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Abstract 
 

Somatic evolution, the process by which cells acquire genetic and epigenetic changes 

throughout an individual’s lifetime, underlies both normal development and diseases like 

cancer. Single-cell lineage tracing (scLT) has emerged as a powerful approach to study 

these cellular dynamics, especially in primary tissues. In this scenario, mtDNA variants 

(MT-SNVs) have gained special attention recently, due to their low-profiling costs and 

compatibility with other informative cell-state modalities.  

This thesis introduces MiTo, an novel toolkit for MT-SNV-based scLT. MiTo provides an 

integrated pipelines for flexible preprocessing of scLT data, lineage inference, and 

interactive exploration of MT-SNV-derived phylogenies and clonal structures. MiTo 

integrates seamlessly with popular single-cell analysis libraries, filling a significant gap in 

the scLT community. To benchmark MiTo, we generated a new single-cell multi-modal 

dataset, with simultaneous and longitudinal profiling of gene expression, expressed MT-

SNVs, and lentiviral barcode labels. We used this dataset to benchmark several tasks in 

MT-SNVs based scLT (MT-scLT), demonstrating superior performance of MiTo compared 

to state-of-the-art tools.  

Here, we found that informative MT-SNVs spaces may include even rare (i.e., 0.02-0.03 

allelic frequency in at least 2 cells, and mean 1.2-1.5 alternative UMIs) detection events, 

but that statistically sound MT-SNVs genotyping methods are needed to handle the 

intrinsic noise of single-cell measurement, especially in high-clonal-complexity scenarios. 

Moreover, we show that MT-SNVs-based-phylogenies (MT-phylogenies) exhibit 

remarkable robustness to noise, even though the constrained number of available 

characters limits their resolution. Finally, by tracing clonally-enriched MT-SNVs, we show 

that multiple sub-clonal lineages within individual clones participate to the metastatic 

dissemination in Breast Cancer xenografts, implying stronger lineage-dependency of the 

metastatic phenotype in Breast Cancer that previously thought.  

In summary, this work highlights opportunities and limitations of MT-scLT, providing novel 

data analysis tools and benchmarking datasets, and demonstrating the power of scLT to 

investigate complex cellular dynamics in somatic evolution. 
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Introduction 
 

Cancer evolution 
Malignant cells arise, adapt and survive through acquisition and selection of molecular 

modifications. Across decades, several attempts have been made to reduce the multi-

faceted nature of this process into a reasonable number of universal features. Since 2001, 

the conceptualization of “Cancer hallmarks” by Hanahan and Weinberg 1,2 represented 

one of the most successful and recognized efforts in this direction. Originally six and more 

recently updated to eight, “Cancer hallmarks” currently comprise: the ability of cancer cell 

to 1) sustain proliferative signalling, 2) evade growth suppressors, 3) resist cell death, 4) 

unlock replicative immortality, 4) induce/access vasculature, 5) invade adjacent and distal 

tissue, 7) reprogram cellular metabolism, and 8) avoiding immune destruction. Genome 

instability and tumor-promoting inflammation have been recently added to this scheme as 

“enabling characteristics”, i.e., cellular molecular mechanisms by which hallmarks are 

acquired, rather than distinctive capabilities by themselves. Together, these traits fix in a 

defined number of abstract categories distinct features of cancer cells, and provide a 

unifying scaffold that holds together the overwhelming phenotypic heterogeneity observed 

both in the clinics and in experimental models. However, recent years have made 

increasingly clear that cancer should be considered more like a systemic disease rather 

than a localized, tissue-specific condition, as the role of non-cell-autonomous processes 

has been more and more appreciated. In particular, it has been demonstrated how cellular 

interactions within the Tumor Micro-Environment (TME) - defined as heterogeneous 

population of cancer stromal and immune – play a fundamental role in shaping the disease 

biology 3,4. As previously recognized 1, despite its utility, any reductionist conceptualization 

scheme fails to address the full complexities of cancer pathogenesis, namely, the precise 

molecular and cellular mechanisms that allow evolving pre-neoplastic cells to develop the 

aberrant phenotypic capabilities that fuel malignant progression.  

In this scenario, the most universal and defining trait of cancer is arguably its evolvability, 

i.e., the capacity to evolve, the ability of cancer cells to generate molecular variation that 

is selected and remodelled by the environment5. In essence, cancer is the evolutionary 

process through which a subset of “outlaw” cells in a multi-cellular organism breaks their 

contract with multi-cellularity to begin a new, de-regulated life6. In ecological terms, cancer 
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cells are endogenous, fast-evolving parasites attacking their host organism until stopped 

by environmental constraints, or by the organism collapse. Thus, it is not surprising that 

evolutionary concepts have been adopted to study and measures cancer biology and 

evolution since the very first days of cancer research. The evolution theory is one of the 

oldest paradigms used to study cancer biology. Since the seminal work of Nowell in 1976 
7, the evolution of cancer has been recognized as “clonal”. In cell biology, a ”clone” is the 

group of cells that stems from an single ancestor after a sequence of cellular division 

aancestor, while generating additional molecular changes at each cell division that can be 

potentially passed to the off-spring. Despite recent emerging evidence suggesting how 

cancer evolution might be initiated by multiple, independent cellular ancestors9, the simple 

idea of multiple cancer clones (or lineages) competing for their ecological niche in their 

host naturally fits almost all the scattered biological knowledge that we have on such a 

disease 5,6.  

 

 
 

Fig 1. Cancer evolution. Readapted from Cirello et al. 6. 

 

Currently, two unanswered questions dominate the current view of cancer evolution: i) 

What is the modality through which cancer evolve? Is cancer evolution Darwinian, 

Lamarkian, or a mix of both? ii) Are inheritable genetic (i.e., mutations) and epi-genetic 

(i.e., DNA methylation, histone-modifications, chromatin structure) or transiently acquired 

(i.e., non-heritable gene expression changes) traits the driving force of cancer? What is 

the most relevant molecular layer through which disease phenotypes are encoded? 5,6 

Dividing cells accumulate mutations throughout a lifetime producing genetic heterogeneity, 

the substrate for Darwinian evolution. Mutations are thought to emerge randomly, and are 

distributed across the genome as the result of DNA damage/repair or inaccuracies of the 
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DNA replication process. In cancer cells, mutations accumulate over time, gradually or in 

more punctuated or even catastrophic manner, with the resulting Intra-Tumoral-

Heterogeneity (ITH)10 recognized as a pervasive feature in human cancers. Whereas most 

somatic mutations have neutral phenotypic effects (i.e., passenger mutations), occasional 

mutations may confer a selective advantage to the cell (i.e., driver mutations), potentially 

leading to clonal expansion. These driver mutations can alter cell fitness through different 

mechanisms. “Classic” driver mutations were limited to well-characterized protein-coding 

genes, i.e., Loss of Function mutations in tumor suppressor and Gain of Function 

mutations in oncogenes, with easily interpretable links between genetic alterations and de-

regulated protein functions and pathways. However, it is now more and more appreciated 

how somatic mutations in more broadly acting genes (i.e., epigenetic factors) may cause 

global de-regulation of expression programs sustaining the malignant phenotypes10 12. 

Indeed, this has been shown also for non-coding mutations and structural variants, more 

complex genetic aberrations for which direct mechanistic links to malignant phenotypes 

are more elusive. Even with a well-annotated catalogue of mutational processes and 

cancer drivers, the causal route to tumor initiation and progression still remains unclear. 

According to the old multi-step carcinogenesis theory, cancer development is the result of 

multi-step driver mutations accumulation, with the gradual acquisition of the malignant 

phenotype mirrored by single mutational hits13. However, this simplistic view was 

challenged by the recent discovery of ubiquitous clonal selection of cancer drivers in 

normal tissue mosaicism, which confirmed that human tumorigenesis requires specific 

combinations of genetic and, possibly, non-genetic alterations 10,12. Considering only 

genetic changes, analyses of large tumor cohorts indeed showed that some mutation 

combinations can be non-random, i.e., specific sets of mutations are more frequently 

observed together than expected by chance (co-occurring mutations), while others are 

rarely or never found together (mutually exclusive mutations) 11 . These non-random co-

mutation patterns highlighted evolutionary trajectories where the timing and occurrence of 

specific genetic lesions contribute to induce malignant phenotypic changes. However, the 

presence of cancer drivers in phenotypically normal cells 14, together with the existence of 

tumors with minimal presence of genetic aberrations15, still suggests that additional, non-

genetic mechanisms are required to induce overt malignancies.  

In recent years, the notion of heterogeneous “cancer cell states” in otherwise genetically 

identical cells has gained traction. The existence of these cellular states has been 

discovered by transcriptional and/or epigenetic profiling of individual tumor cells, with the 

term “state” potentially integrating static (genetic) and dynamic and reversible (epigenetic 

and transcriptional) determinants16,17. Specifically, the vast majority of annotated cancer 

cell states have been identified from single cell data using methods that factorize high-
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dimensional phenotypic read-outs (e.g., gene expression or chromatin accessibility 

counts) into a much smaller number of orthogonal regulatory programs. Such programs 

are either themselves defined as cell states, or clustered into cell states, consistent with 

the notion that cell phenotypes are the result of concurrent activation of different biological 

processes18. Interestingly, one of the cellular mechanisms underlying this major source of 

phenotypic heterogeneity is cell plasticity, a well-known concept in developmental 

biology6.19,20  

Despite sharing the same genome, any given cell must be able to respond to chemical 

and positional cues in its surroundings. This property enables the zygote to develop into a 

full multi-cellular organism, giving rise to a hierarchy of phenotypically distinct cells, 

specialized tissues and organs. Post-development, normal cells must still be able to 

respond to environmental perturbation (e.g., in wound healing) to ensure that tissue 

integrity and homeostasis are maintained. These known (de-)differentiation processes are 

regulated by epigenetic factors that are capable of reshaping the reading frame through 

which genome is expressed, switching on and off alternative expression programs. In the 

early days of epigenetics, genetic constraints regulating these phenotypic transitions have 

been depicted as an imaginary potential energy surface (i.e., the Waddington landscape) 

upon which cells committing to specialised cell types (or de-differentiating into high-

potency states) roll up and down 21. This “canalized” nature of cell identity and behaviour 

if fundamental for tissue homeostasis. Since all molecular interactions controlling gene 

expression are inherently noisy, higher-order organisms evolved complex genetic 

interactions able to repress harmful, uncontrolled regulatory switches. On the contrary, in 
cancer, these genetic constraints are extensively rewired19. Thus, when the fitness of a 

tumour cell becomes its ability to survive and proliferate in face of a changing environment, 

the molecular machinery controlling phenotypic plasticity can be co-opted as an 

extraordinary adaptation tool, opening the possibility for non-Darwinian evolution, deeply 

influenced by the environment. In summary, compared to normal developmental cell types, 

cancer cell states are much more transient, inducible, and potentially, reversible. Crucially, 

these properties have many fundamental clinical implications: i) genetically identical cells 

may be phenotypically heterogeneous, implementing different functions that are all needed 

to foster disease progression and treatment resistance. Therefore, targeting the right cell 

state/state transitions could become an important therapeutic strategy to control the 

disease; ii) treatment and micro-environmental conditions likely perturb cancer cell states, 

potentially driving state transitions among them. Rational, evolutionary-informed treatment 

designs could help predict such damaging phenotypic transitions, avoiding unwanted and 

potentially harmful treatment side-effects; (iii) there might be opportunities to revert cancer 

cell malignant states, or at least, to redirect them towards more harmless cellular 
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phenotypes. Precise identification of the molecular determinants sustaining cancer cell 

states is fundamental to achieve rational interception of each patient’s disease trajectory; 

iv) Each human genome has its unique genetic make-up and predispositions to cancer. 

However, specific environmental conditions may be required for a full malignant 

transformation to take place. A comprehensive dissection of these additional enabling 

factors would be fundamental in cancer prevention and it the early stages of the disease 
5,6,19. 

Importantly, genetic and non-genetic mechanisms of cancer evolution are by no means 

mutually exclusive. Genotype and phenotype integrate with environmental cues to produce 

functional cell states and behaviours. This realization dramatically shifts the area of 

interest of cancer evolution as an entire field, from the simple characterization of genetic 

paths associated with specific clonal dynamics to a more integrated view of cancer as a 

complex cellular system, able to evolve through different molecular mechanisms, some of 

which reversible, and therefore, open to pharmacological modulation and/or prevention. 

This new conceptual framework translates the gene-centric view of a prime cancer 

evolution to an emerging, cell-centric and multi-omic view. This is how emerging methods 

in single-cell biology have met long-standing questions in cancer biology and evolution, as 

we will see in the next chapters. 

 

Single-cell multi-omics 
For more than two decades now, bulk DNA and RNA sequencing measured molecular 

information recording billions of digital from individual DNA (or cDNA) molecules. Despite 

being an incredible breakthrough in the early 00s, the output of a bulk sequencing 

experiment represents “average” read-outs across sampled cells, posing significant 

challenges in the precise deconvolution of cellular states from complex cellular mixtures22. 

Dedicated bioinformatic tools have been developed to estimate the relative proportions of 

cell types in complex tissues from their gene expression profiles23, but low intensity signals 

from rare cell populations might remain undetectable with bulk, which precludes 

identification of rare (yet potentially relevant functionally) cell populations. Since the 

beginning of the early 10s, single-cell assays came to the stage. Based on different 

chemistries for molecular barcoding, these sequencing platforms allow profile molecular 

content of individual cells, providing high-resolution representations of cell types and 

states in development24, immunity25, ageing26, and cancer12. Due to this unprecedented 

resolution, single-cell techniques have revolutionized how we understand cell 

heterogeneity, mechanisms of gene regulation, protein expression dynamics and 

epigenetic variation.  
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Different molecular layers can be probed with single-cell sequencing. In recent years, a 

great variety of protocols came out, each measuring one of more molecular layers (e.g., 

DNA, RNA, proteins, post-translational modifications, chromatin accessibility, DNA 

methylation, genome organization, to name a few). Here, we will focus primarily on single-

cell RNA sequencing (scRNA-seq, the main single-cell sequencing technology adopted in 

this work) and single-cell DNA sequencing (scDNA-seq, to highlights challenges in cost-

effectiveness, scalability, and reliability of molecular information retrieved from low input 

DNA protocols). Then, we will give a brief and general overview of existing multi-omics 

methods, and their application landscape. 

 In 2009, the first scRNA-seq method was reported26. The field has rapidly developed ever 

since, dividing into two main categories: plate-based and droplet-based transcriptomics. 

Plate-based scRNA-seq protocols isolate cells into unique micro-wells for single-cell library 

preparation28. Specifically, the first step usually entails cell sorting by, for example, 

fluorescent-activated cell sorting (FACS), where cells are sorted according to specific cell 

surface markers; or by micro pipetting. The selected cells are then placed into individual 

wells containing cell lysis buffers, where subsequently reverse transcription is carried out.  

 

 

 
 
Fig.2 Single-cell multi-omics layers. Readapted from Nam et al., 10 

 

This allows for several hundreds of cells to be analyzed in a single experiment with 5000 

to 10000 captured genes each. These protocols provide full-length information about RNA-

molecules, with library preparation steps very similar to bulk RNA-seq sequencing. In spite 

of positional coverage biases of these protocols is that they: i) allow genotyping of variants 
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across the whole transcript length, and ii) allow detection of splice variants. However, these 

protocols are generally more expensive and have less throughput than other droplet-based 

protocols 29. Droplet-based protocols isolate cells into droplets to create cell-specific 

reaction chambers into which individual transcripts are labeled (for their cell and molecular 

identity) before amplification and sequencing. Specifically, individual cells are 

encapsulated in nanoliter-sized hydrogel-droplets with specialized microbeads. Despite 

differences across protocols (e.g., inDrops30, Drop-seq31, 10x31) regarding the nature of 

the beads and the mechanics of this encapsulation process, these micro-beads have 

attached primers containing a PCR handle, a cell barcode (CB) and unique molecular 

identifier (UMI) and a poly-T tail (or in the case of a 5’ kit, there will be a poly-T primer.). 

Upon lysis the cell’s mRNA is instantaneously released and captured by the barcoded 

oligonucleotides that are attached on the beads. Next, the droplets are collected and 

broken to release single-cell transcriptomes attached to microparticles (STAMPs). This is 

followed by PCR and reverse transcription to capture and amplify the transcripts. Finally, 

tagmentation takes place where the transcripts are randomly cut and sequencing adaptors 

get attached. This process results in sequencing libraries that are ready for sequencing. 

In microfluidic based protocols only about 10% of the transcripts of the cell are recovered. 

However, this low sequencing is sufficient for robust identification of cell types. These 

protocols usually sequence only the 3’ or 5’ ends of the transcripts, making it difficult to 

unambiguously align reads to a transcript and distinguishing between different isoforms. 

However, the use of UMIs allows accurate identification of PCR duplicates, an important 

task for downstream analysis33. 

The typical scRNA-seq analysis workflow goes as follows34: raw reads from single-cell 

sequencing are aligned to a reference, and reads/UMI counts are recorded for each gene 

feature, to retrieve cell x genes counts matrices. To ensure that only high-quality cells are 

captured, count matrices are corrected for cell-free ambient RNA and filtered for doublets 

and low-quality or dying cells. The latter is done by removing outliers with respect to quality 

control metrics (the number of counts per barcode, called count depth or library size, the 

number of genes per barcode and the fraction of counts from mitochondrial genes per 

barcode (percentage  mito.)). Then, in order to compare gene expression among cells raw 

counts are normalized to correct for cell-specific technical effects influencing capture 

efficiency. Single-cell RNA sequencing (scRNA-seq) data sets can contain counts for up 

to 30,000 genes for humans. However, most genes are not informative, with many genes 

having no observed expression. Therefore, the most variably expressed genes are 

selected, and, especially with complex experimental design or single-cell atlases, batches 

of data need to be integrated to get harmonized dataset with preserved biological variation 

and limited technical factors influencing cell-cell differences in gene expression35,36. This 
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corrected gene expression space (either batch-corrected counts, denoised latent space or 

kNN graph) is then used for downstream analyses. A gene expression space can then be 

organized into discrete clusters, which represent groups of cells with similar gene 

expression profiles, annotated by labels of interest such as cell type. This annotation can 

be conducted manually using prior knowledge or with automatic annotation approaches 

able to transfer biological labels with query-to-reference mapping37. Continuous 

processes, such as transitions between cell identities during differentiation or 

reprogramming, can be inferred to describe cellular diversity that does not fit into discrete 

classes38. Gene regulatory networks and gene modules can be inferred from gene-gene 

correlations across cells39.  Depending on the question of interest and experimental set-

up, conditions in the data set can be tested for upregulated or downregulated genes 

(differential expression analysis), effects on pathways (gene set enrichment) and changes 

in cell-type composition34. Perturbation modelling enables the assessment of the effect of 

induced perturbations and the prediction of unmeasured perturbations40,41. Moreover, 

expression patterns of ligands and receptors can reveal altered cell–cell communication42.  

scDNA-sequencing is a much more problematic deal than scRNA-sequencing, and despite 

technical advantages, the use of scDNA-seq remains limited43. Single-cell genome 

sequencing enables the elucidation of genetic heterogeneity; thus, it can be used for the 

analysis of de novo germline mutations and somatic mutations in normal and cancer cells, 

at the highest possible resolution. To uniformly amplify genomic DNA in individual cells, 

whole-genome amplification (WGA) methods have been developed 44, such as multiple 

displacement amplification (MDA)45, multiple annealing and looping-based amplification 

cycles (MALBAC)46 and degenerate oligonucleotide-primed PCR (DOP-PCR)47 . However, 

WGA is challenging due to the presence of only two genomic copies DNA in human cells. 

Therefore, this strategy occasionally greatly suffer from allelic drop-out, and fails to achieve 

a uniform sequencing depth because of amplification bias43. For automatic library 

construction, the Fluidigm C1 system supports single-cell whole-genome and whole-

exome sequencing. Additionally, 10× Genomics recently released a copy number variant 

(CNV) solution for the Chromium system to profile copy numbers in single cells. In cancer, 

researchers have attempted to identify intratumor genetic heterogeneity generated during 

cancer evolution. However, even if specialized bioinformatics methods (e.g., SCcaller48, 

Monovar49, LiRA50, and Conbase51) have been developed to detect single-nucleotide 

variants (SNVs) considering allelic dropout and amplification artifacts, assess genetic 

heterogeneity through scDNA-seq is still very costly and technically challenging, and 

currently cannot scale to more than 10s-100s cells per experiment. 

scRNA- and scDNA-seq provide valuable information from a single molecular layer, i.e., 

gene expression and genetics, respectively. Thus, in recent years, a number of works 
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attempted to complement this information by coupling RNA/DNA measurements with other 

single-cell read-outs, to achieve higher phenotyping depth52. Simultaneous measurement 

of genome and transcriptome in single cell was reported for the first time in 201452, 

followed by other protocols. In G&T-seq54, oligo(dT)-coated magnetic beads are used to 

separate genomic DNA from full-length mRNAs in single cells, followed by a modified 

Smart-seq255 protocol in which cells are isolated and lysed to release genomic DNA and 

mRNA for whole-genome and whole-transcriptome analyses, respectively. In 2019, 

TARGET-seq56 , a plate-based method, demonstrated increased throughput of ~5,000 

single cells profiled per run through the use of barcoding and pooling of libraries in reduced 

reaction volumes. Another plate-based method, simultaneous isolation of genomic DNA 

and total RNA (SIDR), involves incubation of single cells with antibody-conjugated 

magnetic beads, which are subsequently sorted into a microplate in which hypotonic 

selective lysis produces a separated supernatant and pellet solution that distinguishes 

between DNA and total RNA56. 

Coupled genome and transcriptome profiling cannot address the question of how the same 

DNA sequence can have varying expression patterns in different cells. The epigenome 

layer is needed in tandem with gene expression to elucidate mechanistic relationships 

among as DNA methylation, DNA accessibility and histone modifications and the gene 

expression patterns they produce. DNA methylation profiling methods (e.g., reduced-

range bisulfite sequencing, RRBS, and whole-genome bisulfite sequencing, WGBS) have 

been re-adapted for single-cell multi-omics (e.g., the scM&T-seq58 protocol, enabling 

single-cell genome-wide methylome and transcriptome sequencing). The same has been 

done for accessibility profiling methods using the assay for transposase-accessible 

chromatin sequencing (ATAC-seq), which was integrated with RNA (ASTAR-seq, SNARE-

seq, SHARE-seq, 10x Multiome59–61) and DNA measurements (TEA-seq62). Protocols 

detecting bulk-level histone modifications ChIP–seq, and CUT&RUN, CUT&Tag have 

been modified further to achieve single-cell level resolution (scCUT&Tag63, 

scCUT&Tag2for164, scCUT&TAG-pro63). Chormosome capture C technologies has also 

move to the single-cell worlds (scHi-C65).  

While extensive characterization of gene expression regulation is of pivotal importance, all 

cellular processes and functions revolve around proteins, as they contribute to the 

structure of cells and perform biochemical processes by functioning as enzymes. Thus, 

protein abundance post-translational modifications and interactions are essential to 

dissect cellular mechanisms that does not depend on differences in gene expression 

regulation. Sequencing protein is much more difficult than DNA and RNA molecules, due 
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to the lack of amplification. Thus, existing single-cell proteomic studies uses curated 

antibody panels and high-dimensional cytometry66 (FACs, or mass cytometry). For the vast 

majority, multi-omics protocols in which protein and mRNA are co-profiled, followed the 

same strategy. For instance CITE-seq67 and REAP-seq68,  combine highly multiplexed 

protein-marker detection with unbiased transcriptome profiling for thousands of single 

cells. Cell-surface proteins are detected by antibodies conjugated to oligonucleotides 

containing a PCR handle that can be captured by oligo(dT) or probe-specific primers 

compatible with Drop-seq and 10x Genomics microfluidic systems, making this method 

adaptable for integration with most scRNA-seq methods. Recently, ATAC with select 

antigen profiling by sequencing (ASAP-seq69) and DOGMA-seq69 demonstrated 

simultaneous profiling of chromatin accessibility. Incorporating even more modalities is 

NEAT-seq70, which co-profiles the abundance of nuclear protein epitopes, chromatin 

accessibility and the transcriptome in single cells.  

Additionally, since the advent of CRISPR-screens and the massive use of single-cell 

sequencing to characterized the immune system, emerging protocols couple previously 

described data modalities with sgRNAs (i.e., marking specific genetic perturbations 

individual cells71) and T-/B-cell receptor sequencing (to resolve T- and B-cell 

clonotypes72,73). Finally, the last decade has seen extraordinary efforts to add the spatial 

dimension to single-cell measurements74.  

Depending on the experimental question, design, and data modalities, analysis of single-

cell multi-omics data may consist of different tasks, including data integration, multi-modal 

gene-regulatory network, perturbation and trajectory inference, with statistical models 

more and more physically informed about the relationships between single-cell molecular 

layers34.  

In summary, these technological advancements produced a tremendous data-driven shift 

in the way we think about cell biology75. Single-cell multi-omics was fundamental to 

uncover previously unknown cellular types and to characterize cellular phenotypes and 

molecular mechanisms underlying virtually all aspects of human health and disease. In the 

next chapter we will focus on a specific branch of single-cell biology, single-cell lineage 

tracing, detailing scope, methods, and areas of application. 

Lineage tracing at single-cell resolution 
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The term lineage tracing refers to a wide range of techniques developed to identify and 

characterize individual cell progenies. From an historical perspective, the beginnings of 

lineage tracing date back to very ancient times: 19th century developmental biology76. 

The first pioneer of lineage tracing was Charles O Whitman. He and colleagues, inspired 

by the observation that cells arise from pre-existing cells, rather than through spontaneous 

generation, began investigating early cleavages in invertebrate embryos.  Whitman 

studied leech development, which involves stereotypical, invariant cell divisions. Tracing 

individual cell fate through direct observation under a light microscope, he discovered that 

from the earliest cleavages, individual cell fates were developmentally distinct, with each 

cell division giving rise to cells with specialized roles in later development. A century after 

these initial studies, another pioneer, Sulston77, successfully took the challenge of 

determining the fate of every cell in the Caenorhabditis Elegans embryo, “by eye”. 

Development in C. elegans, as in the leech, is highly determinate, involving cell fate 

decisions that are entirely autonomous. As one could imagine, tracing individual cell 

lineages (i.e., progenies) by eye has severe limitations in whole embryos/organisms, as it 

feasible only for transparent embryos (or organisms) and a small number of cells. 

However, these limitations do not apply to lineage analysis of single cells in culture, and 

cell biologists have long used time-lapse microscopy to determine lineage relationships. 

For example, isolated precursor cells of the central nervous system from rat embryos78. 

By imaging single cells over a number of days, Temple determined whether cells divided 

and formed clones assessed cell progenies differentiation status. In this rudimental way, 

she discovered the stochasticity in cell fate decisions that distinguish mammals from C. 

elegans and leech early development. When direct observation was not possible, 19th and 

20th century scientists came up with different strategies to test hypothesis about cell fate 

and evolutionary relationships, including: i) embryos chimeras, ii) tissue transplants and 

iii) cellular labelling, namely, the process through which one attach to individual cells 

inheritable molecular “labels”, or “barcodes” (i.e., dyes, or exogenously inserted genetic 

markers). Tracing these “labels” in time provided precious information about the 

proliferative capacity individual lineages, and their ability to acquire different fates. 

Importantly, regardless of their physical nature, these “labels” must strictly satisfy the 

following properties to be considered reliable lineage markers: i) they need to be passed 

to the entire progeny of a founder cell, ii) they must be retained over time, and iii) they 

should never be transferred to unrelated cells from independent lineages76.  

While lineage tracing roots in developmental biology, another discipline used “markers” 

with the same properties to trace the clonal origin and cellular fate in cancer: cancer 

phylogenetics79. Cancer phylogenetics deals with the inference of cancer lineage histories 

(i.e., trees) from somatic mutations (i.e., mostly SNVs and CNVs) that “mark” newly 
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generated cancer lineages across cancer evolution. Similar to species phylogenetics, these 

graphical models (i.e., trees) encode for the relationships between biological entities (i.e., 

samples, deconvolved clones, or single-cells), with internal nodes representing either inferred 
putative ancestors or evolutionary steps in a chain of mutation of ordered mutation events, and 
branches representing (qualitatively or quantitatively) some notion of time between inferred 

events. Within this basic framework, tumour phylogenetics can be remarkably 

heterogeneous. Different sources of data have been used to reconstruct cancer trees, 

considering both the study design (i.e., cross-cohort studies of many tumours, single-

patient studies of regional bulk genomic assays, or studies of single-cell variability in single 

tumours) (FIG. 1) and the type of genomic data profiled (initially, pre-sequencing marker 

types, such as large-scale CGH or fluorescence in situ hybridization80; now, predominantly 

next-generation sequencing (NGS)-derived SNVs or CNVs80, and sometimes more exotic 

variant types such as gene expression, DNA methylation, or histone marks82). Moreover, 

different models have been developed to model the evolution of different kinds of 

mutations (for example, SNVs versus structural variants), each with different assumption 

regarding underlying selection processes79. Furthermore, a number of different algorithms 

have been employed to for cancer phylogeny reconstruction. While most works in the filed 

adapted standard algorithms from species phylogenetics (e.g., maximum parsimony82, 

minimum evolution84, Neighbour Joining84, UPGMA85, Maximum Likelihood and Bayesian 

inference87) to infer cancer trees, novel algorithms were designed to suit the peculiar 

properties of cancer evolution79, such as the high occurrence of mutations, the balance 

between strong purifying selection and neutral phases of evolution. As introduced 

previously (see Cancer evolution section), these cancer tree can represent either ordered 

combinations of mutations appearing at certain tumor progression stages, as inferred from 

cross-sectional studies, or individual histories of tumor clones inferred from (multi-regional) 

bulk DNA sequencing data. In this latter case, each sequenced sample is treated as a 

separate species. Alternatively, clonal deconvolution algorithms are used to before tree 

building (or jointly integrated in this step) to infer clones, i.e., clusters of co-occurring 

mutations with similar prevalence that are assumed to occur in the same fraction of cells 

in the tumor79.  

Whichever the case, the great majority of cancer trees available to date have been inferred 

from retrospective, bulk-DNA sequencing data. Only recently the rise of single-cell biology 

provided new ground for both lineage tracing and cancer phylogenetics.  

 
Single-cell experiments provide high-dimensional “snapshots” of dynamic processes88. 

Depending on the experimental design, these snapshots can be single, or ordered in 

longitudinal time series. Assuming: i) complete and error-free measurement of all relevant 
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molecules governing a dynamic process of interest, and ii) that cell-fate decisions are 

governed deterministically only by interactions among measured molecules, one could 

infer the regulatory mechanisms underlying these cellular dynamics, and use it to predict 

future cell states starting from arbitrary initial conditions89,90. 

Unfortunately, single-cell measurements are noisy and largely incomplete, most cell-fate 

decision are inherently stochastic (at least to some extent), and single-cell molecular 

spaces include poor information about cell-extrinsic factors influencing cell fate 

decisions91. In addition, very differently from direct observation in prime lineage tracing 

studies, sequencing-based detection of the molecular content of a cell currently require 

the cell lysis (with a single, notable exception: a proof-of-concept study demonstrated very 

recently the possibility of “puncturing” cell cytoplasm to recover transcripts for scRNA-seq 

sequentially and in the very same cells92. However, this is still very far from being adopted 

in common practice, even in pure research settings). Thus, even when longitudinal 

measurements of the same process are provided in replicate experiments “photographed” 

at different timepoint, cellular dynamics inference is a non-trivial task90.  

 

 

 
 
Fig.3 Single-cell lineage tracing. Readapted from Wagner et al., 87 

 

Different approaches have been employed to extract approximate (but meaningful) cellular 

dynamics inferences from static cell state snapshots. For instance, leveraging the 

asynchrony through which cells progress across dynamic processes, pseudotime methods 
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are able order cell states according to their diffusion distance from a “source” state that 

represent the starting point of the cellular dynamics93. More complete descriptions of 

cellular dynamics used the Fokker-Planck equation, integrating drift (i.e., the ideal potential 

energy surface regulating cellular dynamics) with cell growth and similarity in cell state 

space94,95. Other methods took advantage of unspliced and spliced mRNA measurements 

to infer cellular dynamics in the form of “RNA velocity”96, which providing a notion of 

directionality to cell state change. Finally, the optimal transport (OT) 89,97 framework has 

been used to learn cellular dynamics. Specifically, OT has been used to infer optimal 

transport maps that match similar cell states in adjacent time points, providing inferred 

ancestor-descendant cell state transition probabilities.  

Importantly, all of the afore-mentioned methods try to make inferences only from the 

observed cell states, without any other external evidence guiding such inference. Thus, all 

of these methods suffer from the same limitation: they all assume that the closer two states 

are in some high-dimensional space, the closer would be in physical time. This assumption 

may be exceptionally wrong, leading to inaccurate inferences 88,90,91. 

To circumvent these fundamental limitations, a variety of tools has recently emerged to 

measure ancestor-descendant relationships in single-cell experiments. These systems, 

collectively referred to as single-cell lineage tracing (scLT) systems, integrate “old-school” 

lineage tracing and phylogenetics techniques with the unprecedented phenotypic depth of 

single-cell sequencing.  

Currently, there are two major paradigms for scLT: prospective and retrospective scLT 
88,98.  

As the name suggest, prospective lineage tracing attempts to establish lineage 

relationships across cells forwards in time. Different prospective methods have been 

developed. For instance, fate mapping, the practice of associating the position of a cell in 

the early embryo with the ultimate positions and fates of that cell’s descendants, can be 

considered one of the first prospective lineage tracing systems. Recombination-based 

systems such as early cellular barcoding methods based on CRE or FLIP recombinases, 

inducing permanent genetic labelling of progenitor cells based on the activity of a 

transgenic promoter, are also included among prospective scLT methods76. Other 

examples of prospective lineage tracing systems include multi-color reporter constructs, 

such as double markers99 (MADM, e.g., GFP and LacZ) or the ‘‘Brainbow’’ mice, which, 

through independent recombination of four fluorescent proteins, can be used to stably 

mark multi-color clones100. Despite their historical and scientific value, these approaches 

are intrinsically limited in their throughput, i.e., the number of independent lineages that 

can be simultaneously labelled88. Moreover, these methods are not readily coupled with 

other phenotypic assays, and thus, they only inform about tissues clonal dynamics, without 
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providing any information about the underlying cellular phenotypes. The advent of DNA-

barcoding methods was a major step forward in this sense98. With current DNA-barcoding 

strategies, high complexity retroviral or lentiviral libraries (e.g., ~10!−10" unique viral 

particles) can be used to mark complex population of cells100–102. These static DNA 

barcodes stably integrate in a cell genome and inherited by descendant cells at each 

subsequent mitotic division. Targeted DNA sequencing of these barcodes can be used to 

measure abundance of individual clones at the bulk level. However, if these barcodes are 

expressed as exogenous poly-adenilated transcripts, simultaneous measurement of clonal 

identity and cell state can be achieved by scRNA-seq104–106. While these methods allow 

detection of static clonal labels, other recently developed DNA-barcoding strategies 

leverage evolving DNA barcodes. These dynamic barcoding strategies can be achieved 

through either continuous in vivo transposition of the same DNA construct across cell 

genomes 107, or continuous CRISPR-Cas9 editing of a pool of target arrays108–112. 

Detection of these random transposition sites or CRISPR-Cas9 induced genetic “scars” 

may be used to infer complete cell phylogenies, giving temporal resolution to lineage 

speciation events. Despite technical challenges, that needs to be overcome, these 

methods provide unambiguous and tightly controlled definition of cell lineage in single-cell 

experiments. However, their main limitation is the requirement for cell engineering, which 

limits their application to model systems.  

By contrast, retrospective scLT methods seek to map the history of lineage relationships 

with respect to the cell states usually sampled at a single end point88,98. With these 

methods, state and lineage features are measured only at the end of the experiment, and 

lineage relationships are mapped backward in time in order to infer earlier lineage 

speciation events and associate phenotypic changes decisions. Importantly, retrospective 

scLT use natural genetic markers as genetic barcodes, and therefore, they can be applied 

to human patient samples and in other cases in which experimental intervention is not 

possible. Different endogenous lineage markers have been tested in recent years113, 

including nuclear SNVs114 and CNVs114, T116- and B117 cells receptor sequences, micro-

satellite instability118, DNA methylation and chromatin accessibility states118. All of these 

markers have potential pros and cons. For instance, nuclear SNVs represents the richest 

source of somatic genetic alterations in higher-order organism, but these genetic 

mutations have very low mutation rate and are scattered all the cross nuclear genome, 

requiring high-cost and technically challenging scDNA Whole Genome Sequencing 

approaches. T- and B- receptor sequence have demonstrated great value in distinguish 

T- and B-cell clonotypes, but unfortunately, this cost-effective lineage markers are 

restricted to these cell types, while other epigenetic markers either require very high 
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sequencing coverage to detect base-specific epi-alleles, or can be dynamically remodelled 

as a consequence of regulatory changes, confounding lineage reconstruction43.  

In the next chapter we will see how another, recently emerged natural lineage marker 

(i.e., mitochondrial single nucleotide variants, or MT-SNVs, hold the promise for cost-

effective and phenotypic informed retrospective scLT). 

 

Mitochondrial genetics  

The mitochondrial DNA (mtDNA) in humans and other animals has retained several 

characteristics of its bacterial ancestry. Unlike nuclear DNA, mtDNA is a small, circular 

dsDNA molecule approximately 16.6 kilobases in length, containing 37 genes that are 

critical for cellular respiration and energy production. These genes include 13 protein-

coding genes necessary for oxidative phosphorylation (OXPHOS), 22 transfer RNAs 

(tRNAs), and 2 ribosomal RNAs (rRNAs). The protein-coding genes contribute to 

components of the electron transport chain (ETC), specifically complexes I, III, IV, and V, 

and are crucial for the cell’s ability to generate ATP through oxidative phosphorylation. 

Mitochondria have a unique double-membrane structure, consisting of an inner and outer 

membrane. The inner membrane houses the ETC complexes and creates a proton 

gradient essential for ATP synthesis. Within the mitochondria, mtDNA is organized in 

nucleoid structures, each containing several copies of mtDNA and associated proteins. 

Depending on the cell type, human cells contain …-…  mitochondria, each containing …-

… mtDNA copies, leading to 100s-to-1000s mtDNA copies per cell. This high copy number 

acts as a buffer, diluting the effect of deleterious mutations and helping maintain the 

essential role of mitochondria in cellular bioenergetics. mtDNA is tightly packed, with 

minimal non-coding regions. The D-loop region, one of the few non-coding sections, 

serves as the primary regulatory site for mtDNA replication and transcription. The mtDNA 

lacks nucleosomal structures and introns, and has limited non-coding sequences. Given 

the lack of protective histones and the proximity of mtDNA to the ETC (a significant source 

of reactive oxygen species, or ROS), mtDNA is more vulnerable to damage than nuclear 

DNA120,121.  

Differently from nuclear DNA, mtDNA replication is characterized by both "relaxed" and 

"stringent" control modes, alongside dynamic anterograde and retrograde signaling that 

coordinates mitochondrial function with cellular demands122. In relaxed replication, mtDNA 

replicates independently of the cell cycle, allowing for multiple mtDNA copies within each 

mitochondrion . This unregulated replication ensures a sufficient supply of functional 

mtDNA to meet the high ATP production demands of various cell types. By contrast, 



 25 

stringent replication is tightly controlled, occurring at specific stages, such as during 

oogenesis or early embryogenesis. During stringent replication, a bottleneck effect 

reduces mtDNA diversity, favoring the inheritance of intact mtDNA by limiting the number 

of copies transmitted. In addition to replication modes, mtDNA relies on anterograde and 

retrograde signaling to maintain mitochondrial and cellular homeostasis. Anterograde 

signaling involves nuclear-encoded genes that regulate mitochondrial functions, 

influencing processes like mtDNA replication, transcription, and repair in response to 

cellular energy needs. Conversely, retrograde signaling is initiated by mitochondrial stress 

or dysfunction, sending signals from the mitochondria back to the nucleus. This 

communication triggers adaptive responses, including changes in gene expression to 

address mitochondrial damage or bioenergetic deficits. Together, relaxed and stringent 

replication modes, coupled with anterograde and retrograde signaling pathways, enable 

mitochondria to adapt to cellular conditions while preserving mtDNA integrity across 

generations 120,123. 

mtDNA undergoes a variety of mutations, including point mutations, deletions, 

duplications, and rearrangements. The high mutation rate in mtDNA is largely attributed to 

low fidelity of mtDNA polymerase (PolG), close proximity to ROS generated by the ETC, 

lack of histones, and limited DNA repair capabilities. ROS can damage nucleotide bases, 

leading to base mispairing and ultimately causing mutations if not repaired before 

replication. Common mutation hotspots in mtDNA include the D-loop, where replication 

and transcription are initiated, resulting in high exposure to ROS and replication errors. 

Unlike nuclear DNA, which possesses a range of robust repair mechanisms, mtDNA repair 

is very limited, relying mainly on base excision repair (BER). In BER, damaged bases are 

excised and replaced; however, this process is not as efficient in mitochondria as in the 

nucleus. There is some evidence for mismatch repair and homologous recombination in 

mtDNA, but these processes are less efficient and not fully understood. Because of the 

limited repair options, mtDNA mutations accumulate faster than their nuclear counterpart, 

contributing to aging-related cellular dysfunction and the development of mitochondrial 

diseases 124,125.  

Across generations, the transmission of mtDNA is predominantly maternal, with several 

key mechanisms controlling for the quality of mtDNA passed to the offspring 120,122. Key 

processes in mtDNA inheritance include genetic bottlenecks during oogenesis, 

mechanisms to prevent paternal mtDNA transmission, and purifying selection. mtDNA is 

inherited maternally as sperm mitochondria are usually degraded after fertilization. 

Mechanisms ensuring the degradation of paternal mitochondria include ubiquitin-mediated 
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tagging for proteasomal degradation and autophagy. Studies in various organisms, 

including Caenorhabditis elegans and mice, have demonstrated that paternal 

mitochondria are eliminated via mitophagy and proteolytic pathways in the zygote, 

ensuring that only maternal mtDNA is passed on. This uniparental inheritance helps 

maintain homoplasmy and avoids potential incompatibilities between nuclear and mtDNA 

from different lineages. During oogenesis, a dramatic reduction in the mtDNA population 

occurs, creating a genetic bottleneck that significantly alters heteroplasmy levels across 

generations. This bottleneck reduces the number of mtDNA molecules passed to each 

oocyte, leading to a rapid genetic drift in mtDNA populations. As a result, siblings from the 

same mother can inherit vastly different proportions of mutant versus wild-type mtDNA. In 

cases where pathogenic mutations are present, offspring may inherit a high mutation load 

if the bottleneck amplifies the mutant mtDNA variant. Studies indicate that a purifying 

selection mechanism may be present during oogenesis, which eliminates oocytes with a 

high burden of deleterious mtDNA mutations. However, some mutations still bypass this 

selection, explaining why certain mitochondrial diseases persist across generations123. 

The inheritance of mtDNA can also be influenced by environmental factors that affect 

mitochondrial dynamics and turnover.  

 

Fig. 4 Mitochondrial heteroplasmy across cell divisions. Readapted from Ludwig et al. 125 

Mitochondria are highly dynamic organelles, undergoing continuous structural and genetic 

reshaping between cellular division events. These processes include replication, fusion, 

fission, degradation, and selective removal through mitophagy. Collectively, these 

dynamics are crucial for managing mitochondrial DNA (mtDNA) quality, adapting to 

metabolic demands, and maintaining cellular health. mtDNA “relaxed replication,” produce 

high number of copies of mtDNA per cell, buffering against the potential impact of 

mutations, regulating the relative ratio of mutant vs wild-type mtDNA copies, i.e., the allelic 
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frequency of mtDNA mutations. Fusion of mitochondrial membranes allows mitochondria 

to share their contents, creating a more homogeneous mitochondrial network and 

preventing the isolation of dysfunctional mitochondria. In contrast, fission, allows the 

segregation of defective mtDNA molecules, effectively targeting them for degradation. 

Mitochondrial fusion and fission are coordinated with the cell cycle. For example, during 

the G1-to-S phase transition, fusion is upregulated, allowing mitochondria to form 

elongated, interconnected networks. As cells progress into mitosis, fission increases, 

generating numerous discrete mitochondrial units that can be evenly distributed between 

daughter cells. This regulation ensures each new cell inherits a sufficient number of 

mitochondria and helps prevent the unequal distribution of mutated mtDNA. Mitophagy is 

a selective autophagy process that degrades dysfunctional mitochondria, serving as a 

crucial quality control mechanism. When mitochondria experience a loss of membrane 

potential or other signs of damage, they are tagged for degradation by mitophagy-related 

proteins, primarily through the PINK1-Parkin pathway. The efficiency of mitophagy varies 

across cell types and can decline with age, leading to an increased accumulation of 

damaged mtDNA in older cells. 

Heteroplasmy, the coexistence of wild-type and mutant mtDNA alleles within a single cell, 

is central to mitochondrial genetics. mtDNA heteroplasmy can shift over time due to 

random genetic drift, selective pressures, and cellular processes that either amplify or 

reduce specific variants. Random genetic drift, or "mtDNA drift," refers to the stochastic 

fluctuation of mtDNA variant allelic frequencies within a cell. This drift can be particularly 

evident at low number of mtDNA molecules, as small numbers increase stochasticity of 

mtDNA dynamics. Over time, mtDNA drift can lead to the loss of a mtDNA variant, 

increased heteroplasmy, or even fixation126. 

mtDNA allelic frequencies are influenced by selective pressures both at the intra-cellular 

and at the population level. Within individual cells, individual mtDNA molecules compete 

for access to the cell’s limited replication machinery. In general, wild-type mtDNA 

molecules with intact replication origins and promoter regions tend to replicate more 

efficiently. Mutated mtDNA molecules, particularly those with deletions or point mutations 

that affect replication origins or other regulatory sequences, generally have lower 

replication efficiency, and are be recognized by the cell mitochondrial quality control 

system (i.e., mitophagy). However, there are instances where mutated mtDNA molecules 

may possess replicative advantages. Some mutations, especially large deletions, may 

remove non-essential regions of mtDNA resulting in shorter mtDNA molecules that can 

replicate faster than full-length mtDNA. In some cases, mutations mtDNA control regions 
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of mtDNA can increase the replication rate of specific mtDNA molecules.  At the level of 

cell populations, cells with high mutation loads in their mtDNA may be selectively removed 

through mechanisms like apoptosis or senescence, ensuring that cell populations retain 

an overall functional mtDNA pool. However, under certain conditions, such as metabolic 

stress or hypoxia, specific mtDNA mutations may confer a selective advantage, allowing 

these mutations to expand within the cell population123.  

Human mitochondrial genetics studies have historically focused on mitochondriopathies. 

However, advances in mtDNA genotype determination (also referred to as variant calling), 

and the refinement of quality control analyses, including in whole-genome sequencing 

(WGS) data, have accelerated large-population genetic studies. These studies have 

established links between genetic variations within the mitochondrial genome and complex 

human phenotypes . For example, by determining genotype–phenotype associations from 

biobank-scale genome-wide association studies in cohorts such as the UK Biobank, recent 

studies have linked the contribution of mtDNA variation to common disease and human 

traits, including haplotype-defining variants with large effect sizes, such as variants that 

affect human height and are mediated by variation in ATP synthesis. In addition to 

analyzing germline variation in these biobank studies, the utility of mitochondrial genetics 

has emerged in other settings. Specifically, cancer genome sequencing has provided a 

rich resource of mtDNA genotype associations with patient phenotypes. For example, 

pathogenic mtDNA mutations are associated with increases in overall survival in colorectal 

cancer and broadly appear to modulate transcriptional programs127. 

 
Mitochondrial variants as natural lineage markers 

The properties of mtDNA made it a fundamental tool to study species evolution128. 

Maternal inheritance, high mutation rate, and lack of recombination129,130 make mtDNA and 

its variants effective lineage markers122. Specifically, maternal inheritance creates a direct 

lineage record that avoids the complexity of nuclear recombination, while high mutation 

rates generate distinct haplogroups that can be retrospectively identified even over short 

timescales. 

Different mathematical have been used to quantifying mtDNA mutation rates and 

evolutionary dynamics. A foundational model is the coalescent. The coalescent models 

mtDNA ancestry within populations, allowing for the estimation of mutation rates and 

divergence times based on genetic drift and mutation events131. This model allowed 

researchers to reconstruct mtDNA lineage histories by simulating the ancestral 
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relationships among individuals in a sample, providing insight into genetic structure and 

variation within populations. Other important frameworks are the infinite sites model, which 

assumes that each mutation occurs at a unique site and a single time in the history of an 

evolving population. When applied alongside the molecular clock hypothesis, which 

assumes a constant mutation rate over time, the infinite sites model can estimate 

divergence times with high resolution132. These models were critical in dating evolutionary 

events and reconstructing phylogenies. Selection and genetic drift were also incorporated 

stochastic simulations, providing a dynamic view of mtDNA evolution under various 

evolutionary scenarios 133.  

In phylogenetics, mtDNA variation was used to build species trees. Techniques such as 

maximum likelihood, Bayesian inference, and Neighbor-Joining are commonly applied to 

mtDNA data. These methods leverage the high mutation rate of mtDNA to capture recent 

evolutionary relationships at a fine scale134. Maximum likelihood methods calculate the 

probability of observing a given set of mtDNA sequences given a specific tree structure, 

while Bayesian inference estimates the likelihood of tree structures based on prior 

probabilities and observed data. Both methods have been widely used in constructing 

phylogenies for closely related species135. Thus, the study of mtDNA variants has 

significantly advanced our understanding of species evolution by providing a tool for 

tracing lineage history, documenting genetic drift, and identifying adaptive responses to 

environmental changes. 

Since the seminal paper from Ludwig and colleagues in 2019125, mtDNA variants 

(hereafter referred to as MT-SNVs, for simplicity) have been used to trace cell lineages in 

human cell populations. This dramatic shift, from species to somatic evolution, was largely 

due to the advent of single-cell technologies, providing unprecedented sensibility in the 

detection of MT-SNVs from either mitochondrial DNA or RNA. As previously discussed, 

(see single-cell multi-omics) single-cell biology have dramatically reshaped the way we 

investigate cellular and molecular processes in health and disease. However, efforts to 

capture genetic variation are relatively underdeveloped, compared to other phenotypic 

profiling assays. scDNA-sequencing, and in particular single-cell WGS (scWGS), has been 

successfully leveraged to identify somatic variants and construct phylogenetic trees of 

developmental processes. However, scWGS remains limited by high-costs and technical 

challenges in confident detection of single-nucleotide variants. On the contrary, most 

scRNA-seq and scATAC-seq techniques inherently cover large proportions of the 

mitochondrial genome as a ‘by-product’ 137. 
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As >90% of mtDNA is transcribed, full-length RNA-seq techniques (for example, Smart-

seq), capturing the entire sequence of MT-stranscripts are particularly attractive for MT-

SNVs detection, as demonstrated in 125. However, this plate-based methods are limited by 

their cost and throughput. On the contrary, scalable droplet base scRNA-seq protocols 

only sequence 3′- or 5′ transcript ends, and thus, cannot yield the necessary MT-coverage. 

Primer-based tiling of mitochondrial transcripts (i.e., the ‘MAESTER’138 protocol, coupled 

with maegatk, its companion pipeline for MT-SNVs calling), has demonstrated successful 

detection of MT-SNVs from these peculiar cDNA libraries. Importantly, this protocol starts 

from cDNA from the popular 10x commercial protocol, and therefore can be applied 

retrospectively without the need for a full scRNA-seq library preparation, starting from fresh 

cell suspensions. Moreover, the standard gene expression library from 10x scRNA-seq 

contains precious cell state information. In spite of these advancements, these, RNA-

based methods have limitations, including: lack of MT-coverage for un-transcribed regions, 

MT-coverage expression and strand biases, and difficulties to discern bona fide variants 

from transcriptional errors and/or RNA-editing events. 

 

 

Fig 5. Single-cell landscape of MT-SNVs profiling. Readapted Nitsch et al., 136 

On the other side, Tn5-based transposition of mtDNA as used in mitochondrial scATAC-

seq (mtscATAC-seq139) achieves similarly scalable but much more uniform MT-coverage, 

and despite not providing transcriptional information, accessible chromatin profiles may 

inform about cell states (that is, accessible chromatin profiling). Here, the main limitation 

lies in the absence of UMIs to de-duplicate sequence information from individual mtDNA 

molecules (thus enable UMI-based error-correction strategies, as in MAESTER). 

Sophisticated multi-omic variants of these latter protocols have been developed (e.g., 

ASAP-seq69, PHAGE-ATAC140, GoT-ChA141, DOGMA-seq69) yielding up to four single-cell 

data modalities, including, transcriptome, accessible chromatin, surface markers, targeted 

nuclear SNVs and mtDNA mutations. Among these, regulatory multi-omics with deep 

mitochondrial mutation profiling (‘ReDeeM’ protocol142) represents the latest advancement 

in phenotypic-informed MT-SNVs detection protocols. Building from the commercial 10x 

Nitsch et al. Page 20
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Multiome kit, Weng and colleagues added a (‘MAESTER-like’) target enrichment step for 

mtDNA (yielding higher mtDNA coverage than previous ATAC-based protocols) coupled 

by introduction of “endogenous UMIs” (eUMIs), i.e., endogenous molecular barcodes that 

can be spotted in ATAC reads by considering unique Tn5 transposition sites. These 

innovations brought together benefits from MAESTER (i.e., target enrichment, UMI-based 

error-correction) and mtscATAC-seq (i.e., uniform and unbiased mtDNA coverage), 

coupling it to the multi-omic definition of cell state (i.e., gene expression + chromatin 

accessibility) from 10x Multiome. Together, these technologies enabled cost-effective and 

phenotypic informed retrospective scLT in primary human tissue samples.  

In this scenario, there are still lots of unknowns regarding MT-SNVs-based scLT137,143.  

Considering retrospective scLT (i.e., endogenous barcodes), it has been estimated that, in 

spite of lower mutation rates, the vast character space of the nuclear genome is able to 

generate SNVs at virtually all cell divisions14,143. Thus, even if in principle WGS data can 

be used solve deep cell phylogenies, previously discussed scWGS challenges (i.e., 

extremely high costs and allelic drop-out) still constitute a severe limitation in practice. With 

a little side step, recent works leveraged shallow WGS from single-cell-derived colonies 

(e.g., tens-to-hundreds colonies) to build deeply resolved somatic cell phylogenies143,144. 

Importantly, profiling colonies (instead of single-cells) mitigated allelic drop-out. However, 

this procedure still requires remarkable costs and time-consuming labor, to achieve 

arguably low throughput. Moreover, WGS per se does not provide any phenotypic 

information. Thus cell (colony, in this case) state information has to be retrieved from either 

non-disruptive (but less informative) technologies (e.g., flow cytometry) or orthogonal 

assays from aliquots of the same samples, which complicates analyses and interpretation 

of results.  

Considering prospective lineage tracing, instead (i.e., exogenous barcodes), it has been 

shown that evolving lineage recorders (e.g., Cas9-based) may produce high-resolution 

phylogenies146,147, but this resolution greatly depend on the editing frequency of the base 

editor, and the growth dynamics of the cellular population under investigation. Despite 

seminal works establishing elegant state-fate associations in developmental and tumor 

biology, these methods can be applied only to model organisms, as previously discussed. 

Considering MT-SNVs-based scLT, the resolution limit of MT-SNVs-based cell phylogenies 

(hereafter, MT-phylogenies) is still unclear, and very actively debated. In principle, high 

mtDNA mutational rate, high coverage, and high number of mtDNA copies, suggest 

feasibility of high-resolution phylogenetic reconstruction from MT-SNVs. However, 
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stochastic processes altering MT-SNVs allelic frequencies within cell divisions, non-

deterministic inheritance of mtDNA copies at mitosis, and limited sensibility of current 

sequencing protocols, constitute significant challenges.  

This works contributes to assess this unkown resolution limit, focusing on expressed MT-

SNVs (i.e., MAESTER protocol).   
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Materials and Methods 
 
MiTo benchmark sample preparation 
We generated data from 3 high-quality biological specimens, all derived from the 

MDAMB231 Breast Cancer cell line: i) a mixture of single-cell derived colonies generated 

in vitro (MDA_clones sample), and a ii) pair of matched primary tumor- (PT) lung 

metastasis samples grown in vivo (MDA_PT and MDA_lung samples, respectively). 

Plasmids: 

The Perturb-seq71 GBC library (pBA57117,18) was purchased from Addgene and used for 

lineage tracing experiments. This vector contains a random 18-nt guide barcode (GBC) 

between the blue fluorescent protein (TagBFP) and polyadenylation signal sequences. 

This vector contains puromycin and ampicillin resistance genes and the reporter gene 

TagBFP constitutively expressed under the control of EF1a promoter. The pLenti CMV 

Puro LUC (w168–1) was purchased from Addgene. This vector also contains puromycin 

and ampicillin resistance genes. 

Cell lines: 

All cells were cultured in adhesion in a 20% O2, 5% CO2 incubator at 37º C. HEK293T 

and the metastatic human TNBC cell line MDA-MB-231 were purchased from the ATCC 

and cultured in DMEM (EuroClone), supplemented with 10% South American FBS, 2 

mmol/L L-glutamine, and 100 U/mL penicillin–streptomycin. All the cell lines were tested 

for Mycoplasma contamination routinely. All the cell lines were split once they reached 

approximately 80% confluence and cultured in vitro for no more than 10 passages after 

thawing. Puromycin selection for GBC+ cells was given 2 µg/mL. Transient transfection 

with Lipofectamine TM was performed uniquely to transfect the Perturb-seq GBC library 

in HEK293T.  

Murine models: 

Female NOD/SCID Il2-Rg null (NSG) mice were purchased from Charles River Laboratory 

and housed under pathogen-free conditions at 22º C±2º C, 55%±10% relative humidity, 

and with 12 hours d/light cycles in mouse facilities at the European Institute of Oncology–

Italian Foundation for Cancer Research Institute of Molecular Oncology (Milan, Italy) 

campus. In vivo studies were performed after approval from our fully authorized animal 

facility and our institutional welfare committee and notification of the experiments to the 

Ministry of Health (as required by the Italian Law (D.L.vo 26/14 and following 

amendments); IACUC numbers: 833/2018, 679/2020), in accordance with EU directive 

2010/63.  

In vivo scLT experiment: 
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MDA-MB-231 cells (3 x 10! /plate) were infected with the both the Perturb-seq GBC library 

at MOI = 0.3, puromycin selected (2.5 mg/mL for 72 hours), and cultured for 72 hours. For 

each mouse, 200,000 MDA-MB- 231 cells were resuspended 1:1 in 30-µL PBS and 

growth-factor reduced Matrigel, and injected in the ninth mammary gland of female NSG 

mice. Organ infiltration was monitored by IVIS-Lumina and mice sacrificed 21 days after 

PT resection in the control group. Chemotherapy in vivo consisted of adriamycin (A, 

doxorubicin, 1 mg/kg) and cyclophosphamide (50 mg/kg). Chemotherapy was 

administered every week, for three cycles in neoadjuvant setting, and for one cycle in 

adjuvant setting. Mice that received both neoadjuvant and adjuvant treatment were the 

“double-treated”, while the “adjuvant-treated” just received the adjuvant chemotherapy. 

Primary tumor was monitored via caliper measurement three times a week. 

MDA-MB-231 clonal mixture (MDA_clones):  

Single-cells were isolated into 96-well plates by limiting dilution and expanded for ~30 

days. The resulting cellular colonies were then infected with unique barcodes (i.e., 8 

distinct colonies were infected with 8 distinct barcodes) Infected cells were selected with 

puromycin for three days. Barcoded clones were mixed at known ratios, FACS-sorted for 

the blue-fluorescent protein (BFP) expression (the BFP coding sequence is present in the 

GBC construct, and therefore marks lentivirally barcoded cells), and subjected to library 

preparation and sequencing. 
In vivo longitudinal PT-lung couple (MDA_PT and MDA_lung):  

For this work, we selected a PT-lung metastasis couple from the scLT experiment 

described above. Specifically, we selected a treatment naïve PT-lung couple. Both lesions 

were single-cell dissociated, FACS-sorted for the blue-fluorescent protein (BFP) 

expression, and subjected to library preparation. 
 

MiTo benchmark library preparation and sequencing 
FACS-sorted cells were counted with vital count by mixing cell suspension and erythrosin 

B in 1:1 ratio, cells were then pelleted at 2000 rpm for 5 minutes at 4 degrees, resuspended 

in a volume that allows ~1000 cells/µL, and finally counted again. Cell suspensions 

(~5000-6000 cells per sample) were submitted to the 10X Chromium, following the 

conventional protocol for cDNA production and gene expression (GEX) library preparation 

(10x v3 kit). cDNA and the resulting GEX libraries were quality-controlled through 

BioAnalyzer (Agilent).  

Perturb-seq Bulk DNA sequencing:  
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Bulk sequencing of DNA-integrated GBC was performed. 200 ng of genomic DNA from 

approximately 10! cells per sample (mixed with spike-in controls) were PCR-amplified 

using specific primers and sequenced on NovaSeq 6000 (30 million reads/sample). 

 
Perturb-seq sub-library preparation: 
Starting from the GEX libraries obtained for each sample, we used a 20 ng aliquot to 

generate Perturb-seq lentiviral barcodes sub-libraries. A semi-nested PCR approach was 

used to ensure maximum yield. This PCR employs two specific primers (targeting the 

adapter sequences inserted during the GEX library production, one couple for each 

sample), and one reverse non-specific primer (annealing to a constant portion of the BFP 

sequence), which is constant in all barcode fragments. Presence of the specific ~400 bp 

fragment was assessed for each sample using 2% agarose (Canvax Biotech) gel 

electrophoresis. The PCR product was diluted 1:1000 to reduce the amount of other non-

specific fragments. Then, we performed a 2nd reaction with the setting and primers 

reported in Suppl. Table 1. The presence of the diagnostic ~400bp product was checked 

for every sample using 2% agarose (Canvax Biotech) gel electrophoresis. PCR products 

were purified with QIAquick PCR purification kit (Qiagen) and 2ng per sample sequenced 

on NovaSeq 6000 Sequencing System (Illumina), with a depth of sequencing equal to 30 

million reads/sample. See Roda, Cossa et al., 2023 for the primer sequences and the PCR 

cycles. 
MAESTER sub-library preparation: 
From the 10X cDNA production, we generated the mitochondrial transcripts (MT-) sub-

library following the MAESTER138 protocol. Also in this case, we employed a semi-nested 

PCR approach, by using specific P5 and P7 adapter-annealing primers, together with 

MAESTER primer mixes. Briefly, 20 ng of cDNA were used for each of the reactions with 

the 12 MAESTER primer mixes (each primer mix targets different regions of the 

mitochondrial genome, thus allowing a full coverage), thus meaning 240 ng of cDNA for 

each sample.  
Set up the PCR reactions (12 per sample +1 negative control) in a 96-well plate as in 

follows: 
 

Reagents Volume (ul) concentration 
cDNA + H20 15 20ng 
Primer P5 1 10uM 
Mix Primer mitochondrial 4 1uM 
KAPA Hifi 20   
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Tot volume 40   
  

Reaction Temperature  Time Cycles 
Initial denaturation 95 °C 3min X 1 
  98 °C 20 sec   

X 6    65 °C 15 sec 

  72 °C 3min 

Final extension 72 °C 5min X 1  
  
We then performed PCR purification with the AMPure Bead kit, with a 0.8X ratio, in order 

to capture the amplicons of interest.  
  
2)      PCR 2  
 

Reagents Volume (ul) concentration 
cDNA amplified (PCR1) 18   

 
Primer P5 1 5uM 
Primer P7 4 5uM 
KAPA Hifi 20   
Tot volume 40   

 

Reaction Temperature  Time Cycles 
Initial denaturation 95 °C 3min X 1 
  98 °C 20 sec   

X 6    60 °C 30 sec 

  72 °C 3min 

Final extension 72 °C 5min X 1  
  
MAESTER samples were then quality-controlled by BioAnalyzer and submitted to 

sequencing, by using the Illumina flow cell, requesting ~250 million reads per sample. 

 

Data pre-processing 
We developed the mito_preprocessing Nextflow pipeline, which implements workflows for 

preprocessing any combinations of standard 10x scRNA-seq (i.e., GEX) plus lentiviral 
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barcoding (GBC) and/or MAESTER (MT) data. mito_preprocessing pipeline includes the 

following processes: 

• Alignment of GEX, GBC and MT-libraries reads: STARSolo148 

Paired end .fastq files from all libraries are aligned to a custom GRCh38 genome 

reference. The hg38 reference genome downloaded from Cell Ranger Downloads 

page is complemented with a custom sequence to retrieve GBC-containing reads 

(a constant sequence of the transcribed Perturb-seq vector, with two constant 

flanking a stretch of 18 Ns, the 18bp lentiviral barcode). Additionally, a blacklist of 

potentially confounding nuclear mitochondrial DNA segments  (NUMTs) sites is 

masked from this custom reference genome, as described in 138 and 149. From this 

reference, STAR is used to generate a custom index for alignment of all libraries 

(GEX, GBC, MT). 
 

• Cellular barcodes (i.e., CBs) and Unique Molecular Identifiers (i.e., UMIs) 

correction:  

GEX, GBC and lentiviral reads are separately aligned with STARSolo, enabling 

EmptyDrops150   CB correction and UMI deduplication, given the following command 

line arguments: 

 
• --soloType: CB_UMI_Simple 

• –soloCBmatchwhitelist: 1MM_multi_Nbase_pseudocounts; 

•  –soloCellFilter: Empty_Drops_CR 

•  --soloUMIdedup: 1MM_CR 

  
Alignment and counting of the GEX library by STARSolo provides a list of 

“putatively good” CBs (from STARSolo cell calling algorithm) that is used as input 

for GBC and MT-reads pre-processing after alignment (see below). The 10x v3 

CBs whitelist is been used as a reference for STARSolo CBs correction. 
 

• GBC-containing UMIs consensus sequence generation: samtools151, fgbio152, bwa-

mem153 

In order to get accurate GBC species and molecule counts, we introduced 

consensus sequence generation with fgbio. Specifically, reads aligned to the 

lentiviral cassette are splitted by CB (“putatively good” CBs from STARSolo cell 

calling algorithm) and grouped by UMI tag (and query alignment starting point) with 

fgbio GroupReadsByUmi. fgbio CallMolecularConsensusReads is used to 
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generate consensus sequences for each read group, considering bases with --min-

input-base-quality 30 and –min_reads 10. Consensus sequences are realigned to 

the lentiviral cassette, and fgbio FilterConsensusReads is used with the following 

parameters: 
 

• --min-reads: 10 

• –min-base-quality: 30 

• –max-base-error-rate: 0.2 

  
to filter good quality consensus sequences (i.e., all bases with consensus error 

<0.2), masking (i.e., replacing with “N”s) consensus bases with quality <30 and/or 

consensus depth <10. From these filtered consensus sequences, CB-UMI-GBC 

triplets are extracted (i.e., given the costant “anchor” sequence 

TAGCAAACTGGGGCACAAGCTTAATTAAGAATT, each expressed lentiviral 

barcode consists of the first 18 random nucleotides after the anchor sequence), 

gathered across cells, and used for clonal assignment of individual cells. 
 

• Clonal assignment: custom script.  

Different strategies have been implemented to assign individual cells to lentiviral 

clones71,101. Our current workflow entails: 

• GBC count and (further) correction with an external reference. Unique CB-

UMI-GBC triplets are counted, and GBCs species supported by a single 

consensus UMI are discarded. For remaining triplets, GBCs are corrected 

further using an external reference. For MDA_clones, each GBC is mapped 

to a whitelist of 8 known GBC sequences, while for MDA_PT and 

MDA_lung the reference consists of (error-corrected) GBCs from bulk DNA 

sequencing. In both cases, a (single-cell detected) GBC is mapped to a 

reference GBC if their pairwise hamming distance is <=3, and discarded 

otherwise. After this last correction, UMIs supporting CB-GBC 

combinations are counted again. 

• CB-GBC combination filtering, similar to 71. Specifically, for each CB-GBC 

combinations two metrics are calculated: a) the relative_abundance, i.e., 

the number of UMIs supporting a given CB-GBC normalized by the total 

number of UMIs of the cell, and b) the max_ratio, i.e., the ratio between a 

given CB-GBC UMI counts and the UMI counts of the most abundant CB-

GBC of the cell. CB-GBC combinations with >=0.75 max_ratio and 
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relative_abundance are filtered and used for final clone assignment. After 

these procedures, the vast majority of CB possesses a single CB-GBC 

combination (as expected both for the in vitro experiment, where each 

single-cell derived colony has been infected with only one GBC species, 

and for the in vivo experiment, where low MOI infection should guarantee 

minimal occurrence of multiple infection events). CBs not mapped to a 

single, well supported GBC are discarded from further analysis.  

 
• MT-genome aligned reads retrieval: samtools, picard154 

After alignment, reads aligned to the MT-genome are filtered from both GEX and 

MT library, and merged into a single-bam file with CB and UB tags. Reads with 

CBs from STARSolo cell calling are filtered with picard FilterSamReads and 

splitted into cell-specific bams (samtools split) for consensus sequence generation. 
 

• MT-UMIs consensus sequence generation: samtools, fgbio. 

In order to get accurate basecalls, cell specific MT-reads are grouped by UMI tag 

(and query alignment starting point) with fgbio GroupReadsByUmi, as described 

for GBC-containing reads. Then, fgbio CallMolecularConsensusReads is used to 

generate consensus sequences for each read group with --min-input-base-quality 

30 and –min_reads 3.  
 

• Re-alignment of MT-UMIs consensus sequence to MT-genome reference: bwa-

mem 
 

• MT-basecall pileup and Allele Frequency Matrix (AFM) generation: custom scripts.  

Consensus sequences realigned to the MT-genome are parsed to filter single 

consensus bases and record their statistics (i.e., average quality, consensus score, 

and depth, both in forward and reverse orientation). Throughout this work, MT-

SNVs from the mito_preprocessing pipeline come from consensus sequences of 

>=30 alignment quality, >=0.75 consensus score, >=30 base quality and >=3 read 

depth (i.e., UMI group size). Finally, these tables are gathered across cells and 

parsed to obtain an Allele Frequency Matrix (AFM), i.e., an AnnData155 object, an 

annotated matrix storing (raw, unfiltered) cell x variant relevant information (i.e., 

allelic frequency, AD, DP, quality and site_coverage). Cell and variant coverage 

statistics are recorded in cell and variant meta data, respectively.  
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mito_preprocessing takes input .fastqs from 10x GEX, lentiviral (GBC) and MAESTER 

(MT-) library sequencing (plus a configuration file, in .json format), and depending on the 

chosen entry-point, returns one (or all) of the following main outputs: i) a CB-GBC UMI 

counts table and a cell-clone assignment table; ii) CB-GEX UMI counts matrix from GEX 

data processing; and iii) MT-pileup tables, and AFM. These inputs are subjected to further 

Quality Control (custom scripts, see below) to retain only cells with good GEX and MT-

library quality, and robustly assigned to a single GBC.  
To enable flexible benchmaking of different preprocessing tools, mito_preprocessing 

provides the BENCH entrypoint. This workflow takes a .bam file with MT-reads and a list 

of cell barcodes of interest for each sample, and implements cellsnp-lite155, samtools, 

freebayes157 and maegatk138 (default parameters). Outputs from these tools are used to 

build Allele Frequency Matrices. Of note, while maegatk (the original 

oneSample_maegatk.py, script, with default parameters values taken from maegatk 

command line, except for –min-reads 3, instead of 1) outputs a very similar output format 

compared to mito_preprocessing (except for additional statistics recorded only by 

mito_preprocessing, i.e., average basecall consensus score and UMI groups size), 

cellnsp-lite, samtools and freebayes do not provide complete coverage and pileup 

information across all MT-genome sites. These latter tools perform variant selection and 

pileup from raw MT-reads alignment, yielding a filtered MT-SNV callset with only AD and 

DP (reads or UMI) counts. Thus, AFMs from these tools can be different from the one os 

mito_preprocessing/maegatk not only for detected MT-SNVs, but also for the information 

that is attached to each MT-SNV (i.e., not just AD and DP layers, but also quality, site 

coverage, group size, … etc.). 
 

Quality Control 
GEX library: Standard cell Quality Control (QC) was performed to remove residual empty 

droplets, not viable cells and/or cell doublets. Cell doublets were filtered out using 

scroublet. Then, we excluded CBs with <500 transcripts, <250 genes, at >3 median 

absolute deviations (MADs) above the median of expressed transcripts and genes, and 

with >15%of their total UMI counts from MT-genes. 
GBC library: We included all CBs assigned to a single GBC, as previously described158.  
MT-library: the filter_cells function from  mito_utils provides several cell filters. Throughout 

this study, we used ‘filter2’, which selects cells with median target site coverage >25 and 

% 75 of MAESTER target site coverage (i.e., n consensus UMIs>0). Of note, since this 

filter requires cell coverage information across nearly all MT-genome, it can be applied 

only to mito_preprocessing and maegatk inputs, for which this information is available. 
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CBs passing both GEX and MT- QC and assigned to a single lentiviral clone are retained 

for subsequent analysis. 

 

mito_preprocessing-maegatk comparison 
Across this work, the starting point for mutation selection is the total possible pool of 

deviations from the MT-genome revised Cambridge Reference Sequence (rCRS, 159) (n 

total characters = 3 x length rRCS sequence, 16569 bp: 49707 total characters, hereafter 

defined as the set of all possible MT-SNVs). Both mito_preprocessing and maegatk collect 

information about all MT-sites, and all candidate MT-SNV basecalls are filtered in 

subsequent stages. Since the oneSample_maegatk.py script (implemented as pre-

processing option within mito_preprocessing) does not collect the average UMI group size 

and consensus error per se, to compare mito_preprocessing and maegatk basecalls we 

verified that by setting the same parameters (i.e., the ones controlling UMI consensus 

sequence generation and consensus base filtering), mito_preprocessing is able to 

reproduce nearly identical variant basecalls compared to the original maegatk script. 

Having verified that, we compared mito_preprocessing (default parameters) with 

mito_preprocessing with maegatk-like parameters. Specifically, we used: 
 

• --min-reads=3    (instead of the maegatk default=1, as in 138)  

• --base-qual=0     (maegatk  default)bio_base_quality 

• --alignment-quality=0    (maegatk  default) 

 
from maegatk command line interface (CLI), translated as mito_preprocessing arguments: 
 

• --fgbio_min_reads_mito=3          (mito_preprocessing default) 

• --fgbio_base_quality=0 io_b.                    (instead of the mito_preprocessing 

default=30) quality 

• --fgbio_min_alignment_quality=0    (instead of the mito_preprocessing 

default=0) quality 

 
with the addition of: 

• --fgbio_base_error_rate_mito=1 (i.e., no filtering on consensus score)  

 
These maegatk-like parameters are compared to mito_preprocessing defaults: 

 
• --fgbio_min_reads_mito=3  
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• --fgbio_base_quality=30 io_base_quality 

• --fgbio_min_alignment_quality=30  

• --fgbio_base_error_rate_mito=0.25 

 
Statistics in Fig. 10 are computed from “raw” basecalls (i.e., no additional filtering of MT-

genome site, ecc), to quantify differences in cellular coverage and in the average number 

of candidate MT-SNVs per cell. All MT-reads form CBs passing QC checks for GEX, MT 

and GBC-modalities from the MDA_clones sample were considered for this experiment. 
This choice was made to compare different pipelines “raw” outputs, given very similar pre-

processing tasks, but different choices for the “default” options that govern their behavior. 

It has to be acknowledged that: i) mito_preprocessing main functionalities were borrowed 

directly from maegatk, ii), despite not considering consensus scores for filtering individual 

bases and using all bases for consensus generation, maegatk allows remarkable flexibility 

in other base filtering parameters, and iii) these two pre-processing tools interface with 

different final objects to store pre-processing output: maegatk outputs are stored as either 

plain text tables or in a SummarizedExperiment R class, while mito_preprocessing uses 

plain text tables or and the AnnData python class. Thus, the main difference between 

mito_preprocessing and maegatk lies in the different way through which very similar 

functionalities are assembled into a pipeline with certain inputs and outputs. 

mito_preprocessing takes as input either: i) GEX and MT (optionally GBC) library .fastqs, 

handling pre-processing of all sequencing libraries in a single call, or ii) a .bam file storing 

MT-aligned reads, and a list of cell barcodes of interests. maegatk only performs MT-reads 

consensus generation and pileup, and therefore, MT-reads alignment and GEX library pre-

processing are external to the tool. Also, mito_preprocessing allows multi-sample inputs, 

and has unique functionalities for lentiviral barcoding data pre-processing that are not 

shared with maegatk. 
 

MT-SNVs selection 
Raw AFM matrices (see Pre-processing and Quality Control section), from the 

mito_preprocessing pipeline contains typically thousands of MT-SNVs per cell that need 

to be filtered to obtain  an “informative”, denoised MT-SNVs space. The filter_afm function 

from mito_utils provides surgical MT-SNVs annotation and selection capabilities. 

filter_afm: i) annotate MT-SNVs summary statistics as in 138 and 142; ii) apply a very loose, 

“baseline” MT-SNVs filter (i.e., mean site coverage>=5, mean quality>=30, and n cells with 

non-zero AF >=2); iii) apply one of either 4 previously published MT-SNVs filters (i.e., 

Coefficient of Variation, CV139, miller2022138, weng2024 142, MQuad 159), the MiTo filter 
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(which re-adapt and refine filtering criteria from both miller2022 and  weng2024); iv) Filter 

common dbSNP variant and annotate RNA-editing events as done in 161; v) Call cell MT- 

genotypes (i.e., employs one between vanilla and MiTo binarization strategy to assign 

binary MUT/WT genotype status at each cell-variant combination); vi) Filter cells positive 

for at least one MT-SNV. vi) Compute (optional) additional MT-SNVs space metrics (e.g., 

MT-SNVs lineage bias, “MT-SNVs quality”, “Connectedness” and “Variation” metrics); vii) 

Reconstruct (optional) the cell phylogeny of selected cell x variant character matrix (see 

build_tree, below).  
filter_afm is used to filter all MT-SNVs subsets characterized through this work, either 

interactively or automatically via the phylo_inference pipeline. For MiTo benchmarking, 

AFMs from samtools and freebayes were minimally filtered (given the few number of MT-

SNVs, and the lack of MT-SNVs quality and depth statistics); for cellsnp-lite AFMs (we 

processed both the entire cellsnp-lite callset or its filtered version, using the MQuad filter 

as recommended by the authors); mito_preprocessing and maegatk AFMs were filtered 

with the MiTo filter, which select variants according to: 
 

• Mean variant quality >= min_var_quality 

• Fraction of negative cells >= min_frac_negative 
• n of +cells >= min_n_positive 

• AF of confident detection >= af_confident_detection 

• Mean number of UMIs supporting the ALT allele in +cells >= 
min_mean_AD_in_positives 

• Mean number of total UMIs on the variant site >= min_mean_DP_in_positives 

 
For the data presented in Chapter “Phylogenetic signal in expressed MT-SNVs spaces: 

the accuracy-cellular yield trade-off”, we tested all filtering combinations from the following 

hyper-parameter space: 

 

• min_var_quality: 30 
• min_frac_negative: 0.2 
• min_n_positive: [2,5] 
• af_confident_detection: [0.01,0.02,0.03,0.05,0.07,0.1] 

• min_n_confidently_detected: [2,3] 

• min_mean_AD_in_positives: [1,1.25,1.5] 

• min_mean_DP_in_positives: 5 
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More details about the phylo_inference pipeline can be found in section: “Phylogeny 

inference”. 
 

MT-SNVs genotyping 
Assuming diploid status across all cells in a population, the genotype of a nuclear SNVs 

in a given cell cells can be either homozygous WT (00 state, AF of the mutated allele=0), 

homozygous MUT  (11 state, AF ot the mutated allele=1), or heterozygous (01 state, AF 

ot the mutated allele=0.5). On the contrary, MT-SNVs display a nearly continuous 

spectrum of allelic frequencies, that can be binarized with two genotype states: 0 → 

absence of a MT-SNVs, 1→ presence of the MT-SNVs. It has been previously shown that 

discrete metrics are more robust to scRNA-seq technical noise than continuous oneswith 

regards to quantifying pairwise cell-cell genetic (dis-)similarity142. However, these former 

metrics need accurate MT-SNVs genotyping (i.e., AFM binarization). In this work, we 

implemented two binarization methods: vanilla and MiTo. For a given MT-SNV site, one 

can retrieve alternative and total UMI counts observed across the cell population, 𝑎𝑑	and 

𝑑𝑝 (𝑎𝑑	, 𝑑𝑝 ∈ ℕ#$%, with 𝑁 = 	𝑛	𝑐𝑒𝑙𝑙𝑠). For a given MT-SNV, the vanilla method assigns 

genotype 1 to cell 𝑖 if 𝑎𝑑& 	/	𝑑𝑝& > 𝑡'()&**( and 𝑎𝑑& >= 𝑚𝑖𝑛𝐴𝐷, as in 138 and 142. Throughout 

this work: 𝑡'()&**( has been set to 0,  while	𝑚𝑖𝑛𝐴𝐷 has been set to either 1 or 2. On the 

other hand, MiTo genotyping leverages the statistical modelling of 𝑎𝑑	and 𝑑𝑝 counts to 

assign binary genotypes to each cell. In particular, we re-adapted the probabilistic 

approach introduced by MQuad 159 to MT-SNVs genotyping. To do this, we assumed as in 
159 that, 𝑎𝑑	, 𝑑𝑝 counts are generated by weighted sampling of two binomial distributions, 

representing the background (component 0) and the true positive signal (component 1), 

respectively. Under this assumption, denoting with 𝑎𝑑& 	 and𝑑𝑝& the alternative and total 

UMI counts for cell i respectively, the probability 𝑃 of observing exactly 𝑎𝑑& alternative UMI 

counts for cell 𝑖 is defined as:  

 

𝑃:	ℕ+ →	 [0,1]; 		𝑎𝑑& → 	𝑓(𝑎𝑑& 	|	𝑑𝑝& , 𝛩) 

𝑃(𝑎𝑑& 	|	𝑑𝑝& , 𝛩) 	 ∶= ∑ 𝜋, 	 ⋅ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑎𝑑& 	|	𝑑𝑝& , 𝑝,)	-
,./  Eq. 1 

 

with: 

 

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑥	|	𝑛, 𝑝) ∶= 	J
𝑛
𝑥
K 𝑝$(1 − 𝑝))0$ 

	𝐾 = 1, with 𝑘	 = 0 background component and 𝑘	 = 1 true positive signal component 

𝛩 = [𝑝, , 𝜋,] 	∈ ℝ1(-+#), parameter vector of the model 
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𝑝,  ∈ [0,1], success rate for component k  

𝜋, 	∈ [0,1], mixing weight for component k 

N𝜋,

#

,./

= 1 

 

This probabilistic model can be fitted to the observed values of the 𝑎𝑑	, 𝑑𝑝 UMI counts by 

maximizing the total likelihood 𝐿(𝛩	|	𝑎𝑑, 𝑑𝑝): 

 

𝐿 ∶ 	ℝ1(-+#) →	ℝ+; 

𝐿 ∶= 	∏ 𝑃(𝑎𝑑& 	|	𝑑𝑝& , 𝛩)%
&.#  Eq. 2 

 

By taking the logarithm of both sides and unfolding the definition of the binomial distribution 

probability mass function, Eq. 2 becomes: 

 

 𝑙𝑜𝑔𝐿	 =  𝑙𝑜𝑔(∏ 𝑃(𝑎𝑑& 	|	𝑑𝑝& , 𝛩))%
&.#  

= ∑ (	𝑙𝑜𝑔 J(4!45!
K + 	𝑙𝑜𝑔(∑ 𝜋, ⋅ 	𝑝,

(4! ⋅ (1 −	𝑝,)45!0(4!-
,./ )	)%

&.#       Eq. 3 

 

Maximization of this 𝑙𝑜𝑔𝐿 ((equivalent to likelihood maximization given the monotonicity of 

the logarithm function) can be nicely achieved via Expectation-Maximization (EM), a 

Bayesian optimization approach that is capable of handling hidden variables through 

Expectation (E) and Minimization (M) steps. First, at each E-step, Bayes Theorem is used 

to compute the posterior probabilities of latent (hidden) variables 𝑍& ∈ 	ℕ#$%, i.e., the cell 

memberships to either background (𝑘	 = 	0, 𝑍& = 0) or true positive signal (𝑘	 = 	1, 𝑍& = 1) 

components (i.e., cell genotypes). Given the definition of posterior probability of A given B, 

𝑃(𝐴	|	𝐵), from Bayes Theorem: 
 

𝑃(𝐴	|	𝐵) 	 ∶= 	
𝑃(𝐵	|	𝐴)	𝑃(𝐴)

𝑃(𝐵)
 

 

Considering: 

 

𝐴 = 𝑃(𝑍& = 	𝑘) 

𝐵	 = 	 [𝑎𝑑& , 𝑑𝑝& , 𝛩⋆] 

	𝛩⋆ current estimate for 𝛩 
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the posterior probability of cell 𝑖 assignment to the k-th component is defined as: 

 

𝛾&, ∶= 𝑃(𝑍& = 	𝑘	|	𝑎𝑑& , 𝑑𝑝& , 𝛩⋆) =
7(	(4!	|	45!,;!.	,,<⋆)	7(	;!.	,	|	<⋆)

7(		(4!	|	45!	,<⋆)
	  Eq. 4 

 

With: 

 

	𝑃(𝑍& = 	𝑘	|	𝛩⋆) =  𝜋,⋆ 	 
𝑃(𝑎𝑑& 	|	𝑑𝑝& , 𝑍& = 	𝑘, 𝛩⋆) =  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑎𝑑& 	|	𝑑𝑝& , 𝑝,⋆) 

𝑃(	𝑎𝑑& 	|	𝑑𝑝& , 𝛩⋆) = 	∑ 𝜋, 	 ⋅ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑎𝑑& , 𝑑𝑝& , 𝑝,⋆),-
,./ 			from  Eq. 1 

 

Eq. 4 becomes: 

 

𝛾&, 	=
	=#
⋆ 	⋅	?&)@A&(*(	(4!	|	45!,5#

⋆)	
∑ =#	⋅?&)@A&(*((4!,45!,5#

⋆)$
#%&

	=
	=#
⋆ 	⋅	5#

'(!⋅	(#05#
⋆)()!*'(!

∑ =#
⋆ 	⋅	5#

'(!⋅	(#05#
⋆)()!*'(!+

#%&
	   Eq.5 

 

These estimated 𝛾&, are then used to update 𝛩⋆ in the following M-step. Specifically, Eq. 

3 describes the 𝑙𝑜𝑔𝐿 of the mixture model, without including unknown cell membership, 

explicitly. If these memberships were known (omitting terms not dependent on model 

parameters 𝛩) Eq. 3 would simplify from: 

 

𝑙𝑜𝑔𝐿(𝛩)C@A5*DED =	N𝑙𝑜𝑔(N𝜋, ⋅ 	𝑝,
(4! ⋅ (1 −	𝑝,)45!0(4!

-

,./

)
%

&.#

 

 

to: 

 

𝑙𝑜𝑔𝐿(𝛩)C@A5*DED = ∑ ∑ 𝛿&, 	(𝑙𝑜𝑔𝜋, + 𝑎𝑑&𝑙𝑜𝑔𝑝, + (𝑑𝑝& − 𝑎𝑑&)(1 − 𝑝,)-
,./

%
&.# )    Eq. 6 

 

where 𝛿&, 	is the Kroenecker delta defined as: 

 

𝛿&, = 	1	if 𝑍& = 	𝑘, and 0 otherwise 

 

While 𝑍& (and therefore 𝛿&,) are unknown, the expected values 𝛾&, ∶= 𝐸[	𝑍& 	=

	𝑘	|	𝑎𝑑& , 𝑑𝑝& , 𝛩⋆] are estimated in the E-step. Thus, substitution of 𝛿&, 	 with 𝛾&, in Eq. 6, 

gives: 
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𝑙𝑜𝑔𝐿(𝛩)C@A5*DED 	= 	∑ ∑ 𝛾&, 	(𝑙𝑜𝑔𝜋, + 𝑎𝑑&𝑙𝑜𝑔𝑝, + (𝑑𝑝& − 𝑎𝑑&)(1 − 𝑝,)
-
,./

%
&.# )    Eq. 7 

 

𝑙𝑜𝑔𝐿(𝛩)C@A5*DED ais not a sum over all 𝑁 observations and 𝐾 model components without 

involving log-sum terms and with nicely separated model parameters. Thus, analytic 

methods for direct maximization can be readily used to update 𝜋, and 𝑝, separately. New 

𝜋, values, 𝜋,)DF, are computed by solving: 

 

	 𝑎𝑟𝑔𝑚𝑎𝑥	𝑙𝑜𝑔𝐿(𝜋,)C@A5*DED = 𝑎𝑟𝑔𝑚𝑎𝑥	 ∑ ∑ 𝛾&,𝑙𝑜𝑔𝜋,
-
,./

%
&.# + 𝑐𝑜𝑛𝑠𝑡	  Eq.8 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑	𝑡𝑜: ∑ 𝜋,#
,./ 	= 	1 

 

which gives: 

 

𝜋,)DF =
#
%
∑ 𝛾&,%
&.# 	, with 𝑘	 ∈ 	 {0,1}  Eq.9 

 

Instead, new 𝑝, values, 𝑝,)DF, are computed by solving: 

 

𝑎𝑟𝑔𝑚𝑎𝑥	 𝑙𝑜𝑔𝐿(𝑝,)C@A5*DED 	= 

	= 	𝑎𝑟𝑔𝑚𝑎𝑥	 ∑ ∑ 𝛾&,(𝑎𝑑&𝑙𝑜𝑔𝑝, + (𝑑𝑝& − 𝑎𝑑&
-
,./ )(1 − 𝑝,))%

&.# + 𝑐𝑜𝑛𝑠𝑡			Eq.10 

 

which gives: 

𝑝,)DF =
∑ G!#	⋅	(4!,
!%$

∑ G!#	⋅	45!,
!%$

	, with 𝑘	 ∈ 	 [0,1]  Eq.11 

 

Crucially, the EM steps alternate between estimating posterior probabilities for genotypes 

𝑍 and updating model parameters until convergence of log-likelihood values is reached. 

Across this optimization path, 𝑍	plays the fundamental role of bridging the gap between 

the observed data and the structure of the probabilistic model. However, since MQuad 

only uses the likelihood of this mixture model to rank individual MT-SNVs, the cell 

genotypes 𝑍	and their expected values 𝛾&, are “lost” in the fitting process. To genotype 

individual MT-SNV, the MiTo genotyping method fits the same mixture model employed by 

MQuad  (implemented in the MixtureBinomial class from the bbmix package, 

https://github.com/StatBiomed/BBMix), but then, for each cell, MiTo calculates the 𝑍&, = 0 

and 𝑍&, = 1 genotypes posterior probabilities, 𝛾&/ and 𝛾&#	. For each MT-SNV, genotype 1 

is assigned to cells with 𝛾&# >	 𝑡5H@I and 𝛾&/ < 1 − 𝑡5H@I, while genotype 0 is assigned to 

all the other cells. By estimating the background signal associated with the observed 

alternative UMI counts MiTo achieves accurate genotyping, especially for challenging low-
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detection/high-prevalence MT-SNVs. Since the binomial mixture model performs best with 

relatively high numbers of detection events, the call_genotypes function in mito_utils 

allows flexible tuning of 𝑡5H@I and the minimal cell prevalence required for a MT-SNVs 

variant to be genotyped this way. All the other low-prevalence variants are genotyped with 

the simpler vanilla method. In this work, 𝑡5H@I and min_cell_prevalence were set at 0.75 

and 0.1, respectively. 

 

MT-SNVs kNN, distances and embeddings 
mito_utils include functions to: i) compute cell-cell pairwise distances 

(compute_distances); ii) perform k-Nearest Neighbors (k-NN) searches (build_kNN) and 

compute kNN-based metrics (i.e., Shannon Entropy, purity and kBET162 of cellular 

neighborhoods, with respect to some set of cellular labels, e.g., lentiviral clones); iii) and 

reduce the dimensionality of a MT-SNVs space (PCA, UMAP163 and diffusion maps164 are 

implemented). compute_distances support custom metrics provided by the user. The 

draw_embeddings function allows flexible visualization of cell embeddings in 2D scatter 

plots.  
 

Phylogeny inference 
The phylo_inference Nextflow pipeline (https://github.com/andrecossa5/phylo_inference) 

builds upon Cassiopeia165, the leading python library for scLT tree reconstruction and 

manipulation. This pipeline support two main entrypoints: tuning and phylo. 
The tuning entrypoint performs efficient exploration of alternative MT-SNVs spaces that 

can from one or more “raw”, unfiltered AFMs (i.e., the main output from 

mito_preprocessing the pipeline). Specifically, a grid of hyper-parameters (specified by the 

user through a single .json configuration file) is used to generate a Nextflow channel of 

jobs (hyperparameter combinations producing unique MT-SNV spaces, i.e., filtered and 

genotyped AFMs), marked by unique alpha-numeric IDs. This channel is consumed in 

massively parallel fashion by a single DSL2 Nextflow module, ONESAMPLE, calling the 

homonimous python script onesample.py. With >20 command line options controlling the 

behaviour of cell and variant filtering, MT-SNV genotyping, cell-cell distances computation 

and tree building (all processes implemented within the filter_afm function from mito_utils), 

onesample records metrics (see MiTo benchmarking metrics and ranking system section) 

for the evaluation of each tested MT-SNVs space that are stored as separate .pickle 

objects and a unique .csv file for interactive exploration. 
The phylo entrypoint, instead, is designed to finalize lineage inference on specific MT-SNV 

spaces selected after extensive hyper-parameters tuning (i.e., tuning entrypoint). This 
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entry-point is structured in modular subworkflows for AFM preprocessing, tree building, 

annotation and scoring. Given a set of unique job IDs, matching hyper-parameters options 

are retrieved to perform the same filtering and genotyping of “raw” AFMs from the tuning 

entrypoint, followed by: i) character matrix bootstrapping; ii) cell-cell distance computation 

and distance metric scoring (i.e., correlation between cell-cell distances across bootstrap 

replicates and AUPRC125, if ground truth lineage labels are provided); iii) tree building, for 

each bootstrap replicate character matrix (all Cassiopeia tree solvers can be specified, 

along with mpboot and iqtree166; iv) internal nodes support calculation via booster167, which 

implements both Felsestein Bootstrap Proportions (FBP) and Transfer Bootstrap 

Expectation (TBE) methods, the latter providing accurate and fair support evaluation (i.e., 

does not over-penalize missing identical matching between bootstrapped clades, as FBP 

does) support evaluation for large scale phylogenies; iv) final tree creation, i.e., creation 

of the final CassiopeiaTree object storing raw and binarized characters, cell-cell distances, 

cell metadata and individual tree nodes and branches attributes;  v) final tree annotation, 

i.e., assignment of MT-SNVs to individual tree clades and annotation of these clades into 

discrete MT-clones with the MiToTreeAnnotator (see the MT-phylogenies annotation 

section); vi)  final tree metric scoring (see MiTo benchmark metrics and ranking system 

section and MT-phylogenies robustness section below).  
The final phylo_inference outputs are: i) a filtered, genotyped and annotated AFM 

(AnnData object stored .h5ad format); ii) an annotated CassiopeiaTree; and iii) a set of 

tree diagnostic metrics (.csv format). If “lineage_column” is specified within the 

configuration file, PATH168 is used to calculate phylogenetic correlations among cell labels 

attached to each cell in AFM cell metadata (i.e., afm.obs[“lineage_column”]). All 

downstream analyses involving these MT-SNVs spaces and phylogenies can be 

performed interactively, leveraging available mito_utils and cassiopeia  functionalities (i.e., 

cell tree visualization). The AnnData and CassiopeiaTree formats facilitate seamless 

integration with existing and newly developed single-cell libraries for complex multi-omics 

analyses in python. 
 

MiTo benchmark metrics, rankings and meta-analysis 
To systematically evaluate MT-SNVs space retrieval hyper-parameters, the tuning 

entrypoint (see Phylogeny inference section) records 19 different metrics. These metrics 

evaluate different properties of filtered AFMs, cell-cell distances, reconstructed trees and 

inferred (see MT-phylogenies annotation section) MT-clones. Here is the complete 

description of individual metrics grouped by metric type (with reference to names in : 
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-Mut Quality: 
• n dbSNP: number of filtered (i.e., after baseline and MiTo filter) MT-SNVs flagged 

as common mutation event in the dbSNP database: 

https://ngdc.cncb.ac.cn/databasecommons/database/id/1622 

 

• n REDIdb: number of filtered MT-SNVs flagged as common RNA-editing event in 

the REDIdb database: 

http://srv00.recas.ba.infn.it/redidb/  

 

• Mut signature: transition vs transversion ratio, used to quantify the deviation from 

the expected MT-mutational signature (i.e., transitions >> transversion) 

 
-GBC: 

• Clonal biased MT-SNVs: % of filtered MT-SNVs that is significantly enriched 

(Fisher’s exact test, FDR <= 0.05) within at least one lentiviral clone 

• AUPRC: Area Under Precision Recall Curve as described in 125 

• ARI: Adjusted Rand Index, to quantify concordance between GBC labels and 

inferred MT-clones (see MiTo tree annotator) 

• NMI: Normalized Mutual Information score, to quantify concordance between GBC 

labels and inferred MT-clones (see MiTo tree annotator) 

 
-Tree structure: 

• CI: mean Consistency Index of tree characters. Ths measure assessing how well 

a cofinguration of character is explained by a phylogenetic tree assuming minimal 

evolutionary changes (i.e., Camin-Sokal parsimony165) 

• Tree- vs char- based distance correlation: Pearson’s correlation between tree-

based (i.e., minimum number of nodes connecting two leaves) and character-

based (i.e., throughout this work jaccard distance between cell-cell MT-SNVs 

genotypes) cell-cell distances. 

 
-Connectedness: 

• Density: % of non-zero entries in the binarized AFM 

• Transitivity: transitivity (i.e., clustering coefficient) of the cells shared-MT-SNVs 

graph 

• Mean path length:  average cell-cell path-length on the cells shared-MT-SNVs 

graph 



 51 

• Average degree: average cell degree across the cells shared-MT-SNVs graph 

• LCC: largest connected component of the cells shared-MT-SNVs graph 

 
Variation: 

• Haplotype redundancy: % of unique MT-haplotypes (i.e., beared by single-cells) 

considering all MT-hatplotypes observed in a population of cells 

• Median n of MT-SNVs per cell  

 

Yield: 
• n GBC clones 

• n cells 

• n MT-SNVs 

 
To produce hyper-parameters combination rankings, all jobs were grouped according to 5 

hyper-parameters of interest:  i) pre-processing method, ii) binarization methods, iii) min 

confident AF, iv) min number of cofident detection events and v) min AD to assign a cell 

genotype.    
Median metric values each combinations were rescaled with min-max normalization. 

resulting values were averaged across metric type, and weighted sum of these values is 

used to produce a final “Overall” score. Only n dbSNP and n REDIdb where sign-inverted 

before min-max normalization. Metric types were chosen to maximize both lineage”‘GBC” 

and “Yield”. Accordingly to produce a final ranking, we assigned 0.4 to both “Association 

with GBC” and “Yield”,  and 0.1 to both “Tree structure” and “Mutation Quality”, to control 

for potential errors in lentiviral barcoding and variant calling, and weights for other metrics 

vase set to zero). These scores and rankings were visualized with funkyheatmap37. All 

across the MT-SNV space chapter, these 19 metrics are grouped and presented as 

average across josn, within 108 unique parameters combinations. Individual jobs were 

used only to establish relative feature importances. For this latter analysis, we used 

lightgbm.LGBMRegressor (https://lightgbm.readthedocs.io/en/stable/) to regress all tested 

hyperparameters (i.e., the ones tested with >1 unique value) against metrics selected of 

interest, and reported estimated feature importances. 

 

MT-phylogenies robustness 

Robustness of inferred MT-phylogenies was quantified through different parameters, 

described in the above sections (i.e., support → bootstrap TBE, CI consistency index ecc.). 

Specifically (median) internal nodes support was quantified for all caldes, only largest 
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clades, (>95th percentile n cells per clade), and MT-SNVS-assigned clades. See the 

“Clonal reconstruction benchmark” to get info abuto the final choice of n=10 jobs per 

sample. 

 

MT-phylogenies annotation 
To annotate MT-phylogenies with discrete cellular clones, we developed 

MiToTreeAnnotator. Given an input CassiopeiaTree and its binary character matrix, 

MiToTreeAnnotator:  

 
1. Assigns each MT-SNV to a unique internal node of the tree, treating each internal 

node as a bipartition of the leaves. Specifically, given an internal node x, all leaves 

in a tree can be bi-partitioned into set1 (i.e., all leaves that share x as most recent 

common ancestor, the the clade identified by x) and set 0 (set1 complement). 

MiToTreeAnnotator computes Fisher’s Exact test statistics for all internal node-MT-

SNV combinations, evaluating the “enrichment” of each MT-SNV across each tree 

clade. Each MT-SNV is assigned to the internal node with lower Fisher’s Exact test 

FDR.  

2. Clusters MT-SNVs co-occurrence matrix into an optimal number of MT-SNVs 

clusters. First  the binary character matrix of the CassiopeiaTree is transposed, 

and variant-variant pairwise jaccard distances (i.e., MT-SNVs co-occurrence 

matrix) are computed. Then, hierarchical clustering (i.e., scipy.hierarchy.linkage) is 

employed to group MT-SNVs into an optimal number of clusters. This is achieved 

heuristically, by choosing the MT-SNV partitioning (i.e., the distance threshold in 

scipy.hierarchy.fcluster) that maximizes the average silhouette score across MT-

SNV clusters. 

3. Uses MT-SNVs clusters and MT-SNV-internal node assignments to cut the tree 

into clades supported by MT-SNVs clusters (i.e., MT-clones). I.e., in the last step, 

MiToTreeAnnotator iterates across MT-SNVs clusters, locating co-occuring MT-

SNVs on the tree (using MT-SNV-internal node assignments). Within this MT-SNV-

assigned nodes MiToTreeAnnotator choose the most ancestor node MRCA of a 

MT-clone, and labels all cells under this node as a discrete “MT-clone”. All cells 

from clades without MT-SNVs assigned are annotated as “Unassigned”. 

 

This rather simple and fast procedure effectively use the hierarchical structure encoded in 

the cell tree topology to “cut off” clades supported by co-occuring MT-SNVs. As shown in 
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the results, this method works best with high numbers of MT-SNVs (otherwise it’s hard to 

find stable/meaningful MT-SNVs clusters). After visual inspection of MT-SNVs co-

occurrence matrix, the user can also input its chosen “target” number of MT-SNVs clusters, 

from which MT-clones directly derive. MiToTreeAnnotator returns a tree with MT-SNVs 

assigned to internal nodes, and cells annotated with the “MT_clone” categorical label 

(CassiopeiaTree.cell_meta).  

 

Clonal reconstruction benchmark 
To benchmark the discrete output of phylo_inference, (i.e. the set of labels produced by 

MiToTreeAnnotator), we selected 10 unique hyper-parameters combinations (and 

therefore MT-SNVs spaces) for each sample. To make this test fair, we selected the most 

“informative” MT-SNVs spaces that: i) showed a discrete amount of phylogenetic signal, 

quantified with metrics that are agnostic with respect to the method used to infer discrete 

clones; and ii) included high number of cells and clones. Specifically, we used the following 

sample-specific criteria: 
 

• MDA_clones: AUPRC>0.5, char-based vs tree-based distance correlation >0.6, 

n_cells>300, n_GBC_groups==7 and n_vars>10 

• MDA_PT: AUPRC>0.3, char-based vs tree-based distance correlation >0.5, 

n_cells>1000, n_GBC_groups>30 and n_vars>10 

• MDA_lung: AUPRC>0.5, char-based vs tree-based distance correlation >0.5, 

n_cells>1000, n_GBC_groups>8 and n_vars>10 

 

 To select a first set of sample-specific MT-SNVs spaces. Then, for each sample, we 

binned MT-SNVs spaces according to their number of MT-SNVs (n=5 bins) and for each 

bin we selected the top2 MT-SNVs spaces according to char-based vs tree-based distance 

correlation. This procedure yielded 10 unique MT-SNVs spaces (i.e., AFMs) for each 

sample. 
These MT-SNV spaces were used to benchmark both MT-phylogenies robustness (see 

MT-phylogenies robustness section) and clonal reconstruction performance. For the latter, 

for each sample MT-SNVs space, we inferred MT-clones with: 
  

• MiToTreeAnnotator, using UPMGA, NJ, iqtree, and mpboot trees as input 

• leiden 169 clustering, using as input kNN (k=15) graphs build on cell-cell jaccard 

distances. For each MT-SNVs space, we selected the optimal resolution parameter 
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that maximized the average silhouette score across n=50 different resolution 

values 

• vireoSNP170, taking AD and DP counts as input. For each MT-SNVs space, the 

optimal k (i.e., number of clusters) was selected as recommended by the authors: 

taking the k value at which the Evidence Lower Bound (ELBO) curve stops 

increasing dramatically across n trials with different k values. We tried 2:maxK 

values, with maxK=50 for MDA_PT and MDA_lung and maxK=15 for MDA_clones 

• Cclone161, taking AD and DP counts as input. For each MT-SNVs space, we 

selected the k value (i.e., number of clusters) producing the best orthogonality 

score among wNMF components 

 
Fig. 36, shows ARI and NMI scores computed using ground truth lentiviral clones and 

inferred MT-clones from all described MT-SNVs spaces and methods. Fig. 37 shows 

UMAP cell embeddings colored for ground truth and inferred discrete clonal labels. This 

latter visualization include only a single MT-SNVs space per sample (i.e., row): the one 

with better average ARI across methods. 
 

Longitudinal dynamics of MT-SNVs 
MDA_PT and MDA_lung samples were processed as described in the data preprocessing 

section. Other details regarding preprocessing and downstream analysis of the full 

MDAMB231 scLT tracing data are out of the scope of this manuscript, and will be provided 

in that specific project context. To investigate the longitudinal dynamics of clones MT-

SNVs, we started by merging MDA_clones and MDA_PT AFMs (maegatk pre-processing). 

filter_cells (“filter2”) was applied before filtering the merged AFMs to retain the union of all 

MT-SNVs showing up in “informative” MDA_PT and MDA_lung MT-SNVs spaces (n=20 

MT-SNVs spaces). The resulting AFM was genotyped with the MiTo genotyping  method 

and cells with at least one MT-SNV were retained for further analysis. Clones with at least 

10 cells in both PT and lung were selected (n=6). The compute_lineage_bias function from 

mito_utils was used to select (for each longitudinal clone at PT and lung, respectively) 

“clonally enriched MT-SNVs” (FDR Fisher’s exact test <0.1, cell prevalence within the 

clone >1%, fraction of clone cells positive for the MT-SNV over the total number of positive 

cells > 75%). Dotplots are used to visualize median AF and cellular pravalence of these 

clonally enriched MT-SNVs across longitudinal clones (PT and lung, separately). 
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scLT experiment transcriptional characterization 
All samples (n=12) from the in vivo scLT experiment described in “MiTo benchmark sample 

preparation” were preprocessed with mito_preprocessing, using the “TENX_GBC” 

entrypoint (i.e., only pre-processing of GEX and GBC libraries). QC on GEX and GBC 

modalities was performed as described in “Quality Control”. GEX matrices from STARSolo 

(i.e., CBs passing both GEX and GBC QC steps) were processed within the standard 

scanpy pipeline171. Cell states were manually curated, and gene modules were inferred 

with Hotspot172. 

 

Statistics 
Boxplots highlights medians, with box margins representing the IQ range and whiskers 

extending to the 10-90th percentiles. 

 

Data availability 
Raw data (.fastq) files will be submitted to the European Nucleotide Archive (ENA) at 

manuscript submission. Processed data will be submitted to Zenodo for reproducibility at 

manuscript publication. 

 

Code availability 
mito_preprocessing: https://github.com/andrecossa5/mito_preprocessing   
phylo_inference: https://github.com/andrecossa5/phylo_inference  
mito_utils: https://github.com/andrecossa5/mito_utils  

Reproducibility code for this work: https://github.com/andrecossa5/MI_TO_analysis_repro  
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Results 
The MiTo benchmarking dataset 
 
To quantitate phylogenetic signals associated with expressed MT-SNVs, orthogonal 

lineage markers are needed.   

Lentiviral barcoding has been recently used for single-cell lineage-tracing (scLT) across 

multiple fields in developmental and cancer biology 88. Of note, this technology was 

previously used to benchmark the reliability of expressed MT-SNVs as lineage markers 
125. However, this seminal work provided two benchmarking datasets with limited number 

of cells (80 and 180, respectively) and clones (3 and 18, respectively), due to the low 

scalability of the plate-based, full-length Smart-seq protocol. More recently, several groups 

developed protocols able to obtain full-length sequence information of individual MT- 

transcripts using target enrichment of the cDNA produced with the 10x technology. 

Importantly, this droplet-based scRNA-seq platform is much more scalable than the older 

Smart-seq2, and effectively leverages UMIs (Unique Molecular Identifiers) to mark PCR 

duplicates of individual RNA molecules. However, validation of these new protocols was 

more focused on the quality of recovered MT-transcripts and SNVs rather than the 

recovery of   ground-truth clonal structures, limited by the analysis of species-mixing 

experiment data. Accordingly, while computational methods for raw mitochondrial-

sequence data pre-processing, variant filtering, genotyping, and lineage inference have 

been developed to extract clonal structures from data of increasingly higher throughput, 

benchmarking of these methods has been limited by the lack of complex labelled data 

outside of the datasets in 125 and 142.  

To fill these gaps, here we generated a novel high-quality dataset encompassing ~4k cells 

and >200 ground-truth clones, as defined by expressed lentiviral barcoding. To this end, 

we extended the original MAESTER protocol in 138 to include target enrichment of 

exogenous lentiviral transcripts. The resulting single-cell multi-omics protocol starts from 

a 10x-generated 3’ cDNA to produce 3 sequencing libraries and associated data modalities 

(Methods): i) the Gene Expression (GEX) library, with the standard full transcriptome 

single-cell read-out, ii) the lentiviral-barcode (GBC) library, enriched for barcodes-

containing transcripts marking the clonal origin of each cell, and iii) the mitochondrial (MT) 

library, enriched for mitochondrial transcripts as in the original MAESTER publication 138. 

The MAESTER protocol was chosen for mitochondrial enrichment (Fig. 6) due to its 

straightforward use and flexibility (necessary for the addition of the lentiviral data modality), 

the highly-optimized yield in terms of MT-transcript, higher scalability and cost-

effectiveness, compared both to other droplet-based 173 and plate-based 125 protocols.  
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Fig. 6. MAESTER protocol target enrichment. Readapted from Miller et al., 137.  

 

Importantly, starting from 10x 3’ cDNA, this protocol produces sequencing reads that can 

be de-multiplexed for their cellular of origin (using the 10x cellular barcode, CB) and 

molecular identity (using the UMI barcode), allowing for UMI-based consensus error-

correction strategies before variant calling. 

To cover multiple real-world clonal-complexity scenarios, we generated data from 3 high-

quality biological specimens, all derived from the MDA-MB-231 Breast Cancer cell line: i) 

a mixture of single-cell derived colonies generated in vitro (the MDA_clones sample), and 

a ii) pair of matched primary tumor- (PT) lung metastasis samples grown in vivo (the 

MDA_PT and MDA_lung samples, respectively), chosen from a larger longitudinal scLT 

experiment (Methods). For the in vitro samples, single cells from MDA-MB-231 cells were 

sorted and expanded in vitro to obtain single-cell derived colonies. After ~30 days in 

culture, each colony was infected with a single lentiviral species (i.e., lentiviral particles all 

bearing a unique barcode) and after a short (~7 days) selection period, 8 barcoded 

colonies were mixed and subjected to library preparation and sequencing (Methods).  

For the in vivo samples, MDA-MB-231 cells were infected with a high complexity lentiviral 

library (n~10^6 unique random barcodes), selected (as for the in vitro samples) and 

orthotopically injected into immunodeficient mice. After ~30 days, the PT was surgically 

removed and. After approximately one month, mice were sacrificed, and lung metastasis 

collected (Methods). Cellular suspensions from all specimens were generated and 

subjected to MiTo protocol sequencing. 
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Fig. 7. MiTo benchmarking, overview. 

 

With sequencing data at end, particular attention was given to pre-processing and quality 

control to ensure that only good quality cells for all data modalities were included in the 

final dataset.  

To achieve this, we developed the mito_preprocessing pipeline, a feature-rich workflow 

that can handle pre-processing of up to 3 sequencing libraries/data modalities per sample 

(i.e., GEX, GBC and MT, or combinations of them) (Methods). This pipeline streamlines 

several operations for MiTo data pre-processing, (Methods) producing 3 main outputs: i) a 

per cell, per gene UMI-counts matrix, ii) a table of CB-GBC UMI counts, from which clonal 

assignments are derived, and iii) several tables of per base, per site and per cell MT-

genome UMI counts, with statistics used for downstream MT-SNVs filtering and 

genotyping. 

 
Compared to available tools and implementations, the mito_preprocessing pipeline 

introduces two main novelties. First, it leverages consensus-sequence correction for 

individual UMIs from the GBC library followed by robust CB-GBC combinations filtering 

and cell-clone assignment (Methods). Together, these two steps effectively remove 

spurious and/or poorly detected CB-GBC combinations and generate more accurate clonal 

labelling of individual cells (Fig. 9), a fundamental step for our benchmarking study.  
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Fig. 9. CB-GBC combinations filtering for robust clonal labelling. Top row: Density plot showing 
the normalized abundance (x-axis) (Methods) vs max ratio (y-axis) of each CB-GBC combination, 
for each sample. Clonal assignment (Methods) considers only the most abundant top right been 
combinations, clearly separated from the noisy one in the bottom-left corner. Bottom row: Density 
plot of the n of consensus UMIs from the GBC library (Methods) detected for unsupported and 
supported CB-GBC combinations (each column represents a different sample, ordered as in the 
top row). These statistics include CB-GBC combinations from all CBs qualified as putative cells 
from STARsolo.  
 
Second, mito_preprocessing performs more stringent base filtering than previously 

developed in the original maegatk pipeline, i.e., the state-of-the-art MAESTER data pre-

processing toolkit developed in 138. In the original publication, maegatk introduced 

consensus error correction for MT sequences according to the following workflow: i) PCR 

replicates (i.e., reads) from the same RNA molecule (UMI) are used to call a single 

“molecular consensus” sequence; ii) consensus sequences are re-mapped to the MT-

genome.; iii) for each cell, consensus bases (filtered for their base calling quality and for 

the alignment quality of the entire consensus sequence) are recorded into forward and 

reversed pile-up tables. These tables are then used for downstream analyses (i.e., data 

quality checks, variant filtering, etc.). In this implementation, maegatk uses fgbio 

CallMolecularConsensus 152 for consensus sequence calling, without filtering any base at 

this step (i.e., all observed bases in a group of reads assigned to the same RNA molecule 

are used to generate the consensus sequence). In addition, fgbio 

CallMolecularConsensus produces unaligned reads with tags annotating two base-
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specific consensus metrics: i) cd: the “consensus depth” or “UMI group size” 142, the 

number of good quality reads that were used for fgbio sequence consensus, and ii) ce: the 

“consensus error”, the number of discordant bases from the one registered as final 

“consensus base”. In its original implementation, maegatk enable filtering of good quality 

bases and consensus reads, but does not consider base-specific UMI-group size and 

consensus error as additional indicators of reliable molecular information. Since recent 

works attempted to make single-cell MT-SNV calls with single-molecule detection142 (i.e., 

basecalls, supported by a single consensus UMI), we hypothesized that even a small 

fraction of low-quality/weakly-supported consensus UMIs could lead to sub-optimal 

lineage inference accuracy. To test this hypothesis, we modified the original maegatk 

implementation in order to: i) use only Q30 bases for consensus sequence calling (fgbio 

CallMolecularConsensus --min-input-base-quality parameter); ii) include filtering of 

individual consensus bases according to their UMI group size and consensus error 

(Fig….); iii) leverage STARSolo148 for MT reads alignment and CB,UB de-duplication 

before UMI consensus sequences generation, base filtering and pile-up (instead of bulk-

mode STAR as in 138, which does not make any CB and UB de-duplication).  

This modifications produced very similar outputs overall, as shown in Fig. 10. For instance, 

considering MDA_clones, the cell coverage (i.e., the median number of consensus UMIs 

across MT-genome target sites) was extremely similar across pipelines (Pearson’s 

r>0.99), with mito_preprocessing yielding fewer counts (median 66 vs 80 counts per site 

and cell, respectively), a smaller fraction of target sites covered (median 85% vs 89%), 

and smaller UMI group sizes (median 10.2 vs 10.5) compared to maegatk. Indeed, 

maegatk recorded ~83k basecalls with average consensus score (i.e., 1-consensus error 

of supporting consensus UMIs) <0.7 (1.81% of total consensus basecalls, ~4.6M) and 

~120k basecalls with average base-calling quality <30 (2.61% of total consensus 

basecalls) that were absent in mito_preprocessing basecalls. Strikingly, these apparently 

minor differences resulted in dramatically different (i.e., ~3-fold difference) numbers of 

variant basecalls (i.e., raw basecalls with at least one UMI supporting an alternative allele 

for some cell at some MT-genome position) across pipelines, with median 142 (+-71) and 

442 (+-160) variant basecalls across cell for mito_preprocessing and maegatk, 

respectively. We will see in the next chapter how these different choices in data pre-

processing coupled with different approaches for MT-SNVs filtering and genotyping may 

influence the “informativeness” of detected MT-SNVs. 
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Fig. 10. mito_preprocessing-maegatk comparison. mito_preprocessing removes low quality 
and consensus basecalls from MAESTER data, compared to maegatk (default parameters, except 
for –min_reads=3). Cell coverage: median n UMIs on MT-genome target sites, per cell. Fraction of 
sites covered: Fraction of MT-target sites covered (i.e., n UMIs>0), per cell. UMI group-size: mean 
group size of supporting UMIs, per basecall. Quality: mean quality of supporting UMIs, per basecall. 
Quality: consensus score of supporting UMIs, per basecall. n variant basecalls: n of raw, unfiltered 
basecalls supporting alternative alleles, per cell. All statistics have been computed considering the 
same subset of MDA_clones cells (n=345) qualified for all 3 modalities (i.e., GEX, GBC, MT, see 
Methods). 
 
The mito_preprocessing pipeline is under active development (Methods). 

mito_preprocessing is implemented in a highly modular and extendable fashion thanks to 

the flexible Nextflow DSL2 synthax. The pipeline uses Docker/Singularity containerization 

for cross-platform and High-Performance Computing cluster compatibility. Proper tuning 

of individual process resources and pre-processing options is possible via dedicated 

configuration files. Moreover, to facilitate downstream benchmarking tasks, 

mito_preprocessing comes with a benchmarking subworkflow for MT- data pre-processing 

(-entry BENCH).  This subworkflow can be used for MT-SNV pile-up/genotyping with 4 

alternative pre-processing tools, namely: samtools151, freebayes157, maegatk138 and 

cellsnp-lite155 (Methods).  

After pre-processing (with mito_preprocessing, ndr) and Quality Control on individual data 

modalities (Methods), the final MiTo benchmarking dataset, included 3 high quality 

samples with a total of 3795 qualified cells (Fig.). These samples displayed variable 

numbers of cells (345-2069), clones (8-194 considering all clones, 7-31 considering clones 
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with >=10 cells, representing 81-98% of each sample) and clonal complexity (Shannon 

Entropy: 0.77-1.66) (Fig. 11), from the simple MDA_clones mixture to the highly multi-

clonal PT (MDA_PT) of the matched PT-lung couple. 

 

 

 
 

 

 
 
Fig. 11. The MiTo benchmarking dataset. a-d. Number of lentiviral clones, cells, clone size and 
Shannon Entropy, for each sample. e. Stacked barplot of clonal prevalences for each sample (all 
clones). d. Circle packed plot showing only lentiviral clones with >= 5% prevalence (same color 
code as in e). 
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Table 1. The MiTo benchmarking dataset. Pre-processed (mito_preprocessing) data 

statistics for each samples and sequencing libraries (blue: GEX, green: GBC, orange: MT) 

(Methods). All statistics in this table are calculated for CBs passing quality control of the 

related  library (Methods). 

 

While the in-vitro grown MDA_clones specimen was specifically generated for MiTo 

benchmarking, the PT-lung couple was derived from a  larger scLT experiment, whose 

complete analyses will be presented elsewhere. This experiment included >50k good-

quality cells in 12 PT-lung longitudinal couples randomized across 4 chemotherapy arms, 

and was performed to investigate in vivo Breast Cancer clonal and phenotypic behaviors 

upon chemo-therapy at different stages of cancer progression (Methods). Here we will 

provide a glimpse of the transcriptional characterization obtained so far for that dataset, to 

provide complementary information about the identity of the cells included in the MiTo 

benchmarking dataset. Specifically, the MDA_PT and MDA_lung cells used in this study 

derive from a single-untreated mouse chosen for its good transcriptional quality-control 

metrics and manageable clonal complexity (both at the PT and lung level). Phenotypic 

heterogeneity is pervasive across these cells, considering both the tissue of origin, 

treatment condition and proliferation status (Fig. 12, top). Unsupervised clustering and 

gene modules (Methods) were used to annotate cells into 11 distinct cell states (Fig. 12, 
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bottom) including several well-known cancer cell phenotypic traits (i.e., proliferation, EMT, 

Interferon signaling, glycolysis, hypoxia and Stress). 

 

 

 
 
Fig. 12. Transcriptional charachterization of the full scLT BC_chemo dataset. a.  UMAP plots 
with the full dataset (n=58k cells) colored by tissue of origin, treatment condition and standard 
diagnostics covariates: the number of UMIs (nUMIs), the percentage of total UMIs assigned to MT-
genes (% mito) and a cycling signature (Methods). b. Left: UMAP plot with cells annotated for their 
cell state. Right: Dot plot showing markers genes for each cell state (n=3 markers, if available,  for 
each cell state). 
 
mito_preprocessing site coverage was in line with previous studies 138,142: across samples, 

we detected a median (across cells) site coverage of 40-71 consensus UMIs (UMI group 

size>=3 mean, base calling quality>=30 and mean consensus score >=0.7) for targeted 

loci (~13k bases across ~16k total MT-genome size), and ~0 in regions untargeted by 

MAESTER PCR primers (Fig. 13).  
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Fig. 13. MT-genome coverage from MAESTER target enrichment.  Each plot represents in radial 
coordinates the median (across cells) log-number of consensus UMIs over at each MT-genome 
position (polar coordinate). Genomic regions are colored by gene loci. Grey regions are untargeted 
MT-regions. 
 

Further inspection revealed other important features of MAESTER data (Fig. 14). First, 

the vast majority of basecalls are derived from sequences aligned in reversed orientation. 

Second, the vast majority of these bases were observed either in the forward or reversed 

strand (~96% total observed basecalls). This is consistent with pervasive mono-allelic 

expression of MT transcripts enriched by MAESTER protocol. Third, we observed a very 

strong correlation (Pearson’s r=0.93) between the mean expression of MT-genes (as 

assessed by gene-tag UMI quantification, standard scRNA-seq UMI counts from the GEX 

library) and the median site-coverage (aggregated across sites of distinct MT-genes) of 

the same genes quantified after pre-processing of the MAESTER library, highlighting gene 

expression-biases in MT-genome coverage that is linearly amplified by MAESTER 

targeted enrichment. These three properties also illustrate the main differences between 

RNA- and DNA-based single-cell MT-SNVs genotyping 137,142, regardless of PCR 

enrichment steps, variation in sequencing depths and pre-processing pipelines. DNA-

based workflows yield uniform coverage across MT-genome sites and paired-strand 

molecular evidence for alternative/reference allele calls 139,142, which does not apply to 

RNA-based workflows, where MT-genome site coverage is unevenly distributed and 

basecalls are supported almost exclusively by single-stranded molecular evidence, posing 

additional challenges in error detection and MT-SNVs filtering. 
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Fig. 14. Strand and expression biases in MAESTER data. Left: Scatterplot showing the number 
of forward (x-axis) and reversed (y-axis) UMIs supporting MDA_clones basecalls (each dot is a 
basecall). Right: Regplot showing linear relationship between the mean (across cell) expression of 
each targeted MT-gene (each dot) as detected in the GEX library, and its (average) site coverage 
as detected in the MAESTER library. Shaded area highlights 95% confidence intervals. 
 

Together, building on previous single-cell multi-omics protocols and bioinformatic 

pipelines, we demonstrated the feasibility of joint lentiviral-barcodes and expressed MT-

SNVs profiling using the 10x technology. Introducing several innovations in error 

correction, the MiTo protocol and the flexible mito_preprocessing pipeline provided an 

high-quality dataset for lineage inference benchmarking.   

 
 
 

 
 
Phylogenetic signal in expressed MT-SNVs spaces: the accuracy-
cellular yield trade-off 
 
Collecting raw MT-allele basecalls and associated statistics is the first step towards MT-

based lineage inference, and requires automated, scalable and flexible bioinformatic 

pipelines. However, after this first step, the single-cell analyst is given the responsibility to 

select an “informative”138 set of MT-SNVs, i.e., a set of phylogenetic characters holding 

relevant information about the evolutionary relationships within a population of cells. 

Unfortunately, giving the lack of extensive benchmarks with ground truth lineages, there is 

currently no clear and context-independent definition of what “informative” means for a 

MT-SNV. Thus, standard practice relies on extensive exploratory analyses and ad hoc 
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filtering strategies to empirically select the best candidate  MT-SNVs “space”, before 

attempting lineage inference and follow-up analyses.  

To facilitate both interactive and automated exploration of alternative MT-SNVs spaces, 

we developed the mito_utils python package and phylo_inference Nextflow pipeline 

(Methods).  

The mito_utils package implements several utilities and APIs for the interactive exploration 

of MT-SNVs data, including cell and variant filtering, cell- and character distance,  kNN-

graph calculations, dimensionality reduction, phylogenetic tree building, diagnostics and 

visualization. mito_utils includes two novel algorithms: i) the MiTo genotyping method, 

which uses the posterior probabilities of the two-component binomial mixture introduced 

by Kwock et al., 2022 to assign binary genotypes at each cell-MT-SNVs combination 

(Methods), and ii) the MiTo tree annotator, a general purpose tree post-processing method 

that: a) assigns individual MT-SNVs to internal tree nodes; b) finds the optimal clustering 

of co-occurring MT-SNVs; and c) cuts the input tree into discrete, MT-SNVs-supported 

clades, interpretable as “cellular clones” (Methods). 

To facilitate interoperability with other single-cell and scLT frameworks, mito_utils includes 

two core widely popular data objects: i) the AnnData class from the anndata155 package, 

the gold-standard for efficient storage and access of sparse, annotated data matrices in 

single-cell genomics, and ii) the CassiopeiaTree class from the cassiopeia165 package, the 

leading python library for single-cell lineage tracing.  

phylo_inference instead integrates the main features of mito_utils and other popular 

phylogenetic tools166–168 into two modular and scalable Nextflow DSL2 workflows: i) the 

tuning workflow, allowing automatic and flexible selection of MT-SNVs spaces with user-

defined values of more than 20 hyper-parameters for cell and variant filtering, MT-

genotyping, and phylogenetic tree building. Importantly, this workflow reports a 

comprehensive set of metrics to rank candidate MT-SNVs spaces, cell-cell distance 

matrices and resulting cell phylogenies, allowing fast and efficient prioritization of the most 

likely “informative” MT-SNVs spaces at hand. Once inormative MT-SNVs have been found, 

ii) the phylo workflow provides advanced functionalities for tree building, bootstrapping and 

post-processing, producing annotated trees for fine-tuned downstream analyses 

(Methods).  

mito_preprocessing, phylo_inference and mito_utils are under active development 

(Methods). They all stems from the same MiTo project, and while efforts have been put to 

ensure a certain level of flexibility in expected inputs and outputs, they are all designed to 

work together as a single, integrated solution for MT-based single-cell multi-omics, from 

raw .fastq sequences to annotated lineage trees. 
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Fig. 15. Un-filtered MT-SNVs spaces for MiTo benchmarking samples. These scatterplot 
represent the raw, unfiltered space of  MT-SNVs that needs to be filtered to retrieve high quality 
lineage markers (if any).  
 
With this toolkit at hand, we first wanted to assess the defining properties of “informative” 

MT-SNVs in our MiTo benchmarking dataset, given the ground truth definition of clonal 

structure from lentiviral barcoding. 

Starting from the basecalls of 5 different pre-processing pipelines, we tested 1764 (n=588 

per sample) unique combinations of cell and MT-SNVs filtering strategies, binarization 

methods, distance metrics and tree reconstruction algorithms (Methods). For each 

combination, we recorded a set of 19 metrics measuring: 1) the quality of filtered MT-SNVs 

(“Mutation Quality”), 2) the association of cell-to-cell distances and reconstructed trees 

with ground truth labels from lentiviral barcoding (“Association with GBC”), 3) the 

consistency between reconstructed tree topologies and underlying genetic characters 

(“Tree structure”), 4) the cell “connectedness” in MT-SNV spaces (“Connectedness”), 5) 

the variation of MT haplotypes (“Variation”), and 6) the cellular yield, i.e., the number of 

clones, cells and variants obtained for downstream analysis (“Yield”) (Methods) (Fig. 15-
18).   

Then, for each sample we grouped all tested combinations by 5 hyper-parameters of 

particular interest (i.e., pre-processing pipeline, binarization method, minimum Allelic 

Frequency of confident detection, minimum number of confidently detected cells, and 

minimum number of ALT alleles required to assign a MUT genotype. n=108 groups for 

each sample), aggregated each metric value by median, and ranked overall performance 

through a single summary score, following the same approach adopted in 35 (Methods). 

Specifically, we rescaled each metric value with min-max normalization, averaged these 

values across each metric type, and use a weighted sum of these values to produce a final 

“Overall” score. The weight of each individual metric type was chosen to maximize both 
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lineage inference accuracy and cellular yield (i.e., we assigned 0.4 to both “Association 

with GBC” and “Yield”,  and 0.1 to both “Tree structure” and “Mutation Quality”, to control 

for potential errors in lentiviral barcoding and variant calling, and 0 to other scores). These 

procedure was repeated separately for each sample to maximize insights coming from 

different cellularity and clonality scenarios. 

 

For the simplest lineage inference task (Fig. 16, MDA_clones, low number of cells and 

clones, relatively balanced clonal prevalences, high cell and site coverage) the top 

performing combinations made use of the mito_preprocessing pipeline coupled with the 

simplest binarization method (i.e., vanilla, where AF>some threshold is sufficient to score 

the presence of a MT-SNVs), filtering variants that were confidently detected in at least 2-

3 cells within a narrow high AF range (0.02-0.03). On the contrary, bulk methods readapted 

for MT-SNVs variant (i.e., freebayes and samtools) calling were consistently bottom-

ranked. Under this scenario, joint optimization of “Association with GBC” and “Yield” was 

feasible without compromising too much any of the two measures (i.e., the top 5 ranked 

hyper-parameter combinations recovered all seven lentiviral clones and >300 cells, while 

achieving 0.66+-0.07 ARI, 0.76+-0.03 NMI and 0.75+-0.02 AUPRC). 

Interestingly, top ranked combinations showed superior MT-SNVs quality, more supported 

tree structures, and intermediate values for “Variation” and “Connectedness” scores, with 

less clear cut separation between top and bottom ranked combinations considering these 

latter metric types (Fig. 16, MDA_clones, low number of cells and clones, relatively 

balanced clonal prevalences, high cell and site coverage). 
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Fig. 16. MiTo benchmarking results overview, MDA_clones. This funkyheatmap represent the 
top- and bottom-5 hyper-parameters combination (n=108 total) for the MDA_clones lineage 
inference task. See Methods for a comprehensive description of hyper-parameters, metrics and 
scoring and ranking methods.  
 

At the opposite side of the spectrum (Fig…, MDA_PT sample, higher number of cells and 

clones and and lower cell and site coverage compared to MDA_clones), the balance 

between cellular yield and GBC association was more difficult to achieve, particularly 

considering the final number of recovered cells (i.e., the top 5 ranked hyper-parameter 

combinations recovered >31 lentiviral clones and >1000 cells, while achieving 0.72+-0.06 

ARI, 0.81+-0.04 NMI and 0.43+-0.07 AUPRC). Here, the best preprocessing-binarization 

combination was consistently maegatk-MiTo, with top ranked MT-SNVs spaces including 

variants in the 0.01-0.05 confident AF range, and at least 2 ALT UMIs required to assign 

the MUT genotype. Interestingly, even if all top scoring combinations consistently showed 

high tree structural support, the worse performing combination (i.e., freebayes, with either 

MiTo or vanilla genotyping) showed similar structural properties (n.d.r., the association 

between these  structural metrics and the “GBC association score” is analyzed further at 

the and of the chapter). Indeed, MT-SNVs spaces “connectedness” was low in top-ranked 

combinations, as indicated by the high average path length and the low average degree 

of cells in their shared MT-SNVs graph (Methods).  

 

 
 
Fig. 17. MiTo benchmarking results overview, MDA_PT. This funkyheatmap represent the top- 
and bottom-5 hyper-parameters combination (n=108 total) for the MDA_PT lineage inference task, 
(see Fig. 16. and Methods). 
 

Very similar patterns were observed for the intermediate clonal-complexity sample (Fig…, 

MDA_lung, high number of cells, low number of umbalanced clones, lower coverage compared 
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to MDA_clones). In this case, top 5 ranked hyper-parameter combinations recovered >9 

lentiviral clones and >1000 cells, while achieving 0.82+-0.07 ARI, 0.73+-0.05 NMI and 

0.70+-0.07 AUPRC. Here, the best performing preprocessing-binarization method was 

maegatk-vanilla, with variants selected at higher values of confident AF (0.03-0.1) 

compared to MDA_clones and MDA_PT. 
 

 
 
Fig. 18. MiTo benchmarking results overview, MDA_lung. This funkyheatmap represent the top- 
and bottom-5 hyper-parameters combination (n=108 total) for the MDA_lung lineage inference task, 
(see Fig. 16. and Methods). 
 
To gain a more detailed understanding on these variable rankings and performances, we 

performed a meta-analysis of collected metrics (Methods). 

 

 
 
Fig. 19. MiTo benchmarking hyper-parameters feature importance. Association (i.e., lightgbm 
feature importance) between tested hyper-parameters and select metrics (Methods).   
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Regression analysis of tested hyper-parameters against metrics of interest (Fig. 19) 

revealed that the AF of confident detection and the minimum mean number of alternate 

(ALT) alleles in positive cells are by far the most important features influencing 

“informativeness” of MT-SNV spaces, with more modest and variable contribution of other 

hyper-parameters (e.g., pre-processing and binarization methods). Therefore, we 

investigate the contribution of these hyper-parameters separately.  

As observed in Fig. 20 and Fig. 21, MT-SNVs spaces including progressively more 

confident detection events (i.e., higher AF and higher mean number UMIs supporting the 

ALT allele in positive cells) gave MT-clones (Methods) that are much more concordant with 

ground truth lentiviral labels, as measured by Adjusted Rand Index (ARI) and Normalized 

Mutual Information (NMI) scores (Fig. 21, second row). Depending on the sample, this 

increase in ARI and NMI saturates within the 0.02-0.05 AF range. 

 

 
 

Fig. 20. Accuracy-cellular yield trade-off. GBC association metrics and number of recovered cells 
at different values of the threshold for minimum AF for the confident detection of a MT-SNV 
(Methods).   



 73 

 
Consistently, requiring at least 2 ALT UMIs instead of 1 as minimal molecular detection 

evidence to assign mutant MT-SNV genotypes resulted in more accurate clonal 

reconstruction (Fig. 21, fourth column). Interestingly, higher values of confident AF 

tresholds are mirrored by higher AUPRC values (i.e., the Area Under Precision-Recall 

Curve obtained using cell-cell distances as a binary classifier to detect same-

clone/different-clone cell-pairs138) up to AF values of ~0.02. At higher AF values, cell-cell 

distances are less and less discriminative. Thus, differently from other GBC association 

metrics (i.e., NMI, ARI), the AUPRC metric is extremely sensible to all losses of MT-SNVs, 

even the ones that might be confounded with errors due to extremely low AF of detection 

(i.e., AF<0.02 in at least 2-3 cells). In any case, progressively higher AF thresholds are 

mirrored by a dramatic loss of cells retained for lineage inference, especially for MDA_PT 

(Fig. 20). 

 

 

 
 

Fig. 21. GBC association metrics and MT-SNVs filtering/genotyping options (Methods).   
 
 

Considering pre-processing pipelines (Fig. 22), on average (i.e., across samples) maegatk 

and its upgraded version mito_preprocessing outperformed the other tools. Interestingly, 

more polished basecalls (i.e., mito_preprocessing vs maegatk) resulted in slightly better 
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clonal reconstructions, worse cellular yield, fewer MT-SNVs and putative artifacts (dbSNP 

flagged common variants or REDIdb annotated RNA editing events), but higher ratios of 

transitions vs transversions. These data suggest that: i) the transitions vs transversion ratio 

by itself does not necessarily informs about the quality of a subset of MT-SNVs, as “low 

quality and consensus” basecalls still give MT-SNVs distributed according to the expected 

MT- molecular signature; ii) “low quality and consensus” basecalls might introduce errors 

that are unrecognizable from true MT-SNVs variants in terms of expected substitution 

pattern, and iii) “low quality and consensus” basecalls recorded by maegatk and not by 

mito_preprocessing does not add enough noise to confound the true biological signal in 

the data, and recover slightly more cells for downstream analysis.  
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Fig. 22. Properties of MT-SNVs spaces from different pre-processing pipelines. (Methods). 

 
We performed the same assessment for the choice of binarization method (Fig. 23). Here, 

the two tested strategies tested are: i) vanilla, i.e., simple thresholding on AF values and 

ALT alleles UMI counts, to assign binary genotypes (i.e., 1 MUT, 0 WT); and ii) the MiTo 

binarization method. For the development of the latter, we hypothesized that modeling the 

background distribution of observed ALT UMI counts could better discriminate between 

true positive and negative cells, especially for high-prevalence/low-AF MT-SNVs173. Based 

on this hypothesis, we re-adapted the model introduced by Mquad159  to rank and select 

“informative” MT-SNVs. Specifically, MQuad uses Bayesian Information Criterion (BIC) 

differences (i.e., deltaBIC) between single and two-component binomial mixture models 

fitted on MT-SNVs AD and DP counts to prioritize MT-SNVs with higher statistical evidence 

of both negative and positive cell populations (i.e., the first and second components of the 

binomial mixture model, representing the background and the true positive population, 

respectively). Building upon this, we re-adapted the Bayesian inference scheme used by 

MQuad (Methods) to obtain, for each cell-MT-SNV combination, the two binomial-mixture-

components cell assignment posterior probabilities. Thresholding on these posteriors, 

rather than directly using AF and AD values (i.e., vanilla method), produce binary 

genotypes (Methods) that can be used for lineage inference (Methods).  
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On average, MiTo produced more accurate clonal reconstructions than vanilla genotyping 

(higher ARI and NMI values), removing noise in genotype assignment (higher average CI 

of selected MT-SNVs), with minimal impact on the number of cells and MT-SNVs selected. 

MiTo-derived cell phylogenies displayed slightly lower correlation between tree and 

character based distances, and lower AUPRC. 
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Fig. 23. Properties of MT-SNVs spaces from different binarization strategies. (Methods) 

 
We conclude this meta-analysis by further inspecting relationships between “Association 

with GBC” score and other metrics of interest.  

First, we assessed the relationship between GBC recovery and cell-cell “connectedness”, 

a concept introduced in Weng et al., 2024 that has been recently debated 173,174 (Fig. 24, 

Methods).  
 

 
 
Fig. 24. Association between cell connectedness and lineage inference accuracy. Cell-cell 
connectedness in MT-SNVs spaces and relationship with accuracy in clonal reconstruction. 
 

 

As observed for MDA_PT and MDA_lung, we found substantial anti-correlation between 

GBC recovery and metrics quantifying high cell-cell connectedness. This implies that 

overly connected MT-SNVs spaces either: i) selected False Positives MT-SNVs or ii) 

inaccurately assigned the alternative genotype to cells that did not share MT-SNVs, 

resulting in noisy and spurious connections. However, it is interesting to note how small 

increases in the density of the binarized AF matrix (0-0.25 density range) (Fig. 24) may 

give better association with GBC labels, suggesting that there is a small window of “right” 

connectedness that is actually beneficial for accurate clonal reconstruction.  
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Fig. 25. Association between label- dependent and -independent metrics. Relationship 
between “Tree structure” metrics and “GBC association” metrics. 
 

Second, we investigated relationships between GBC recovery and the two tree structural 

metrics included in MiTo benchmarking: i) the correlation between cell-cell tree- and 

character-based distances, which measures how much distances on an inferred tree (e.g., 

the number of nodes/edges connecting leaves) actually reflect disssimilarity among 

leaves, considering their characters; and ii) the Consistency Index (CI), which quantify the 

level of homoplasy and noise of the characters (Methods) used to reconstruct a tree. 

Crucially, good association between metrics explicitly using GBC labels (e.g., AUPRC, 

NMI, ARI, % of lineage-biased MT-SNVs) and metrics quantifying properties of “good” 

trees/cell distances independently of any ground truth (e.g., tree- vs character based 

distance correlation and CI) is fundamental for the identification of “informative” MT-SNVs 

spaces in real-world scenarios. Association between these 2 sets of metrics is not trivial: 

MT-based phylogenies are fundamentally different from standard trees in evolutionary 

biology and phylogenetics, as the ratio of available genetic characters vs phyla (i.e., the 

leaves on the tree)  significantly smaller.  

As it can be appreciated in Fig. 25, tree structural metrics are positively correlated with all 

GBC metrics except for AUPRC (which, as previously discussed, does not necessarily 

follow other GBC metrics). Thus, the correlation between character and tree cell-to-cell 

distances can be used effectively to prioritize MT-SNVs with higher phylogenetic signal, 

and, on the opposite, starting from a MT-SNVs space with enough phylogenetic signal, a 

simple baseline like Neighbor Joining can generate phylogenies that accurately represents 

the ground truth clonal structure of a population of cells, as we will demonstrate in the next 

chapter. 

 

In summary, we discovered several peculiar properties of (expressed) MT-SNVs spaces. 

First and foremost, our analysis highlight remarkable variability between “informative” MT-

SNVs spaces, showcasing the need for extensive data exploration and sample-specific 

analyses. In spite of this, common patterns can be found. The “sweet spot” for optimal MT-
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SNVs selection and genotyping needs to balance a severe trade-off between lineage 

inference accuracy and cell recovery, and by far, hard thresholds controlling the sensibility 

of MT-SNVs detection events are the most important hyper-parameters that needs to be 

tuned to get “informative” MT-SNVs spaces. Our data suggests that the most “informative” 

MT-SNVs spaces allowing analyses of a reasonable number of cells include MT-SNVs 

detected with an allelic frequency of ~0.02-0.03 in at least 2-3 cells and at least 1.25-1.5 

(mean) ALT UMIs in positive cells. Indeed, regardless of the pre-processing pipeline of 

choice, accepting single-molecule evidence of MT-SNVs presence rather than 2 or more 

UMIs leads to noisier lineage inferences, at least in our setting. Moreover, the optimal 

choice of pre-processing pipeline/genotyping strategy is heavily sample specific, and 

ultimately depends on clonal complexity and coverage: for high-coverage and low-

complexity samples, more stringent pre-processing pipelines (i.e., mito_preprocessing) 

are preferred, in combinations with simple genotyping strategies (i.e., vanilla). On the 

contrary, more forgiving pre-processing pipelines (i.e., maegatk) are best suited to extract 

all available (but potentially dirtier) information from less covered and highly clonal 

samples. However, to achieve optimal results, more principled strategies for MT-SNVs 

genotyping (i.e., MiTo) are needed. Finally, our data demonstrate that “Informative” MT-

SNVs spaces are not over-crowded with spurious cell-cell connections, but can benefit 

from carefully assigned alternative genotypes that increase the observed density and 

variation of character matrices. Indeed, caution is warranted when evaluating the quality 

of selected MT-SNVs: over-relying onto criteria that do not include confidence in molecular 

detection might include unwanted technical artifact, as “low quality and consensus” 

basecalls (and potentially other technical artifacts) might still give MT-SNVs that are 

distributed according to the expected C>T / T>C mutational signature.  

 
 
MiTo: robust inference of mitochondrial phylogenies and clones  
Inheritable molecular markers can trace historical events in evolving populations14. MT 

variants have been used to reconstruct species trees and infer population dynamics since 

decades120. Nuclear SNVs have been fundamental to trace the clonal evolution of cancer 

cell populations since the advent of NGS79. More recently, molecular recorders (e.g., Cas9-

based evolving lineage tracers 88 have been engineered to recover division events in 

dividing cell populations with single-cell sequencing. Compared to other “static” markers 

(e.g., lentiviral barcoding), encoding flat, independent cell groups (i.e., cell clones), 

dynamically accumulating genetic variants can be used to infer cell phylogenies (i.e., cell 

trees, encoding the evolutionary relationships in a cell population)113. Recent scLT studies 

demonstrated the power of joint analysis of cell state and lineage, with “lineage” defined 
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as either cell clones or cell phylogenies 98. However, the phylogeny of a cell population 

can be more informative than its cellular clones as: i) the topology of a cell tree can be 

used by itself to study the evolution of cell phenotypes with phylogenetics and 

phylodynamics methods8, and ii) a cell tree can always be “cut” into discrete entities (i.e., 

cell clones), with the tree topology providing additional information about the evolutionary 

relationships between these cellular groups.  

Direct analysis of cell state and lineage in human primary cell populations has great 

potential to build cell state-fate maps in normal development and disease. In 125, Ludwig 

and collegues validated for the first time the feasibility to trace cellular clones with 

expressed MT-SNVs using hierarchical clustering. Since then, several methods have been 

proposed to infer cellular clones from MT-SNVs (expressed or not) 161,169,170. In a very 

recent work 142, Weng and colleagues built the first ever large-scale (>1000 cells) MT cell-

phylogenies with a weighted jaccard distance and the Neighbor Joining algorithm. The 

authors provided compelling evidence for: i) the robustness to noise of cell-cell distances, 

ii) the visual support of specific tree sub-structures by MT-SNVs, and iii) the local 

correspondence between MT-based and Cas9-based cellular neighborhoods, assessed in 

an extremely elegant (and very debated henceforth 173,174) scLT validation experiment. The 

authors also showed that, using their MT-SNVs filters, the vast majority of MT-SNVs 

detected by the MAESTER protocol is also detected by the RedeeM142 protocol (based on 

MT-DNA enrichment, and detecting 5x more MT-SNVs). Here, we hypothesized that: i) 

“informative” subsets of expressed MT-SNVs (i.e., detected by the MAESTER protocol) 

could also be used to build robust cell phylogenies, and ii) that optimal “cutting” of these 

trees into discrete, MT-SNVs-supported clades could accurately represent discrete, 

ground-truth clonal structures. We developed the MiTo tree annotator (Methods). This tool 

takes an arbitrary cell phylogeny and a (binarized) character matrix (annotating tree 

leaves, i.e., cells) and:  

 

1. Assigns each MT-SNV to a unique internal node of the tree, treating each internal 
node as a bipartition of the leaves; 

2. Clusters MT-SNVs co-occurrence matrix into an optimal number of MT-SNVs 

clusters;  

3. Uses MT-SNVs clusters and MT-SNV-internal node assignments to cut the tree 

into clades supported by MT-SNVs clusters (i.e., MT-clones) 

 

Benchmark MT-phylogenies and MiTo clonal reconstruction performance, we took 

advantage of our MiTo benchmarking dataset. For each sample, we selected 10 

“informative” MT-SNVs spaces (Methods) (Fig. 26). To make these assessments as fair 
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as possible, we selected MT-SNVs spaces with reasonable phylogenetic signal 

(regardless of the correspondence between MiTo clones and lentiviral clones described in 

the previous chapter) and variable numbers of MT-SNVs. Specifically, we filtered the MT-

SNVs spaces: i) with reasonably high numbers of cells and clones; and ii) high AUPRC 

and character- vs tree-based cell-cell distances correlation (Methods). Then, we leveraged 

4 different tree reconstruction algorithms to build cell phylogenies, and evaluated i) the 

structural support provided by MT-SNVs and ii) the robustness of tree individual clades to 

perturbation of original character matrices (i.e., bootstrapping). 

 

 

 
 

Fig. 26. Informative MT-SNVs spaces. Cell prevalence and number of ALT alleles in positive cells 
of MT-SNVs selected to benchmark MiTo performance (n=10 MT-SNVs subsets for each sample). 
 

We selected 4 independent tree solvers with different working principles: two distance 

based-solvers (UPMGA and Neighbor Joining), commonly used for tree building in 

scLT125,141,164, a parsimony based solver (mpboot166), and a maximum likelihood solver 

(iqtree176), more general purpose algorithms that have been widely used for species tree 

and/or single-colonies tre building. On average (Fig. 27), all solvers produce trees with a 

similar average depth, number of MT-clones and number of MT-SNVs assigned to each 

clone (Methods). However, distance-based solvers produced trees with higher character 

support (i.e., higher correlation between tree- and character- based cell-cell distances, 

higher Consistency Index) and much more robust to bootstrapping, with UPMGA showing 

median bootstrap support (Transfer Bootstrap Expectation, TBE) >0.7 considering all 

clades, only the largest ones (top 5 percentile) or the ones with MT-SNVs assigned.  
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Fig. 27. Properties of mitochondrial phylogenies. Cell prevalence and number of ALT alleles in 
positive cells of MT-SNVs selected to benchmark MiTo performance. 
 

Then, we benchmarked MiTo clonal reconstruction performance. We tested MiTo against 

3 other clonal reconstruction methods: i) leiden169 clustering, a fast community-detection 

algorithm with wide-spread use in single-cell genomics, ii) vireoSNP170, a specialized 

Bayesian clustering methods developed for scRNA-seq demultiplexing and re-adapted for 

MT-clones inference; iii) CClone161 (Methods) a weighted Non-Negative Matrix 

Factorization method recently introduced for MT-clones inference. Notably, these methods 

output either discrete clonal labels (i.e., leiden, CClone) or clone assignment probabilities 

(vireoSNP) that can be subsequently converted into discrete clonal labels. None of these 

methods output single-cell phylogenies, or give any additional information about the 

evolutionary relationship between cells and inferred MT-clones. We fed these methods 

with selected MT-SNVs spaces and tuned key hyperparameters of each method (i.e.,  the 

resolution for leiden clustering and the number of target clones, k, for vireoSNP and 

CClone) to guarantee their optimal performance (Methods). We used ARI and NMI to 

measure correspondance between inferred clonal labels and ground truth lentiviral clones 

(Fig. 28, top). Strikingly, vireoSNP and MiTo (i.e., MT-clones cut from UPMGA, NJ, mpboot 

and iqtree trees) outperformed all the other algorithms. Considering both ARI and NMI, 

vireoSNP placed 1st in low-complexity samples (i.e., MDA_clones and MDA_lung, 7-9 

lentiviral clones, respectively), while MiTo ranked 1st with higher number of clones and 

cells (i.e., MDA PT clones, ARI and NMI >=0.75 with ~30 clones). Remarkably, in this latter 

scenario all alternative tools were unable to solve a consistent number of ground truth 

clones (Fig. 28, bottom). 
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Fig. 28. Clonal reconstruction benchmarking. Top panel: ARI and NMI of 10 lineage inference 
tasks (i.e., informative MT-SNVs spaces) per sample, for 7 alternative methods. Bottom panel: 
UMAP visualization of the most informative (i.e., highest average ARI across methods) MT-SNVs 
space for each sample (rows are MDA_clones, MDA_PT, MDA_lung, respectively). For each row, 
the ground truth lentiviral annotation is represented in the first column (dots represent cells, and the 
color-coding refers to individual GBC clones). All the other columns represent the respective 
inferences. For each reconstruction, n refers to the number of predicted clones. 
 
 
In the following paragraphs, we will illustrate properties of representative MT-SNVs spaces, 

MiTo inferred-clones and phylogenies for each MiTo benchmarking sample. 
 

Fig. 29 shows essential properties of a representative MT-SNVs space (314 cells x 18 MT-
SNVs and 7 lentiviral clones) for MDA_clones the low-complexity in vitro clonal-mixture 
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sample. In the first row (first two columns), we can appreciate the AF spectrum and molecular 
detection evidence for selected vs all, unfiltered MT-SNVs. On average, each of these MT-

SNVs mark ~30 cells with ~5 UMIs. 

 

 
 

 
 
Fig. 29. Representative MDA_clones MT-SNV space.  

 

These variants are scattered across the MT-genome (Fig. 29 first row, columns three and four) 

with an enrichment (5-18) for the MT-CYB gene. The mutational signature of selected MT-
SNVs includes 17/18 C>T/T>C substitutions (Fig. 29 second row, second column) as expected 
137,141, but, as discussed previously, the very permissive baseline filtering of MT-SNVs (Fig. 29 
second row, first column)) yields thousands of MT-SNVs enriched for the same substitution 

patterns. Fig. 29 (i.e., third row) shows UMAP plots colored by covariates of interest. 
Specifically, we build a kNN graph (k=15) from the complete cell-cell pair-wise jaccard distance 

matrix, and embedded this graph in a two-dimensional space with the UMAP method163 
(Methods). These visualizations show clear separation of lentiviral labels within this MT-SNVs 
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space, and specificity and sensitivity of representative MT-SNVs as ground-truth clonal 
markers. 

Fig. 30 shows a visualization of the main outputs from the phylo_inference pipeline. The first 

and second column represent the Neighbor Joining cell tree with internal nodes dots 

marking MT-SNV-supported clades (colored by Transfer Bootstrap Expectation support, 

TBE, Methods) and colorstrips on leaves annotating ground-truth GBC and inferred MT-

clonal assignments. Here we can diagnose several properties of the cell tree and derived 

cellular clones: i) MT-SNVs assigned clades are very robust to bootstrapping (median 

TBE=78); ii) the topology of the tree is fairly supported by characters of the leaves 

(distances correlations=0.47); and iii) there is an almost perfect one-to-one mapping 

between ground truth and MiTo inferred cellular clones (ARI=0.85 and NMI 0.83). As an 

orthogonal diagnostic metric to evaluate significant association between ground truth cell 

labels and the tree structure, the phylo_inference pipeline computes PATH168 phylogenetic 

correlations, (Fig. 30, third column, Methods) a bivariate derivation of Moran’s I statistic to 

quantify plasticity vs heritability of arbitrary cell phenotypes on a phylogeny. If we assume 

(see Discussion) that GBC labels are strongly inheritable and mutually independent, we 

should expect to observe very high auto-correlations (diagonal values) and very weak 

cross-correlations (off-diagonal values), as we observe in this case. High off-diagonal 

entries may represent either noise 
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Fig. 30. Representative MDA_clones MiTo phylogeny and clones.  

 

in lineage inference or true evolutionary relationships between lentiviral clones that can be 

further investigated using the cell tree and its characters. 

 
Fig. 31 and 32 show the same properties of an informative MT-SNVs space (1220 cells x 74 
MT-SNVs and 36 lentiviral clones) and its associated cell phylogeny and MiTo clones for the 

high-complexity MDA_PT sample. 
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Fig. 31. Representative MDA_PT MT-SNV space.  

 
The same trends observed for MDA_clones clonal mixture can be appreciated here, with 

some differences. MDA_PT “informative” MT-SNVs are more sensibly detected (mean 

number of ALT UMIs per positive cell <2, on average, compared MDA_clones), and are 

enriched for MT-ND5 gene. Importantly, high-support and MT-SNV-assigned tree clades 

identify ground truth clones. All major lentiviral clones and all MT-SNV-identifiable lentiviral 

clones (even small ones) were accurately inferred as robust, MT-SNV-assigned tree 

clades by MiTo. Conversely, small lentiviral clones without exclusive MT-SNVs clustered 

either: i) within other robust, MT-SNV-assigned tree clades or ii) as separate, noisy clades 

that could be easily spotted examining tree clades and their characters (Fig. 32). This 

pattern can be diagnosed even with PATH phylogenetic correlations, where a small fraction 

of ground truth clones did not show higher auto-than-cross-correlation values. 
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Fig. 32. Representative MDA_PT MiTo phylogeny and clones.  

 
The last sample of our MiTo benchmarking dataset (Fig. 33 and 34) represents and 

intermediate-complexity sample with respect tothe two presented above. Here, our 

ground-truth clonal analyses showed the presence of relatively-low numebr of clones with 

remarkably different metastatization potential and clonal prevalence, as previously 

reported for metastatic clones in Breast Cancer102,103. Consistently, we found fewer and 

higher prevalence MT-SNVs compared to the matched primary tumor lesion. 
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Fig. 33. Representative MDA_lung MT-SNV space.  

 
The top3 most expanded clones, representing > 80% of the total cells, can be accurately 

identified with associated marker MT-SNVs, their assigned clades and respective MiTo 

clones, while this is much more challenging for very rare lentiviral clones.  
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Fig. 34. Representative MDA_lung phylogeny and MiTo clones.  

 
Together, these data demonstrates: i) feasibility of robust cell phylogeny inference from 

expressed MT-SNVs, and ii) accurate clonal reconstruction performance achieved by 

vireoSNP and MiTo compared to other state-of-the art lineage inference methods, with 

MiTo being particularly accurate for large phylogenies and high-complexity clonal 

structures. Importantly, MiTo is very simple and fast, and is general enough to accomodate 

any kind of tree reconstruction method and data source (any kind of tree and binary 

character matrix on the leaves can be used as input). Moreover, MiTo annotations can be 

used together with other tree diagnostic metrics to identify poorly solved, noisy and/or 

unsupported regions of a cell phylogeny, while  to get additional information on the 

evolutionary relationships of individual cells and clones.  Thus, in spite of inherent 

limitations from MT-SNVs dynamics (see the next chapter, and the Discussion), our toolkit 

facilitate the retrospective study of evolving cellular phenotypes leveraging expressed MT-

SNVs as natural and cost-effective lineage marker.  

 

 

Longitudinal dynamics of MT-SNVs assessed by lentiviral single-
cell lineage tracing 
 
Despite extensive experimental- and simulation-based evidence of MT-SNVs 

dynamics125,142, the mutation rate and stability of MT-SNVs inheritance at cell division is 

still under active debate. Recent works produced contrasting data on this matter. On one 

hand, Campbell et collegues 143, demonstrated through elegant stochastic simulations that 

MT-SNVs can be used to trace ground-truth lineages only for relatively brief periods of 

time (2-5 yrs) and only if the AF of these MT-SNVs starts relatively high (>0.1). 

Consistently,  Wang and collegues177 demonstrated how, given the currently expected MT-

genome mutation rate, much of the observed somatic variation in MT-genome haplotypes 

within a cell population is generated in very long periods with rare and sporadic mutational 

events. On the other hand, Weng and collegues 142 observed close agreement between 

cellular nearest neighbors in MT-SNVs and Cas9-induced INDELs spaces. Importantly, 

this local similarity implies that, over the course of an in vivo experiment (i.e., ~4-8 months, 

according to the tumor growth kinetics of the KP-Tracer mice178 model) newly generated 

MT-SNVs co-evolved with INDELs artificially inserted in the nuclear genome through fast 

and continuous Cas9-induced DNA dsbreak and repair. Since the range of applications of 

an evolving lineage marker is dictated by the its mutation rate146, resolving this apparent 
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contrast is of pivotal importance to establish safe and reliable use cases for mitochondrial 

scLT. Here, we leveraged our single-cell lineage traced longitudinal dataset to investigate 

short-period MT-SNVs dynamics (i.e., approximately one month, Methods) in individual 

breast cancer clones, in vivo (Fig. 35). 

 

 
 

 
Fig. 35. In vivo breast cancer clonal dynamics assessed by lentiviral scLT.  Longitudinal breast 

cancer clones sampled at PT and lung sites, annotated for their prevalence and metastatic potential 

(Methods). 

 

As previously mentioned, our longitudinal dataset consists of clones with very 

heterogeneous cellular prevalence and metastatization potential (i.e., the lung prevalence 

of a given cellular clone, normalized for its PT prevalence). To maximize reliability, we 

focused on 6 lentiviral clones for which >10 cells were detected at both PT and lung sites.  

Fig. 36 shows the evolution of 22 clonally-enriched MT-SNVs at two clonal sampling 

timepoint (i.e., PT, ~40 days after cellular barcoding, and lung, ~70 days of barcoding, 

Methods). 
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Fig. 36. MT-SNVs dynamics in 6 longitudinal Breast Cancer clones, in vivo (Methods). 
 

Each lentiviral clone showed 1-6 clonally enriched MT-SNVs, with larger clones (n.d.r., 

clones are ordered in descending order for their mean number of cells across timepoints) 

showing more MT-SNVs than smaller ones. Strikingly, we detected 18 out of 22 of these 

clonally enriched MT-SNVs: i) at both timepoints, and ii) with very similar prevalence, 

regardless of their rarity. All of these mutations were detected almost exclusively in a single 

lentiviral clone, with nearly absent detection outside of it. Only 3 out of 22 MT-SNVs were 

detected in the metastatic population of an individual clone, but not in its primary tumor 

counterpart. These newly acquired MT-SNVs have moderate-to-low prevalence and mean 

AF. On the contrary, even more strikingly, we did not find any evidence of MT-SNVs loss 

across the same clone, from PT to metastasis. Importantly, these observations imply that: 

i) most clone specific MT-SNVs were generated before cellular barcoding, ii) in spite of the 

non-mendelian genetics of MT-SNVs, inheritance of these genetic trait at cell division is 

extremely stable, iii) the variation in MT-haplotypes that is generated within a cell 

population in such a short time span is very limited, and iii) all (MT-SNVs-) identifiable sub-

clones within a pro-metastatic clone contribute to metastatic seeding (regardless of the 

underlying kinetics and directionality of the process). 

Importantly, relaxing thresholds of clonal enrichment statistical significance did not alter 

these results.  

Then, we looked for MT-SNVs selected at the PT or metastatic level, considering also non-

clonally enriched MT-SNVs (i.e., MT-SNVs detected in multiple, independent lentiviral 

clones).  
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Fig. 37. Selection of MT-SNVs across 6 longitudinal Breast Cancer clones, in vivo (Methods). 

 
Here, we detected n=9 MT-SNVs (out of n=121 across the joint MDA_PT/MDA_lung 

dataset) with uneven PT-lung detection: 3 MT-SNVs (e.g., 15356_G>A, 3563_G>A, 

15837_T>C) were unique somatic events within single lentiviral clones (see also Fig., …); 

2 MT-SNVs were detected in all clones and timpoints, with only sporadic exceptions (e.g., 

9441_C>T, 11464_C>T); while 2 MT=SNVs were detected exclusively (11072_C>T) or 

predominantly (9305_T>C, 11547_T>C) at PT or lung sites. In spite of the very low mean 

AF and very low number of detection events requiring cautious interpretation, these data 

suggest how specific MT-SNVs might confer selective (dis-)advantage across breast 

cancer growth and dissemination. 

Thus, coupling lentiviral scLT and MT-SNVs profiling demonstrated the reliability of MT-

SNVs as lineage markers for longitudinally sampled cellular clones and revealed 

previously unappreciated features of Breast Cancer clonal dynamics. 
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Discussion 
 
The terrific complexity of human body originates from a single, massive branching process 
14,21. This process, named somatic evolution, starts early with embryogenesis and 

continues through adulthood. In physiological conditions, stem cells respond to 

environmental stimuli to differentiate into specialized cells and replenish damaged tissues. 

Deviation from this normal trajectory may translate into diseases, such as ageing and 

cancer. Somatic evolution has been studied for centuries, with researchers inherently 

limited by the technological possibilities of their time. With the advent of Next Generation 

Sequencing, -omics technologies, and single-cell biology, cellular phenotypes have been 

abstracted into high-dimensional “states”, i.e., the integrated functioning of cell constituent 

molecules, profiled by unbiased sequencing assays29,75. This data-driven revolution 

renewed interests in cell state-fate relationships and predictive models of cellular 

dynamics, both in healthy and diseased contexts. Indeed, single-cell lineage tracing (scLT) 

has emerged as a powerful technique to map cellular decision making, adding the 

“lineage” dimension to otherwise static single-cell high-dimensional “snapshots”88,91,98. In 

particular, remarkable efforts have been devoted to find lineage markers that could inform 

about cellular ancestries in their native environment (i.e., primary tissues). Among these 

markers, mitochondrial variants (MT-SNVs) have recently gained special attention, due to 

their high accumulation rates, scalability, and compatibility with other state-informative 

single-cell modalities125,136. In spite of their peculiar inheritance mode, MT-SNVs have been 

used to trace species evolution for decades126. However, due to fast improvements in the 

protocols and computational strategies to detect these variants, it is presently unclear what 

is the role of MT-SNVs in the realm of single-cell biology137,149. Specifically, we still do not 

know whether these variants can solve only cellular “clones” (i.e., coarse-grained cellular 

ancestries, identifying cells with “recent” common ancestors), or complete cell phylogenies 

(i.e., cell trees, graphical models approximating the true sequence of cellular division 

events giving rise to the observed cell population). Remarkably, while both types of 

information would provide valuable context to other phenotypic data, the cell phylogeny 

paradigm would allow repurposing of well-established phylodynamics methods to single-

cell studies8, opening entirely new possibilities for the study of somatic evolution.  
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In this work, we developed MiTo, a set of tools to facilitate automatic and interactive 

exploration of MT-SNVs data. This toolkit include: i) a flexible pre-processing pipeline for 

single-cell multi-omic datasets including the (expressed) MT-SNVs modality; ii) a 

comprehensive pipeline for MT-SNVs-based lineage inference; and iii) a python package 

for interactive exploration of MT-SNVs, phylogenies and clones. This toolkit streamlines a 

number of operations from raw .fastqs to annotated cell phylogenies, filling an important 

gap in the scLT community (particularly for python users, for which no off-the-shelf solution 

is available). Importantly, MiTo builds upon the AnnData155 and CassiopeiaTree165 data 

structures, enabling straightforward interoperability with other popular single-cell libraries 

from the scverse179 ecosystem. Compared to existing approaches, MiTo includes refined 

data pre-processing (e.g., UMI-based consensus sequence generation for lentiviral- and 

MT- reads), a statistically sound method for MT-SNVs genotyping, and a tree “cutter” to 

annotate a phylogeny into MT-SNVs-supported clades. Importantly, these novel features 

are implemented alongside state-of-the-art tools to facilitate robust benchmarking.  

To systematically assess the phylogenetic signal associated with expressed MT-SNVs and 

benchmark MiTo performance, we generated a new single-cell multi-omic dataset with 

simultaneous profiling of gene expression, expressed MT-SNVs (MAESTER protocol), and 

ground truth clonal labels derived from lentiviral scLT. This tri-modal (i.e., gene expression, 

lentiviral barcodes, MT-SNVs) dataset encompass three samples with thousands (~5k) 

high-quality cells and widely different number of clones, faithfully representing real world 

lineage inference scenarios. To the best of our knowledge, only two other (comparable) 

datasets were available prior to this work: i) the dataset published by Ludwig et al. in 125, 

including two samples from the TF1 cell line, with limited number of cells (70 and 158), 

clones (3 and 11, identified with lentiviral barcoding), and “informative” variants (9 and 20, 

detected with the poorly scalable Smart-seq scRNA-seq protocol, Fig. 3 and Supp Fig. 2); 

and ii) the dataset published earlier this year by Weng et al. 142. This dataset was generated 

with a dual scLT experiment leveraging the KP-tracer mice165 (a TP53-driven lung cancer 

mouse model, engineered for dynamic, Cas9-based scLT), and comprise 10 multi-modal 

(i.e., RNA, chromatin accessibility, MT-SNVs and CRISPR-induced INDELS) samples. 

Despite the unprecedented richness of these scLT read-outs, these samples show low 

average number of cells (~500 per sample, Supp Fig. 3 and Extended data Fig.5) and 

“informative” variants (17-40, Supp Fig.2). We believe that, since all of these datasets have 

unique features (e.g., single-cell protocol and layer of choice for MT-SNVs detection, 

organism, orthogonal scLT labels, etc.), they all provide fundamental reference for new 

scLT method development. However, the MiTo benchmarking dataset: i) includes 2 

samples (i.e., MDA_PT and MDA_lung) with substantially higher number of cells, clones, 

and MT-SNVs, compared to all the other samples described; and ii) is the only one that 
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include samples derived from a clonal resampling experiment, where the same ground 

truth clones were profiled longitudinally, in vivo. While we acknowledge limitations of the 

MiTo benchmarking dataset (e.g., limited number of samples and static definition of ground 

truth lineage) these features enabled us to assess MT-SNVs properties that could not have 

been assessed otherwise. 

Our analysis unfolds into three main phases.  

In the first phase, we extensively explored alternative strategies for MT-SNVs pre-

processing, cell and MT-SNVs filtering, and MT-SNVs genotyping, to evaluate their impact 

on lineage inference accuracy. To do this, we defined a set of metrics to evaluate different 

facets of resulting “MT-SNVs spaces” (i.e., a certain selection of cells and their MT-SNVs 

genotypes). With systematic meta-analyses of these metrics, we discovered several 

peculiar properties of (expressed) MT-SNVs spaces. For instance, we discovered that the 

most “informative” MT-SNVs spaces allowing analysis of reasonable cell numbers include 

MT-SNVs detected with an allelic frequency of ~0.02-0.03 in at least 2-3 cells and with at 

least 1.25-1.5 (mean) ALT UMIs in positive cells, with 2 UMIs better than 1 to accurate 

assignment of MT-SNVs alternative genotypes. Indeed, we found that the optimal choice 

of pre-processing pipeline/genotyping strategy is heavily sample specific, and ultimately 

depends on sample clonal complexity and coverage: for high-coverage and low-complexity 

samples, more stringent pre-processing pipelines (i.e., mito_preprocessing) are preferred, 

in combinations with simple genotyping strategies (i.e., vanilla). On the contrary, more 

forgiving pre-processing pipelines (i.e., maegatk138) are best suited to extract all available 

(but potentially dirtier) information from less covered and highly clonal samples. However, 

to achieve optimal results, more principled strategies for MT-SNVs genotyping (i.e., MiTo) 

are needed. Furthermore, our data suggest that “informative” MT-SNVs spaces are not 

over-crowded with spurious cell-cell connections, but can benefit from carefully assigned 

alternative genotypes that increase the observed density and variation of character 

matrices, and that “low quality and consensus” basecalls (and potentially other technical 

artifacts) might still give MT-SNVs that are distributed according to the expected C>T / T>C 

mutational signature.  

In the second phase, we benchmarked MT-SNVs -derived cell phylogenies (MT-

phylogenies) and cellular clones (MT-clones) from different lineage inference algorithms. 

Here, we found remarkable robustness to noise of MT-phylogenies reconstructed with 

simple, distance-based tree inference algorithms (i.e., Neighbors Joining and UPMGA), as 

measured by Transfer Bootstrap Expectations167 (a modified version of classic Falsestein’s 

Bootstrap Proportions that evaluates how similarly tree clades are found across bootstrap 

replicates, rather than quantifying how many times these clades are identically found 

across replicates). Consistently, we found that leveraging these tree structures to infer 
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discrete cellular clones (i.e., MiTo tree annotator) results in accurate clonal inferences, 

especially for high clonal complexity scenarios, where the challenge is to accurately detect 

the highest possible number of ground truth clones.  

In the third phase, we leveraged the longitudinal nature of our dataset to assess: i) stability 

of MT-SNVs, and ii) de novo generation of MT-SNVs, in short time periods (i.e., ~1 month). 

Here we found that, without exceptions, all clonally-enriched MT-SNVs are stably inherited 

within ground truth clones resampled across timepoints, with nearly absent evidence of 

parallel evolution. Strikingly, this pattern was conserved for all enriched MT-SNVs, i.e., 

both high prevalence MT-SNVs (marking entire lentiviral clones) and low prevalence MT-

SNVs (marking sub-populations within individual lentiviral clones), regardless of observed 

allelic frequencies. We also detected few (i.e., n=3, across 6 independent clones) putative 

de novo MT-SNVs, exclusively detected in the metastatic population of individual clones. 

We also detected interesting MT-SNVs that could mirror the action selective pressures on 

MT-phenotypes during tumor growth and metastatization cascade. 

Together, these data need careful interpretation, considering recent evidence in the field.  

Our data suggest that, in some way, “less is more”, when it comes to MT-SNVs 

“informative” spaces. In other terms, too loose MT-SNVs genotyping produces False 

Positive variant calls leading to sub-optimal lineage inference. However, too strict MT-

SNVs genotyping causes dramatic cell and MT-SNVs loss, preventing scLT analysis, in 

toto. Thus, according to these data, one should include all the MT-SNVs that is able to 

genotype, even low-AF MT-SNVs (i.e., 0.02-0.03 AF), but this should be done with a 

careful assessment of the confidence with which these MT-SNVs are detected, and 

possibly, with statistical methods that are able to discriminate between background, noisy 

detection events, and true positive signals. In spite of MT-SNVs detection differences (i.e., 

RNA vs DNA), this view reconcile the need for stringent filtering strategies adopted in 
137,148,173 with the benefit of added phylogenetic characters demonstrated in 142 . Indeed, 

our data demonstrate high robustness to noise of MT-phylogenies, and their utility for MT-

clone inference. The former property is difficult to compare with other scLT studies, as 

reporting single-cell phylogenies bootstrapping results is not common practice in scLT, and 

robustness-to-noise of cell-cell distances is much easier to achieve than robustness of 

inferred ancestries. However, compared to other phylogenies47,142–144,166,180 (i.e., from 

species phylogenetics or single-cell colonies WGS), MT-phylogenies internal branches are 

supported by orders-of-magnitude less characters, and thus, the molecular evidence 

supporting these inferred ancestral events (and hence, the resolution of MT-phylogenies) 

remains limited, at least considering expressed MT-SNVs from the MAESTER protocol. 

Importantly, challenging MT-phylogenies from 10-fold higher number of MT-SNVs (i.e., 

RedeeM142 protocol) could already provide better guarantees about MT-phylogenies 
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branch support, and molecular dating8 methods could reveal additional opportunities and 

limitations of MT-scLT. Indeed, a detailed comparison with previously published scLT 

phylogenies (e.g., derived from scWGS or Cas9 lineage recorders) would give better 

perspective to the properties of MT-phylogenies and retrospective scLT in general. These 

analyses will be part of future work. Thus, despite inherent limitations, MT-SNVs resolve 

useful (albeit approximate) cellular genealogies that can be leveraged to study the 

evolution of cellular phenotypes, at reasonable costs, and in native contexts. We anticipate 

that further experimental and computational advancements will improve current MT-

phylogenies resolution, reducing the temporal scale at which MT-SNVs can resolve 

somatic evolutionary events. Finally, results from our longitudinal experiment have three 

main implications: i) MT-SNVs are exceptionally stable across cell divisions, in spite of the 

known stochasticity of mtDNA inheritance; ii) the mutation rate of mtDNA is low, and newly 

generated MT-SNVs take time to drift at high AF in a substantial number of cells; iii) 

metastatic seeding of individual clones is sustained by multiple sub-clonal lineages rather 

than being restricted to one or few sub-clones selectively (or stochastically) acquiring the 

metastatic phenotype. Further analyses and data will be required to get more precise 

estimates of mtDNA mutation rate, but, qualitatively, these results are concordant with 

experiments and simulations from 143 and 177. The interesting seeding pattern that we 

observed in Breast Cancer xenografts, instead, needs to be further corroborated with 

additional experimental evidence.   

 

In summary, this work highlights opportunities and limitations of MT-scLT, providing novel 

data analysis tools and benchmarking datasets. 

 

Our hope is that these methods and data will be useful to understand cancer somatic 

evolution, to intercept it, and ultimately, to counteract it. 
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