
Highlights
A component framework for the runtime enforcement of safety
properties

Silvia Bonfanti, Elvinia Riccobene, Patrizia Scandurra

• A Runtime Safety Enforcement (RSE) framework

• Formal description of RSE features: I/O sanitization (black-box en-
forcement) and (gray-box) enforcement by monitoring and adaptation

• Prosess to apply RSE

• Instantiation of RSE for two case studies in the health-care domain

• Evaluation of the RSE in terms of soundness and computation overhead

A component framework for the runtime enforcement
of safety properties

Silvia Bonfantia, Elvinia Riccobeneb, Patrizia Scandurraa

aDIGIP, University of Bergamo, Viale Marconi, 5, Dalmine, 24044, Italy
bUniversità degli Studi di Milano, via Celoria, 18, Milan, 20135, Italy

Abstract

Safety assurance of a complex system cannot be completely ensured at de-
sign/development time since most uncertainties and unknowns are revealed
when the system is deployed in a real environment. Safety assurance at run-
time can be addressed by using models formalizing those safety assertions
the system has to guarantee during operation, and specifying enforcement
strategies aimed at preserving or eventually restoring safety.
This paper presents an approach to runtime safety enforcement of software
systems based on the MAPE-K control loop architecture for system moni-
toring and control, and on the Abstract State Machine as runtime model to
specify safety assertions and enforcement strategies for steering the correct
system behavior. The enforcer software is designed to act as a proxy system
which wraps around the software system to realize safety enforcement, both
as black-box enforcement on unsafe I/O events and as gray-box enforcement
on unsafe internal system changes. The proposed approach is supported by
a component framework called RSE (Runtime Safety Enforcement) that is
here illustrated by means of two real case studies in the health-care domain.

Keywords: runtime safety enforcement, self-adaptation, MAPE-K, runtime
models, Abstract State Machines@run.time
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

Technological progress opens up opportunities for the creation of new busi-
ness and digital ecosystems, but it also implies more demanding safety and
security requirements of software systems to assure.

Preprint submitted to Journal of Systems and Software January 8, 2025

Nowadays software is used to control most systems, sometime called software-
enabled systems, including physical systems under human controls, that could
involve potentially large and even catastrophic losses [1]. Software system
can be shown to be safe during the design/development stage by testing,
simulation, or formal verification making explicit assumptions about the en-
vironment in which the system will execute. However, the safe behavior of
a software system under certain circumstances cannot be completely ascer-
tained at design/development time without deploying it in a real environ-
ment. It is fairly well known that it is necessary to deal with the assurance
process of software systems also during the operational stage, when all rel-
evant uncertainties and unknowns caused by the interactions of the system
with their users and the environment can be detected and resolved [2, 3, 4].
So, controlling potentially unsafe systems requires approaches that combine
development-time evidence with runtime evidence that the system continues
to safely achieve its goals [4, 5].
Runtime verification and monitoring techniques [6] have been developed in
the past to address the problem of guaranteeing system safety at runtime.
However, these approaches generally focus on the oracle problem, namely
assigning verdicts to a system execution for compliance against policies for-
mulated by means of an abstract model (e.g., in terms of temporal logic
formulas). Differently, runtime enforcement [7] focuses on preventing pos-
sible unsafe sequences of events and steering correct system executions, by
possibly modifying or avoiding the system execution. Some runtime enforce-
ment techniques have been used (see [7, 8, 9], to name a few) to modify the
runtime behavior of a software system, forcing the system to satisfy a set of
safety assertions, thus steering the behavior of the system to stay within its
safe regions [10] (a software system can work safely only in certain regions of
its state space [11, 12]).
The enforcement mechanism is usually synthesized according to a given
automata-based formal specification, which treats the target system as a
black-box by observing mainly input/output events. A white-box approach,
that uses a complete knowledge of the system and its external interactions,
would suffer from problems of scalability and performance. A gray-box ap-
proach, instead, would be more effective; it could observe specific system’s
operational changes by probing and effecting interfaces provided by the tar-
get system, and it could then compute safety-related compensatory actions.
However, the adoption of gray-box enforcement mechanisms has not been
much explored yet [7].

2

We here propose an approach and a supporting framework, called RSE (Run-
time Safety Enforcement), that allow both I/O sanitization in the black-box
manner and safety enforcement in a gray-box way. In developing this ap-
proach, we leverage the use of software architecture-based self-adaptation
[13] and models@run.time [6]. By monitoring I/O events or probing them by
suitable interfaces of the managed system, the proposed enforcement mech-
anism can detect operational changes that might lead to potential safety
violations and proactively actuate an enforcement strategy as dictated by a
runtime enforcement model. The Abstract State Machine (ASM) [14] formal
method is used to specify enforcement models. ASMs are used at runtime (by
mean of the ASM@run.time [15] engine) to detect safety assertions violation
and whether/which reconfiguration actions are required to guarantee compli-
ance with the safety goals. In the gray-box use, the enforcement mechanism
is engineered as an autonomic manager that through a feedback control loop
MAPE-K (Monitor-Analyse-Plan-Execute over a Knowledge base) [16] wraps
around the target system. It uses an ASM runtime enforcement model to
plan an enforcement strategy and therefore steers the correct system behavior
by adapting unsafe system changes on the base of the planned strategy.
To illustrate RSE (approach and framework), we consider two case-studies
in the health-care domain, namely a Medicine Reminder and Monitoring
System (MRM) for securing patient safety through a software enforcer that
remotely controls a smart medicine dispenser [17], and the Mechanical Ven-
tilator Milano (MVM) [18] for securing patients on mechanical ventilation in
case of apnea lag and lung stress. The first case-study is a realistic example
of a medicine dispenser device, the second is a real system developed during
COVID-19 pandemic.
The main contributions of this paper in the context of system runtime en-
forcement are the following:

• the formal description of the two approaches, black-box and gray-box
enforcement, of RSE;

• the process to apply the RSE approach on a target system;
• the instantiation of the steps of the RSE process on two case studies
from the medical domain;

• the evaluation of the RSE in terms of soundness and computation over-
head.

This paper widely extends previously results presented in [19], and [20].
The idea of exploiting ASMs and ASM@runtime for runtime enforcement
is shortly presented in [20], in a very informal and preliminary way. In[19]

3

we present only the gray-box approach but without any formalization and
showing only a partial application on one of the two case studies reported
here. The formal description of the black- and gray-box approaches in terms
of ASM enforcement models, the RSE process, an additional case study, the
complete application of the RSE to the two case studies and the framework
evaluation, are novel contributions.
The paper is organized as follows. Section 2 presents the two case studies
used throughout the paper as illustrative examples. Section 3 provides some
preliminaries on runtime enforcement mechanisms and basic concepts on the
ASM formal method. Section 4 presents the enforcement mechanisms sup-
ported by the RSE approach and the use of ASMs as runtime models of the
enforcement schemas, including the conceptual and theoretical foundations.
Section 5 describes the operational steps of the RSE process. Section 6 illus-
trates the RSE step of defining the enforcement strategies on the two running
case studies, while formal specification of enforcement strategies in terms of
ASM models is described in Section 7. Section 8 provides implementation
details of the proposed RSE component framework, while Section 9.1 shows
the execution of RSE on the two case studies, and reports the results of
validation experiments. Section 10 highlights related work, and Section 9.2
discusses some threats to the RSE validity. Finally, Section 11 concludes the
paper.

2. Illustrative case studies

In this section, we introduce the two case studies, MRM (Medicine Reminder
and Monitoring System) and MVM (Mechanical Ventilator Milano), to which
we have applied the RSE process. The first case-study is a realistic example
of a smart medicine dispenser, the second is a real system developed during
COVID-19 pandemic.

2.1. MRM
The MRM system remotely controls a smart medicine dispenser and secures
patient safety. The proposed example is inspired by real smart drug sys-
tems available on the market and consists of (see Fig.1) an electronic pill
reminder&dispenser (a pill box), a remote control app (e.g., a mobile app
running on an Android smartphone) that monitors and controls the pill box
(via a local wireless connection, e.g. WiFi or Bluetooth, when the care-
giver is in proximity, or via IoT SIM card when the caregiver is away from

4

Figure 1: MRM system: high-level architecture

the patient’s home), and an health-care information system on Cloud im-
plementing value-added and persistence services related to a person’s health
record, treatment and medicine prescriptions as inserted by the doctor via a
web app. The remote control app is responsible for downloading/uploading
patient’s information from/to the user’s electronic health record on Cloud.
The app is also responsible for the correct pill box initialization once filled
and plugged into a home wall outlet, and for dynamically enforcing the pill
box re-configuration to ensure the patient safety about medicines intake. If
errors happen during pill box initialization, it is put into fail-safe configura-
tion: the system is locked and an alarm is displayed. The user has to take
corrective actions, e.g., try again the connection of the application or contact
the service center.
Initially, the caregiver or the patient through the mobile app downloads
a drug file record (e.g., a JSON file) containing all information about the
medicines prescribed by the doctor: medicine name, number of doses per day,
time schedule, minimum separation (in terms of time) from the medicine M
to the interferer N and between the same medicine, and delta time added
to the original time schedule to remember the medicine again if a dose is
missed. Then, the user has to manually fill the pill box’s compartment with
the medicines (one medicine type per each compartment) on a daily basis
according to the given prescription for the overall treatment duration. Once
the medicines have been added into the pill box and the pill box actual con-
figuration has been checked against the prescription via the remote control
app, the patient is notified by the pill box when a medicine has to be taken.
At the programmed time of a medicine, a notification is sent to the mobile
remote control app, an audible alarm of the pill box sounds, a red led, cor-
responding to the compartment where the medicine to be taken is located,
is turned on and the compartment is unlocked. The patient/caregiver has
to open and then close the compartment to report to the remote control
app that the medicine was effectively taken. If after 10 minutes from the

5

expected time the medicine is not taken, the red led starts flashing for 10
minutes further, after which the pill is considered missed by the system.
In case of a missed pill, drug reminder usually notifies the caregiver only.
In this example, instead, we assume the remote control app is engineered
smarter with a software enforcer that assists patients and caregivers in the
medicine intake by re-configuring the pill box automatically. Intuitively, a
missed medicine can be re-scheduled later in time, and in case of delayed
medicine intake, it must be guaranteed that the next medicines are taken
without drug interference.

2.2. MVM
MVM 1 [18] is a device developed to provide ventilation support for patients
in intensive therapy, which require mechanical ventilation. It is based on
pressure ventilation therapy, and it supports two ventilation modes: Pres-
sure Controlled Ventilation (PCV) and Pressure Support Ventilation (PSV).
PCV mode is used for patients that are not able to start breathing on their
own. The duration of the respiratory cycle is kept constant and set by the
doctor; and the pressure changes between the target inspiratory pressure and
the positive end-expiratory pressure. When the MVM detects a sudden pres-
sure drop within the trigger window during expiration, a new inspiration is
initiated even if the set time has not elapsed. In PSV mode, the respiratory
cycle is controlled by the patient, and MVM partially takes over the work of
breathing. A new inspiration is initiated when a sudden pressure drop oc-
curs, while expiration starts when the patient’s inspiratory flow drops below
a set fraction of the peak flow. If a new inspiratory phase is not detected
within a certain amount of time (apnea lag), MVM automatically switches to
the PCV mode because it is assumed that the patient is not able to breathe
alone.
MVM has two valves to enter/exit the air, one input valve and one output
valve. The input valve opens in inspiration phase and closes in expiration
phase, while the output valve opens and closes oppositely.
Before starting the ventilation, the MVM controller passes through three
phases. The start-up in which the controller is initialized with default pa-
rameters, self-test which ensures that the hardware is fully functional, and
ventilation off in which the controller is ready for ventilation when requested.

1https://www.vexos.com/mvm-ventilator

6

https://www.vexos.com/mvm-ventilator

Figure 2: MVM system: high-level architecture

When in ventilation off, before ventilating the patient, if user inputs are not
correct, e.g., within their upper and lower limits, the system is put into fail-
safe configuration: the ventilation does not start and an alarm is raised, till
user sets them correctly.
During ventilation, a safe-mode configuration (a further fail-safe configura-
tion) is reached when errors not automatically manageable occur. In this
configuration the input valve is closed and the output valve is opened to
allow the patient to breathe thanks to two relief valves.
Since it is not possible to test the proposed enforcement approach on the real
system, we have decided to use the configuration shown in Fig. 2. We run
the MVM code on machine A and the remote control system on machine B.
The communication is implemented in ZeroMQ2. The remote control system
monitors the behavior of the MVM and, in case of apnea not detected by the
MVM controller (because e.g. it is temporarily in error) or lung stress (the
MVM is ventilating in PCV, but PSV is the better ventilation mode because
the patient continuously triggers breaths), changes the ventilation mode in
order to provide better comfort to the patient.

3. Preliminaries and definitions

3.1. Self-adaptation and runtime models
A MAPE-K feedback control loop [16] is an architectural pattern to structure
the adaptation layer of a self-adaptive software system. It is conceived as a
sequential execution of four MAPE components: Monitor, Analyze, Plan,
and Execute over a shared Knowledge. A self-adaptive system usually relies
on the use of runtime models as part of the knowledge base. A runtime
model acts as a first-class runtime abstraction of the managed system, the
environment, the requirements (the adaptation goals) or of any data insights
that can be used by the feedback loop for making adaptation decisions.

2https://zeromq.org/

7

https://zeromq.org/

A causal connection [21, 22] must be realized to link and synchronize the state
of a runtime model with that of the managed system and its environment.
Usually, an acceptable discrepancy between the two that must not invalidate
the adaptation process of the managing system is allowed. The discrepancy
may be temporal causing a delay in the updates of the model, quantitative
in the sensed and processed data, or be of any other form.

3.2. Runtime enforcement concepts and definitions
We here provide some preliminary concepts and definitions about safety en-
forcement. Firstly, consider Fig. 3 for the depiction of the following:

Definition 1 (System operational change). A system S operates in a
physical environment Env. A context C ⊂ Env of a system S represents the
environmental entities that interact with S and influence its behavior. During
operation, the system perceives parts of C through its input interface (or set
of input events) I and reacts accordingly by affecting parts of C through its
output interface (or set of output events) O.

Note that the context C may also include human actors or adjacent systems.
In the following, we denote by δ(I, S,O) (δ in brief) an operational change
made by S processing input I and providing output O3.

Figure 3: A system and its context. The circle (or ball) indicates input events that the
system can handle; the semi-circle (or socket) indicates output events from the system.

As in [12], we adopt the following simplified notion of system state.

Definition 2 (System state). A system state is a vector σ belonging to
some n-dimensional state space Σ representing the collection of variables
required for describing the attributes of a system and its context.

We classify the system state space into safe, unsafe, and safety violation
sub-spaces.

3We use short notation δ(I) or δ(O) when only interested on the I/O of δ.

8

Figure 4: Safe/Unsafe/Safety violation
state space

Figure 5: Enforcer software

Definition 3 (Safe system region). A system safe region is a subset of
the system state space Σ consisting of all those states where the system is
safe since a given set of safety assertions A is guaranteed. We denote by
A(Σ) this subset of safe states.

Definition 4 (Unsafe system region). A system unsafe region is a sub-
set of the system state space Σ consisting of all those states where the system
might be unsafe since a given set of safety assertions A could be not guaran-
teed. We denote by Σ \ A(Σ) this subset of unsafe states.

Definition 5 (Safety Violation system region). A system Safety Vio-
lation region is a subset of the system state space Σ consisting of all those
states where the safety assertions A are not guaranteed. We denote by ¬A(Σ)
this subset of safety violation states.

The set ¬A(Σ) is a subset of Σ\A(Σ). Fig. 4 shows the three possible regions
in which a system can be: safe if a system is in a safe state; unsafe if it is in
a state with possibility of violations; safety violation if a system is in a state
where safety assertions are violated.
We now introduce the concept of safe and unsafe step of the system de-
pending whether it remains or not inside the boundary of the safe regions
of its state space after an execution step, upon the occurrence of events or
operational changes.

Definition 6 (System safe step). Given OC the set of operational changes
that may affect a system or its environment, we say that a system change step
(σ, δ, σ′) is safe with respect to an operational change δ ∈ OC iff σ′ ∈ A(Σ),
being σ ∈ A(Σ).

9

Definition 7 (System unsafe step). Given OC the set of operational changes
that may affect a system or its environment, we say that a system change
step (σ, δ, σ′) is unsafe with respect to an operational change δ ∈ OC iff σ′ ∈
Σ \ A(Σ), being σ ∈ A(Σ).

To repair undesired operational changes that bring the system to the unsafe
region, a (software) enforcer E (see Fig. 5) can be used to check if it is
possible to steer S to stay in the safe region. The enforcer E should ensure
that the system will never remain in an unsafe state (i.e., the system could
temporarily enter an unsafe state, but the enforcer forces it to return to a
safe state).

Definition 8 (System enforcer). An enforcer E of a target system S is a
software component that steers the runtime behavior of S to ensure satisfac-
tion of the safety assertions A in the context C. Formally: if (σ, δ, σ′) is an
unsafe step of S (σ′ /∈ A(Σ)), E operates an adaptation change E(δ) of the
operational change of S such that S makes a step (σ′, E(δ), σ′′), where σ′′ ∈
A(Σ).

Core to the enforcement process is a runtime enforcement model mS used
for reasoning whether adjustments actions are required or not to enforce
safety properties. Essentially, it is an automaton-based mechanism endowed
with an internal memory [10] used by the actual software enforcer to spec-
ify the enforcement logic. This enforcement model is continuously updated
with runtime data extracted by monitoring the running system to reflect the
system status changes.
We assume there exists a causal connection [21, 22] between the enforcement
model mS and the running system S (or an observed part of it): mS (1) is
causally connected with events (input I and output O) of S, and (2) can
be causally connected with change events δ of S. In the first case, E uses
mS as oracle model to make I/O sanitization (i.e., black-box enforcement);
mS only provides a safe/unsafe verdict by checking safety violations. In the
second case, mS has an embedded enforcement logic that E uses to plan
adjustment actions of functionality of S (for gray-box enforcement). A more
precise description of the enforcement mechanisms is given in Sect. 4 in the
context of the RSE framework.

10

3.3. Abstract State Machines
ASMs [14] are an extension of Finite State Machines where unstructured
control states are replaced by states comprising arbitrary complex data (i.e.,
domains of objects with functions defined on them), and transitions are ex-
pressed by transition rules describing how the data (state function values
saved into locations) change from one state to the next.
ASM models can be read as “pseudocode over abstract data” which comes
with a well-defined semantics : at each computation step, all transition rules
are executed in parallel by leading to simultaneous (consistent) updates of a
number of locations. There is a limited but powerful set of rule constructors
to express: guarded actions (if-then, switch-case), simultaneous parallel
actions (par), sequential actions (seq), nondeterminism (existential quantifi-
cation choose), and unrestricted synchronous parallelism (universal quantifi-
cation forall).
An ASM run is defined as a finite or infinite sequence of states, starting from
an initial state and each state obtained from the previous one by firing the
unique main rule which in turn could fire other transitions rules.
Model interface with its environment is specified in terms of monitored (writ-
ten by the environment and read by the machine) and out (written by the
machine and read by the environment) functions. It is also possible to spec-
ify state invariants that are first order formulas that must be true in each
computational state. A set of safety assertions can be specified as model
invariants, and a model state is safe if state invariants are satisfied.
Without going into the details that will be presented afterwards, Code 1
reports an excerpt of the ASM safePillbox, which operates as a gray-box
enforcement model of the MRM system. The section signature declares all
functions of the model, among which those specifying the model interface
with its environment (i.e., monitored and out). The main rule is, at each
state, the starting point of the computation; it, in turns, invokes all the other
transitions rules (e.g., r_enforce). The section default init defines the
initial values for the controlled functions (updated only by the machine).
Recently, a runtime simulation platform has been developed for ASMs [15]
within the ASMETA (ASM mETAmodeling) analysis toolset [23] – a set
of modelling and V&V tools for the ASM formal method – to check safety
assertions of software systems at runtime and support on-the-fly changes of
safety assertions. The platform exploits the concept of executable ASM mod-
els and it is based on the AsmetaS@run.time simulator to handle (including

11

asm safePillbox
import StandardLibrary
import pillbox_sanitiser
signature:

monitored isPillMissed: Compartment −> Boolean
monitored pillTakenWithDelay: Compartment −> Boolean
monitored actual_time_consumption: Compartment −> Seq(Natural)
out setNewTime: Compartment −> Boolean
out setOriginalTime: Compartment −> Boolean
out newTime: Compartment −> Natural
out skipNextPill: Prod(Compartment,Compartment) −> Boolean
monitored systemTime: Natural

definitions:
rule r_enforce = forall $compartment in Compartment do

par r_pillOnTime[$compartment] r_noOverlapping[$compartment] endpar ...
main rule r_Main = if state = INIT then r_INIT[] else r_enforce[] endif

default init s0:
function state = INIT
function medicine_list = [‘‘fosamax",‘‘moment"]
function amount($medicine in String) = switch($medicine)

case ‘‘moment" : 2n
case ‘‘fosamax" : 1n

endswitch ...

Code 1: SafePillbox ASM model
model-roll back capabilities) an ASM model as a living/runtime model pos-
sibly executing in tandem with a prototype/real system and provide formal
support for system properties assurance [24].
ASMs have been already used to provide formal specification of MAPE
loops for adaptation concerns [25] [26] and for solving interfering adaptation
goals [27]. By exploiting the notion of multi-agent ASM – where each agent
of the predefined set of Agents executes its own ASM in parallel with other
agents’ ASMs –, the definition of self-adaptive ASMs has been given [25, 26]
to provide formal specification of MAPE loops for adaptation concerns: the
set Agents is the disjoint union of a set of managing agents encapsulating
the logic of self-adaptation, and a set of managed agents encapsulating the
system’s application logic.
Here, ASMs are used as runtime models to specify the enforcement strategy
of the enforcer software. The main characteristics of ASMs suitable for the
enforcement mechanisms are: (1) due to their pseudo-code format, ASMs
can be easily understood by practitioners and can be used for high-level pro-
gramming; (2) ASMs offer a precise system specification at any desired level
of abstraction; (3) ASMs are executable models, so they can be co-executed
with system low-level implementations [28]; (4) the concept of ASM mod-
ule, i.e., an ASM without the main firing rule, facilitates model scalability
and separation of concerns, so facing the complexity of big systems specifica-

12

tion; (5) ASMs support multi-agent compositions, which allows for modeling
distributed and decentralized software systems [25].

4. The RSE approach to safety enforcement

This section presents the enforcement mechanisms supported by the RSE
framework and the use of ASMs as runtime enforcement models.

4.1. Reference architectural schemes for the RSE enforcement mechanisms
RSE supports enforcement mechanisms to realise input/output sanitization
by suppressing/adjusting the system input/output before their use (black-box
enforcement), and to steer the system execution to stay within safe regions
by monitoring and (eventually) adapting the system behavior through ef-
fectors/actuators (gray-box enforcement). Fig. 6 shows the architectural
schemes of these three types of enforcement.

(a) Input sanitization (b) Output sanitization

(c) Enforcement by monitoring and adaptation

Figure 6: Safety enforcement mechanisms.

4.1.1. Black-box enforcement
This enforcement approach reflects, in our framework, the input/output san-
itization as defined in [7].

13

Input sanitization. In order to protect the system from its (untrusted) en-
vironment, all inputs for the system are checked first by the enforcer that
filters out those that could harm the system. The enforcer uses a runtime
model mS representing the state (or part of it) of the target system and its
operational environment, including safety assertions A on the input events I
that must hold for I to be safe; mS works as oracle model for E to provide
a safe/unsafe verdict, or to make input sanitization.
Formally: if (σ, δ(I), σ′) is a state change of S and σ′ ∈ Σ \A(Σ), then i) E
forces S to remain in the same state without executing δ and σ′ = σ or ii)
E sanitises I in I ′ = E(I) such that (σ, δ(I ′), σ′′) is a safe step of S (i.e., σ′′

∈ A(Σ)).

Output sanitization. The enforcer is used to check the system outputs to
filter or transform them, thus protecting the environment from the system
itself. A runtime model mS is used by E as oracle model representing the
state (or part of it) of the target system and its operational environment,
including safety assertions A on the output events O that must hold for O
to be safe.
Formally: if (σ, δ, σ′) is a state change of S and σ′ ∈ Σ \ A(Σ), then i) E
forces S to remain in the same state without executing δ and σ′ = σ; or ii)
E sanitises O in O′ = E(O) such that (σ, δ(O′), σ′′) is a safe step of S.

4.1.2. Gray-box enforcement
This enforcement mechanism is obtained by monitoring and adaptation. The
enforcer E manages the target system S through a MAPE-K feedback loop
in an environment Env. Safety-critical actions or relevant state changes of
S are monitored by the enforcer (through sensors/probes Probe of the sys-
tem, see Fig.6c) that can intervene by adapting or modifying the system
changes (through effectors/actuators Effector of the system). The runtime
enforcement model mS is part of the knowledge K and is used for evaluat-
ing whether/which reconfiguration actions are required to guarantee safety
properties A. The enforcement model mS is continuously fed up with Probe
data extracted from the monitored system S about state changes of the sys-
tem and its context C, and executed at each feedback loop step to analyse
whether the safety assertions A continue to be satisfied; whenever this is no
longer the case, appropriate system changes are planned and executed by
the enforcer. So the enforcer plays the role of autonomic manager of the
enforcement process.

14

Formally: if (σ, δ, σ′) is a state change of S and σ′ ∈ Σ\A(Σ), then E adapts
the behavior of S in δ′ such that (σ′, δ′, σ′′) is a safe step of S.

4.2. ASMs as runtime enforcement models within RSE
By exploiting the concept of ASM@run.time, an ASM model can be defined
and adopted as runtime model mS of the proposed enforcement mechanisms.
ASM@run.time also incorporates mechanisms to rollback an ASM runtime
model to its previous safe state before processing the model input causing a
failure (like invariant violations).
ASMs runtime models can operate within the RSE framework as follows. The
enforcer monitors the target system S by watching its relevant input/output
or probe events. When a new event occurs that may change the state of the
system, the enforcer observes the ASM mS execution first and then, if safety
assertion violation may occur: (i) it prevents the system change – mS is used
as oracle model in the black-box enforcement with system blocking effect; or
(ii) it adjusts the system change – mS is used as gray-box enforcement model
with system adjusting effect. This is better explained in the following.

ASM as black-box enforcement model. In this case, safety violations are not
handled at the ASM model level, and the ASM works only as oracle emitting
a verdict (safe or unsafe). Safety assertions are formally specified in terms of
ASM invariants, that are, boolean predicates over ASM functions that must
be true in any ASM state. Safety violation results in the ASM reaching a
state where such invariants do not hold; in this case the model rolls back
to its previous safe state. Safety assertions can evolve dynamically to incor-
porate, for example, at ASM model level new safety invariants coping with
uncontrollable/emergent events not foreseen at design time. This approach
is typically used for input/output sanitization with the enforcer filtering out
input/output events without compensation actions. Concrete examples of
ASM oracle models are given in Section 7 for the two case studies.

ASM as gray-box enforcement model. In this case safety violations are cap-
tured and compensation is planned at the ASM model level. Safety violations
are specified as predicates over ASM state functions, and occur, in a negated
form, as guards of ASM guarded transition rules representing enforcement
operations – here called ASM enforcement rules – according to a specific en-
forcement logic. Safety violation therefore happens when enforcement rules
can fire; the output (updates of out locations) of the ASM is used by the
enforcer as a prescription/plan for adapting the monitored system S.

15

An enforcement rule has the form of an ECA (Event Condition Action) rule:

if ¬(α(ep)) then
if ρ(ep) then enforcement plan endif

endif

If α ∈ A is a safety assumption, the rule fires when an intercepted probing
event ep can violate α, and a safety enforceability condition ρ holds –i.e.,
ρ(ep) guarantees the possibility to steer the system to a safe region again –,
then suitable enforcement actions (i.e., the enforcement plan) are executed.
Concrete examples of ASM enforcement models are provided in Section 7 for
the MRM and the MVM systems.

5. RSE process

We here describe how to realize in practice the RSE enforcement approach for
a given target system. The RSE process (see the UML-like activity diagram
shown in Fig. 7) consists of five stages spanning the design, development,
and operation phases of software life-cycle:

Stage 1 – Enforcement strategies definition. Formulation of the safety
assertions, definition of I/O and probing/effecting interfaces of the tar-
get observed system, and definition of enforcement strategies for both
black-box and gray-box enforcement – @design.time.

Stage 2 – Formal specification and analysis of enforcement models.
Formal specification, validation and verification of enforcement models
for the enforcement of the safety assertions expressed over the global
state of the runtime models – @design.time.

Stage 3 – RSE framework instantiation and binding. Instantiation and
binding of the enforcer component framework as wrapper causally con-
nected with the target system and endowed with the runtime model(s)
for safety enforcement – @development.time.

Stage 4 – Deployment and running. Deployment, set up, and running
of the overall enforced system – @run.time.

16

Figure 7: The five stages of the RSE process.

Stage 5 – Runtime model evolution. Adaptation of safety assertions and
enforcement rules to take into account new requirements –@design.time
or @run.time.

All these stages, exceptthe validation and verification results of stage 2 for the
functional correctness of the enforcement models and stage 5, are illustrated
in the next sections through the two running case studies. Regarding stage
2, we only present the enforcement models used @runtime. They have been
developed, and formally validated and verified at design-time by means of
the ASMETA toolset, to guarantee that they realize their functions correctly
w.r.t. a set of requirements (enforcer requirements) the enforcement models
should comply with. These analysis activities have been performed on the
enforcement models for both the two case studies, however, related results
are not reported here since out of the scope of this paper.
Regarding stage 5, RSE provides some support to realize requirements at run-
time (RE@runtime [29]) for the management of evolution changes in the en-
forcement goals. Essentially, the RSE framework supports on the fly changes
of ASM model invariants for safety assertions in the black-box mechanism.
Through a user-facing notation, users (system maintainers or supervisors) of
the RSE installation can add/eliminate/modify ASM invariants of the run-
time ASMmodel. This feature of the framework is part of the ASM@run.time
engine and still in a prototype development phase [15]. The dynamic change
of ASM enforcement rules in the gray-box mechanism is, instead, considered
an open challenge in the runtime enforcement discipline and not yet sup-

17

Table 1: Black-box Safety Enforcement Scenarios MRM

Scenario Unsafe condition Enforcement strategy Enforcement plan
PB1 Pill type inconsistency Lock administration Fail-safe activation
PB2 Pills amount inconsistency Lock administration Fail-safe activation
PB3 Pills time inconsistency Lock administration Fail-safe activation
PB4 Static interferences Lock administration Fail-safe activation

ported by RSE, though feasible. New enforcement requirements may also
imply changes in the I/O and probing/effecting interfaces used to observe
the target system and also new sources of uncertainty at the level of the en-
forcement models. We postpone the management of these evolution changes
as future work.

6. Enforcement strategies formulation

This section illustrates the stage 1 of the RSE process for the two running
case studies.

6.1. MRM Safety Enforcement Scenarios
Starting from the MRM case study description in Section 2.1, we have identi-
fied the enforcement scenarios for both black-box and gray-box enforcement,
and we have specified safety assertions as shown in the following sections.

6.1.1. Black-box Safety Enforcement Scenarios
The safety assertions we have identified guarantee the correct configuration
of the MRM system based on the doctor prescription:
- PILL TYPE CONSISTENCY: pills added in the compartments of the pill-
box must be consistent with those prescribed by the doctor;

- PILL AMOUNT CONSISTENCY: for each type of pill, the number of
pills added in each compartment of the pillbox must be consistent with the
number of pills prescribed by the doctor;

- PILL TIME CONSISTENCY: for each pill, the time schedule of the com-
partment’s slots must be the same as that prescribed by the doctor;

- NO STATIC INTERFERENCE: for each pill, the time between its as-
sumption and the assumption time of the next pill must be less than the
minimum separation time of the two pills.

In case safety assertions are violated, the enforcer activates the fail-safe con-
figuration: the system is locked and requires user intervention to restore the

18

Table 2: Gray-box Safety Enforcement Scenarios MRM

Scenario Unsafe condition Enforcement strategy Enforcement plan
MP1 Pill missed Postpone missed pill without overlapping Re-schedule pill
MP2 Pill missed Skip missed pill with overlapping Skip current missed pill
LP Pill taken later Avoid pills overlapping Skip next pill if it overlaps

pills based on doctor prescription. We have listed the enforcement scenarios
as reported in Table 1.

6.1.2. Gray-box Safety Enforcement Scenarios
We have identified the following safety assertions that must be satisfied to
guarantee that the MRM system operates in a safe way for the patient:
- PILL ON TIME: pills must be taken at the timing of medications within
a delta time window;

- INTERFERING PILLS NEVER OVERLAP: consumption times of inter-
fering pills must not overlap.

In case safety assertions are violated, we assume the enforcer automatically
re-configures the medications according to the following safety enforcement
strategies :
MISSED PILL (MP): A missed pill is re-scheduled by the enforcer by adding

the delta time to the original time schedule only if the minimum separa-
tion time from the next medicines is observed, otherwise it is definitively
missed.

LATE PILL (LP): Since from the scheduled time to the actual time con-
sumption can take up to 20 minutes, the enforcer checks if the differ-
ence between the actual time consumption and the minimum separation
from the next medicines is observed. If not, the next pill is skipped.

Table 2 reports the three safety enforcement scenarios: scenarios MP1 and
MP2 capture the two different enforcement strategies in case of a missed pill,
while scenario LP refers to a pill taken after the expected time.
Finally, to conclude stage 1 of the RSE process, we have defined in Fig 8
the I/O and probing/effecting interfaces (detailed in the next section) of the
pillbox using a UML-like notation.

6.2. MVM Safety Enforcement Scenarios
MVM is a critical medical system. We have applied both black-box and
gray-box enforcement.

19

Figure 8: MRM system and signals exchanged

Table 3: Black-box Safety Enforcement Scenarios MVM

Scenario Unsafe condition Enforcement strategy Enforcement plan
APRange Apnea lag out of range Lock ventilation Fail-safe activation
IE I:E ration Lock ventilation Fail-safe activation

6.2.1. Black-box Safety Enforcement Scenarios
We have applied the black-box enforcement scenarios to check if the user
inputs (e.g., respiratory rate, inspiratory pressure and apnea lag, etc.) are
within their upper and lower limits. Here we show those relative to the timers
set during the ventilation (Table 3):
- APNEA LAG WITHIN LIMITS: the apnea lag must be greater than or
equal to 10 sec and less than or equal to 60 sec;

- I:E ratio : when in PCV mode, the ratio of inspiratory time to expiratory
time must be in the interval 1:1 - 1:4.

In case safety assertions are violated, the enforcer activates the fail-safe con-
figuration: the MVM is locked until the parameters are set by the user within
their limits.

6.2.2. Gray-box Safety Enforcement Scenarios
We report here two of the gray-box safety assertions that must be satisfied
to ensure its safe operation:
- PATIENT STOPS BREATHING AUTONOMOUSLY: the patient must
always breathe even if he or she is not able to start breathing on his/her
own;

- MINIMUM WORK OF BREATHING: the muscular work to inflate or
deflate the lungs must be minimal.

If the safety assertions are violated, we assume the enforcer automatically
applies the following safety enforcement strategies :
APNEA (AP): when in PSV mode, if the patient is not able to start a

new breath within apnea lag, the enforcer forces the ventilator in PCV
mode.

20

Table 4: Gray-box Safety Enforcement Scenarios MVM

Scenario Unsafe condition Enforcement strategy Enforcement plan
AP Patient in Apnea From PSV to PCV Move to PCV
LS Lung stress From PCV to PSV Move to PSV

Figure 9: MVM system and signals exchanged

LUNG STRESS (LS): when in PCV mode, if the patient automatically trig-
ger spontaneously three consecutive respiratory cycles, the enforcer
forces the ventilator in PSV mode.

The two safety enforcement scenarios are reported in Table 4: scenario
AP captures the enforcement strategy in case patient stops breathing au-
tonomously, while scenario LS refers to guarantee the minimum work of
breathing. A further unsafe situation not reported in Table 4 is when due
to probe failing (signals are not received) the system is put into safe-mode.
Fig. 9 shows the I/O and probing/effecting interfaces (detailed in the next
section) of the MVM system using a UML-like notation.

7. Runtime enforcement models

This section illustrates excerpts of the enforcement models for the MRM and
the MVM case studies (stage 2 of the RSE process).

7.1. MRM enforcement models
The instantiation of the enforcement framework for the MRM case study has
been extensively presented in paper [19]; we summarize here only the most
important information. The I/O interface of the pillbox with the user consists
of the openSwitch input signal to open/close the compartment containing
the pills, outMess and redLed (one for each compartment) to respectively
show messages and status of compartments to the user.

Black-box enforcement model. An example of enforcement model to apply in-
put sanitization strategies (black-box enforcement) is shown in Code 2, where

21

module pillbox_sanitiser
...
invariant inv_PB1 over medicine_list: (forall $c in Compartment with (contains(medicine_list,

name($c))))
invariant inv_PB2 over Compartment: (forall $m in asSet(medicine_list) with (exist $c in

Compartment with name($c)=$m))
invariant inv_PB3 over Compartment: (forall $c in Compartment with iton(length(

time_consumption($c))) = amount(name($c)))
invariant inv_PB4 over Compartment, Medicine: state=INIT implies (forall $c in Compartment

with (((drugIndex($c) < iton(length(time_consumption($c))) and at(time_consumption($c),
drugIndex($c)) = (at(time(name($c)),drugIndex($c)))))))

Code 2: PillboxSanitizer ASM model
the ASM module PillboxSanitizer is shown. It consists of a sequence of
invariants, each corresponding to an enforcement scenario shown in Table 1:
invariant inv_PB1 allows checking the consistency between the prescription
type and the compartments of the pillbox, invariant inv_PB2 allows check-
ing the amount consistency between the pills to intake and the number of
the corresponding compartment slots, invariant inv_PB3 allows checking the
consistency of the time schedule of the compartment’s slots and those sched-
uled for the medicine and it checks that no interferences are present, and
invariant inv_PB4 allows checking if there is inference between consecutive
pills.

Gray-box enforcement model. The enforcer monitors the pillbox through the
following set of probes:
- time_consumption: instant of time in which the medicine must be taken;
- redLed: status (on/off/blinking) of the red led for each compartment;
- drugIndex: index of the medicine that must be taken;
- actual_time_consumption: time in which the medicine has been taken;
- isPillMissed: true if current pill has been missed;
- pillTakenWithDelay: true if actual_time_consumption is different from
time_consumption.

In case safety assertions are violated, the enforcer affects the monitored sys-
tem by setting the following effectors:
- setNewTime: it indicates if the pill time consumption must be rescheduled;
- newTime: it sets the new time consumption;
- setOriginalTime: it indicates if the pill cannot be rescheduled;
- skipNextPill: it indicates if the pill must be skipped.
Code 3 reports the enforcement rule for the scenario LP when the pill is taken
with delay (pillTakenWithDelay) and the enforcer verifies any overlaps with
next pills.

22

rule r_noOverlapping($compartment in Compartment)=
if pillTakenWithDelay($compartment) then
forall $c2 in next($compartment) do

if delayCauseOverlap($compartment,$c2) then
skipNextPill($compartment, $c2):= true endif endif

Code 3: Enforcement rule for scenario LP

As explained in Sect.4.2, the enforcement rule has the form of an ECA rule.
The unsafe condition ¬α happens when the guard pillTakenWithDelay,
which is true on a pill if its actual_time_consumption is different from pill’s
time_consumption, holds, violating the safety consumption PILL ON TIME
(the boolean value of pillTakenWithDelay is provided as probe event). The
safety enforceability condition ρ is delayCausesOverlap, which is checked
individually for all the next pills. It holds for each next pill if the time
distance between the prescription time tc(nextPill) of the next pill and the
actual consumption time ta(currentPill) of the taken pill is less than the min-
imum separation time minToInterferer(currentPill,nextPill) between current
pill and next pill, i.e.:

(tc(nextPill)− ta(currentPill)) < minToInterfer(currentPill,nextPill)
The enforcement rule r_pillOnTime for scenarios MP1 and MP2 is already
presented in [19].

7.2. MVM enforcement models
In this section, we introduce the enforcement strategies for the MVM case
study. The input signals are all the user parameters required for the ventila-
tion, e.g., respiratory rate, inspiratory pressure, apnea lag, etc. The output
to the user are the ventilation parameters, e.g., airway pressure and tidal
volume.

Black-box enforcement model. Code 4 shows the ASM enforcement model to
apply input sanitization. It allows checking if the apnea lag is in the range
10-60 sec (invariant inv_APRange) and I:E ratio is in the interval 1:1 - 1:4
(invariant inv_IE).

Gray-box enforcement model. The enforcer monitors the ventilation through
the following probes:
- breath_sync: respiration phase, inspiration or expiration;
- watchdog: set of bits reporting the controller status;

23

module pillbox_sanitiser
...
invariant inv_APRange over timerApneaLag: (duration(timerApneaLag)>=10 and duration(

timerApneaLag)<=60)

invariant inv_IE over timerInspirationDurPCV,timerExpirationDurPCV: ((duration(
timerExpirationDurPCV)>=duration(timerInspirationDurPCV)) and (duration(
timerExpirationDurPCV)<=4∗duration(timerInspirationDurPCV)))

Code 4: MVM model for input sanitization

//Patient is in expiration and mode is PSV
rule r_apneaLag=

if patientInApnea() then
par

enforcerMode := PCV
enforcerSetMode := true

endpar
endif endif

Code 5: Enforcement rule for scenario AP

- run: ventilation starts;
- stop: ventilation stops;
- currentMode: current ventilation mode;
- trigger: in PCV is true if the transition from inspiration to expiration
or vice-versa happens because of trigger events and not because of timers
deadline.

Whenever safety assertions are violated, the enforcer influences the managed
system by setting the following effectors:
- enforcerSetMode: it indicates if the enforcer forces new ventilation mode;
- enforcerMode: the mode set by the enforcer.
As an example, Code 5 reports the enforcement rule for scenario AP. The
rule fires if the ventilation is in expiration (breath_sync = EXP) and the
ventilation mode is PSV (currentMode = PSV). The unsafe condition holds
when the patient is in apnea (patientInApnea()), i.e., when the expira-
tion duration is greater than the apnea lag (calc_t(timer_exp) > dura-
tion(timerApneaLag)). Due to this high critical safety condition, which if
not satisfied the patient could die, the safety enforceability condition ρ is
always true, this means that if the unsafe condition happens, the enforcer
always executes the enforcement plan, i.e. it forces the ventilation to PCV
mode.

24

8. RSE framework implementation and instantiation

The RSE approach has been realised as a component framework and instan-
tiated for the MRM and the MVM case studies (stage 3 of the RSE process).
The software enforcer is designed to act as a proxy which wraps around the
managed system. Although its code may be partially available in the form
of a component framework for some core functionalities and the code of the
enforcer logic be synthesised automatically by enforcement models (e.g., in-
put/output automata used to specify the particular enforcement strategy),
normally the software enforcer is system-specific and therefore some manual
steps are required from the developers to implement those components (such
as components for the causal connection to the managed system) that are
abstracted in the enforcement model/framework and that are specific to the
target system’s domain.
In this respect, we developed a Java-based white-box framework 4 for common
core functionalities that can be conveniently reused by concrete realisation
of sets of components to accomplish enforcement tasks for different systems.
By exploiting the design patterns Template and Factory, the concrete com-
ponents have an inheritance relationship with the framework’s components5.
We also combined the MAPE-K control loop style with the Safety Assertion
Enforcer pattern [30] for shaping the enforcer subsystem.
Fig. 10 shows a high-level overview of the enforcement framework architec-
ture. The current version of RSE supports shell-like software applications as
managed systems, and local pipes and ZeroMQ as communication means to
connect the enforcer software with them. The component I/O sanitizer is
responsible for exchanging I/O values with the Managed System and realiz-
ing black-box enforcement. The I/O sanitizer component exploits a run-
time ASM as black-box enforcement model and therefore invokes (through
the interface ModelExecution) the simulation service of the model engine
ASM@run.time Simulator.
In the gray-box approach, the Enforcer subsystem adopts the MAPE-K
control structure and the Monitor component exploits a pull-based interac-
tion to regularly request new data to the probes of the managed system; the

4RSE is available within the ASMETA GitHub repository https://github.com/
asmeta/asmeta/tree/master/code/experimental/asmeta.enforcer

5The concrete component classes implement the basic abstract methods and override
the hook methods of the framework’s abstract classes to add specific behaviors.

25

https://github.com/asmeta/asmeta/tree/master/code/experimental/asmeta.enforcer
https://github.com/asmeta/asmeta/tree/master/code/experimental/asmeta.enforcer

Figure 10: Enforcement framework architecture.

Analyzer starts only when the probes values change. A MAPE-K control
loop is therefore regularly executed over time to assure the system safety re-
quirements at runtime. The rule-based decision making of the Analyzer and
Planner components is supported by the ASM@run.time Simulator that can
run simulations of the ASM enforcement model during operation. The UML
sequence diagram in Fig. 11 details the gray-box safety enforcement executed
by the Enforcer operation runFeedBackLoop(), and, therefore, the MAPE-
K components interactions to enact the appropriate enforcement strategy as
suggested by the ASM model run by the ASM@run.time Simulator. Note
that to avoid deadlock/huge delay in the system execution, the framework
supports an execution mode with a configurable timeout, according to which
the enforcer does not wait indefinitely for the simulator to finish the ASM
run. Specifically, if the ASM model (for some reason) runs too long, its exe-
cution times out (according to a specific configurable time limit) and control
returns without applying any enforcement strategy.
When the I/O sanitizer component is used in combination with a gray-
box enforcement mechanism, it simply plays the role of a delegator that
saves the I/O values into the knowledge repository and then delegates to
the MAPE-K feedback loop the further gray-box enforcement actions. The
UML sequence diagram in Fig. 12 shows the overall flow of iterations between

26

Alt

Alt

Alt

:Monitor

run()

:Managed System :Knowledge :Analyser :Planner :ASM@run.time
Simulator :Executor

probes
getProbes()

false

systemStateChanged(probes)

true
run()

analyserKnowledge()

[Adaptation Required]
run()

eval()

[unsafe or
timed out]

effectors
setEffectors(effectors)

run()

getEffectors(effectors)

effectors
run(effectors)

return O'

setOutput(O')

[else]

[safe]

Figure 11: Enforcer’s operation runFeedBackLoop()

the framework’s components during an input sanitization followed by an
output sanitization with adaptation executed by the Enforcer operation
runFeedBackLoop().
The subsystem Safety Assertion Catalog realises a sort of dashboard for
Human-Model-Interplay (both in a graphical and in a command-line way) to
visualise the current status of execution and to enact commands for changing
safety properties at model level. For this purpose, it consumes the interface
ModelAdaptation provided by the ASM@run.time Simulator. In order to
make on-the-fly changes of the underlying ASM runtime model consistently, a
separate thread of the simulator (different from the model simulation thread)

27

Alt

sanitizeInput()

true

: Managed
System

run(I')

: Managed
System: Knowledge: I/O Sanitizer: Enforcer

setSanInput(I')

getSanInput()
return I'

return O

false
run(I)

return O

setOutput(O)

runFeedBackLoop()

getSanOutput()
return O'

I

O'

Figure 12: Enforcement control flow

manages the model adaptation only when the status of the simulation reaches
a quiescent state, i.e. no enforcement activity is going on. Then, the ASM
model continues to execute from its current state. Adding a safety invariant
that would be immediately violated in the current state of the ASM model
is forbidden at the level of the user interface.

9. RSE Evaluation

In this section, we evaluate our RSE approach in terms of precise research
questions and discuss some threats to the RSE validity.

9.1. RSE at work
We here show the execution of the framework (stage 4 of the process) and
validate it by means of the following two research questions: (RQ1) check
that the RSE framework delivers the intended behavior in enforcing the safety
assertions, and (RQ2) assess the computation overhead of the enforcement
process on the overall system execution time.
Regarding RQ1, intuitively, we want to show that the enforcer modifies the
system behavior according to the expected strategy and leaves the system
behavior unaltered when the observed computation does not require any in-
tervention. In fact, although the scope of the enforcer is to steer the behavior

28

2 Pillbox initialization:
3 Output to pillbox: {}
4 User Input: {systemTime=361, openSwitch(compartment1)=false, openSwitch(compartment2)=false}
5 No transition to step 1 for model safePillbox.asm
6 Model execution outcome: UNSAFE
7 Reason: Invalid Invariant inv_PB3

Code 6: Simulation trace PB3 of MRM
of the running software to stay in a safe region, the enforcer behavior itself
may be not correct and compromise the running system behavior rather than
enforcing it.
Regarding RQ2, we intent to evaluate the time overhead of running the
enforcer in combination with the system.
In the next subsections we discuss, on two case studies, the results of our val-
idation approach. For both the two case studies, the experiments were per-
formed on Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz and 64GB RAM.

(RQ1) Sound operation of the enforcement software. To answer this ques-
tion, we evaluated the capability of the enforcer of producing an intended or
expected outcome. As example, we report here four scenarios: one black-box
and one gray-box for both MRM and MVM case studies.
The first scenario presented simulates the scenario PB3 presented in Table 1
(whose invariant is shown in Code 2): the time scheduled for the pill is not the
same as prescribed by the doctor. The simulation trace is shown in Code 6:
the simulation is immediately interrupted due to invariant violation (line 7):
the time of the prescribed pill (time_consumption(compartment1) [360])
is different from the time set in the pillbox (time_consumption(compartment1)
[300]). Note that the time is simulated by setting systemTime, which is de-
fined in minutes from midnight instead of hours:minutes.
In Code 7, we report an example of simulation trace for the LP scenario of
the MRM case study (gray-box enforcement strategy). In this scenario the
fosamax should be taken at 6:00 a.m. (systemTime=360), but the patient
takes it at 6:16 a.m. (systemTime=376). The delay causes a safety property
violation of the minimum time between fosamax and the next pill, moment
is skipped.
When it is time to take fosamax (the first pill prescribed), the pill box turns
on the corresponding red led and displays a message to the patient to take
fosamax (line 5). After 10 minutes the user opens the compartment of the
medicine (openSwitch=true), the red led starts blinking and the pill box re-
minds to the patient to close the compartment (line 12 - we assume that the

29

pill is taken when the user closes the compartment). At 6:16 a.m. the user
takes the pill (the user closes the compartment - line 19), but this causes the
safety property violation and the enforcer identifies that the pill next to that
in compartment1 must be skipped (skipNextPill(compartment1)=true).
The next pill in compartment2, namely moment (skipNextPill(compart-
ment1,compartment2)=true) - line 236), is skipped in order to steer the
system into the safety region. Until this moment, the enforcer did not inter-
vene. The message SAFE (e.g. in line 1) is the output of the ASM@run.time
simulator through the ModelExecution interface; it states that the run time
safety assurance in the SafePillbox model has been addressed.
Code 8 shows the simulation trace for APRange scenario (black-box enforce-
ment scenario). The user inputs are checked and the simulation is immedi-
ately interrupted due to invariant violation (line 6): the apnea lag is higher
than 60 sec (see invariant in Code 4).
Code 9 shows the simulation of the AP scenario of the MVM case study (gray-
box enforcement strategy). For clarity, we report only the main parameters.
After startup (line 5), self-test (line 12) and ventilation off (line 19) phases,
the ventilation starts in PSV mode (line 24). The patient is inhaling, the
input valve is open and the output valve is closed. Then, the patient starts
expiration spontaneously (line 31). After apnea lag, the patient is not able
to start a new breath, the breath_sync signal still equals to EXP (line 43).
The enforcer intervenes and forces the ventilation in PCV mode allowing the
patient to breath (line 46) controlled by the ventilator.
We have reported here three scenarios, one for the black-box enforcement
strategy and two for the gray-box enforcement strategy. For all the scenar-
ios, we have forced the system on possible unsafe situations, and we have
observed that the enforcement system intervenes to enforce the system into
safe situation (gray-box enforcement) or block the system to avoid possible
future unsafe situation (black-box enforcement).

(RQ2) Computation overhead of the enforcement software. To evaluate the
computation overhead, we clocked the time required by the RSE framework
only in the (most complex) gray-box mechanism to run the feedback loop

6In ASMs, function overloading is allowed. In our model, the boolean-valued function
symbol skipNextPill is defined twice: with one argument x to specify whether or not the
pill in compartment x causes a skip of next pill; with two arguments x and y to specify
whether or not the next pill in compartment y must be skipped.

30

1 Enforcer initialization... Model execution outcome: SAFE
2 Output to pillbox: {}
3 User Input: {systemTime=361, openSwitch(compartment1)=false, openSwitch(compartment2)=false}
4 Pillbox running...
5 Output to patient: {redLed(compartment2)=OFF, redLed(compartment1)=ON, outMess(compartment1

)="Take fosamax"}
6 Output for probing: {redLed(compartment2)=OFF, time_consumption(compartment1)=[360],

time_consumption(compartment2)=[730,1140], redLed(compartment1)=ON, drugIndex(
compartment1)=0, isPillMissed(compartment1)=false, pillTakenWithDelay(compartment2)=false,
systemTime=361, pillTakenWithDelay(compartment1)=false, drugIndex(compartment2)=0, name(
compartment2)="moment", name(compartment1)="fosamax", isPillMissed(compartment2)=false,
day=0}

8 Enforcer running... Model execution outcome: SAFE
9 Output to pillbox: {}

10 User Input: {systemTime=371, openSwitch(compartment1)=true, openSwitch(compartment2)=false}
11 Pillbox running...
12 Output to patient: {redLed(compartment2)=OFF, redLed(compartment1)=BLINKING, outMess(

compartment1)="Close fosamax in 10 minutes"}
13 Output for probing: {redLed(compartment2)=OFF, time_consumption(compartment1)=[360],

time_consumption(compartment2)=[730,1140], redLed(compartment1)=BLINKING, drugIndex(
compartment1)=0, isPillMissed(compartment1)=false, pillTakenWithDelay(compartment2)=false,
systemTime=371, pillTakenWithDelay(compartment1)=false, drugIndex(compartment2)=0, name(
compartment2)="moment", name(compartment1)="fosamax", isPillMissed(compartment2)=false,
day=0}

15 Enforcer running... Model execution outcome: SAFE
16 Output to pillbox: {}
17 User Input: {systemTime=376, openSwitch(compartment1)=false, openSwitch(compartment2)=false}
18 Pillbox running...
19 Output to patient: {redLed(compartment2)=OFF, redLed(compartment1)=OFF, outMess(

compartment1)="fosamax taken"}
20 Output for probing: {redLed(compartment2)=OFF, time_consumption(compartment1)=[360],

time_consumption(compartment2)=[730,1140], redLed(compartment1)=OFF, drugIndex(
compartment1)=0, isPillMissed(compartment1)=false, pillTakenWithDelay(compartment2)=false,
actual_time_consumption(compartment1)=[376], systemTime=376,
pillTakenWithDelay(compartment1)=true, drugIndex(compartment2)=0, name(compartment2)="
moment", name(compartment1)="fosamax", isPillMissed(compartment2)=false, day=0}

22 Enforcer running... Model execution outcome: SAFE
23 Output to pillbox: {skipNextPill(compartment1,compartment2)=true,

skipNextPill(compartment1)=true}
24 User Input: {skipNextPill(compartment1)=true, systemTime=376, openSwitch(compartment1)=false,

openSwitch(compartment2)=false, skipNextPill(compartment1,compartment2)=true}
25 Pillbox running...
26 Output to patient: {redLed(compartment2)=OFF, redLed(compartment1)=OFF,

outMess(compartment1)="moment
skipped"}

27 Output for probing: {redLed(compartment2)=OFF, time_consumption(compartment1)=[360],
time_consumption(compartment2)=[730,1140], redLed(compartment1)=OFF, drugIndex(
compartment1)=0, isPillMissed(compartment1)=false, pillTakenWithDelay(compartment2)=false,
actual_time_consumption(compartment1)=[376], systemTime=376, pillTakenWithDelay(
compartment1)=false, drugIndex(compartment2)=1, name(compartment2)="moment", name(
compartment1)="fosamax", isPillMissed(compartment2)=false, day=0}

Code 7: Simulation trace LP of MRM

31

1 MVMController initialization:
2 Output to MVM: {}
3 Input: {}
4 No transition to step 1 for model MVMController.asm
5 Model execution outcome: UNSAFE
6 Reason: Invalid Invariant inv_APRange

Code 8: Simulation trace APRange of MVM

and make enforcement decisions on the considered scenarios. We report the
results in Tables 5 and 6 respectively for MRM and MVM case studies. For
each scenario, we have collected the time required to run the system and to
run the enforcer (including the run of the enforcement model). We have high-
lighted in blue the runs where the enforcer intervenes to avoid the violation
of safety assertions by the system. The results show that on average, it takes
approximately the 90% of total running time for determining and execut-
ing an enforcement plan when safety properties are violated. This overhead
is mainly related to the execution time of the ASM model. Indeed, the
ASM@run.time Simulator is based on the design-time simulator AsmetaS,
which is a simulator of formal models, developed in Java for model valida-
tion purposes and not for obtaining fast performance. To overcome such
limitation we should consider in the future the availability of an optimized
version of the simulator that exploits specific optimizations and customized
properties at the level of the Java virtual machine. The observed overhead is
however acceptable for the class of systems where response time are relatively
long, e.g., the MRM system where if a pill is taken few seconds later is not
critical. In case of reactive systems, like MVM, where response time must
be as short as possible, this solution should be optimized (see Sect.9.2 for
further discussion).

9.2. Threats to validity
Some potential threats to the validity of the proposed approach and its val-
idation have been addressed as follows.
Construct validity threats may arise due to assumptions made when modeling
safety assertions and enforcement strategies for the systems. To mitigate
these threats, we used safety requirements based on known case studies from
the research literature to which the authors contributed to.
To reduce threats to internal validity, we designed a set of controlled vali-
dation experiments detailing the enforcement scenarios of interest for both

32

1 Enforcer initialization... Model execution outcome: SAFE
2 Output to MVM: {}
3 Input: {}
4 MVM running...
5 Output to user: {state=STARTUP}
6 Output for probing: {watchdog=INACTIVE}

8 Enforcer running... Model execution outcome: SAFE
9 Output to MVM: {}

10 Input: {startupEnded=true}
11 MVM running...
12 Output to user: {state=SELFTEST}
13 Output for probing: {watchdog=INACTIVE}

15 Enforcer running... Model execution outcome: SAFE
16 Output to MVM: {}
17 Input: {selfTestPassed=true}
18 MVM running...
19 Output to user: {state=VENTILATIONOFF}
20 Output for probing: {watchdog=INACTIVE}

22 Enforcer running... Model execution outcome: SAFE
23 Output to MVM: {}
24 Input: {startVentilation=true, respirationMode=PSV}
25 MVM running...
26 Output to user: {oValve=CLOSED, iValve=OPEN, state=PSV_STATE phase=INSPIRATION}
27 Output for probing: {watchdog=BREATHON, breath_sync=INSP, run=true, currentMode=PSV}

29 Enforcer running... Model execution outcome: SAFE
30 Output to MVM: {}
31 Input: {pawGTMaxPinsp=true}
32 MVM running...
33 Output to user: {oValve=OPEN, iValve=CLOSED, state=PSV_STATE, phase=EXPIRATION}
34 Output for probing: {watchdog=BREATHON, breath_sync=EXP, currentMode=PSV}

36 ... //after apnea lag

38 Enforcer running... Model execution outcome: SAFE
39 Output to MVM: {}
40 Input: {}
41 MVM running...
42 Output to user: {oValve=OPEN, iValve=CLOSED, state=PSV_STATE, phase=EXPIRATION}
43 Output for probing: {watchdog=BREATHON, breath_sync=EXP, currentMode=PSV}

45 Enforcer running... Model execution outcome: SAFE
46 Output to MVM: {enforcerSetMode=true, enforcerMode=PCV}
47 MVM running...
48 Output to user: {oValve=CLOSED, iValve=OPEN, state=PCV_STATE, phase=INSPIRATION}
49 Output for probing: {watchdog=BREATHON, breath_sync=INSP, currentMode=PCV}

Code 9: Simulation trace AP of MVM
the two case studies. In particular, our validation setting allows for direct
access to: the oracle and enforcement models, the RSE instances for the case
studies, and the managed systems. This direct manipulation has been fun-
damental to assess cause-effect relations between the system under scrutiny

33

Table 5: MRM execution time

Scenario Run 1 Run 2 Run 3 Run 4 Run 5

MP1

Pillbox 47 ms 20 ms 9 ms 12 ms
system 34% 22% 8%

Enforcer 91 ms 73 ms 109 ms
66% 78% 92%

SafePillbox 20 ms 24 ms 27 ms
model 14% 26% 23%

Total Time 138 ms 93 ms 118 ms

MP2

Pillbox 42 ms 23 ms 14 ms 16 ms
system 34% 23% 9%

Enforcer 83 ms 75 ms 134 ms
66% 77% 91%

SafePillbox 20 ms 32 ms 36 ms
model 16% 33% 24%

Total Time 124 ms 98 ms 148 ms

LP

Pillbox 56 ms 23 ms 16 ms 13 ms 23 ms
system 42% 19% 15% 10%

Enforcer 76 ms 97 ms 91 ms 111 ms
58% 81% 85% 90%

SafePillbox 23 ms 27 ms 28 ms 30 ms
model 17% 23% 26% 24%

Total Time 132 ms 120 ms 107 ms 124 ms

Table 6: MVM execution time

Scenario Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

AP

MVM 38 ms 17 ms 12 ms 19 ms 14 ms 11 ms
system 30% 25% 27% 23% 10%

Enforcer 87 ms 51 ms 32 ms 63 ms 126 ms
70% 75% 73% 77% 90%

SafeMVM 20 ms 8 ms 11 ms 21 ms 32 ms
model 16% 12% 25% 26% 23%

Total Time 125 ms 68 ms 44 ms 82 ms 140 ms

LS

MVM 17 ms 12 ms 18 ms 22 ms 15 ms 14 ms
system 23% 18% 19% 21% 7%

Enforcer 58 ms 54 ms 75 ms 83 ms 187 ms
77% 82% 81% 79 % 93%

SafeMVM 9 ms 13 ms 21 ms 25 ms 51 ms
model 12% 20% 23% 24% 25%

Total Time 75 ms 66 ms 93 ms 105 ms 202 ms

and the enforcer software, and therefore to show the correctness of the RSE
approach. We also enable replication by making our implementation and the
validation results publicly available.
External validity threats may exist if the characteristics of the systems of our
case studies are not indicative of the characteristics of other systems or not

34

significant from the safety perspective. We limited these threats by adopting
two case studies from the medical domain, which are highly safety-critical.
The application of our approach to additional case studies in other domains is
part of our future work. Another external validity threat may arise if the en-
forcement (adaptation) latency is not tolerated by the system under scrutiny.
The system needs sufficient time to react to the decisions of the enforcer and
to change its behavior to avoid unsafe situations. The ideal case, in order to
keep the model in a consistent and safe state, is that during the enforcement
process the enforcer freezes the overall system computation. This is how the
enforcer works in the MRM case study. However, this is a strong assumption
which is not applicable to some systems like the MVM system. In this second
case study, in fact, we had to decouple the enforcer and the system behaviors;
when the enforcer is checking safety, the MVM continuously runs the venti-
lation process. In this second situation, if the enforcer spends too much time
to generate the enforcement plan, the safety violation might occur. In order
to mitigate this risk, our approach adopts quick and precisely pre-computed
enforcement strategies encoded in terms of ECA rules, instead of generat-
ing them or adopting sophisticated reasoning and planning. In the specific
case of the MVM system, the enforcement latency and the reliability of the
communication mean could be also improved by synthesizing the enforcer
software (in a re-engineering process) directly in the embedded software of
the ventilator, possibly using an optimized version of the ASM simulator
with a version of the JVM for embedded installations. However, in very high
time-critical situations, which require quick and precisely specified reactions
by the system, a different method should be adopted for the enforcement of
timed safety assertions (such as the approach theoretically defined in [31]).
A further threat regarding external validity concerns the problem of address-
ing enforcement strategies (and therefore, rules) that may be in conflict. In
our case studies, we do not have conflicting strategies, however, they can
arise during model validation at design time and can be corrected (at design
time) on the base of established priorities. The ASM enforcement rules are
able to reflect possible priorities. The approach of resolving conflicting en-
forcement strategies at design time is similar to that presented in [27, 32] for
resolving conflicts among self-adaptation goals of decentralised MAPE loops.
By exploiting the model review process [33] on ASM models, it is possible
to discover conflicting state locations by checking precise meta-properties on
the model. When conflicts arise, it is up to the designer to resolve them by
specifying, in terms of new or redefined rules, possible cooperation and coor-

35

dination of the enforcement actions to avoid interference and provide certain
guarantees about enforcement. Conflicts discovered at run-time and not fore-
seen at design time are possible; they are not dealt in this paper since they do
not apply to our case studies, but their resolution would require evolving the
model into a new one, able to prevent the conflicts according to design-time
decisions (as explained above). Currently, in case of run-time conflicts, our
framework brings the systems into a fail-safe configuration. As mentioned
in the conclusions, dialing with conflict situations is an argument for future
work.

10. Related work

First, we summarize the representative approaches on runtime safety assur-
ance and then report only works related to runtime enforcement.

10.1. On runtime assurance of system safety
Some runtime certification methodologies in the context of self-adaptive sys-
tems, such as, for example, ConSerts [3] and ENTRUST [4], have been pro-
posed for the dynamic provision of assurance cases by transferring activ-
ities of the safety assurance process to the runtime and arguing the suit-
ability of a software system for its intended application at operation time.
In line with these approaches, other formal approaches that cover trust-
worthiness evaluation, run-time maintenance, and evidence-based assurance
specifically for Cyber-Physical Systems have been proposed (see, for example,
[34, 35, 36, 37]).
While runtime formal verification approaches (such as those considered in the
study [6], [38], [39], etc.) generally focus on the oracle problem, namely as-
signing verdicts to a system execution, mechanisms for runtime enforcement
(like the one we propose) focus on ensuring the correctness of the sequence
of events by possibly modifying or preventing the system execution [7].
In general, runtime enforcement and self-healing techniques are two classes of
relevant solutions to deal with failures at runtime; they are complementary,
although related [7]. Runtime enforcement techniques can prevent misbehav-
ior of a target monitored system by enforcing the system to run according to
its specification, while healing techniques can react to misbehavior and fail-
ures to restore the normal execution of the monitored system after a failure
has been observed. Of course, the boundaries between these two classes of
techniques are not always well defined, and some approaches in one category

36

may have characteristics in common with approaches in the other category
[7].

10.2. On runtime enforcement techniques
Enforcement mechanisms were initially proposed in the security domain to
enforce security and privacy policies [40]. Runtime enforcement was also
applied to enforce usage-control policies on mobile devices [41, 42]: a policy
enforcement framework based on the concept of proactive library is presented
and applied to the Android platform using run-time hooking and code injec-
tion mechanisms to handle faults caused by bad resource management such
as a mobile device. Though this approach to enforce adaptation policies is
somehow related to our, it is to be considered also a self-healing solution [7]
for a resource-constrained environment. Indeed, instead of preventing mis-
behavior (like in our enforcement mechanism), it reacts to misbehavior after
it occurs.
In the robotic application domain, some enforcer approaches have been pro-
posed that exploit reactive synthesis (or logical synthesis) [43] to automati-
cally generate correct-by-construction enforcer modules from high-level for-
mal specifications (e.g., formulas in linear temporal logic).
To assure system safety at runtime, for example, in [44] a robotics program-
ming framework, called SOTER, is presented for implementing and testing
high-level reactive robotics software like drone surveillance systems. This
framework integrates also a runtime assurance (RTA) system for the use of
uncertified components while still providing safety guarantees. Each uncerti-
fied component is protected using a RTA module (based on an encoded state
machine) that guarantees safety by switching to a safe controller in case of
danger. A similar safety assurance technique at runtime in the same appli-
cation domain is presented in [9] to guarantee the safe behavior of a drone
controller. This runtime assurance strategy consists into adding small compo-
nents, called enforcers, to a drone system to monitor and steer the movement
commands of the drone that must be restricted to fly within a constrained
area. These enforcers are small components fully specified and verified at
design time. To enable the verification of the composition of multiple en-
forcers, the enforcers are specified as SMT formulae and executed with the
Z3 verifier. Another similar approach based on correct-by-construction syn-
thesis of a monitor, which is proven to enforce model compliance at runtime
for 2D waypoint-following of Dubins-type ground robots, has been proposed

37

in [45] using differential dynamic logic (dL) to model a robot and its kine-
matics. Differently from our framework potentially adoptable in any domain,
all these approaches ([44], [9], and [45]) are specific to the robotic domain
and work well only for enforcer modules to synthesize of small size due to
the same limitations of the logical and algorithmic solutions of the synthesis
problem.
In [37], a general approach to automatically synthesize enforcer compo-
nents, called safety guards, from a formal specification (a Mealy machine)
of safety properties for safety-critical cyber-physical systems is presented.
Other similar approaches based on the synthesis of enforcement mechanisms
from automaton-based formal specifications of the enforcement strategy are
reviewed in [7]. Unlike all these synthesis approaches that have been vali-
dated on small benchmarking examples and can be, as any code generation,
error-prone and difficult to test, we rely instead on using directly the en-
forcement formal model at run-time by connecting it directly with the tar-
get system, namely we carry out run-time execution (or simulation) of the
safety formal specification in tandem with the target system. The software
enforcer relies on a feedback loop equipped with an enforcement model (an
ASM@run.time) that is updated at run-time, when new knowledge about
safety changing conditions becomes available; the enforcer uses this model
to plan and apply an enforcement strategy (according to the behavior spec-
ified in the ASM@run.time) by adapting the target system. The proposed
approach was inspired from model-based simulation at runtime successfully
adopted to enable efficient decision-making in self-adaptive systems, usually
to assess extra-functional quality properties [46]. Simulation, in general, is
less time and resource consuming compared with exhaustive verification tech-
niques, and it is, therefore, particularly advantageous at run-time, when time
and resources are often constrained [6].

11. Conclusion

We proposed a runtime safety enforcement framework to assure safe execution
of a software system. The framework monitors and keeps the system behavior
in line with a set of safety requirements by anticipating incorrect behavior and
countering it before it actually happens. The enforcer acts as an autonomic
manager that wraps around the managed system and analyses and controls
the system’s operational changes and interactions with the environment with
the help of an ASM used as runtime enforcement model.

38

In general, formal methods and analysis techniques are fundamental for en-
suring the safe and correct behavior of a system and for mitigating potential
hazards. The two trends, namely design-time and run-time analyses, are
pointing to a new way of analyzing safety-critical software, which embraces
the rigor of safety-critical formal analysis environments during the system
design or development, while experiencing the benefits of run-time analysis
when the system is operating.
In the future, we want to evaluate the generality of the proposed enforcement
framework by targeting other systems and real-world application domains.
In particular, we want to adopt our enforcement framework as an autonomic
middleware to retrofit pre-existing systems/legacy systems (e.g., Software as
a Medical Device) and secure them with external autonomic capabilities, thus
avoiding costly device offline repairs/recalls. Furthermore, we will investigate
on the problem of deciding whether a given set of (possible interfering) safety
goals are enforceable or not through a gray-box enforcement mechanism. To
this end we want to explore the use of ASMs for formally specifying complex
enforcement strategies and for automatically detecting possible interferences.
For this refined setting, we will give necessary and sufficient conditions on
when and how a safety assertion is enforceable during the execution of the
system and of the MAPE-K loop. In addition, we want to explore the ap-
plicability of our safety enforcement approach to autonomous systems whose
runtime behavior is highly unpredictable, such as AI-based systems. In par-
ticular, we want to explore the runtime use of probabilistic ASMs or other
state-based stochastic formalism to model and incorporate uncertainty issues
explicitly [47] within the enforcement process.

References

[1] N. Leveson, Are You Sure Your Software Will Not Kill Anyone?, Com-
mun. ACM 63 (2020). doi:10.1145/3376127.

[2] R. R. Lutz, Software Engineering for Safety: A Roadmap, in: Proceed-
ings of the Conference on The Future of Software Engineering, ICSE
’00, Association for Computing Machinery, 2000. doi:10.1145/336512.
336556.

[3] M. Trapp, D. Schneider, Safety Assurance of Open Adaptive Systems –
A Survey, Springer International Publishing, Cham, 2014. doi:10.1007/
978-3-319-08915-7_11.

39

http://dx.doi.org/10.1145/3376127
http://dx.doi.org/10.1145/336512.336556
http://dx.doi.org/10.1145/336512.336556
http://dx.doi.org/10.1007/978-3-319-08915-7_11
http://dx.doi.org/10.1007/978-3-319-08915-7_11

[4] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, T. Kelly,
Engineering trustworthy self-adaptive software with dynamic assurance
cases, IEEE Transactions on Software Engineering 44 (2018). doi:10.
1109/TSE.2017.2738640.

[5] A. Bennaceur, C. Ghezzi, K. Tei, T. Kehrer, D. Weyns, R. Calinescu,
S. Dustdar, Z. Hu, S. Honiden, F. Ishikawa, Z. Jin, J. Kramer, M. Litoiu,
M. Loreti, G. Moreno, H. Müller, L. Nenzi, B. Nuseibeh, L. Pasquale,
W. Reisig, H. Schmidt, C. Tsigkanos, H. Zhao, Modelling and Analysing
Resilient Cyber-Physical Systems, in: 2019 IEEE/ACM 14th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2019. doi:10.1109/SEAMS.2019.00018.

[6] R. Calinescu, S. Kikuchi, Formal methods @ runtime, in: R. Calinescu,
E. Jackson (Eds.), Foundations of Computer Software. Modeling, De-
velopment, and Verification of Adaptive Systems, Springer Berlin Hei-
delberg, 2011. doi:10.1007/978-3-642-21292-5_7.

[7] Y. Falcone, L. Mariani, A. Rollet, S. Saha, Runtime Failure Prevention
and Reaction, Springer International Publishing, Cham, 2018. doi:10.
1007/978-3-319-75632-5_4.

[8] B. Andersson, S. Chaki, D. de Niz, Combining Symbolic Runtime
Enforcers for Cyber-Physical Systems, in: S. K. Lahiri, G. Reger
(Eds.), Runtime Verification - 17th International Conference, RV 2017,
volume 10548 of Lecture Notes in Computer Science, Springer, 2017.
doi:10.1007/978-3-319-67531-2_5.

[9] D. de Niz, B. Andersson, G. Moreno, Safety enforcement for the verifi-
cation of autonomous systems, in: M. C. Dudzik, J. C. Ricklin (Eds.),
Autonomous Systems: Sensors, Vehicles, Security, and the Internet of
Everything, volume 10643, International Society for Optics and Photon-
ics, SPIE, 2018. doi:10.1117/12.2307575.

[10] Y. Falcone, L. Mounier, J. Fernandez, J. Richier, Runtime enforcement
monitors: composition, synthesis, and enforcement abilities, Formal
Methods Syst. Des. 38 (2011). doi:10.1007/s10703-011-0114-4.

[11] Y. He, J. Schumann, A framework for the analysis of adaptive systems
using bayesian statistics, in: Proceedings of the IEEE/ACM 15th In-

40

http://dx.doi.org/10.1109/TSE.2017.2738640
http://dx.doi.org/10.1109/TSE.2017.2738640
http://dx.doi.org/10.1109/SEAMS.2019.00018
http://dx.doi.org/10.1007/978-3-642-21292-5_7
http://dx.doi.org/10.1007/978-3-319-75632-5_4
http://dx.doi.org/10.1007/978-3-319-75632-5_4
http://dx.doi.org/10.1007/978-3-319-67531-2_5
http://dx.doi.org/10.1117/12.2307575
http://dx.doi.org/10.1007/s10703-011-0114-4

ternational Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 2020. doi:10.1145/3387939.3391596.

[12] J. Andersson, V. Grassi, R. Mirandola, D. Perez-Palacin, A concep-
tual framework for resilience: fundamental definitions, strategies and
metrics, Computing (2020). doi:10.1007/s00607-020-00874-x.

[13] D. Garlan, B. R. Schmerl, S. Cheng, Software Architecture-Based Self-
Adaptation, in: Autonomic Computing and Networking, 2009, pp. 31–
55. doi:10.1007/978-0-387-89828-5_2.

[14] E. Börger, A. Raschke, Modeling Companion for Software Practitioners,
Springer, Berlin, Heidelberg, 2018. doi:10.1007/978-3-662-56641-1.

[15] E. Riccobene, P. Scandurra, Model-Based Simulation at Runtime with
Abstract State Machines, in: Software Architecture - 14th Euro-
pean Conference, ECSA 2020 Tracks and Workshops, Proceedings, vol-
ume 1269 of Communications in Computer and Information Science,
Springer, 2020. doi:10.1007/978-3-030-59155-7_29.

[16] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Com-
puter 36 (2003). doi:10.1109/MC.2003.1160055.

[17] A. Bombarda, S. Bonfanti, A. Gargantini, Developing Medical Devices
from Abstract State Machines to Embedded Systems: A Smart Pill
Box Case Study, in: M. Mazzara, J.-M. Bruel, B. Meyer, A. Petrenko
(Eds.), Software Technology: Methods and Tools, Springer International
Publishing, Cham, 2019.

[18] A. Abba, et al., The novel mechanical ventilator milano for the covid-19
pandemic, Physics of Fluids 33 (2021) 037122. doi:10.1063/5.0044445.

[19] S. Bonfanti, E. Riccobene, P. Scandurra, A runtime safety enforce-
ment approach by monitoring and adaptation, in: S. Biffl, E. Navarro,
W. Löwe, M. Sirjani, R. Mirandola, D. Weyns (Eds.), Software Ar-
chitecture, Springer International Publishing, Cham, 2021, pp. 20–36.
doi:10.1007/978-3-030-86044-8_2.

[20] E. Riccobene, P. Scandurra, Exploring the concept of abstract
state machines for system runtime enforcement, in: A. Raschke,
D. Méry, F. Houdek (Eds.), Rigorous State-Based Methods, Springer

41

http://dx.doi.org/10.1145/3387939.3391596
http://dx.doi.org/10.1007/s00607-020-00874-x
http://dx.doi.org/10.1007/978-0-387-89828-5_2
http://dx.doi.org/10.1007/978-3-662-56641-1
http://dx.doi.org/10.1007/978-3-030-59155-7_29
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1063/5.0044445
http://dx.doi.org/10.1007/978-3-030-86044-8_2

International Publishing, Cham, 2020, pp. 244–247. doi:10.1007/
978-3-030-48077-6_18.

[21] A. Bennaceur, R. France, G. Tamburrelli, T. Vogel, P. J. Moster-
man, W. Cazzola, F. M. Costa, A. Pierantonio, M. Tichy, M. Akşit,
P. Emmanuelson, H. Gang, N. Georgantas, D. Redlich, Mecha-
nisms for Leveraging Models at Runtime in Self-adaptive Software,
Springer International Publishing, Cham, 2014, pp. 19–46. doi:10.1007/
978-3-319-08915-7_2.

[22] Y. V. Tendeloo, S. V. Mierlo, H. Vangheluwe, A multi-paradigm mod-
elling approach to live modelling, Software and Systems Modeling 18
(2019). doi:10.1007/s10270-018-0700-7.

[23] ASMETA (ASM mETAmodeling) toolset, 2022. URL: https://
asmeta.github.io/.

[24] P. Arcaini, A. Bombarda, S. Bonfanti, A. Gargantini, E. Riccobene,
P. Scandurra, The ASMETA approach to safety assurance of software
systems, in: A. Raschke, E. Riccobene, K. Schewe (Eds.), Logic, Com-
putation and Rigorous Methods - Essays Dedicated to Egon Börger on
the Occasion of His 75th Birthday, volume 12750 of Lecture Notes in
Computer Science, Springer, 2021, pp. 215–238.

[25] P. Arcaini, E. Riccobene, P. Scandurra, Formal Design and Verifica-
tion of Self-Adaptive Systems with Decentralized Control, ACM Trans.
Auton. Adapt. Syst. 11 (2017). doi:10.1145/3019598.

[26] P. Arcaini, E. Riccobene, P. Scandurra, Modeling and Analyzing MAPE-
K Feedback Loops for Self-adaptation, in: Proceedings of the 10th In-
ternational Symposium on Software Engineering for Adaptive and Self-
Managing Systems, ACM, 2015. doi:10.1109/SEAMS.2015.10.

[27] P. Arcaini, R. Mirandola, E. Riccobene, P. Scandurra, MSL: A pat-
tern language for engineering self-adaptive systems, J. Syst. Softw. 164
(2020) 110558. URL: https://doi.org/10.1016/j.jss.2020.110558.
doi:10.1016/j.jss.2020.110558.

[28] E. Riccobene, P. Scandurra, A formal framework for service modeling
and prototyping, Formal Aspects Comput. 26 (2014). doi:10.1007/
s00165-013-0289-0.

42

http://dx.doi.org/10.1007/978-3-030-48077-6_18
http://dx.doi.org/10.1007/978-3-030-48077-6_18
http://dx.doi.org/10.1007/978-3-319-08915-7_2
http://dx.doi.org/10.1007/978-3-319-08915-7_2
http://dx.doi.org/10.1007/s10270-018-0700-7
https://asmeta.github.io/
https://asmeta.github.io/
http://dx.doi.org/10.1145/3019598
http://dx.doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1016/j.jss.2020.110558
http://dx.doi.org/10.1016/j.jss.2020.110558
http://dx.doi.org/10.1007/s00165-013-0289-0
http://dx.doi.org/10.1007/s00165-013-0289-0

[29] J. Kramer, RE @ runtime : the challenge of change re’20 conference
keynote, in: T. D. Breaux, A. Zisman, S. Fricker, M. Glinz (Eds.), 28th
IEEE International Requirements Engineering Conference, RE 2020,
Zurich, Switzerland, August 31 - September 4, 2020, IEEE, 2020, pp.
4–6. doi:10.1109/RE48521.2020.00012.

[30] E. B. Fernandez, B. Hamid, Two Safety Patterns: Safety Assertion and
Safety Assertion Enforcer, in: Proceedings of the 22nd European Con-
ference on Pattern Languages of Programs, EuroPLoP ’17, Association
for Computing Machinery, 2017. doi:10.1145/3147704.3147737.

[31] M. Renard, A. Rollet, Y. Falcone, Runtime enforcement of timed
properties using games, Formal Aspects Comput. 32 (2020) 315–360.
doi:10.1007/s00165-020-00515-2.

[32] P. Arcaini, E. Riccobene, P. Scandurra, Formal design and verification
of self-adaptive systems with decentralized control, ACM Trans. Auton.
Adapt. Syst. 11 (2017) 25:1–25:35. URL: https://doi.org/10.1145/
3019598. doi:10.1145/3019598.

[33] P. Arcaini, A. Gargantini, E. Riccobene, Automatic review of abstract
state machines by meta property verification, in: C. A. Muñoz (Ed.),
Second NASA Formal Methods Symposium - NFM 2010, Washington
D.C., USA, April 13-15, 2010. Proceedings, volume NASA/CP-2010-
216215 of NASA Conference Proceedings, 2010, pp. 4–13.

[34] D. Schubert, C. Heinzemann, C. Gerking, Towards Safe Execution of
Reconfigurations in Cyber-Physical Systems, in: 19th International
ACM SIGSOFT Symposium on Component-Based Software Engineer-
ing, CBSE 2016, Venice, Italy, April 5-8, 2016, IEEE Computer Society,
2016. doi:10.1109/CBSE.2016.10.

[35] N. G. Mohammadi, Trustworthy Cyber-Physical Systems - A System-
atic Framework towards Design and Evaluation of Trust and Trustwor-
thiness, Springer Vieweg, 2019. doi:10.1007/978-3-658-27488-7.

[36] J. Reich, D. Schneider, I. Sorokos, Y. Papadopoulos, T. Kelly, R. Wei,
E. Armengaud, C. Kaypmaz, Engineering of Runtime Safety Monitors
for Cyber-Physical Systems with Digital Dependability Identities, in:
A. Casimiro, F. Ortmeier, F. Bitsch, P. Ferreira (Eds.), Computer Safety,

43

http://dx.doi.org/10.1109/RE48521.2020.00012
http://dx.doi.org/10.1145/3147704.3147737
http://dx.doi.org/10.1007/s00165-020-00515-2
https://doi.org/10.1145/3019598
https://doi.org/10.1145/3019598
http://dx.doi.org/10.1145/3019598
http://dx.doi.org/10.1109/CBSE.2016.10
http://dx.doi.org/10.1007/978-3-658-27488-7

Reliability, and Security - 39th International Conference, SAFECOMP
2020, Lisbon, Portugal, September 16-18, 2020, Proceedings, volume
12234 of Lecture Notes in Computer Science, Springer, 2020. doi:10.
1007/978-3-030-54549-9_1.

[37] M. Wu, H. Zeng, C. Wang, H. Yu, Safety Guard: Runtime Enforcement
for Safety-Critical Cyber-Physical Systems: Invited, in: Proceedings of
the 54th Annual Design Automation Conference, ACM, 2017. doi:10.
1145/3061639.3072957.

[38] P. Arcaini, A. Gargantini, E. Riccobene, CoMA: Conformance monitor-
ing of Java programs by Abstract State Machines, in: Runtime Veri-
fication, volume 7186 of Lecture Notes in Computer Science, Springer,
2012. doi:10.1007/978-3-642-29860-8_17.

[39] H. Liang, J. S. Dong, J. Sun, W. E. Wong, Software monitoring
through formal specification animation, ISSE 5 (2009). doi:10.1007/
s11334-009-0096-1.

[40] U. Erlingsson, F. B. Schneider, SASI Enforcement of Security Policies: A
Retrospective, in: Proceedings of the 1999 Workshop on New Security
Paradigms, NSPW ’99, Association for Computing Machinery, 1999.
doi:10.1145/335169.335201.

[41] O. Riganelli, D. Micucci, L. Mariani, Policy Enforcement with Proactive
Libraries, in: 12th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, IEEE Computer
Society, 2017. doi:10.1109/SEAMS.2017.9.

[42] O. Riganelli, D. Micucci, L. Mariani, Controlling Interactions with Li-
braries in Android Apps Through Runtime Enforcement, ACM Trans.
Auton. Adapt. Syst. 14 (2019). doi:10.1145/3368087.

[43] A. Church, Logic, arithmetic, and automata, Journal of Symbolic Logic
29 (1964) 210–210. doi:10.2307/2270398.

[44] A. Desai, S. Ghosh, S. A. Seshia, N. Shankar, A. Tiwari, SOTER:
A Runtime Assurance Framework for Programming Safe Robotics Sys-
tems, in: 49th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, 2019. doi:10.1109/DSN.2019.00027.

44

http://dx.doi.org/10.1007/978-3-030-54549-9_1
http://dx.doi.org/10.1007/978-3-030-54549-9_1
http://dx.doi.org/10.1145/3061639.3072957
http://dx.doi.org/10.1145/3061639.3072957
http://dx.doi.org/10.1007/978-3-642-29860-8_17
http://dx.doi.org/10.1007/s11334-009-0096-1
http://dx.doi.org/10.1007/s11334-009-0096-1
http://dx.doi.org/10.1145/335169.335201
http://dx.doi.org/10.1109/SEAMS.2017.9
http://dx.doi.org/10.1145/3368087
http://dx.doi.org/10.2307/2270398
http://dx.doi.org/10.1109/DSN.2019.00027

[45] R. Bohrer, Y. K. Tan, S. Mitsch, A. Sogokon, A. Platzer, A formal safety
net for waypoint-following in ground robots, IEEE Robotics and Au-
tomation Letters 4 (2019) 2910–2917. doi:10.1109/LRA.2019.2923099.

[46] D. Weyns, M. U. Iftikhar, Model-Based Simulation at Runtime for Self-
Adaptive Systems, in: S. Kounev, H. Giese, J. Liu (Eds.), 2016 IEEE
International Conference on Autonomic Computing, ICAC 2016, IEEE
Computer Society, 2016. doi:10.1109/ICAC.2016.67.

[47] M. Camilli, A. Gargantini, P. Scandurra, Model-based hypothesis test-
ing of uncertain software systems, Softw. Test. Verification Reliab. 30
(2020). doi:10.1002/stvr.1730.

45

http://dx.doi.org/10.1109/LRA.2019.2923099
http://dx.doi.org/10.1109/ICAC.2016.67
http://dx.doi.org/10.1002/stvr.1730

	Introduction
	Illustrative case studies
	MRM
	MVM

	Preliminaries and definitions
	Self-adaptation and runtime models
	Runtime enforcement concepts and definitions
	Abstract State Machines

	The RSE approach to safety enforcement
	Reference architectural schemes for the RSE enforcement mechanisms
	Black-box enforcement
	Gray-box enforcement

	ASMs as runtime enforcement models within RSE

	RSE process
	Enforcement strategies formulation
	MRM Safety Enforcement Scenarios
	Black-box Safety Enforcement Scenarios
	Gray-box Safety Enforcement Scenarios

	MVM Safety Enforcement Scenarios
	Black-box Safety Enforcement Scenarios
	Gray-box Safety Enforcement Scenarios

	Runtime enforcement models
	MRM enforcement models
	MVM enforcement models

	RSE framework implementation and instantiation
	RSE Evaluation
	RSE at work
	Threats to validity

	Related work
	On runtime assurance of system safety
	On runtime enforcement techniques

	Conclusion

