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ABSTRACT 

Gini and concentration indexes are well known useful tools in analysing 
redistribution and re-ranking effects of taxes with respect to a population of 
income earners. There are several attempts in the literature to decompose Gini 
and re-ranking indices to analyse potential redistribution effects and the 
unfairness of a tax systems, including ones that consider contiguous income 
groups being created by dividing the pre-tax income parade according to the same 
bandwidth.  However, earners may be very often split into groups characterized 
by social and demographic aspects or by other characteristics: in these 
circumstances groups can easily overlap. In this paper we consider a more general 
situation that takes into account overlapping among groups; we obtain matrix 
compact forms for Gini and concentration indexes, and consequently, for 
redistribution and re-ranking indexes. In deriving formulae the so called matrix 
Hadamard product is extensively used. Matrix algebra allows to write indexes 
aligning incomes in a non decreasing order either with respect to post-tax income 
or to pre-tax incomes. Moreover, matrix compact formulae allow an original 
discussion for the signs of the within group, across group, between and 
transvariation components into which the Atkinson-Plotnick-Kakwany re-
ranking index can split. 
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 Introduction 

It is known that, dealing with a transferable phenomenon where units are 
classifiable into groups, Gini index fails to decompose additively into a between 
and a within component if the group ranges overlap. Following Bahattacharya and 
Mahalanobis (1967), a number of Gini decompositions was proposed (Rao 
(1969), Pyatt (1976), Mookherjee and Shorrocks (1982), Silber (1989), Yitzhaki 
and Lerman (1991), Lambert and Aronson (1993), Yitzhaki (1994), Dagum 
(1997)) and after Lambert and Aronson (1993), the third component of the 
conventional Gini index decomposition is denoted by overlapping term. 

Monti (2007) shows that the conventional and the Dagum (1997) 
decomposition are identical, so that an alternative way to calculate the 
overlapping term can be derived from the decomposition suggested by this author. 

Aronson, Johnson and Lambert (1994), Urban and Lambert (2008), use Gini 
and concentration index decomposition to identify and evaluate potential 
distributive effects and unfairness in a tax system. These authors consider 
contiguous income groups created by dividing the pre-tax income parade 
according to an identical bandwidth, so that the pre-tax income parade excludes 
overlapping by construction. 

In the present paper we consider incomes gathered into groups characterized 
by social, demographic or income sources characteristics, so that overlapping 
among groups need not to be excluded. Our results are obtained using the Gini 
index decomposition derived from Dagum decomposition (Monti and Santoro 
2007, Monti 2008). 

Making use of the Hadamard product, in the first section we present Gini and 
concentration indexes in compact matrix forms. In the second section we 
introduce groups, present Gini and concentration indexes and show how within 
groups, across, between groups and transvariation components can be written in 
matrix compact forms. Links from matrix compact forms and scalar forms are 
reported: some scalar expressions are well known in literature, while others 
appears as modifications of already well known forms. 

Section 3 presents matrix forms for redistribution and re-ranking indexes, 
together with their within, across, between groups and transvariation components. 

In the fourth section we show how the signs of Atkinson-Plotnick-Kakwani 
(Plotnick 1981) re-ranking index components can be analysed, thanks to the 
algebraic tools presented in the paper. 

1. Matrix forms for concentration and Gini indexes 

Let X and Y be two real non negative statistical variables that describe a 
transferable phenomenon for a population of K units, K ∈N . In this paper we 
suppose that X represents income before taxation and Y after-tax income; not 
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infrequently the pair ( ix , yi) has associated a weight pi (i=1,……,K), 
1

K

ii
p N

=
= . 

Furthermore, in measuring concentration we generally need to rank either ix  or yi 
in a non-decreasing order: when the X elements are ranked in a non-decreasing 

order, the sequence of ( ), ,i i ix y p  triplets will be indicated as ( ){ }, ,i i i X
x y p ; 

analogously, ( ){ }, ,i i i Y
x y p  will denote the sequence of ( ), ,i i ix y p , when the Y 

elements are ranked in a non-decreasing order. 

The concentration index 1 for Y, in the ordering ( ){ }, ,i i i X
x y p , is defined as  2  

( )

( )

1 1

| 2
1 1 1 1 1

2
1 1

1
1

1

2

1: 0

0 : 0

1: 0

K i i K i
j j j j i

Y X i j i j
i j j i jY Y Y

K K

i j i j i j
i jY

i j

y p y p p
C y y p p

N N N N

y y p p I
N

i j

I i j

i j

μ μ μ

μ

− −

= = = = =

−
= =

−

 
= − + = − = 

 

= −

− >
= − =
− − <

   

   (1) 

where μY  is the weighed mean of the observations on Y. Obviously, in the 

ordering ( ){ }, ,i i i Y
x y p , the concentration index CY|Y coincides with the Gini index 

GY and, analogously in the ordering ( ){ }, ,i i i X
x y p , |X X XC G≡  3. Generally, when 

tax effects are analyzed, one considers the Gini index for the pre-tax distribution 

XG , the Gini index for the post-tax distribution GY, and the concentration index 

for the post tax distributions, |Y XC , with incomes ranked according to the 

( ){ }, ,i i i X
x y p  ordering. 

                                                           
1  The author is in debt with Maria Monti for the suggestion to express the concentration index by 

differences between incomes: this suggestion is at the basis of this paper. It can be shown that in 
expressions (1) the first formula is equal to the second one: the proof can be easily obtained 
following the demonstration that Landenna (1994, Ch. 4, § 4.4.)  gives for the Gini index. In the 
right hand side of (1), the first component calculates the normalized concentration. In the case 
where the y’s are in a non decreasing order, the second one is the normalized mean absolute 

difference, that is ( )2

1 1

1 2 2
K K

Y Y i j i j Y
i j

G N y y p pμ μ
= =

= − = Δ . 

2  The indicator function i jI −  is a particular case of generalized functions considered in Faliva 

(2000): this article can be consulted for i jI −  properties. 
3  For definitions concerning concentration indexes and their relations with Gini indexes, see e.g. 

Kakwani (1980), in particular Ch. 5 and 8. 
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In order to pass to a matrix representation, we stack the K observations on X, 
Y and the weights P into K×1 vectors: when referring to the ordering 

( ){ }, ,i i i X
x y p , the vectors will be indicated as x, yX and pX, while, referring to the 

ordering ( ){ }, ,i i i Y
x y p , the vectors will be labelled as xY, y and pY, that is, when 

elements in a vector are ranked in a non-decreasing order no label will be added, 
conversely, when they are ordered according to a non-decreasing order for 
another variable, this variable will be explicitly indicated. 

We also introduce the following definitions: 

,i js =  S  will denote a K×K semi-symmetric matrix with diagonal elements 

equal to zero, super-diagonal elements equal to 1 and sub-diagonal elements equal 
to ─1; 

j for a K×1 vector that has entries equal to 1; 

XD  and YD  will denote the K×K matrices ( )X = −D jx' xj' , ( )Y = −D jy' yj' .  

Then, by making use of the Hadamard product , we can express the indexes YG  

and XG  as follows 1: 

( )2

1

2Y Y Y Y
Y

G
Nμ

= p ' S D p     ( )2

1

2X X X X
X

G
Nμ

= p ' S D p   (2) 

where Yμ  and Xμ  are the weighed mean of the observations on Y and on  X, 
respectively. 

In addition, by introducing the K×K matrix ( )|Y X X X= −D jy ' y j' , we can write 

the concentration index in compact form as  

( )| |2

1

2Y X X Y X X
Y

C
Nμ

= p ' S D p   (3) 

The transformation from vectors y and pY to vectors yX and pX  can be 
performed by a proper K×K permutation matrix E . The reverse transformation 
from yX and pX  to y and pY  can be obtained through the matrix 1−E  which is 
equal to E' . Formally 

                                                           
1  The Hadamard product for two matrices A and B is defined if both of them have the same number 

of rows and the same number of columns: , , , ,i j i j i j i ja b a b     = ⋅      . For the definition and 

properties of the Hadamard product  see, e.g., Faliva (1983, Appendix) and (1987, Ch. 3), Schott 
(2005, Ch. 5).  
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,

,

,

X X

Y Y

Y XX Y


 =
 =

y = Ey y = E'y

x Ex x = E'x

p = E'pp Ep
  (4) 

We shall show that, with some suitable algebraic permutations of the elements 
of S, it is possible to reformulate both the matrices D and the vectors p in (2) and 

(3) according either to the ( ){ }, ,i i i X
x y p  or to the ( ){ }, ,i i i Y

x y p  ordering, 

maintaining both Gini and concentration indexes unchanged. This leads to rewrite 
the expressions of formula (2) as  

( )|2

1

2Y X Y X X
Y

G
Nμ

= p ' ESE' D p   and  ( )2

1

2X X X X
X

G
Nμ

= p ' S D p   (5) 

or as 

( )2

1

2Y Y Y Y
Y

G
Nμ

= p ' S D p   and  ( )|2

1

2X Y X Y Y
X

G
Nμ

= p ' E'SE D p   (6) 

where ( )|Y X X X= −D jy ' y j'  and ( )|X Y Y Y= −D jx ' x j' , respectively. 

Moreover, |Y XC  can be given in the following alternative form: 

( )| 2

1

2Y X Y Y Y
Y

C
Nμ

= p ' E'SE D p   (7) 

Proof 
Consider XG  as specified in (2) and (6). As = =EE' E'E I , the following 

holds: 

( ) ( ) ( )X X X X X X Y X Y= = −p ' S D p p 'EE' S D EE'p p ' E'SE E'D E p  

by keeping in mind the noteworthy property of the Hadamard product, 
( ) ( ) ( )X X=E' S D E E'SE E'D E  (Faliva 1996, property vii, page. 157).  

Noticing that 

( ) ( )X = − = − =E'D E E' jx' xj' E jx'E E'xj' ( ) |Y Y X Y− =jx ' x j' D , as =E'j j  and 

=j'E j' , the equivalence of expression (2) and expression (6) for GX is proved. 
 The equivalence of expressions (2) and (5) for GY can be likewise proved.  
Indeed, the following holds: 

( ) ( ) ( )|Y Y Y Y Y Y X Y X X= = −p ' S D p p 'E'E S D E'Ep p ' ESE' D p   

upon noticing that  |Y X X Y X= − = − =ED E' jy'E' Eyj' jy ' y j' D . 
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As far as |Y XC  is concerned, expression (3) turns out to be equivalent to 

expression (7), upon noticing that 

|Y X X X Y= − = − =E'D E jy 'E E'y j' jy' yj' D . 

2. Introducing groups  

A population of income earners can be partitioned into H groups, H ∈Nn, 
which can be characterized by income sources or by social and demographic 
aspects: typical group characterizations are family composition, dependent/non-
dependent worker, men/women, geographic area, etc.  

Dagum (1997) decomposes the Gini coefficient into within groups 
(henceforth W) and an across groups (henceforth AG) component. Dagum calls 
this latter component gross between).  

Hence W AG
Y Y YG G G= + . In addition, Dagum splits the AG component into a 

between and a transvariation component: AG B T
Y Y YG G G= + . The between 

component B
YG  is the Gini (weighed) index which results when all values within 

the same group are replaced by their (weighed) average; the transvariation 
component T

YG  measures the overlapping among groups: it is zero when no 

overlapping exists and it is equal to AG
YG  when all group averages are equal 1. 

Extending Dagum’s decompositions to concentration indexes, we can split |Y XC  

into the two components W and AG, and write | | |
W AG

Y X Y X Y XC C C= + , accordingly 

with 

( )| ,2
1 1

1

2

K K
W
Y X i j i j i j h i j

i jY

C y y p p I I
Nμ ∈ −

= =

= − ⋅ ⋅   (8) 

( ) ( )| ,2
1 1

1
1

2

K K
AG

Y X i j i j i j h i j
i jY

C y y p p I I
Nμ ∈ −

= =

= − ⋅ − ⋅   (9) 

In (8) and (9) i jI −  is as defined in (1) above, and ,i j hI ∈  is an indicator 

function: , 1i j hI ∈ =
 if both 

andi jy y
 belong to the same group h (h=1,2,...,H), 

, 0i j hI ∈ =
 if 

andi jy y
 do not. 

                                                           
1  For more details on the expression of the Gini components in the Dagum decomposition, see e.g. 

Monti (2008). 



STATISTICS IN TRANSITION-new series, December 2009 

 

511

Similar expressions hold for |
W W
Y Y YC G= , |

AG AG
Y Y YC G=  and |

W W
X X XC G= , 

|
AG AG
X X XC G= . In particular, for what concerns WG  and AGG , the product 

( )i j i jy y I −− ⋅  can be replaced by the absolute difference i jy y− . 

In order to formalize compact matrix forms for |
W
Y XC  and |

AG
Y XC , it is worth to 

introduce a proper notation. More precisely, J will denote a K K×  matrix with 

all elements equal to one, , ,
1

H

X X h X h
h=

=W w w '   a K K× matrix in the 

( ){ }, ,i i i X
x y p  ordering, where ,X hw  stands for a K×1 vector with the i-th entry 

equal to one if the income in the i-th position belongs to group h (h=1,2,..,H), 
whereas it is zero otherwise. The matrix XW , when applied to |Y XS D  in 

expression (3) allows to detect the 2

1

H

h
h

K
=
  differences belonging to the same 

group from the whole K2  ( ),i j i js y y ⋅ −   income differences.  Conversely, the 

matrix ( )X−J W , when applied to |Y XS D , allows to detect the 2 2

1

H

h
h

K K
=

 − 
 

  

differences between incomes belonging to different groups. Consider now the 
following expressions for the W and AG components of |Y XC : 

( )| |2

1

2
W
Y X X X Y X X

Y

C
Nμ

= p ' W S D p   (10) 

( )| |2

1

2
AG

Y X X X Y X X
Y

C
Nμ

 = − p ' J W S D p   (11) 

It is immediate to verify that | | |
W AG

Y X Y X Y XC C C= + . Similar expressions for 

|
W W
Y Y YG C=  and for |

AG AG
Y Y YG C=  can be obtained by substituting Xp  with Yp , XW  

with YW  and |Y XD  with YD . Likewise, the corresponding expressions for 

|
W W
X X XG C=  and |

AG AG
X X XG C=  are obtained by replacing Yμ  with Xμ , and XD  with 

|Y XD . Observe also 1 that Y X=W E'W E  and X Y=W EW E' . 

Moreover, Dagum (1997) splits AG
YG  into the components B

YG  and T
YG , 

bringing subdivision to the fore. Let uss now label each subject triplet of 
observations on X, Y and P by a pair of indexes (h,i), instead of one as before: h 
refers to the group (h=1,2,….,H), whereas i (i=1,2,….,Kh) refers to the position 

                                                           
1  , ,X h Y h=w Ew  and , ,Y h X h=w E'w . 
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that the subject occupies within the h-th group; note that ,
1

hK

h i h
i

p N
=

=  and 

,
1 1 1

hKH H

h i h
h i h

p N N
= = =

= =  . 

Dagum’s representations are:  

, , , ,2
1 1 1 1

1

2

gh
KKH H

Y h i g j h i g j
h g i jY

G y y p p
Nμ = = = =

 
= − 

 
    (12) 

, , , ,2
1 1 1

1

2

h hK KH
W
Y h i h j h i h j

h i j

G y y p p
Nμ = = =

= −   (13) 

, , , ,2
1 1 1 1

1

2

gh
KKH H

AG
Y h i g j h i g j

g h
h g i jY

G y y p p
Nμ ≠= = = =

 
= − 

 
     (14) 

, ,2 2
1 1 1 1 1 1

1 1

2 2

gh
KKH H H H

B
Y Yh Yg h i g j Yh Yg h g

h g i j h gY Y

G p p p p
N N

μ μ μ μ
μ μ= = = = = =

 
= − = − 

 
     (15a) 

where Yhμ  represents the income average of the h-th group (h=1, 2, ....,H).  

( )
1

, , , ,2
2 1 1 1

1 gh
KKH h

B
Y h i g j h i g j

h g i jY

G y y p p
Nμ

−

= = = =

 
= − 

 
    (15b) 

{ }, ,

1

, , , ,2
2 1

2 g h

h i g j

K KH h
T
Y h i g j h i g j

h g i j y yY

G y y p p
Nμ

−

= = <

 
=  − 

 
 

    (16) 

where ,
1

hK

h h i
i

p p
=

=  and ,
1

gK

g g j
j

p p
=

= .  

We refer to Monti and Santoro (2007), formula (6) in particular, for the 
derivation of expression (15b). Expressions (12) (13), (14) and the first term on 
the right hand side in (15a) do not need ranking Y values; whereas (15b) and (16) 
need groups to be ranked according to their averages.  

Let us now order the Y values (and the related P and, possibly, X values) so 
that  

(i) within each group they are ranked in a non-decreasing order; 
(ii) groups are aligned in a non-decreasing order with respect to the their 

averages. 
Then the Y values parade becomes  

( ) ( ) ( )
11,1 1,2 1, ,1 ,2 , ,1 ,2 ,, ,... ,..., , ,... ,..., , ,...

h HA K h h h K H H H Ky y y y y y y y y =  y '   (17) 
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, , 1h i h iy y +≤  (i=1,2,…,Kh)  and 1Yh Yhμ μ +≤  (h=1,2,….H) 1. 

We shall denote the ordering given by (17) as the ( ){ }, ,i i i AY
x y p  ordering. 

The ( ){ }, ,i i i AX
x y p  ordering can be introduced likewise: according to this 

ordering the X values, together with the related Y and P values, are distributed 
into the H groups such that  

(i) within each group the x’s are ranked in a non-decreasing order;  
(ii) groups are in a non-decreasing order with respect to their X averages.  

Thus, for what concerns the X values, the ( ){ }, ,i i i AX
x y p  ordering will appear as 

( ) ( ) ( )
11,1 1,2 1, ,1 ,2 , ,1 ,2 ,, ,... ,..., , ,... ,..., , ,...

h HA K h h h K H H H Kx x x x x x x x x =  x '   (18) 

, , 1h i h ix x +≤  (i=1,2,…,Kh)  and 1Xh Xhμ μ +≤  (h=1,2,….H) 2. 

The vectors  Ay  in (17) and Ax  in (18) can be expressed as functions of y and 

x respectively, by introducing proper K×K permutation matrices YA  and XA , 

such that A Y=y A y  and A X=x A x .  Since YA  and XA  are permutation matrices, 

the following holds: 1
Y Y

− =A A '  and 1
X X

− =A A ' . 

The Y vector corresponding to the ( ){ }, ,i i i AX
x y p  ordering can be obtained as 

AX X X=y A y , and likewise AX X X=p A p . 

Also AY Y X=x A x  and AY Y X=p A p  contain the Y and the P elements, 

respectively, aligned according to the ( ){ }, ,i i i AY
x y p  ordering.  

If  we work out  (3), (10) and (11), by making use of the property X X =A 'A I , 
we get  

( )| |2

1

2Y X AX X X Y AX AX
Y

C
Nμ

= p ' A SA ' D p   (19) 

( )| |2

1

2
W
Y X AX AX Y AX AX

Y

C
Nμ

= p ' W S D p   (20) 

( )| |2

1

2
AG

Y X AX AX X X Y AX AX
Y

C
Nμ

 = − p ' J W A SA ' D p   (21) 

where AX X X X=W A W A '  and ( ) ( )|Y AX X X X X AX AX= − = −D jy 'A ' A y j' jy ' y j' .  

For what concerns |
W
Y XC  in (21), it is shown in Appendix A2 that 

                                                           
1  It is not excluded that , , ,h i g jy y g h> > . 
2  Here also it is not excluded that , , ,h i g jx x g h> > . 
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AX X X AX=W A SA ' W S . 

Focusing on |
AG

Y XC  decomposition, notice that:  

( )| |2

1

2
B
Y X AX AX Y AX AX

Y

C
Nμ

 = − p ' J W S D p   (22) 

( ) ( )| |2

1

2
T
Y X AX AX X X Y AX AX

Y

C
Nμ

 = − − p ' J W A SA ' S D p   (23) 

Summing (22) and (23) yields (21). 

Should |Y Y YC G≡ , |
W W
Y Y YC G≡ , |

AG AG
Y Y YC G≡ , |

B B
Y Y YC G≡  and |

T T
Y Y YC G≡ , then 

(19), (20), (21), (22) and (23) would take the following forms: 

( )2

1

2Y AY Y Y AY AY
Y

G
Nμ

= p ' A SA ' D p   (24) 

( )2

1

2
W
Y AY AY AY AY

Y

G
Nμ

= p ' W S D p   (25) 

( )2

1

2
AG

Y AY AY Y Y AY AY
Y

G
Nμ

 = − p ' J W A SA ' D p   (26) 

( )2

1

2
B
Y AY AY AY AY

Y

G
Nμ

 = − p ' J W S D p   (27) 

( ) ( )2

1

2
T
Y AY AY Y Y AY AY

Y

G
Nμ

 = − − p ' J W A SA ' S D p   (28) 

where  ( ) ( )AY Y Y A A= − = −D jy'A ' A yj' jy ' y j'  and AY Y Y Y=W A W A ' . 

The matrix compact forms (24), (25), (26) (27) and (28) correspond to the 
scalar expressions (19), (20), (21), (22) and (23), respectively. 

We conclude this section by providing closed-form expressions for |
B
Y XC  and 

|
T
Y XC , by bearing in mind |

AG
Y XC , as specified in (11), under the ( ){ }, ,i i i X

x y p  

ordering:  

( )| |2

1

2
B
Y X X X X X Y X X

Y

C
Nμ

 = − p ' J W A 'SA D p   (29) 

( ) ( )| |2

1

2
T
Y X X X X X Y X X

Y

C
Nμ

 = − − p ' J W S A 'SA D p   (30) 
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3. Redistribution and re-ranking indexes  

The redistributive effect of a tax system can be measured by the difference 
between the Gini index for the pre-tax income distribution X and the Gini index 
for the post- tax income distribution Y 1: following e.g. Urban and Lambert 
(2008), we shall denote difference by the acronym RE. 

The Atkinson-Plotnick-Kakwani index is generally applied to measure the re-
ranking effect generated by a tax system; it is defined as the difference between 
the Gini index for the post-tax income distribution and the concentration index for 

net incomes Y in the ( ){ }, ,i i i X
x y p  ordering 2. The Atkinson, Plotnick; Kakwani 

index is usually denoted by the acronym R. 
In considering the effects of a tax, it may be interesting to evaluate how RE 

and R act within and across groups and, eventually, also how they modify both 
group average positions and group intersections. This can be attained by splitting 
either RE or R into the within groups, across groups, between groups and 
transvariation components, introduced in the previous section. 

One of the advantages of the compact expressions introduced in the previous 
sections is that all indexes can be calculated either aligning incomes according to 
the pre-tax or according to the post-tax ranking. We will present the RE and the R 

indexes by writing D matrices and p vectors either according to the ( ){ }, ,i i i X
x y p  

or the ( ){ }, ,i i i Y
x y p  orderings, when individual income units are considered. 

Here, for the sake of shortness, the decompositions of RE will be reported only 

according to the ( ){ }, ,i i i X
x y p  ordering, and, conversely, R decompositions will 

be written according to the ( ){ }, ,i i i Y
x y p  ordering.  All indexes could be also 

represented either according to the ( ){ }, ,i i i AX
x y p  or to the ( ){ }, ,i i i AY

x y p  

orderings 3.  

3.1. The RE index 

From the definition of RE we can write 

( ) ( ) ( ) ( )W AG W AG W B T W B T
X Y X X Y Y X X X Y Y YRE G G G G G G G G G G G G= − = + − + = + + − + +  

Rearranging terms we get  

( ) ( )W W AG AG W AG
X Y X YRE G G G G RE RE= − + − = +   (31) 

                                                           
1  See e.g. Lambert (2001, Ch. 2, Section 2.5). 
2  Plotnick (1981), Lambert (2001, Ch. 2, Section 2.5). 
3  The formulae that are not reported in this article, will be provided to anyone on request. 
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Here, in what concerns AGRE , bearing in mind that AG B TG G G= + , we get 

( ) ( )AG B B T T B T
X Y X YRE G G G G RE RE= − + − = +   (32) 

From (5) ad (6) it follows that X YRE G G= − =  

( ) ( )|2

1

2 X Y X X Y X X
X Y N

μ μ
μ μ

 = − p ' S D ESE' D p   (33a) 

( ) ( )|2

1

2 Y Y X Y X Y Y
X Y N

μ μ
μ μ

 = − p ' E'SE D S D p   (33b) 

The REW components can be written, according to (32) and bearing in mind 
(10) as W W W

X YRE G G= − =  

( ) ( ){ }|2

1

2 X X Y X X Y X X
X Y N

μ μ
μ μ

 = − p ' W S D ESE' D p   (34) 

Likewise the  REAG components can be written as AG AG AG
X YRE G G= − =   

( ) ( ) ( ){ }|2

1

2 X X Y X X Y X X
X Y N

μ μ
μ μ

 = − − p ' J W S D ESE' D p   (35) 

Resorting to  (29) and (30), BRE and TRE  can be rewritten as 

B B B
X YRE G G= − =  

( ) ( ){2

1

2 X X Y X X X
X Y N

μ
μ μ

= − p ' J W A 'SA D  

( ) }|X Y Y Y X Xμ − EA 'SA E' D p   (36) 

T T T
X YRE G G= − =  

( ) ( ){2

1

2 X X Y X X
X Y N

μ
μ μ

= − −p ' J W S A 'SA  

( ) }|X X Y Y Y X Xμ − − D E S A 'SA E' D p   (37) 
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3.2. The R (Atkinson-Plotnick-Kakwani) index 

From the definition of R  we can write 

( ) ( ) ( ) ( )| | | | | |
W AG W AG W B T W B T

Y Y X Y Y Y X Y X Y Y Y Y X Y X Y XR G C G G C C G G G C C C= − = + − + = + + − + +
 

Rearranging the terms we get 

( ) ( )| |
W W AG AG W AG
Y Y X Y Y XR G C G C R R= − + − = +   (38) 

and in particular, for what concerns AGR , we have 

( ) ( )| |
AG B B T T B T

Y Y X Y Y XR G C G C R R= − + − = +   (39) 

When considering income units individually, from (2), (3), (5) and (7) the 
index R, and its components, can be written as follows  

( )| 2

1

2Y Y X Y Y Y
Y

R G C
Nμ

 = − = − p ' S E'SE D p   (40a) 

( ) |2

1

2 X Y X X
Y Nμ

 = − p ' ESE' S D p   (40b) 

From (10) and (40a) it follows that 

|
W W W

Y Y XR G C= − ( )2

1

2 Y Y Y Y
Y Nμ

 = − p ' W S E'SE D p   (41) 

From (11) and (40a) it follows that  

|
AG AG AG

Y Y XR G C= − ( ) ( )2

1

2 Y Y Y Y
Y Nμ

 = − − p ' J W S E'SE D p   (42) 

From (29) the component 
BR  of R  can be expressed as 

|
B B B

Y Y XR G C= − =
 

( ) ( )2

1

2 Y Y Y Y X X Y Y
Y Nμ

 − − p ' J W A 'SA E'A 'SA E D p   (43) 

From  (30) the component TR  can be expressed as 

|
T T T

Y Y XR G C= − =
 

( ) ( ) ( ){ }2

1

2 Y Y Y Y X X Y Y
Y Nμ

 − − − − p ' J W S A 'SA E' S A 'SA E D p   (44) 
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Either from the definitions of AGR and BR or by rearranging the terms in (44), 
TR  can be given the following representations: 

( ) ( ){2

1

2
T AG B

Y Y
Y

R R R
Nμ

= − = −p ' J W  

( ) ( ) }Y Y X X Y Y − − − S E'SE A 'SA E'A 'SA E D p   (45) 

4. The issue of the signs of R and its components 

We will now analyse the signs of R and of its decompositions by making use 
of the matrix tools introduced in the previous sections. Although most of the 
results presented in this section are available in the specialized literature1, we 
think that our reappraisal of the issue through a tailor-made matrix toolkit 
provides some additional insights on the matter. Demonstrations will be carried 
out by inspecting the quadratic form which the R index and its decompositions are 
proportional to. 

R 
It is well known that for the concentration C index the property ─G≤C≤+G 

holds2, from which it follows that | 0Y Y XR G C= − ≥ . This result will be proved 

considering expression (40a). 
Statement 1 

The quadratic form ( )Y Y − p ' S E'SE D p  is non-negative definite. 

Proof 

Recall that (i) matrix ,i js =  S  has all super-diagonal elements equal to +1 

and sub-diagonal ones equal to ─1; (ii) the elements of ,
e
i js =  E'SE  may not 

necessarily respect the same repartition as in S , due to permutations performed 
by E . Thus, for all entries of S  and E'SE  which present the same values, 

, , 0e
i j i js s− = , otherwise for i<j we would have , , 2e

i j i js s− =  and, for i>j, 

, , 2e
i j i js s− = − . Bearing in mind that for i<j, the matrix ,

Y
Y i jd =  D  has super-

diagonal elements non-negative and sub-diagonal ones non-positive, the product 

                                                           
1  Mussini (2008, Ch. 6, § 6.1, page 92) discusses the signs of R and its components RW, RB and RT. 

The author observes also that RT can be positive, null or negative in the framework of non 
contiguous pre-tax income groups: the proofs reported here complete the author’s statements, 
especially in what concerns RT. See also Vernizzi (2007) for considerations on G and C 
components especially for pre-tax non overlapping groups. 

2  Kakwani (1980, Corollary 8.7, page 175).  
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( ), , ,
e Y

i j i j i js s d− ⋅  will in any case result to be non-negative, which proves the 

Statement. 

RW and  RAG 
We will prove that | 0W W W

Y Y XR G C= − ≥  and | 0AG AG AG
Y Y XR G C= − ≥ , by 

considering expressions (41) and (42) respectively. 
Statement 2 
The quadratic forms 

( )Y Y Y Y − p ' W S E'SE D p  and ( ) ( )Y Y Y Y − − p ' J W S E'SE D p   

are non-negative definite.  Statement 2 is just a corollary of Statement 1. 

RB 
We now prove that  | 0B B B

Y Y XR G C= − ≥ . In order to carry out the proof as for 

the previous Statements, it is convenient to consider a matrix compact form that 
corresponds in a straightforward manner to the second term in the right hand side 
of (15a). Let us define the H×1 vector [ ]1 2, ,... 'Y Y Y YHμ μ μ=μ  of group averages, 

1Yh Yhμ μ +≤  (h=1,2,….H), the H×1 vector [ ]1 2, ,... 'Y Hp p p=p  of group weights 

,
1

hK

h h i
i

p p
=

=  and the H×H  matrix ( )Y Y Y= −D 1μ ' μ 1'  of group average 

differences. Then  

. .2 2
1 1

1 1

2 2

H H
B
Y Y h Y g h g Y Y Y

h gY Y

G p p
N N

μ μ
μ μ= =

= − =    p ' S D p   (46) 

where  S is now an H×H  matrix. 
After having defined |Y Xμ  and Xp , respectively, as the H×1 vector of Yhμ  and 

the H×1 vector of hp , aligned according to the ( ){ }, ,i i i AX
x y p  order, and the H×H  

matrix ( )| | |Y X Y X Y X= −D 1μ ' μ 1' , (22) can be rewritten in this way: 

|2

1

2
B
Y X Y X X

Y

C
Nμ

 =  p ' S D p   (47) 

Finally, by denoting by E  the H×H  full rank permutation matrix such that 

| |,Y X Y Y Y X=μ = Eμ μ E'μ , X Yp = Ep  and Y Xp = E'p , RB can be rewritten as 

( )2

1

2
B B B

Y Y Y Y Y
Y

R G C
Nμ

 = − = − p ' S E'SE D p   (48) 
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Statement 4 
The quadratic form 

( )Y Y Y
 − p ' S E'SE D p    is  n. n. definite. 

Proof  

Considerations analogous to those reported above hold for ( ) Y−S E'SE D . 

In YD  the super-diagonal entries are non-negative, the sub-diagonal entries are 

non-positive: while the former are multiplied either by 0 or by +2 entries which 

are in the super-diagonal part of ( )−S E'SE , the latter by 0 or by ─2 entries 

which are in the sub-diagonal part of ( )−S E'SE , and hence it is proved that  

RB≥0.  

RT 
Differently from R, RW, GT and RB, that are all non-negative, RT can be either 

positive or negative, and, obviously, equal to zero.  
Statement 5 
In expression (44) the quadratic form 

( ) ( ) ( ){ }Y Y Y Y X X Y Y − − − − p ' J W S A 'SA E' S A 'SA E D p   

can be zero, positive or negative. 
Proof  

Both in matrix ( ) ,Y Y Y i jω − =  S A 'SA  and in matrix 

( ) ,X X X i jω − =  S A 'SA  non zero super-diagonal entries are +2, non zero sub-

diagonal are ─2.  Due to permutation performed by E'  and E,  

( ) ,
e

X X X i jω − =  E' S A 'SA E  can present some  ─2 as super-diagonal entries and, 

symmetrically, some +2 as sub-diagonal entries: hence, not considering the cases 
when both ,Y i jω  and ,

e
X i jω  are zero, the super-diagonal differences in 

( ) ( ) { }, ,
e

Y Y X X Y i j X i jω ω   − − − = −     S A 'SA E' S A 'SA E  may assume values 

[ ] [ ]2 2 0− = , [ ] [ ]2 0 2− = , [ ] [ ]2 2 4− − = , [ ] [ ]0 2 2− − = , [ ] [ ]0 2 2− = − . It follows 

that non-negative super-diagonal entries of YD  can be multiplied by a negative 
value. Symmetrically, sub-diagonal entries of 

( ) ( )Y Y X X − − − S A 'SA E' S A 'SA E  can now be equal not only to 

[ ] [ ]2 0 2− − = − , [ ] [ ]2 2 4− − = − , and to [ ] [ ]0 2 2− = − , but also to [ ] [ ]0 2 2− − = , 

so that non-positive sub-diagonal entries of YD  can be multiplied by a positive 
value, which proves the Statement.  
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 Conclusions 

By use of the Hadamard product, an elegant compact representation in matrix 
notation has been obtained not only for Gini, concentration indexes and for their 
decompositions, but for redistribution and re-ranking indexes and their 
decompositions as well. The matrix toolkit introduced in this paper paves the way 
to obtain informative expressions for both the said indexes and their components, 
with incomes aligned either according to the pre-tax non-decreasing order or to 
the post-tax non-decreasing order.  

Moreover, the compact representation introduced in this paper leads to 
establish in a straightforward manner the signs of the Atkinson-Plotnick-Kakwani 
index and of its components. We prove that R, RW, RAG and RB are non-negative 
quantities, both when pre-tax income groups do overlap and when do not. In the 
latter case RT≡ GT  (RT≡ RAJL, following Urban and Lambert, 2008, notation) is 
non-negative, whereas in the former case we show RT can be either positive or 
negative. Even if it is well known that R  and GT≡ RAJL are non-negative, the 
proofs presented in this paper are new. 

 Appendix 

 On simplifying CW 

We will prove the simplification used in formula (20), that is  

AX X X AX=W A SA ' W S   (A1) 

Proof 
The elements ,i jw  of matrix XW  and the elements ,

a
l m l X mw = 'a W a  of matrix 

AXW  are equal to 1 if the associated pair of incomes, ix  and jx , belong to the 

same group, they are zero otherwise. As all super-diagonal elements in matrix S  
are plus 1 and sub-diagonal elements are ─1, we have to prove that all super-
diagonal elements of matrix X XA SA ' , that are selected by AXW , are 1, and all 

sub-diagonal elements of X XA SA '  selected by AXW  are ─1. 
Observe that incomes belonging to the same group remain ranked in a non 

decreasing order within each group, also according to the ( ){ }, ,i i i AX
x y p  

ordering: therefore 

(i) if in the ( ){ }, ,i i i X
x y p  ordering ix  occupies the i-th  position and jx  the 

j-th one, with i<j, in the ( ){ }, ,i i i AX
x y p  ordering, ix  will occupy the l-th  

position and jx  the m-th one with l<m; 
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(ii) symmetrically, in the ( ){ }, ,i i i X
x y p  ordering, all pairs of incomes i jx x>

, belonging to the same group, will respectively be in positions i and j, i>j 

, and in the ( ){ }, ,i i i AX
x y p  ordering, in positions l and m, l>m, 

respectively. 
This implies that the entry ,i js   of S  will be shifted to the entry ,

a
l ms  of 

X XA SA ' , with l<m if i<j, and l>m if i>j, so that in the super-diagonal part of 

AX X XW A SA '  all elements will be equal to 1, and in the sub-diagonal part, all 
elements will be equal to ─1, which proves (A3). 
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