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ABSTRACT

The paper considers a particular family of fuzzy monotone set–valued stochastic processes. In order to
investigate suitable α–level sets of such processes, a set–valued stochastic framework is proposed for the
well–posedness of birth–and–growth process. A birth–and–growth model is rigorously defined as a suitable
combination, involving Minkowski sum and Aumann integral, of two very general set–valued processes
representing nucleation and growth respectively. The simplicity of the proposed geometrical approach let
us avoid problems arising from an analytical definition of the front growth such as boundary regularities. In
this framework, growth is generally anisotropic and, according to a mesoscale point of view, is not local, i.e.
for a fixed time instant, growth is the same at each point space. The proposed setting allows us to investigate
nucleation and growth processes. A decomposition theorem is established to characterize nucleation and
growth. As a consequence, different consistent set–valued estimators are studied for growth processes.
Moreover, the nucleation process is studied via the hitting function, and a consistent estimator of the nucleation
hitting function is derived.

Keywords: Random closed sets, Stochastic geometry, Birth–and–growth processes, Set–valued processes, Non
additive measures, Fuzzy random sets, Fuzzy set–valued stochastic processes.

INTRODUCTION

A birth–and–growth crystal process may be studied
by means of a positive time– and space–dependent
stochastic function representing a concentration
process as in (Aquilano et al., 2009). In particular,
concentration in the crystal phase takes a constant
value, namely cs (obtained from physical evidences),
and outside the crystal it is represented by a sufficiently
regular function cex such that cex < cs; i.e., the crystal
phase is more dense than the mother phase, and a
jump in the concentration always occurs on the crystal
boundary (Figure 1a). Figure 1b can be interpreted as
a sequence of membership functions, and so, crystal
growth can be seen as a fuzzy monotone set–valued
stochastic process; where “monotone” means that
every α–level set at each time is included in the α–
level set at successive times.

Fig. 1. (Credits to (Aquilano et al., 2009)). A 1D sketch

of the concentration for an analytical growth model,

and a 2D simulation of a crystallization process on

a square grid where the color scale represents the

concentration. The figures may be interpreted also

from a fuzzy point of view.

In order to study some statistical aspects of the fuzzy
monotone set–valued stochastic process, we notice that
the α–level process is a closed set–valued stochastic
process, that can be modeled as a birth–and–growth
process. In this paper, we underline some geometrical
properties and statistical aspects of birth–and–growth
processes.
The importance of nucleation and growth processes
is well known. They arise in several natural and
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technological applications (cf. (Capasso, 2003b;a)
and references therein) such as, for example,
solidification and phase–transition of materials,
semiconductor crystal growth, biomineralization, and
DNA replication, e.g. (Herrick et al., 2002). During
the years, several authors studied stochastic spatial
processes (cf. (Cressie, 1991; Stoyan et al., 1995;
Molchanov, 1997) and references therein) nevertheless
they essentially consider static approaches modeling
real phenomena. For what concerns the dynamical
point of view, a parametric birth–and–growth process

was studied in (Møller, 1992; 1995). A birth–and–
growth process is a random closed sets (RaCS) family
given by Θt =

�
n:Tn≤t Θt

Tn
(Xn), for t ≥ 0, where

Θt

Tn
(Xn) is the RaCS obtained as the evolution up

to time t > Tn of the germ born at (random) time Tn

in (random) location Xn, according to some growth
model. An analytical approach is often used to model
birth–and–growth process, in particular it is assumed
that the growth of a spherical nucleus of infinitesimal
radius is driven according to a non negative normal
velocity, i.e. for every instant t, a border point of the
crystal x ∈ ∂Θt “grows” along the outwards normal
unit, e.g. (Frost and Thompson, 1987; Burger et al.,
2006; 2007; Chiu, 2004; Aquilano et al., 2009). In
view of the chosen framework, different parametric
and non parametric estimations are proposed over the
years, cf. (Møller and Sørensen, 1994; Molchanov
and Chiu, 2000; Erhardsson, 2001; Capasso, 2003a;
Capasso and Villa, 2005; Aletti and Saada, 2008;
Chiu et al., 2003) and references therein. Note that
the existence of the outwards normal vector imposes a
regularity condition on ∂Θt (and also on the nucleation
process; it cannot be a point process).

In this paper, we summarize recent results obtained
by Aletti et al. (2008a;b). In fact, in order to avoid
regularity assumptions describing birth–and–growth
processes, the authors offer an original approach based
on a purely stochastic geometric point of view that
leads to different and significant statistical results . In
(Aletti et al., 2008a), they derive a computationally
tractable mathematical model (based on Minkowski
sum and Aumann integral) rigorously defined as
a suitable combination of two very general set–
valued processes representing nucleation {Bt}t∈[t0,T ]
and growth {Gt}t∈[t0,T ] respectively. In (Aletti et al.,
2008b), different set–valued parametric estimators of
the rate of growth of the process are introduced. These
are consistent as the observation window expands
to the whole space. Moreover, keeping in mind that
distributions of random closed sets are determined by
hitting functions and that the nucleation process cannot
be observed directly, an estimation procedure of the
hitting function of the nucleation process is provided.

PRELIMINARY RESULTS

Let N, R be the sets of all non negative integer and real
numbers respectively, and let X = Rd . Let F be the
family of all closed subsets of X and F� = F \{ /0}. The
subscripts b, k and c denote boundedness, compactness
and convexity properties respectively (e.g. Fkc denotes
the family of all compact convex subsets of X). For all
A,B⊆ X and α ≥ 0, let us consider

A+B = {a+b : a ∈ A, b ∈ B} =
�

b∈B b+A,

A�B =
�
A

C +B
�C =

�
b∈B b+A,

Ǎ = {−a : a ∈ A} ,

where A
C = X \ A, x + A means {x} + A, and, by

definition, /0 + A = /0 = α /0. In the following, we deal
with closed sets; in particular, whenever sum between
sets occurs, a closed bounded sets (of Rd) is involved.
The following result is applied: if A ∈ F and B ∈ Fk

then A+B ∈ F (Serra, 1984).
For any A,B ∈ F� the Hausdorff distance is defined by

δH(A,B)= max
�

sup
a∈A

inf
b∈B

�a−b�X,sup
b∈B

inf
a∈A

�a−b�X

�
.

A measurable closed set–valued map X is a function
defined on a finite measure space (Ω,F,µ) with values
in F such that {ω ∈Ω : X(ω)∩K �= /0} is measurable
for each compact set K in X. If µ is a probability
measure, then X is a random closed set (RaCS).
Let X be a RaCS, then {TX(K) = P(X ∩K �= /0),K ∈
Fk}, is its hitting function. The well known Choquet–
Kendall–Matheron Theorem states that, the probability
law PX of any RaCS X is uniquely determined by
its hitting function (Matheron, 1975) and hence by
QX(K) = 1− TX(K). A RaCS X is stationary if the
probability laws of X and X + v coincide for every
v ∈ X; i.e. TX(K) = TX(K + v) for each K ∈ Fk and
v ∈ X. A stationary RaCS X is ergodic, if, for all
K1,K2 ∈ F,

1
|Wi|

�

Wi

QX((K1 + v)∪K2)dv−→
i→∞

QX(K1)QX(K2),

where {Wi}i∈N is a convex averaging sequence of sets

in X (Daley and Vere-Jones, 2003), i.e. each {Wi} is
convex and compact, Wi ⊂Wi+1 for all i ∈ N and

sup{r≥0:B(x,r)⊂Wi for some x∈Wi}↑ ∞, as i→∞
(we shall write Wi ↑ X).
Let (Ω,F,µ) be a finite measure space. The Aumann

integral of a non empty measurable closed set–valued
map X is defined by

�

Ω
Xdµ =

��

Ω
xdµ : x ∈ SX

�
,

where SX =
�

x ∈ L
1[Ω;X] : x ∈ X µ–a.e.

�
and

�
Ω xdµ

is the usual Bochner integral in L
1[Ω;X]. Moreover,�

A
Xdµ = {

�
A

xdµ : x ∈ SX} for A ∈ F.
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GEOMETRIC RANDOM PROCESS

Here, F denotes the family of all fuzzy sets ν : X→
[0,1]. A fuzzy random set is a measurable map X : Ω→
F , where Ω and F are endowed with the relevant σ–
algebra’s (Li et al., 2002). A family of fuzzy random
sets {Xt}t≥0 is called a fuzzy set–valued stochastic
process. For β ∈ (0,1], we call β–fuzzy monotone set–

valued stochastic process a fuzzy set–valued stochastic
process X such that, for every ω ∈Ω and t1, t2 ≥ 0 with
t1 ≤ t2,

Xα(ω, t1)⊆ Xα(ω, t2), for each α ∈ (0,1] with β ≤ α

where Xα(ω, t) = {x ∈ X : X(ω, t)(x)≥ α} is the α–
level set of the fuzzy set X(ω, t). In other words, a
β–fuzzy monotone set–valued stochastic process is a
time dependent fuzzy random set for which every α–
level processes are non decreasing RaCS processes,
for any β ≤ α . Clearly, the associated α–level set
stochastic processes Xα are useful in order to study
a fuzzy monotone set–valued stochastic process X .
In the following, we deal with 1–fuzzy monotone
set–valued stochastic process. A set–valued stochastic
process is modeled to describe Θ = X1 process and,
in the next section, analyzed from a statistical point of
view. In particular, we describe here the main results
of (Aletti et al., 2008a) in which the interested reader
can find the detailed proofs.

(A-0) [t0,T ] ⊂ R is the time interval, and
(Ω,F,{Ft}t∈[t0,T ] ,P) is a filtered probability space,
where the filtration {Ft}t∈[t0,T ] is assumed to have the
usual properties.

Let B and G be two processes, Nucleation and Growth

Process respectively, defined on Ω× [t0,T ] with non
empty closed set values, for which the following
assumptions hold.

(A-1) For every t ∈ [t0,T ], Bt = B(·, t) is a RaCS
defined on (Ω,Ft ,P), i.e. Bt is an adapted, with respect
to (w.r.t.) {Ft}t∈[t0,T ], RaCS process.

(A-2) Bt is non decreasing: for every t,s ∈ [t0,T ] with
s < t, Bs ⊆ Bt .

(A-3) For every ω ∈Ω and t ∈ [t0,T ], 0 ∈ G(ω, t).

(A-4) For every ω ∈ Ω and t ∈ [t0,T ], G(ω, t) is
convex, i.e. G : Ω× [t0,T ]→ F�

c
.

(A-5) There exists K ∈ F�
b

such that G(ω, t) ⊆ K for
every t ∈ [t0,T ] and ω ∈Ω.

Let P denote the previsible (or predictable) σ–algebra
on Ω× [t0,T ] generated by the processes {Xt}t∈[t0,T ]
adapted, w.r.t. {Ft}t∈[t0,T ], with left Hausdorff–
continuous trajectories on [t0,T ]. Thus, let us assume
the following fact,

(A-6) G is P–measurable.

It can be proved that, for any a,b ∈ [t0,T ], Ga,b =
�

b

a
G(ω,τ)dτ is a non empty bounded (compact)

convex RaCS. For every t ∈ [t0,T ] ⊂ R, n ∈ N, and
Π = (ti)n

i=0 partition of [t0, t], let us define

sΠ(t)=
�
Bt0+

�
t

t0
G(τ)dτ

�
∪

n�

i=1

�
∆Bti

+
�

t

ti

G(τ)dτ
�

(1)

SΠ(t)=
�
Bt0+

�
t

t0
G(τ)dτ

�
∪

n�

i=1

�
∆Bti

+
�

t

ti−1
G(τ)dτ

�
(2)

where ∆Bti
= Bti

\ B
o

ti−1
(Bo

ti−1
denotes the interior set

of Bti−1) and where the integral is in the Aumann
sense w.r.t. the Lebesgue measure dτ = dµλ . We
write sΠ and SΠ instead of sΠ(t) and SΠ(t) when the
dependence on t is clear.
Proposition 3.1 guarantees that both sΠ and SΠ are
well defined RaCS, further, Proposition 3.2 shows
sΠ ⊆ SΠ as a consequence of different time intervals
integration. Proposition 3.3 means that {sΠ} ({SΠ})
does not decrease (does not increase) whenever a
refinement of Π is considered. At the same time,
Proposition 3.4 implies that sΠ and SΠ become closer
each other (in the Hausdorff distance sense) when
partition Π becomes finer. The “limit” is independent
on the choice of the refinement as consequence of
Proposition 3.5. Corollary 3.6 means that, given any�

Π j

�
j∈N refinement sequence of [t0, t], the RaCS sΠ j

and SΠ j
play the same role that lower sums and

upper sums have in classical analysis when we define
the Riemann integral. In fact, if Θt denotes their
limit value (cf. Definition 3.7), sΠ j

and SΠ j
are a

lower and an upper approximation of Θt respectively.
This argument prevents problems that may arise
considering uncountable unions in (1), (2) instead of
countable unions.

Proposition 3.1 Let Π be a partition of [t0, t]. Both sΠ
and SΠ, defined in (1) and (2), are RaCS.

Proposition 3.2 Let Π be a partition of [t0, t]. Then
sΠ ⊆ SΠ almost surely.

Proposition 3.3 Let Π and Π� be two partitions of
[t0, t] such that Π� is a refinement of Π. Then, almost
surely, sΠ ⊆ sΠ� and SΠ� ⊆ SΠ.

Proposition 3.4 Let
�

Π j

�
j∈N be a refinement

sequence of [t0, t] (i.e.
��Π j

�� → 0 if j → ∞). Then,
almost surely, lim j→∞ δH

�
sΠ j

,SΠ j

�
= 0.
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Proposition 3.5 Let
�

Π j

�
j∈N and

�
Π�

l

�
l∈N be two

distinct refinement sequences of [t0, t], then, almost
surely,

lim
j → ∞
l → ∞

δH(sΠ j
,sΠ�

l

) = 0 and lim
j → ∞
l → ∞

δH(SΠ j
,SΠ�

l

) = 0.

Corollary 3.6 For every
�

Π j

�
j∈N refinement

sequence of [t0, t], the following limits exist
�

j∈N
sΠ j

, ( lim
j→∞

sΠ j
), lim

j→∞
SΠ j

,
�

j∈N
SΠ j

,

and they are equals almost surely. The convergences is
taken w.r.t. the Hausdorff distance.

We are now ready to define continuous time stochastic
processes.

Definition 3.7 For every t ∈ [t0,T ], let
�

Π j

�
j∈N be a

refinement sequence of the time interval [t0, t] and let
Θt be the RaCS defined by
�

j∈N
sΠ j

(t)=( lim
j→∞

sΠ j
(t))=Θt = lim

j→∞
SΠ j

(t)=
�

j∈N
SΠ j

(t),

then, Θ = {Θt : t ∈ [t0,T ]} is called geometric random

process G-RaP (on [t0,T ]).

As a consequence, Θ is an a.s. non decreasing process,
i.e. P (Θs ⊆Θt , ∀t0 ≤ s < t ≤ T ) = 1. Further, Θ is
adapted w.r.t. {Ft}t∈[t0,T ].
We want to point out that, assumptions we considered
on {Bt} and {Gt} are so general, that a wide family
of classical random sets and evolution processes can
be described accordingly (e.g., Boolean model can be
seen as a G-RaP with “null growth”).
The presented setting allows us to justify, also with
an abuse of notations, the following infinitesimal and
differential model formulations. In particular, for t ∈
[t0,T ],

Θt =
�
Bt0 +

�
t

t0
G(τ)dτ

�
∪

�
t

s=t0

�
dBs +

�
t

s
G(τ)dτ

�
,

dΘt =+Gtdt ∪dBt or Θt+dt =(Θt +Gtdt)∪dBt .

Roughly speaking, an increment dΘt , during an
infinitesimal time interval dt, is an enlargement due
to an infinitesimal addend Gtdt followed by the union
with the infinitesimal nucleation dBt . Note that, as a
consequence of the definition of +, at any instant t,
each point x ∈Θt (and then each point x ∈ ∂Θt) grows
up by Gtdt and no regularity boundary assumptions
are required. Then we deal with non local growth;
i.e. growth is the same addend for every x ∈ Θt .
Nevertheless, under mesoscale hypotheses we may
only consider constant growth region as described, for
example, in (Burger et al., 2006). On the other hand,
growth is anisotropic whenever Gt is not a ball.

STATISTICAL ASPECTS

With simple observations and a suitable change of
notations, it is easy to derive the following discrete
time formulation of above model

Θn =
�

(Θn−1 +Gn)∪Bn, n≥ 1,
B0, n = 0.

In view of applications, note that a sample of a birth–
and–growth process is usually a time sequence of
pictures that represent process Θ at different temporal
step; namely Θn−1, Θn that, for the sake of simplicity,
we shall also denote by X and Y respectively.
In (Aletti et al., 2008b), the rate growth of Θ and
the hitting function of Bn are estimated. In fact, Gn

is not identified univocally, while the RaCS Y � X̌

(denoted, from now on and with an abuse of notation,
by G) is unique, since it is the greatest RaCS, w.r.t. set
inclusion, for which (X + G) ⊆ Y . Let us assume the
following facts.

(A-7) There exists K ∈ F�
b

such that G⊆ K.

(A-8) For every n≥ 1,
�
Bn� Θ̌n−1

�
= /0 a.s.

Roughly speaking, Assumption (A-7) means that
process Θ does not grow too “fast”, whilst
Assumption (A-8) means that it cannot born something
that, up to a translation, is larger than (or equal to) what
there already exists.
In practical cases, data are bounded by some
observation window and edge effects may cause
problems estimating G. As the standard statistical
scheme for spatial processes suggests (Molchanov,
1997), we wonder if there exists a consistent estimator
of G as Wi ↑ X. Thus, let W ∈ {Wi} and let us set
YW = Y ∩W . Edge effects are reduced by considering
the following estimators of G

�G1
W

=
�
YW � X̌

W�Ǩ

�
∩K,

�G2
W

=
��

YW ∪
�
∂+K

W
XW

��
� X̌W

�
∩K;

where K is given in Assumption (A-7) and where�
∂+K

W
XW

�
= (XW +K)\W . The following results hold.

Proposition 4.1 Let Y , X be RaCS, let 0 ∈ G = Y �
X̌ ⊆ K. Thus, for any W2 ⊇W1, G ⊆ �G1

W2
⊆ �G1

W1
. In

particular,
�

i∈N �G1
Wi

= G and limi→∞ δH( �G1
Wi

,G) = 0.
Moreover, for every W ∈ F�, G⊆ �G2

W
⊆ �G1

W
. Thus, �G2

W

is consistent too (i.e. if W ↑ X �G2
W
↓ G).
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In Figure 2, for two different time instants (X and Y )
pictures of a simulated birth–and–growth process, we
show the magnified pictures of: the true growth used
for the simulation, the computed �G2

W
, �G1

W
and �G1

W�Ǩ
.

Propositions 4.1 is satisfied since �G1
W�Ǩ

⊇ �G1
W
⊇ �G2

W
.

Fig. 2. Two different time instants (X and Y ) pictures of

a simulated birth–and–growth process. The magnified

pictures of the true growth used for the simulation, the

computed �G2
W

, �G1
W

and �G1
W�Ǩ

.

From the birth–and–growth process point of view,
it is also interesting to test whenever the nucleation
process B = {Bn}n∈N is a specific RaCS (for example
a Boolean model or a point process). In general,
we cannot directly observe the n–th nucleation Bn

since it can be overlapped by other nuclei or by their
evolutions. Nevertheless, we shall infer on the hitting
function associated to the nucleation process TBn

(·).
A regular closed set in X is a closed set G ∈ F� for
which G = Int G.
For any K ∈Fk, let �QB,W (K)= �QY,W (K)/ �Q

X+ �G
W

,W (K),

where �Q(·) = 1− �T(·) is defined in (Molchanov, 1997)
and �G

W
is one between �G2

W
and �G1

W
.

Theorem 4.2 Let X ,Y be a.s. regular closed. Let G,B
be two RaCS such that Y = (X + G) ∪ B, with B a
stationary ergodic RaCS independent on G and X , and
with G a.s. regular closed. Then, for any K ∈ Fk,

��� �QB,W (K)−QB(K)
���−→

W↑X
0, a.s.

CONCLUSIONS

Fuzzy monotone set–valued stochastic processes can
be used to describe crystal growth processes. In
this framework, α–level sets, modeled as birth–and–
growth processes, are considered to analyze statistical
aspects of crystal processes.
In this paper, a continuous time set–valued stochastic
process modeling birth–and–growth process is
defined. Statistical aspects of α–level sets have
been considered; in particular, consistent estimators
have been provided for a general birth–and–growth
stochastic process. A pure geometrical approach
reduces the estimation of growth process to simple
operations among sets. At the same time, consistent
estimators for the hitting function of nucleation
process have been also provided.
Finally, we want to suggest some possible future
developments. It may be interesting to define new
mathematical models for fuzzy monotone set–valued
stochastic process, in order to study distributions of
estimators and to construct confidence intervals for the
model parameters.
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