<ri(1+a)
D. Final boundary estimation and approximation

In Step C of the MVBR method, the inner and
outer boundaries b}, (6) and b/ () have been extracted
around the different K observation points in P =
{(x1,21),(*2,32) ..., (xx,yx)}. The goal of this step is to
properly merge the boundaries in a common plane. This has
been done by converting all the boundaries 57 (8) and b7 (6)
in the Cartesian space (Fig. 6.a), and then converting again all
the boundaries around a common reference point (the pivot),
producing the transformed boundaries B7 () and B (6). In
this work, the pivot point is the first observation point (x1,y;)
in P. )

The outer boundaries B/ (@) are plotted on a mask filled
with zeros (Mask D; (p,6)) as shown in Fig. 6.b The Mask

D;(p,0) is processed with a morphological closure operation
(with 3 x 3 elements), in order to obtain a more continuous
curve. With a similar procedure, the inner boundaries B7 (6)
are used to obtain the corresponding mask D, (p,0). The
information stored in the mask D;(p,0) and D, (p,0) can
be now merged in order to obtain the less discontinuous inner
and outer border. This procedure is equal to the MAPL steps
from B.2.2 to B.2.6, where in input is given D;(p,0) and
D, (p,0) and in output is obtained the regularized boundaries
ep(0) and ¢;(0), respectively. Very often, vectors e, (0)
and e; (0) can contain outliers and discontinuities; hence we
propose to apply a regularization method capable to delete
from the vectors the discontinuity points by the following
spike filter. This algorithm deletes the e, (6;) and e;(6;)
higher then a fixed threshold &, with respect to the mean local
value in the range [6;_, ... 6,44, ]. The deleted points by the
spike filter are replaced with a two-point linear interpolation
between the available data. The regularized boundaries é , (0)
and é;(6) are hence converted in the Cartesian space.

IV. EXPERIMENTAL RESULTS

In this section we present the results obtained by MAPL
and MVBR methods on different datasets. The first dataset
(Dataset A) is composed by 100 images randomly selected
from the CASIA-IrisV3-Interval database [16]. For dataset A,
a trained supervisor selected the centers of the pupils in all
images, producing the reference for the pupils centers as
suggested in [20]. At best of our knowledge, no such direct
comparisons are available in the liteature. The second dataset
(Dataset B) is composed by 20 images randomly selected
from the Dataset A. The third (Dataset C) is composed by
all the images of UBIRIS.v2 [21] with the iris not completely
occluded (477 images). For all images of Dataset B and
Dataset C, a supervisor produced a manual segmentation
of each pixel belonging to the iris pixel, producing the
references to process the segmentation error of the algorithm.
The parameters of MAPL method have been empirically
tuned for the CASIA image type, obtaining 7,5, = 2 pixel,
ryax = 50 pixel, N =7 objects, T = 10% of the maximum
intensity of each linearized strip. The configuration of the
neural networks is with a single input layer composed by
two log-sigmoid layers with 12 and 5 neurons respectively,
trained with the back-propagation algorithm [20]. The num-
ber of the agents in the first iteration is 50 (their position
can be described by a 5 x 10 equally spaced grid).

We tested the MAPL method on Dataset A with the two
termination criteria. Fig. 7 plots the results obtained with the
termination criterion TA. For each iteration, it is plotted the
number of images that obtained a position of the estimated
center with an Euclidean distance less than 2, 3, 5, 10 pixels
to the reference pupil center, in the different iterations. The
results show that the agents converge with good accuracy
in the pupil center after a few iterations. Fig. 8 plots the
results obtained with the termination criterion B, showing
the percentage of images with the pupil center estimated
with an error minor of 2,3,5,10 pixels with respect to the
concentration of agents in the center. Results show that
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even a small concentration of agents in a point can suitably
estimate the presence of the pupil, hence the early-stopping
criterion is effective and it produces a better accuracy than
the single condition TA. In addition, it strongly reduces the
number of iterations made by the agents

The overall behavior of MAPL method is sufficient since
the pupil has been located with an error less than 5 pixels
for the 93% of the images in Dataset A.
We compared also the proposed algorithm to different
techniques available in the literature for locating the iris
center: a public code library based on based on the Hough
operator [22] (Method A) and the algorithm presented in [3]
(Method B). For the 94% of the images of Dataset A, the
pupil center estimation computed by MAPL method is more
accurate than the result obtained by Method A, and for the
93% of this images, MAPL is more accurate than Method B.
The MAPL method has an elevated computational com-
plexity and it cannot work in real-time applications: the
computation of each image requires 15 minutes on an Intel
Core2 Duo 2.4GHz working with Windows XP. All presented
algorithms have been written in Matlab language (Version

TABLE 1
ACCURACY OF THE MVBR SEGMENTATION ON DATASET B.

Config. TP TN FP FN Sensitivity Specificity Total
(%) (%) (%) (%) (%) (%) Error
(%)
A 23.771 66.336 8.6973 1.1956 95.2210  88.4088  9.8930
B 23.031 67.352 7.6820 1.9359 92.2461  89.7619  9.6179
C 23.051 67.409 7.6247 1.9158 92.3265  89.8382  9.5405
D 23.442 69.250 5.7834 1.5245 93.8938  92.2923  7.3079
E 23.445 69.453 55804 1.5213 93.9068  92.5628  7.1016
F 23.247 71.651 3.3824 1.7198 93.1117 954921  5.1022
G 23.637 70.556 4.4776 1.3292 94.6759  94.0326  5.8068
H 23.540 71.833 3.2003 1.4265 94.2865  95.7349  4.6267
I 23.648 67.488 7.5456 03184 98.7246  89.9436  7.8641

Note: Percentage of iris pixel =24.967% (Positive case);
TP=True Positive; TN=True Negative, FP=False Positive; FN=False Negative.

7.6) exploiting the available toolboxes.

The parameters of the MVBR have been tuned to the
following values for the Dataset B: i, = 15 pixel, 7}, =90
pixel, k; = 4 pixel, k, = 0.5, and no Gaussian filter for the
inner iris boundary detection; r4,, = 90 pixel, r{,,. = 130
pixel, k; = 20 pixel, k; = 1.5, and a [10 x 30] Gaussian
kernel with o = 30 for the outer iris boundary detection. For
Dataset C the parameters are: 1, = 2 pixel, 4, =35 pixel,
k1 =20 pixel, kp = 0.5, and a [20 x 20] Gaussian kernel with
o = 10 for the inner iris boundary detection; r§;, = 30 pixel,
e = 90 pixel, ki =20 pixel, k» =2, and a [5 x 30] Gaussian
kernel with ¢ = 30 for the outer iris boundary detection. The
quantitative tests of the MVBR method were performed with
Dataset B and Dataset C by a pixel-by-pixel comparison with
the supervised reference masks of the iris pattern (Fig. 8.a-d
show examples of the reference masks). The test performed
with Dataset B compared 1792000 pixels with an error rate
of 4.6%. The complete results are given in Table I, where the
different configurations shown in Fig. 5 are compared. The
candidate observation points are obtained by the results of
the MAPL method for Dataset B, and with a set of manually
selected points for Dataset C. Results show that the accuracy
of the MAPL+MVBR method (Table I) is correlated by the
number of observation points. In fact, the minor total error
was obtained by the configuration H. The configuration I
is composed by an elevate number of agents, but it does
not offer a good accuracy because the candidate observation
points are too concentrated in a small area around the pupil
center.

The MVBR results on Dataset C are given in Table II, where
where the best total segmentation error is equal to 2.9%. This
value was obtained with the protocol of the competition [21]
using the same image dataset. Notably, the errors obtained
by the 8 best methods ranked in the international competition
range from 1.3% and 3.05% , where five of them are
in the 2-3% range. Particularly, the results of this work
were obtained without any eyelashes location and reflections
removal methods. Fig. 9 shows the application of the MVBR
method on two example images taken from Dataset B (9.a
and 9.b) and on two example images taken from Dataset C
(9.c and 9.d). A qualitative analysis shows a correct behavior
of the MVBR method while it correctly follows the iris



TABLE 11
ACCURACY OF THE MVBR SEGMENTATION ON DATASET C.

Config. TP TN FP FN Sensitivity Specificity Total
) (%) (%) (%) (%) (%) Error
(%)
A 6.278 90.102 2.6583 0.9614 86.7193  97.1342  3.6198
B 6.385 90461 22996 0.8544 88.1983  97.5209  3.1540
C 6.372  90.518 2.2422 0.8671 88.0231  97.5828  3.1092
D 6.362 90.610 2.1506 0.8771 87.8847  97.6816  3.0277
E 6.423 90.642 2.1186 0.8161 88.7264 97.7161  2.9347
F 6.422  90.656 2.1047 0.8179 88.7026  97.7311  2.9225
G 6.341 90.610 2.1509 0.8982 87.5929  97.6813  3.0491
H 6.425 90.650 2.1102 0.8149 88.7429  97.7251  2.9252

Note: Percentage of iris pixel =7.239% (Positive case);

Fig. 9. Examples of a segmented image by the supervisor (a-d), and the
boundaries &, (0) and é; (6) obtained by the MVBR method (e-h).

boundaries in very different image types.

The computational time required for the estimation of
the iris boundaries depends on the number of the used
observation points. Approximately, 0.68 second is required
for each observation point on an Intel Core2 Duo 2.4GHz
working with Windows XP.

V. CONCLUSIONS

The paper presented an agent-based method to locate
the center of the pupil in an eye image and a method
capable to find and refine the inner and outer boundary of
the iris, based on multiple views observations. Experimental
results showed that the methods can effectively work with
different dataset types, also with images taken in noisy
and non-ideal conditions. Future work are needed to extend
the applicability of the methods by automatically tune the
methods’ parameters to the current test dataset and including
algorithms for the eyelashes removal.
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