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A B S T R A C T

The advent of quantum computers has justified the development of quantum machine learning algorithms,
based on the adaptation of the principles of machine learning to the formalism of qubits. Among such
quantum algorithms, anomaly detection represents an important problem crossing several disciplines from
cybersecurity, to fraud detection to particle physics. We summarize the key concepts involved in quantum
computing, introducing the formal concept of quantum speed up. The survey provides a structured map of
anomaly detection based on quantum machine learning. We have grouped existing algorithms according to the
different learning methods, namely quantum supervised, quantum unsupervised and quantum reinforcement
learning, respectively. We provide an estimate of the hardware resources to provide sufficient computational
power in the future. The survey provides a systematic and compact understanding of the techniques belonging
to each category. We eventually provide a discussion on the computational complexity of the learning methods
in real application domains.
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1. Introduction

Anomaly detection takes advantage from a wide range of artificial
intelligence algorithms, which – combined with human supervision –
may raise the degree of protection and of integrity of systems and
ata. On the other hand, the advent of quantum computing has made
ossible to implement quantum algorithms on real prototypical – but
lready commercial – quantum hardware. Such algorithms include
achine learning-related algorithms which may inherit the quantum

peed-up typical of quantum algorithms. The differentiation among
uantum computing architectures (gate based [1,2], adiabatic [3,4],

measurement based [5–7]), encoding (digital [8] versus continuous
ariables [9–12]), hardware (several substrates from solid state to
rapped ions [13,14] to photons [15]), the diversity of the quantum
lgorithms and the unclear advantage carried by some of them in
he field of quantum machine learning, and also the range of po-
ential application domains and the different methods to achieve the
ame goal, call for a systematic review of what has been done and
hat is known in the field, in order to address more efficiently the

investigation towards meaningful, feasible and relevant applications.
The quantum machine learning algorithms proposed in literature for
anomaly detection purposes are updated to Q1 of 2024, and clustered
by applying the criteria of training method. Indeed, the latter represents
the criterion which drives the choice among a families of algorithms.
Therefore, we classify the quantum algorithms for machine learning
according to the same classification of classical algorithms, namely
among supervised learning, unsupervised learning and reinforcement
learning, respectively. Despite its recent birth, the topic of quantum
machine learning has been systematically reviewed in the time span
2015–2023 [2,16–20]. We privileged the literature which includes a
practical implementation on either an actual quantum computer or the
simulator of some existing hardware. The literature reviewed by such
sources is integrated by more recent articles not included there. In the
next sections we describe the summary of aims and AI algorithms used
in anomaly detection, the basics of quantum computing and quantum
advantage, the key quantum algorithms developed in the field which
 q

2 
are relevant for anomaly detection purposes, and we systematically
analyze the most recent advancements in the field of quantum ma-
chine learning applied to anomaly detection. In the second section, we
summarize the application for quantum machine learning in the field
of anomaly detection. In the third section, we introduce the concept
of quantum advantage, along with a classification for the possible
quantum speedups. In the fourth section, the groundings of quantum
computing are introduced: from the definition of qubits, qudits and
umodes to the encoding of classical information into these units of
omputation. In the fifth section, different architectures of quantum
omputation (adiabatic and circuital models) are introduced, along
ith the support of classical computers. The sixth section is dedicated

o focus on the role of HPC and classical computation to interface
ith quantum hardware and algorithms. Quantum neural networks
nd variational circuits, to translate on a quantum device the classical
eural networks, are explained in section seven. In the remaining sec-
ions, a survey on specific quantum algorithms for anomaly detection
s provided, classified with respect to the categories of supervised,
nsupervised and reinforcement learning. A summary of all the exposed
lgorithms can be found at Table 3, while the available datasets for

training quantum circuits are summed up by Table 4. In order to cover
all of the classes of quantum algorithms and computational architec-
ures in Fig. 1, we select and summarize a paramount paper for each of
hese classes. For instance, Killoran’s work [10] in 2019 defined how

to build continuous variables neural networks for quantum computers,
along with their employment for anomaly detection, while Tacchino
n 2019 [21] proposed a model of fully quantum neural perceptron.

The other works we report are from Useche [22] (2022) for performing
classification tasks with qudits, Herr [23] (2021) for introducing the

GAN in the field of anomaly detection, Moro [24] (2023) to boost
the performances on the Restricted Boltzmann Machine via an annealer,
the Harrow, Hassidim, Lloyd paper [25] (2009), which introduced the
amesake HHL algorithm employed for the support vector machines
and beyond), and the paper by Albarràn-Arriagada [26] (2018) for the
uantum Reinforcement Learning.
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2. Application domains for quantum anomaly detection

As this review elaborates on the intersection of quantum machine
learning methods with applications in the anomaly detection, we first
briefly assess which classes of algorithms are related to such topic,
from image recognition and data classification to clustering analy-
sis. Moreover, another topic of interest is provided by the domain
f applications: cybersecurity is a major focus for quantum machine
earning [10,27–30] (and for all–around machine learning), but a con-

siderable interest arises on disparate topics such as big data for science,
i.e. detecting Higgs–boson decay at LHC collider [31,32], geophysical
nalysis [33], detection of new particles at LHC [34,35] or even audio

recognition [36,37].
Typically, cybersecurity is characterized as a collection of technolo-

gies and processes designed to protect computers, networks, programs,
and data against malicious activities, attacks, harm, or unauthorized
access. In the field of cybersecurity, anomaly detection is of paramount
importance. Many datasets exist, including intrusion analysis, malware
analysis, and spam analysis, which are used for different purposes [38].

All cybersecurity matter, while becoming increasingly crucial to all
modern industrial and institutional activities, has also grown in the past
decades in terms of complexity of the multiple bodies and structure
which have been created to implement cyber defence functionalities.
SOCs (Security Operation Centers) are for example hugely complex
cybersecurity systems, exploited to monitor infrastructures, to supervise
etworks, to detect threats also able to guarantee early warning and
ecurity awareness. Once security incidents have been detected, they

have also to be managed. The so called Computer Emergency Response
eams (CERTs) come into play. Such complexity of cyber monitoring
nd countermeasure systems is strongly related to an equivalent rear-
angement of the threat side, where more conventional private cyber
rime groups and cyber terrorists or hacker sources were joined by
overnment linked teams. Such groups carry out a so called cyber
arfare by systematically implementing cyber attacks to national or

nstitutional IT services [39]. Complexity grows together with contin-
ous and rapid adaptations and modification of threats themselves.

Ransomware groups and other malicious players, e.g., are changing
their initial access vectors while the digital attack surface and vulnera-
bilities shift, also exploiting commercial tools to disguise their breaches
and deploying new ransomware schemes. Anomaly detection [40] is a
undamental tool for this task and such continuously evolving cyber
hreat landscape ultimately calls for actions by SOCs and CERTs to be
argely become automated only asking for man-in-the-loop in few very
ritical steps; which on its turn naturally links to the use of machine
earning [41–44], as a means of automated response.

The main purpose of such algorithms is to provide early warning
of attack, possibly even before the attack is launched [45]. Cyber
intelligence deals with amount of data, their heterogeneity and their
high production rate. AI is believed [46] capable to enhance cyberspace
security more effectively than conventional methods for three reasons,
namely:

• Better adaptation to detect anomalous, faster and more accurate
operations.

• Naturally handling high volumes of data.
• Learning over time to respond better to threats.

Moreover, between different AI methods such as neural networks, fuzzy
logic, expert system, machine learning, and deep learning, the two
latter bring the most achievements. In the field of cybersecurity, the
applications span mainly on malware detection, intrusion detection
(ID), endpoint detection (ED), phishing detection and advanced per-
sistent threat (APT). All of them take advantage of different methods
based on a number of possible algorithms (or combinations of them):
Naive Bayes method, Support Vector Machines (SVM), Decision Trees
and, more recently deep Neural Networks [47–50]. One should keep
n mind that since spurious transactions are far fewer than the normal
3 
Fig. 1. A list of topics to categorize the field of quantum machine learning and its
algorithms.

ones, the highly imbalanced data makes fraud detection very challeng-
ing and calls for ways to address it beyond the traditional machine
learning approach [28]. Furthermore, the development for instance
of new fraud detection methods is made more difficult due to the
severe limitation of the exchange of ideas in fraud detection [51]. More
recently, Reinforcement Learning proved to be a robust but flexible

ethod to prevent cyber attacks [52–54], also thanks to a vast range
of available algorithms, such as Deep Deterministic Policy Gradient
(DDPG) [55], Trust Region Policy Optimization (TRPO) [56], Proximal
Policy Optimization (PPO) [57], Generalized Advantage Estimation
(GAE) [58].

In the broader field of anomaly detection, Neural Networks have
lso been successfully employed for medical and public health do-
ain [59], fault detection for mechanical components and structural

damage detection [60–62]. As for image and pattern recognition or
ata text analysis, along with detection of spurious elements in datasets
rom the corresponding domains, techniques such as Support Vector
achines [36,63], Neural Networks [64,65] and clustering based al-

gorithms [66,67] have been deployed. Support Vector Machines have
also been addressed to foil phishing attacks, achieving a rationale per-
formance with 99.6% of True Positive Rate and 0.44% of False Positive
Rate [68]. Finally, also advanced persistent threat can be performed by
deep learning algorithms, such as dilated convolutional auto-encoders
(DCAEs) algorithm [69].

Anomaly detection represents a major method in the field across
these different purposes, and it turns out to be promisingly explored
lso in the field of quantum machine learning. In the next sections
e therefore anticipate the key concepts of quantum information and
uantum algorithms, so to consistently review anomaly detection from
he perspective of the solution of security-related tasks, as outlined
bove.

3. Quantum algorithms and quantum advantage

Quantum algorithms belong to computational classes defined by
quantum Turing machines [70] instead of the conventional Turing
machines. In the complexity theory, for both classical and quantum
computation, the runtime of an algorithm is measured in terms of num-
ber of elementary operations 𝑁 involved [71]. In the circuit models for
quantum computing, such operations match the application of native
gates on the hardware for the gate-based architecture. Therefore, the
same problem can be mapped as NP but not P for classical machines
while it can be of class BQP if defined on the Hilbert spaces on which
quantum Turing machines rely [72]. Jager and Krems demonstrated
that there exists a feature map and a quantum kernel that make
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Table 1
Speed-up quantification for given quantum machine learning subroutines. The table is taken from [17]. Some of the reported algorithms will
be further discussed in detail in the next sections.
Methods Speed-up Amplitude amplification HHL Adiabatic qRAM

Bayesian inference 𝑂(
√

𝑁) Yes Yes No No
Online perceptron 𝑂(

√

𝑁) Yes No No Optional
Least-squares fitting 𝑂(log(𝑁)) Yes Yes No Yes
Classical
Boltzmann machine

𝑂(
√

𝑁) Yes/No Optional/No No/Yes Optional

Quantum
Boltzmann machine

𝑂(log(𝑁)) Optional/No No No/Yes No

Quantum PCA 𝑂(log(𝑁)) No Yes No Optional
Quantum support
vector machine

𝑂(log(𝑁)) No Yes No Yes

Quantum
reinforcement learning

𝑂(
√

𝑁) Yes No No No
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variational quantum classifiers and quantum kernel support vector ma-
chines efficient solvers for any BQP problem. Therefore, some problems
which are classically NP but BQP from a quantum approach, can be
solved exponentially faster by using the appropriate quantum algorithm
instead of a classical algorithm. Such property is called quantum speed-
p. Different degrees of speed-up have been defined by a panel of
xperts in 2014 [73], which can be summarized as follows:

rovable quantum speed-up: there is a proof that there can be no
lassical algorithm that performs as well or better than the quantum
lgorithm. Example: Grover’s algorithm scales quadratically better than
lassical, provided there exist an oracle to mark the desired state;
Strong quantum speed-up: the quantum algorithm performs better

than the best possible, not necessarily known explicitly, classical algo-
rithm (i.e. lower bound to classical algorithm is not known) Example:
hor’s quantum algorithm to factorize prime numbers (grows polyno-
ially instead of exponentially with the number of digits of the prime
umber);
ommon quantum speed-up: the quantum algorithm performs better

than the best available classical algorithm, as often the best available
classical algorithm for strong quantum speed-up is not known;
otential quantum speed-up: if there is no consensus about which is the

best available classical algorithm, it refers to the comparison with an
rbitrary classical algorithm;
Limited quantum speed-up it refers to the benchmark of two corre-

sponding algorithms. Example: classical and quantum annealing.

The landscape of quantum algorithms shows a range of possible
peed-ups, which is even more difficult to systematize for the domain of
uantum machine learning methods, where the (possible) speed-up is
ometimes not quantified. The evaluation increases in difficulty as more
rchitectures and more encoding methods are possible (see Section 5

and Fig. 1).
From the point of view of the implementation of quantum machine

learning proposed in literature, three approaches are common. First, by
the direct speed-up of machine learning techniques, by using algebra-
related algorithms like those in the Table 1, of which the HHL algorithm
s paramount [17]. Secondly, by implementing variational quantum cir-

cuits and finally multilayer perceptron-based quantum neural networks.
ecently, the competitiveness of quantum models based on variational
ircuits compared to classical models has been raised by the demonstra-
ion [20] that explicit models [74,75] outperform implicit models, and
ata re-uploading models exponentially outperforms simple explicit

models. Explicit models rely on a parametric definition of the unitary
operators 𝑈̂ (𝜃), 𝜃 collecting the family of parameters. Such models
therefore can be easily encoded into any variational quantum circuit.
The QAOA algorithm is an example of explicit model.
 1

4 
4. Encoding data with quantum systems

4.1. From bits to qubits

The qubit is the fundamental unit of information encoded by a
quantum computer. The qubit is a quantum state, defined by a vector
|𝜓⟩ in a Hilbert space  = C2. It is the transposition of the classical
it, but instead of assuming two discrete values, formally {0, 1}, such

values are transposed in a vector state [8]:

0 → |0⟩ =
(

1
0

)

, 1 → |1⟩ =
(

0
1

)

⇒ |𝜓⟩ = cos
( 𝜃
2

)

|0⟩ + 𝑒𝑖𝜙 sin
( 𝜃
2

)

|1⟩

(1)

The {|0⟩, |1⟩} vectors form a orthonormal basis in the C2 space,
herefore any qubit can be set in a linear combination as in the
ightmost expression for |𝜓⟩ [2, pag.94]. It follows immediately that
⟨𝜓|𝜓⟩ = 1, i.e. the state vector |𝜓⟩ is normalized. The 𝑎 and 𝑏
oefficients represent the probability for the state to be found either
n the |0⟩ or |1⟩ state. All the logic operations on a single qubit are
mplemented by operators 𝑈̂ which transform such state from C2 to
2: 𝑈̂ |𝜓⟩ = |𝜓 ′

⟩. To preserve the normalization of the vector |𝜓⟩, the
ingle-qubit operators 𝑈̂ are given by the unitary group 𝑆 𝑈 (2). The
ost known single-qubits operators are the NOT gate 𝑋̂, the 𝑍̂ gate

nd the Hadamard gate 𝐻̂ :

𝑋̂ =
[

0 1
1 0

]

, 𝑍̂ =
[

1 0
0 −1

]

, 𝐻̂ = 1
√

2

[

1 1
1 −1

]

(2)

The 𝑋̂ gate flips the |0⟩ state into the |1⟩ and vice versa, acting
n fact as the classical NOT gate. The Hadamard gate, instead, is an

isomorphism on C2 mapping the computational basis {|0⟩, |1⟩} into
he conjugated one {|+⟩, |−⟩} one, where |±⟩ = (|0⟩ ± |1⟩)∕

√

2. For a
omparison, see Table 2.

4.1.1. Encoding bits into qubits
It is possible to encode bits into qubits in several ways. The most

vanilla method consists of a 1-to −1 encoding, making one bit 𝑖 to
be encoded by one quantum state |𝑖⟩. In literature, such encoding is
referred to as multi-register encoding [76], where 𝑁 is the number of
available qubits, and |𝑖⟩ can assume the values of |0⟩ or |1⟩. When all the
ubits are initialized in the |0⟩ state, to flip a single qubit it suffices to
pply a 𝑋̂ NOT gate. Such operation can be performed simultaneously,
ielding a circuit depth of 𝑂(1) operations to be performed. However,
n enhancement can be given by the superposition principle: in a reg-
ster of 𝑁 qubits, it is possible to encode 𝑛 = 2𝑁 bits, each permutation
eing given by the superposition of the different states. In fact, the
nalog encoding makes usage of all the possible permutations of 0 and
. In the following line, the multi-register and the analog encoding are
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respectively shown [77]:
𝑁−1
⨂

𝑖=0
|𝑖⟩ ,

2𝑁−1
∑

𝑖=0
𝑐𝑖|𝑖⟩ (3)

Therefore, within the analog encoding (rightmost expression) via
qubits it is possible to store 𝑛 = 2𝑁 units of memory, which

eans 𝑁 bits require log2(𝑁) available qubits. At this point, one
hould also notice that in the latter case the encoding process requires
n exponential number 𝑂(𝑁) of steps [76], calling for methods or
pproximations to circumvent the issue. In the past, quantum RAM

(qRAM) have been proposed to feed directly the register of qubits asked
to load the data [78], but hitherto no example does exists [77,79,80].

One last family of data encoding is given by the Hamiltonian
encoding. Within this frame, the data need to be formatted into a

amiltonian operator, for instance the Ising Hamiltonian. Such a tech-
nique turns to be useful mainly in order to perform quantum annealing,
see Section 5.2, and it will be explored in details in Section 4.4.

4.2. Qudits

The qudit is a 𝑑-dimension generalization of the qubit. Instead
f a basis spanned by 2 vectors, the space of qudits is generated
y 𝐷 vectors. It is possible to choose a computational basis [81]
|0⟩, |1⟩,… , |𝐷 − 1⟩}, therefore a vector in this C𝑑 space will given by

|𝜓⟩ = 𝛼0|0⟩ + 𝛼1|1⟩ +⋯ + 𝛼𝐷−1|𝐷 − 1⟩ (4)

The state in Eq. (4) must be normalized [82], so that |
|

𝛼0||
2 + |

|

𝛼1||
2 +

+ |

|

𝛼𝐷−1
|

|

2 = 1. Referring to Section 4.1.1, given 𝑀 qudits it is
ossible to store 𝐷𝑀 units of binary memory. A feature comparison
etween qubits and qudits is provided in Table 2. The qubits operators
rom Eq. (2) can be adapted in the qudits formalism as well. The phase

Hadamard gate should be able to put any |𝑘⟩ element from the com-
putational basis {|𝑖⟩}𝐷−1

𝑖=0 into a superposition over all the generators
f such basis [83], along with a generalization for the NOT and the 𝑍̂

operators [22,84]:

̂𝐷 = 1
√

𝐷

𝐷−1
∑

𝑖,𝑗=0
exp

{

𝑖𝜃𝐷𝑖,𝑗
}

|𝑖⟩⟨𝑗|, 𝑋̂𝑚 =
𝐷−1
∑

𝑘=0
|𝑘 ⊕ 𝑚⟩⟨𝑘|,

𝑍̂ =
𝐷−1
∑

𝑘=0
𝑒
2𝜋 𝑖
𝑘
|𝑘⟩⟨𝑘| (5)

where the angle 𝜃𝐷𝑛,𝑚 is defined as 𝜃𝐷𝑛,𝑚 = 2𝜋
𝐷 𝑛𝑚. The qudits in their

conjugated basis, after a Hadamard transformation, are reported in
Table 2. The ⊕ is the sum modulo 𝐷 (for the qubits, 𝐷 = 2). In [22],
it is introduced the control gates ̂𝐶 𝑈 as a two-qudits operators. Here
a target and a control qudits need to be specified: the operation 𝑈̂
holds on the target qudit only if the control one is set in the |1⟩ state,
therwise it does not. The generalized control gate operator is ̂𝐶 𝑈𝑘: the
𝑈̂ unitary operator is applied on the target qudit when the control one
is set in the |𝑘⟩ state.

4.3. Qumodes (continuous variables)

In the frame of Continuous Variables (CV) for quantum computing,
uantum information is encoded in continuous degrees of freedom such

as the amplitudes of the electromagnetic field [10]. Specifically, the
unit of information we described before as a qubit is substituted by
the so-called qumode. In the phase space representation, the state of a
single qumode is described by two real and conjugated variables such as
(𝑥, 𝑝) ∈ R2, whether 𝑁 qumodes are depicted by (𝐱,𝐩) ∈ R2𝑁 . Qumode
states also have a representation as vectors or density matrices in the
countably infinite Hilbert space spanned by the Fock states {|𝑛⟩}+∞𝑛=0,
which are the eigenstates of the photon number operator 𝑛̂ = (𝑥̂2 +
𝑝̂2 − 1)∕2, where 𝑥̂ and 𝑝̂ are the position and momentum operators.
A comparison [9] between qubit, qudits and qumode architectures is
provided in Table 2.
5 
Table 2
Comparing features from qubits, qudits and qumodes, see Fig. 1.

Units of information

Qubits Qudits Qumodes

Computational basis

{|0⟩, |1⟩} {|𝑖⟩}𝐷−1
𝑖=0 {|𝑞⟩}𝑞∈R

Scalar product

⟨𝑘|𝑙⟩ = 𝛿𝑘,𝑙 , 𝑘, 𝑙 ∈ {0, 1} ⟨𝑘|𝑙⟩ = 𝛿𝑘,𝑙 , 𝑘, 𝑙 ∈ {0,… , 𝐷 − 1} ⟨𝑞|𝑞′⟩ = 𝛿(𝑞 − 𝑞′), 𝑞 , 𝑞′ ∈ R

Superposition

|𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩ |𝜓⟩ =
∑𝐷−1
𝑖=0 𝛼𝑖|𝑖⟩ |𝜓⟩ = ∫ d𝑞 𝜓(𝑞)|𝑞⟩

Conjugated basis

|±⟩ = 1
√

2
(|0⟩ ± |1⟩) |𝜃𝑘⟩ =

1
√

𝐷

∑𝐷−1
𝑖=0 𝜃𝐷𝑖,𝑘|𝑖⟩ |𝑝⟩ = ∫ d𝑞 𝑒𝑖𝑝𝑞 |𝑞⟩

4.3.1. Operations in the frame of continuous variables
Killoran et al. [10] report some possible operations to implement

in the CV frame. First, the position and momentum operators are
introduced:

𝑋̂ = ∫R
𝑥|𝑥⟩⟨𝑥|d𝑥, 𝑃 = ∫R

𝑝|𝑝⟩⟨𝑝|d𝑝 (6)

Being 𝑋̂ and 𝑃 defined on the entire real line, the orthonormality
relations hold:
⟨

𝑝|
|

𝑝′
⟩

= 𝛿(𝑝 − 𝑝′),
⟨

𝑥|
|

𝑥′
⟩

= 𝛿(𝑥 − 𝑥′) (7)

The so-called Gaussian operators implement the linear transforma-
ions. On a set of a single (𝑥, 𝑝) qumode, the rotation operator 𝑅̂ acts
etween positions and momenta, while the displacement operator 𝐷̂
erforms the translations over the qumodes:

𝑅̂(𝜙) ∶
[

𝑥
𝑝

]

→

[

cos(𝜙) sin(𝜙)
− sin(𝜙) cos(𝜙)

] [
𝑥
𝑝

]

, 𝐷̂(𝛼) ∶
[

𝑥
𝑝

]

→

[

𝑥 +
√

2 Re(𝛼)
𝑝 +

√

2 Im(𝛼)

]

(8)

Together 𝑅̂ and 𝐷̂ are able to implement affine transformations
on a single qumode. Another Gaussian transformation is given by the
eamsplitter 𝐵 𝑆, which is a 2-qumodes operator:

𝐵 𝑆(𝜃) ∶
⎡

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
𝑝1
𝑝2

⎤

⎥

⎥

⎥

⎥

⎦

→

⎡

⎢

⎢

⎢

⎢

⎣

cos(𝜙) sin(𝜙) 0 0
− sin(𝜙) cos(𝜙) 0 0

0 0 cos(𝜙) sin(𝜙)
0 0 − sin(𝜙) cos(𝜙)

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1
𝑥2
𝑝1
𝑝2

⎤

⎥

⎥

⎥

⎥

⎦

(9)

The last of the Gaussian operator is given by the squeezing one, 𝑆̂:

𝑆̂(𝜏) ∶
[

𝑥
𝑝

]

→

[

𝑒−𝜏 0
0 𝑒𝜏

] [
𝑥
𝑝

]

(10)

Defining 𝐫̂ = (𝐗̂, 𝐏̂), it is straightforward to state the uncertainty
relation in the CV frame:

[𝑟̂𝑖; 𝑟̂𝑗 ] = 𝑖𝛺𝑖𝑗 , 𝛺 =
(

O I
I O

)

(11)

4.4. Embedding into QUBO problems

Adiabatic quantum computers can find the optimal solution to a spe-
cific class of optimization problems: Quadratic Unconstrained Binary
Optimization (QUBO) problems. A QUBO problem is mathematically
described as:

𝐻̂𝑃 ≡ −
𝑁
∑

𝑖=1
ℎ𝑖𝜎̂

𝑧
𝑖 −

∑

𝑖<𝑗
𝐽𝑖𝑗𝜎

𝑧
𝑖 𝜎̂

𝑧
𝑗 , (12)

where 𝜎̂𝑧𝑖 are the Pauli matrices that acting along the 𝑧-direction, and
𝐽𝑖𝑗 and ℎ𝑖 represent the parameters to the problem to be solved. We
call 𝐽 couplings or weights and ℎ biases. Since the eigenvalues of
𝑖𝑗 𝑖
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the Hamiltonian 𝐻𝑃 represent the possible solution to the problem, the
goal is to set the couplings and the biases so that the ground state of
𝐻𝑃 represents the optimal solution to the optimization problem.

The QUBO problems can be represented as graphs, where nodes
re associated with biases and edges with couplings. Ideally, we want

to map the optimization problem graph directly into the quantum
annealer QPU. However, in a quantum annealing system, the hardware
graph topology, which represents the pattern of physical connections
for qubits and the couplers between them, is fixed. Since we cannot
modify the qubit connectivity of a specific quantum annealer, we
must map the model parameters into the hardware topology by a
suitable embedding to solve an optimization problem. The basic idea
of embedding is to identify groups of qubits (chains) so that they form
the topology of the QUBO problem under investigation by behaving
as individual units. The connectivity of each group can be enhanced
by creating strong ferromagnetic couplings between the qubits, which
forces coupled qubits to stay in the same state.

5. Processing quantum information with quantum computers

Three available architectures are provided in the field of quantum
omputing, see Fig. 1. Two out of three, the MBQC and the gate
odels, reproduce on a quantum device the classical Von Neumann-
use paradigm, i.e. processing the inputs into outputs via a sequence

of commands. Such architectures can be labeled as circuital model, as
both of them aim to install a circuit of logical, controlled and sequential
operations on the qubits. On the contrary, the adiabatic computation
rovides a scheme of computation which is unedited for any classical

device.

5.1. Circuital model

In the gate model, the logic gates are given by certain physical
operations on the qubits. Such gates, apart from being described by
unitary matrices in an algebraic fashion, can just be taught as the
classical logic gates (OR, AND, XOR and so on) transposed in the
quantum frame. Such logic transformations can involve just one single
qubit, or rather two as well as 𝑛, see Fig. 2. Any logic gate can be
uilt by composing a set of universal gates, generally given by two

single-qubit and one two-qubit operators [1].
In the measurement-based model instead, such logic gates are built

elying on quantum phenomena such as entanglement and measure-
ent [7]. Nevertheless, the gate model can be mapped into the MBQC

one [6,85], proving that the two models are able to yield the same
utput.

5.2. Adiabatic quantum model

Quantum annealers are quantum computers capable of finding the
optimal solution to a QUBO problem by measuring the ground state of
the QPU, i.e., the qubit configuration corresponding to the minimum
energy of the system. The basic idea of quantum annealing is to prepare
the qubits in the ground state, an easy-to-build configuration described
y a Hamiltonian 𝐻𝑇 , and then let the system evolve until it becomes
qual to 𝐻𝑃 , as in Eq. (12). If the evolution is sufficiently slow, the

adiabatic theorem [3,86] guarantees that the systems stay in the ground
state. Therefore, it is possible to find the solution to the optimization
problem by simply measuring the system.

Quantum annealers realize quantum annealing by introducing a
ime-dependant transverse field resulting in a total Hamiltonian:

𝐻(𝑡) = −𝐹 (𝑡)
(

∑

𝑖<𝑗
𝐽𝑖𝑗𝜎

𝑧
𝑖 𝜎

𝑧
𝑗 +

∑

𝑖
ℎ𝑖𝜎

𝑧
𝑖

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻𝑃

−𝐺(𝑡)
∑

𝑖
𝜎𝑥𝑖

⏟⏟⏟
𝐻𝑇

(13)

where 𝑡 represents the time, and the functions 𝐹 (𝑡) and 𝐺(𝑡) control the
annealing evolution and are referred to as the annealing schedule. At
6 
the beginning of the annealing, the system is prepared in the ground
state of𝐻𝑇 (𝐺(𝑡)≫ 𝐹 (𝑡)). At the end of the annealing, the system should
e in the ground state of 𝐻𝑃 (𝐺(𝑡)≪ 𝐹 (𝑡)).

6. Emulation of quantum computing resources by high-
performance computing

Quantum computing is a potentially disruptive computational
aradigm that will enable efficient solutions to problems that are
nherently difficult for classical digital devices. Although large-scale,
rror-corrected quantum computers are not yet available, hardware

technology is evolving at a rapid pace, and demonstrations of quantum
supremacy have already been achieved on current noisy intermediate-
scale quantum (NISQ) devices for selected problems of academic in-
terest [87–90]. From the practical applications standpoint, however,

ISQ devices still need to operate alongside classical digital hardware.
Real-world applications are in fact characterized by complex compu-
tational workflows and large problem instances in which most of the
computational burden is necessarily carried by traditional resources.
For these reasons, NISQ computers are currently utilized as accelerators
or co-processors embedded in hybrid quantum–classical computation.

The orchestration of hybrid hardware resources is currently imple-
ented by means of a loose-integration paradigm, in which the classical

nd quantum processing is typically performed via local machines
ith consumer capacities and via remote quantum devices respectively.
rom an end-user perspective, this paradigm is considered the most
ffective as it allows the evaluation of alternative vendor solutions

while limiting the risks associated with the experimentation of highly
rototypical technologies which might suffer from rapid obsolescence.
he main drawbacks of such an approach are instead related to the

atency associated with the continuous data transfer, along with the
dditional concerns regarding the exchange with third-parties servers
f sensitive or restricted data.

To mitigate these issues, the scientific community is also starting
o investigate on-premises scenarios with the co-location of quantum
nd digital classical hardware. This is commonly considered as a first
tep that, in the long term, should yield to a tight-integration paradigm
n which quantum and classical processors are both co-located and
nterconnected via dedicated high-speed, high-capacity links [91]. The
irst experimentations in this direction are being conducted in various
igh-performance computing (HPC) centers, see at euroHPCJU and

HPCQS.
Beyond providing the means for an effective exploration of hybrid

uantum–classical integration paradigms,
HPC resources enable the emulation of quantum computers with

p to the equivalent of 40 to 50 qubits, which is more than what
ost NISQ devices deliver today. Given that the current quantum
ardware is still difficult and expensive to access, HPC emulators
rovide unique opportunities for conducting impactful R&D that would
ot be possible otherwise. Typical activities enabled by HPC emulators
re test/development of new algorithms for real-world applications,
valuation of the solution quality and time-to-solution behavior when
caling up the size of the problem, and the investigation of co-design
f quantum algorithms and hardware.

A variety of emulators are currently available that can be used to
implement a range of quantum algorithms, including those that are
presented in this review. Most of them target a qubit architecture that
implements the gate-based computational setting, either with an exact
quantum state representation (state-vector, density matrix) or with
approximate/compressed state representation (tensor networks). Such
emulating libraries implement standard linear algebra operations that
emulate the behavior of physical gates operated on the qubits register.
Some of the most known software development kits (SDKs) that provide
emulator backends are Qiskit (IBM), Cirq (Google), and Pennylane [92]
(Xanadu). The majority of such libraries, which have been initially
written to run on local machines, are now capable to exploit distributed

https://eurohpc-ju.europa.eu/selection-six-sites-host-first-european-quantum-computers-2022-10-04_en
https://www.hpcqs.eu/
https://qiskit.org/
https://quantumai.google/cirq
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memory protocols and GPU acceleration, which enable the simulation
of intermediate-size quantum states (30+ qubits) and the execution of
eeper circuits with acceptable running times.

In addition, as most of the hybrid quantum machine learning
lgorithms currently under investigation rely on variational circuits
VQE [93], QAOA [94], Quantum NN), which are parameterized cir-

cuits trained by a classical computer through the optimization of
a differentiable loss function, many of these SDKs have also been
designed or integrated with state-of-the-art machine learning software
ackages such as PyTorch [95], TensorFlow [96], Paddle-Paddle to
everage automatic differentiation techniques such as backpropagation.
hese can take advantage of GPU acceleration to reduce the overall
xecution time but incur additional memory overhead due to the

need to store partial derivatives of the forward pass. The utilization
of premium, large-memory GPUs that are typically available in HPC
centers can boost performances.

Within the qubit architecture, a few emulators have been developed
o deal with the measurement-based computational setting. Examples
re Parceval (Quandela) [97] and Paddle-Quantum (Baidu), the latter
aking also advantage of backpropagation methods. As for architectures

based on qudits, Jet (Xanadu) [98] and Cirq (Google) libraries are
available. Emulators based on continuous variable architectures are
also available.

7. Generalization of neural networks in quantum circuits

The classes of Machine Learning and Deep Learning are often jux-
taposed in literature and applications, but indeed the first includes
he second as a special case based on neural networks. Deep learning
xploits a deep hierarchy of layers of artificial rate neurons, resulting in

a non-Von Neumann-Zuse architecture that is virtualized on standard
digital CMOS hardware. A software tunes a set of hyperparameters of
the NNs, called synaptic weights, to re-elaborate the inputs to outputs.

A ML approach based on traditional and classical computing is
straightforward to be translated on a quantum hardware, as it suffices
to encode the inputs and the prompts into a quantum circuit. The

ain bottleneck is the constraint on the current size of the hardware,
ut from a theoretical perspective the problem can be treated as any

classical-to-quantum algorithm. In such a way, it is quite standard
to benchmark the performances between any classical algorithm and
ts quantum counterpart. A comparison for some of the most known
lassical machine learning methods and routines is given in Table 1.

Instead, neural network may require a paradigm shift towards new
rchitectures. In the following two subsections, we present the two
ain approaches to neural networks, namely the variational and the

uantum perceptron approaches, respectively.

7.1. Variational approach

As said, several algorithms rely on an Artificial Neural Network
(ANN, or more simply NN). NNs allow to transform input data to
utputs (labels, actions) encoding the inputs through various layers
f artificial synapses. According to the Hornik’s theorem [99], a suf-

ficiently complex NN can always approximate the label output given
an input.

In quantum computing, many models have been proposed to replace
the classical architecture of multiperceptron-based neural networks.
The main feature consists of introducing a specific circuit model, able
to process the input states of the system through a series of iterations.
Of course, shallow circuits belong to this architecture, as well as one-
layer classical neural networks. In order to process the information,
instead of layers of neurons, quantum circuits display a block of unitary
operations to be performed. The angles, implemented by unitary oper-
ators such as rotations, substitute the synaptic weights. In this frame, a
quantum neural network (QNN) can be implemented via a variational
quantum circuit (VQC) [100,101].
7 
However, a broad range of quantum neural networks models have
been proposed [102–106]: hybrid quantum circuit-classical neural net-

orks approaches [107], quantum neuron models [108] as an alter-
native for the classical activation functions and so on. A classical
activation function 𝑓 is defined as

𝑓 (𝐱) = 𝜎

(

∑

𝑗
𝑊𝑖𝑗𝑥𝑗 + 𝑏𝑖

)

(14)

where 𝑊 is called the weight function, and 𝐛 the bias vector. There
re several classes of 𝜎 activation functions, among them the per-

ceptron, the sigmoid, the ReLu and others. The perceptron, in its
classical description, given a set of 𝑁 inputs acts as a step activation
unction [109][2, pag.49], i.e. 𝜎 is substituted by the Heaviside step

function 𝜃, or rather by a sign function. In Section 8.1 a model for a
quantum perceptron is presented.

It must be noted that variational circuits are known for suffering
the barren plateau effect [110]. As random circuits are often proposed
s initial guesses for exploring the space of quantum states during
ptimization of the parameters, one discovers that the exponential
imension of Hilbert space and the gradient estimation complexity
ake such choice unsuitable on more than a few qubits. In general the
robability that the gradient along reasonable directions is non-zero to
ome fixed precision is exponentially small as a function of the number
f qubits. Mitigations to this issue have been proposed thanks to smart
nitialization [111], also avoiding it thanks to quantum convolutional

neural networks [112].

7.2. Neurons into qubits

There are more options to encode neurons into a qubit. Never-
theless, given the definition of a qubit, few encoding options can be
defined, bounded by the maximum encoding capability of a register
of 𝑁 qubits. The first option consists of the 1-to-1 encoding, where
each and every input neuron of the network corresponds to one qubit
[113–117]. The information is provided as a string of bits assigned
to classical base states of the quantum state space. Similarly, a 1-to-1
method consists of storing a superposition of binary data as a series of
it strings in a multi-qubit state. Such quantum neural networks refer to

the concept of the quantum associative memory [118,119]. A different
1-to-1 option is given by the quron (quantum neuron) [120]. A quron
s a qubit whose 0 and 1 states stand for the resting and active neural
iring state, respectively [120].

Alternatively, a radically different encoding option consists of stor-
ng the information as coefficients of a superposition of quantum states
21,109,121–124]. The encoding efficiency becomes exponential as a 𝑛-
ubit state is an element of a 2𝑛-dimensional vector space, but one has
o remember that also operations required to store the state increase ex-
onentially. From one hand, loading a real image classification problem
f few megabits in a quantum neural network makes the 1-to-1 option
urrently not viable [125], while the choice 𝑛-to-2𝑛 allows to encode a

megabit image in a state by using ∼ 20 qubits only. In the latter case
one should anyway deal with the difficulty of preparing such a state,
unless it is for instance generated by a circuit which approximates some
aimed distribution, or alternatively it comes directly from the physical
conversion of flying qubits containing quantum data acquired by some
quantum sensing system.

8. Quantum supervised learning

Supervised Learning is the branch of Machine Learning which has
been more transposed in a quantum formulation. Here we present
the most significant quantum algorithms relevant for cybersecurity
tasks, along with a description of their classical counterparts: activation
functions for binary decisions [21,123,126], Support Vector Machine
SVM) [33,127–132] and kernel methods in general [74]. One should

notice that while current cybersecurity data are fundamentally classical

https://www.paddlepaddle.org.cn/en
https://qml.baidu.com/
https://quantum-jet.readthedocs.io/en/latest/code/jet.html
https://quantumai.google/cirq/build/qudits
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Fig. 2. In classical deep learning, neural networks are employed for data processing. In quantum computing, circuits replace the typical neural architecture. The blocks of unitary
operators 𝑈̂𝑖(𝛷𝑖) are the counterparts for the classical layers, the 𝛷𝑖 variables are the hyperparameters, which have to be tuned in order to minimize a certain loss function.
in nature, in the future incoming quantum data from either quantum
sensors or quantum communication networks may carry quantum (en-
tangled) data, which in turn can be classified for instance by quantum
tensor networks, as demonstrated by one of the authors [133]. In
the broader field of classical anomaly detection, a paramount role
is played by image classification, e.g. to spot medical diseases [59,
134,135] or mechanical defects in industrial processes [60,61,136],
therefore a specific Section of our analysis is dedicated to their quantum
counterpart. Classification by quantum tensor network on reduced
MNIST with 4 categories has shown to return the same performances
as best supervised learning algorithms, but more interestingly, it was
able to discriminate quantum ground states carrying entanglement.
In the following Section, we introduce a range of techniques which
vary from the implementation of natively quantum perceptron to the
employment of adiabatic computation to improve performances of the
Restricted Boltzmann Machine. Moreover, we show how to encode
quantum neural networks on the continuous variables and classification
tasks on qudits. All of the aforementioned techniques performs well
when dealing with sampling from probabilistic distributions. Eventu-
ally, we show how to achieve quantum advantage on the Support
Vector Machines via the HHL algorithm.

8.1. Quantum feed-forward neural network for binary decisions

Recently [123,126], a model of perceptron implemented by a quan-
tum circuit has been proposed. This model features an input vector
𝑖 = (𝑖0,… , 𝑖𝑚−1) and a weight vector 𝑤⃗ = (𝑤0,… , 𝑤𝑚−1), such that
the activation response depends on their 𝑖⃗ ⋅ 𝑤⃗ scalar product. In such
scenario, the components of the vectors 𝑖𝑘, 𝑤𝑘 = ±1 ∀𝑘. The vectors can
be encoded into a quantum register by the following states:

|𝜓𝑖⟩ =
1

√

𝑚

𝑚−1
∑

𝑗=0
𝑖𝑗 |𝑗⟩, |𝜓𝑤⟩ =

1
√

𝑚

𝑚−1
∑

𝑗=0
𝑤𝑗 |𝑗⟩ (15)

where the state |𝑗⟩ belongs to {|0 … 00⟩, |0 … 01⟩,… , |1 … 11⟩}. Being 𝑖𝑘,
𝑤𝑘 all ±1, and 𝑚 being the dimension of the input and weight vectors,
|𝜓𝑖⟩ and |𝜓𝑤⟩ are real equally-weighted (REW) superpositions of all
the computational basis states |𝑗⟩. The states |𝑗⟩ live in a ⊗𝑁 Hilbert
space, where 𝑁 = log2(𝑚).

The inner product between |𝜓𝑖⟩ and |𝜓𝑤⟩ returns 𝑖⃗ ⋅ 𝑤⃗ times 𝑚.
To prepare the input state, the following transformation can be imple-
mented as

𝑈̂𝑖|0⟩⊗𝑁 = |𝜓𝑖⟩ (16)

where 𝑈̂𝑖 can be composed by any 𝑚 × 𝑚 matrix with 𝑖⃗ on the first
column [21]. To perform the 𝑖⃗ ⋅ 𝑤⃗ inner product, it is possible to define
a unitary operator 𝑈̂𝑤 such that 𝑈̂𝑤|𝜓𝑤⟩ = |1⟩⊗𝑁 = |𝑚 − 1⟩. To do so,
choose any unitary 𝑚 × 𝑚 with 𝑤⃗ on the last row. The inner product
between |𝜓𝑖⟩ and |𝜓𝑤⟩ can thus be performed by

⟨𝜓𝑤||𝜓𝑖⟩ = ⟨𝜓𝑤|𝑈̂
†
𝑤𝑈̂𝑤|𝜓𝑖⟩ =

⟨

𝑚 − 1|
|

𝜓𝑖,𝑤
⟩

= 𝑐𝑚−1 (17)

where |𝜓𝑖,𝑤⟩ = 1∕√𝑚∑𝑚−1
𝑗=0 𝑐𝑗 |𝑗⟩ is simply 𝑈̂𝑤|𝜓𝑖⟩. Therefore, 𝑐𝑚−1 yields

the scalar product (𝑖⃗ ⋅ 𝑤⃗)𝑚. The coefficient 𝑐 can be obtained, in a
𝑚−1

8 
Fig. 3. A graphical representation of a Restricted Boltzmann Machine. Each undirected
edge represents a weighted dependency between two nodes, while each node is
associated with a bias. The network has four hidden units (blue) and six visible units
(red).

circuital computation, by entangling |𝜓𝑖,𝑤⟩ with an ancilla |0⟩, through
a multi CNOT gate (i.e. a CNOT whose control qubits are given by the
|𝑗⟩ state). The sole state on which such multi-CNOT operator 𝐶̂

|𝑗⟩,𝑚 acts
on is the |1⟩⊗(𝑚−1) state, i.e. the last one (|𝑚 − 1⟩):

̂𝐶 𝑋
|𝑚−1⟩,|𝑚⟩|𝜓𝑖,𝑤⟩|0⟩ =

1
√

𝑚

[𝑚−2
∑

𝑗=0
𝑐𝑗 |𝑗⟩|0⟩ + 𝑐𝑚−1|𝑚 − 1⟩|1⟩

]

(18)

where |𝑚 − 1⟩ is the multi-qubits control state and |𝑚⟩ the target one.
Measuring the ancilla qubit on the |1⟩ basis, it is possible to activate
the perceptron with probability |

|

𝑐𝑚−1||
2. Such achievement reproduces

the perceptron in a quantum circuit. One should notice that such
activation function ends the circuit with the measurement process, so
the quantum information cannot travel further to other nodes. The issue
has been addressed by one of the Authors [137] by replacing the mea-
surement process with a quantum circuit performing the Taylor series
of the aimed activation function. Such method enables to program a
multilayered perceptron.

8.2. Quantum restricted Boltzmann machine

Restricted Boltzmann Machines (RBMs) are neural network gen-
erative models first introduced by Hinton et al. in 1983 to improve
upon the Hebbian learning method used in Hopfield networks. These
models are designed to learn the underlying probability distributions
of a dataset by using the Boltzmann distribution in their sampling
function. A RBM consists of two layers: a layer of visible binary units
(representing the input/output) and a layer of hidden binary units
(which help the model mimic the dataset’s structure). The units are
connected by real-weighted connections, as illustrated in Fig. 3. RBMs
do not allow connections between units within the same layer, resulting
in a bipartite system.

RBMs are flexible neural network models that can be used for
various tasks, such as generating samples, making recommendations,
or extracting features. They can also be used as classifiers by using
different techniques, such as using them as feature extractors and
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appending a separate classifier or training them supervised with the
label appended to the input data. These supervised RBMs are called dis-
criminative restricted Boltzmann machines (DRBMs), which combine
descriptive power with classification ability. The idea is to train the
DRBM with a dataset where the label is appended to the input, then
remove it from unseen inputs and reconstruct it using the RBM.

The RBM is an energy-based model where every specific configura-
ion of visible and hidden units is associated with an energy 𝐸(𝐯,𝐡) =
∑

𝑖 𝑎𝑖𝑣𝑖 −
∑

𝑗 𝑏𝑗ℎ𝑗 −
∑

𝑖,𝑗 𝑣𝑖𝑊𝑖𝑗ℎ𝑗 , where 𝐚, 𝐛 are biases and 𝐖 are the
weights that represent the connection strength between units. Specifi-
cally, the joint probability of a configuration is given by the Boltzmann
distribution

𝑃 (𝐯,𝐡) = exp(−𝐸(𝐯,𝐡))
∑

𝐯,𝐡 exp(−𝐸(𝐯,𝐡))
. (19)

The objective of training an RBM is to adjust the model’s weights
o increase the energy of states in the training dataset and lower the

energy of all other configurations, allowing the model to learn how
to generate and reconstruct the critical information encoded in the
dataset. However, training an RBM can be challenging due to the
large number of states that increases exponentially with the number
of visible and hidden units, making it impractical to compute the par-
tition function. Although an exact computation is not possible, several
classical methods can be used to train the model, such as Contrastive

ivergence [138] (CD), Persistent Contrastive Divergence [139] (PCD),
and Lean Contrastive Divergence [140] (LCD).

Although these methods are effective in practice, RBMs can be more
ifficult and costly to train than other models that rely on backprop-
gation techniques, such as neural networks. Their training is often
nstable and requires significant computational resources, and the
pproximations made during training can affect overall performance.
uantum computers provide an alternative approach to training RBMs,
llowing for faster computation and better gradient estimates by query-
ng the quantum processing unit. D-Wave quantum annealers, which
re commonly used to sample the ground state of a QUBO problem,
an also be used to train RBMs, resulting in faster computation and a
etter gradient estimate. These RBMs trained on a quantum annealer
re called Quantum Restricted Boltzmann Machines (QRBMs).

The basic idea to train a RBM on a quantum computer [141–143]
s to extract a batch of samples from the quantum machine, which
re dispersed according to the Boltzmann distribution associated to the
BM. If the computational cost of initializing the quantum computer is
eglected, the quantum algorithm computational complexity to obtain
 single sample scales as 𝑂(1). The advantage of employing the D-
ave adiabatic quantum machine to exploit RBMs could emerge as

n increase of performance metrics, such as the accuracy and the
ikelihood, or as a reduction in the computational complexity or compu-
ational times depending on the specific problem under consideration.
he quantum RBM has been used to address anomaly detection of
P traffic data, performing 64x faster than classic hardware in the
nference [24]. More general machines called Boltzmann machines,

based on a complete (not bipartite) graph, have also been addressed
n an adiabatic quantum computer [144].

8.3. Neural networks in continuous variables

An architecture to set up a Neural Network (NN) by continuous
variables (CV) has been provided by Killoran et al. [10]. It is shown
hat through the gates of CV encoding it is possible to reproduce the

classical layer for a NN:

(𝐱) = 𝜑(𝑊 𝐱 + 𝐛) (20)

where 𝜑 is the activation function, 𝑊 is the weight matrix and 𝐛 is the
bias vector. Such layer can be embedded in the CV formalism via the
following sequence of operators/logic gates:

̂ = 𝛷̂◦̂◦̂2◦̂◦̂1 (21)

9 
Here ̂ =
⨂𝑁

𝑖=1 𝐷̂𝑖(𝛼𝑖), ̂ =
⨂𝑁

𝑖=1 𝑆̂𝑖(𝜏𝑖), where 𝐷̂ and 𝑆̂ are the
aussian operators in Section 4.3.1, while the ̂𝑖 operators are given by

a composition of beamsplitter 𝐵 𝑆(𝜃). Instead, 𝛷̂ is a new non-Gaussian
operation we are going to define in this Section. A depiction of such
quantum circuit is provided in Fig. 4. To perform Machine Learning
tasks in CV, is therefore possible to implement a variational circuit built
by a set of layers such as in Eq. (21). In the following, it is shown how
a quantum neural network has been built in Ref. [10]. The first three
operations can be decomposed into a direct sum of two blocks:

̂2◦̂◦̂1 =
[

𝑀2 O
O 𝑀2

] [
𝛴 O
O 𝛴−1

] [
𝑀1 O
O 𝑀1

]

=
[

𝑀2𝛴 𝑀1 O
O 𝑀2𝛴−1𝑀1

]

(22)

where the first block on the diagonal acts over the 𝐱̂ variables, the
econd one over 𝐩̂, in a similar fashion as the beamsplitter operator
n Eq. (9). Afterwards, it is possible to apply the shifting by the

displacement operator, so that the initial state |𝐱⟩, up to this point, is
orphed into

|𝐱⟩ → ̂|𝐱⟩ = |𝑀2𝛴 𝑀1𝐱 +
√

2𝜶𝑟⟩ (23)

where 𝜶𝑟 = Re(𝜶). The next step is to implement a non-linear trans-
formation, which is given by the non-Gaussian operations 𝛷̂. To build
p such single-qumode gate, define a non-linear transformation 𝜙(𝑥),
hich can be written in a Taylor expansion of 𝑋̂ for a certain degree
f approximation, thereafter implement the operation in the form

exp
(

− 𝑖
2
𝜙(𝑋̂1)⊗ 𝑃2

)

|𝑥⟩1|0⟩2 = exp
(

− 𝑖
2
𝜙(𝑥)𝑃2

)

|𝑥⟩1|0⟩2 (24)

Now the unitary operation is nothing but a translation over the
econd qubit:

exp
(

− 𝑖
2
𝜙(𝑥)𝑃2

)

|𝑥⟩1|0⟩2 = |𝑥⟩1|𝜙(𝑥)⟩2 (25)

Eventually, a similar operation as from Eqs. (14) and (20) has
been implemented in the framework of Continuous Variables, as stated
in Eq. (20):

̂(𝐫) = 𝜙(𝑀𝐫 +
√

2𝜶) (26)

where 𝑀 =𝑀2𝛴 𝑀1 ⊕ 𝑀2𝛴−1𝑀1 (see Fig. 4).

8.3.1. CV neural networks for fraud detection
From the formalism in Section 8.3, it is possible to develop a

hybrid algorithm, where it is possible to alternate classical Neural
Network with quantum circuits for Supervised Learning tasks. As both
he hyperparameters from the classical NNs and the variational circuit
eed to be tuned, a backpropagation can be performed by training the
ata on a classical device. In Ref. [10], a mean square error (MSE) was

introduced as loss function:

𝐿 = 1
𝑁

𝑁
∑

𝑖=1
[𝑓 (𝑥𝑖) − ⟨𝜓(𝑥𝑖)|𝑋̂|𝜓(𝑥𝑖)⟩]2 (27)

The model, when correctly trained, should return ⟨𝜓(𝑥)|𝑋̂|𝜓(𝑥)⟩ =
(𝑥) ∀𝑥. In [10], such model of hybrid Supervised Learning was

employed to detect fraudulent transactions. The performance of the
raining outputted a ROC curve with area 0.945, whereas the ideal

curve should return a unitary area.

8.3.2. Potential advantages of CV neural networks
In the implementation of Killoran et al.. [10], three potential ad-

vantages are proposed for employing the CV quantum neural networks.
In the first place, CV neural networks can be performed on any pho-
tonic device, as the operation to implement them are universal in the
photonic technology platform.

Secondly, Hornik’s theorem, as explained in Section 7.1, guarantees
that any Lebesgue measurable function can be reproduced by a neural
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Fig. 4. The picture represents how to build up a layer  in the frame of Continuous Variables, following the scheme from Eq. (21).
f

⟨
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network. Quantum neural networks embed this property along with
ffects such as superposition and entanglement, which are intrinsic
f the quantum realm. Furthermore, dealing with qumodes (𝐱,𝐩) it is

possible to rely on both the positions and momenta representations, 𝐱
and 𝐩 being the Fourier transform of each other.

As the last point, quantum neural network in the CV framework
can be employed for nonlinear transformations over distributions of
probability. For instance, given a single-mode state |𝜓⟩, it is pos-
sible to encode its amplitude and transform it via a unitary trans-
formation  , due to the transformations acting inside the layers in
q. (26):

|𝜓⟩ = ∫ 𝜓(𝑥)d𝑥 ⇒ 𝜓̃(𝑥) = ∫ (𝑥, 𝑥′)𝜓(𝑥′)d𝑥′ (28)

8.4. Classification with qudits

Given a finite set of vectors 𝑥 in R𝑚, partitioned between 𝐷 classes,
the Density Matrix Kernel Density Classification method (DMKDC) is
an algorithm developed by Useche et al. [22] which aims to reproduce
he probability functions 𝑃𝑗 for an element 𝑥 to belong to a certain class
𝑗 ∈ {0,… , 𝐷 − 1}.

Given a system of qudits in a C𝑑 space, suppose to have a number
f classes 𝐷 ≤ 𝑑. Thereafter, a collection of training data {𝑥𝑖}𝑁𝑖=1 ⊆  is
rovided, along with a feature map 𝜓 ∶ 𝑥𝑖 → |𝜓(𝑥𝑖)⟩. Such a map can
e set by a softmax encoding, see Ref. [145], rather than via random

Fourier features (RFF), see Ref. [145,146]. Both of these encodings
ould provide a normalized vector such that ⟨𝜓(𝑥)|𝜓(𝑥)⟩ = 1, |𝜓(𝑥)⟩
eing encoded in the fashion of a qudit vector, as in Eq. (4), whose

coefficients are computed by the chosen encoding methods. In second
place, the density matrix 𝜌̂, associated to such states, is constructed as
a maximally mixed state over all the samples, see the below Equation.
At the same time, it is possible to define a specific density matrix 𝜌𝑗
corresponding to each 𝑗th class:

𝜌̂ = 1
𝑁

𝑁
∑

𝑖=1
|𝜓(𝑥𝑖)⟩⟨𝜓(𝑥𝑖)|, 𝜌̂𝑗 =

1
𝑁𝑗

𝑁𝑗
∑

𝑖=1
|𝜓(𝑥𝑖)⟩⟨𝜓(𝑥𝑖)| (29)

𝑁 being the cardinality of the entire {𝑥𝑖}𝑁𝑖=1 dataset. The frequency
𝑗 = 𝑁𝑗∕𝑁 accounts how many times a data 𝑥𝑗 belongs to the 𝑗th class,
𝑗 counting the number of samples into the 𝑗th class. The posterior
robability for a generic 𝑥 sample to belong to the 𝑗th class reads
s [145]

𝑃𝑗 (𝑥) =
𝜋𝑗⟨𝜓(𝑥)|𝜌̂𝑗 |𝜓(𝑥)⟩

∑𝐷−1
𝑘=0 𝜋𝑘⟨𝜓(𝑥)|𝜌̂𝑘|𝜓(𝑥)⟩

(30)

The aim of the algorithm is to sample ⟨𝜓(𝑥)|𝜌̂𝑘|𝜓(𝑥)⟩ ∀𝑘 in order
to get the probability 𝑃𝑗 . As the |𝜓(𝑥𝑘)⟩ are known from the data, and
𝜌̂𝑗 being a Hermitian operator, it is possible to diagonalize it via a 𝑈̂𝑗
transformation:

𝜌̂𝑗 = 𝑈̂𝑗𝛬̂𝑗 𝑈̂
†
𝑗 = 𝑈̂𝑗

(𝐷−1
∑

𝜆𝑗 𝑖|𝑖⟩⟨𝑖|
)

𝑈̂†
𝑗 (31)
𝑖=0
𝐶

10 
The 𝜆𝑗 𝑖 are the 𝑖th eigenvalues for the 𝜌̂𝑗 operators, 𝑖 and 𝑗 ranking
rom 0 to 𝐷 − 1. For each operator 𝜌̂𝑗 , there exists a specific 𝑈̂𝑗

unitary transformation capable to diagonalize the density matrix 𝜌̂ into
the computational basis |𝑖⟩, where 𝑖 = 0,… , 𝐷 − 1. The expectation
𝜓(𝑥)|𝜌̂𝑗 |𝜓(𝑥)⟩ can therefore be written as

⟨𝜓(𝑥)|𝜌̂𝑗 |𝜓(𝑥)⟩ = ⟨𝜓(𝑥)|𝑈̂𝑗

(𝐷−1
∑

𝑖=0
𝜆𝑗 𝑖|𝑖⟩⟨𝑖|

)

𝑈̂†
𝑗 |𝜓(𝑥)⟩

=
𝐷−1
∑

𝑖=0
𝜆𝑗 𝑖||

|

⟨𝑖|𝑈̂†
𝑗 |𝜓(𝑥)⟩

|

|

|

2
(32)

Afterwards, it is possible to introduce the 𝑈̂𝜆𝑗 operator:

𝑈̂𝜆𝑗 |0⟩ =
𝐷−1
∑

𝑖=0

√

𝜆𝑖𝑗 |𝑖⟩ (33)

Before to show the qudit implementation of the DMKDC circuit, we
sum up the pipeline for the training of the training process based on
he density matrix estimation:

1. map the data 𝑥𝑖 ∈  into a qudit vector, thanks to a RFF or a
softmax encoding;

2. sample the 𝜋𝑗 frequencies, thus estimating the 𝜌̂𝑗 probability
densities;

3. introduce the 𝑈̂𝑗 operator able to diagonalize the 𝜌̂𝑗 observables.

It is worthy to notice that such training procedure does not in-
volve iterative operations. The training samples are solely employed
to prepare the 𝜌̂ matrices, the time complexity of the algorithm scaling
linearly on the size of training dataset. In fact, as remarked by Gonzalez
[145], the complexity of the algorithm is 𝑂(𝑁 𝐷2) for the estimation of
the 𝜌̂𝑗 elements, 𝑁 being again the cardinality of the dataset, and 𝑂(𝐷3)
or the diagonalization of the same probability densities (see Fig. 5).

8.4.1. The DMKDC circuit
To prepare the DMKDC register, in the first place a qudit with all

the frequencies 𝜋𝑗 is prepared as follows:

|𝜋⟩ =
𝐷−1
∑

𝑖=0

√

𝜋𝑖|𝑖⟩ (34)

In the second place, a qudit |𝜓(𝑥)⟩ encodes the classical data to be
lassified, at last a |0⟩ ancilla. The overall state, before to compute,
esults in

|𝜋⟩⊗ |𝜓(𝑥)⟩⊗ |0⟩ =

(𝐷−1
∑

𝑖=0

√

𝜋𝑖|𝑖⟩

)

⊗ |𝜓(𝑥)⟩⊗ |0⟩ (35)

As a first step, apply a 𝑋̂ gate on the |𝜋⟩ qudit, which consists of a
sum modulo 𝐷 over the |𝑖⟩ generators, so that the new state reads
(𝐷−1
∑

𝑖=0

√

𝜋𝑖|𝑖 ⊕ 1⟩

)

⊗ |𝜓(𝑥)⟩⊗ |0⟩ (36)

where ⊕ is the sum modulo 𝐷. Afterwards, apply a ̂𝐶 𝑈†
0 and a

 ̂𝑈 gates, with the first qudit as control and the second and third
𝜆0
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Fig. 5. A scheme for the DMKDC circuit.
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respectively as targets:

√

𝜋0|1⟩⊗ 𝑈̂†
0 |𝜓(𝑥)⟩⊗ |𝜆0⟩ +

(𝐷−1
∑

𝑖=1

√

𝜋𝑖|𝑖 ⊕ 1⟩

)

⊗ |𝜓(𝑥)⟩⊗ |0⟩ (37)

where the first controlled gate apply a 𝑈̂0 on the second qudit, while
the second c-gate morphs the |0⟩ qudit into |𝜆0⟩. Applying back a 𝑋̂−1

gate, the state turns to be

√

𝜋0|0⟩⊗ 𝑈̂†
0 |𝜓(𝑥)⟩⊗ |𝜆0⟩ +

(𝐷−1
∑

𝑖=1

√

𝜋𝑖|𝑖⟩

)

⊗ |𝜓(𝑥)⟩⊗ |0⟩ (38)

As a second step, from the above state apply the ̂𝐶 𝑈†
1 and the ̂𝐶 𝑈𝜆1

ates, which outputs
√

𝜋0|0⟩⊗ 𝑈̂†
0 |𝜓(𝑥)⟩⊗ |𝜆0⟩ +

√

𝜋1|1⟩⊗ 𝑈̂†
1 |𝜓(𝑥)⟩⊗ |𝜆1⟩

+

(𝐷−1
∑

𝑖=2

√

𝜋𝑖|𝑖⟩

)

⊗ |𝜓(𝑥)⟩⊗ |0⟩ (39)

To iterate the process, apply the 𝑋̂𝑚 gate on the first qudit, there-
fter the ̂𝐶 𝑈†

𝑚 and ̂𝐶 𝑈𝜆𝑚 gates, for 𝑚 = 2,… , 𝐷 − 1. Eventually the
circuit returns the following state:
𝐷−1
∑

𝑖=0

(

√

𝜋𝑖|𝑖⟩⊗ 𝑈̂†
𝑖 |𝜓(𝑥)⟩⊗ |𝜆𝑖⟩

)

(40)

The second and the third qudits can be rewritten as

̂ †
𝑖 |𝜓(𝑥)⟩⊗ |𝜆𝑖⟩ =

𝐷−1
∑

𝑙=0
|𝑙⟩⟨𝑙|𝑈̂†

𝑖 |𝜓(𝑥)⟩⊗
𝐷−1
∑

𝑚=0

√

𝜆𝑚𝑖|𝑚⟩

=
𝐷−1
∑

𝑙=0
𝑎𝑙 𝑖|𝑙⟩⊗

𝐷−1
∑

𝑚=0

√

𝜆𝑚𝑖|𝑚⟩ (41)

where the 𝑎𝑙 𝑖 coefficients are ⟨𝑙|𝑈̂†
𝑖 |𝜓(𝑥)⟩. It is possible to recombine the

tensor product coupling the diagonal terms and the off-diagonal apart:
𝐷−1
∑

𝑙=0
𝑎𝑙 𝑖

√

𝜆𝑙 𝑖|𝑙 𝑙⟩ +
𝐷−1
∑

𝑚,𝑙=0
𝑚≠𝑙

𝑎𝑙 𝑖
√

𝜆𝑚𝑖|𝑙 𝑚⟩ (42)

Applying the ̂𝐶(𝑋−1)
𝑘

gate using the second qudit as target and the
third as control, it leads to

𝐷−1
∑

𝑖=0

√

𝜋𝑖|𝑖⟩⊗

⎛

⎜

⎜

⎜

⎝

𝐷−1
∑

𝑙=0
𝑎𝑙 𝑖

√

𝜆𝑙 𝑖|0𝑙⟩ +
𝐷−1
∑

𝑚,𝑙=0
𝑚≠𝑙

𝑎𝑙 𝑖
√

𝜆𝑚𝑖|(𝑙 − 𝑚)𝑚⟩

⎞

⎟

⎟

⎟

⎠

(43)

The overall scheme of the circuit is reported in Fig. 5. The proba-
bility 𝑃𝑗 in Eq. (30) can be achieved by measuring the first qudit in the
𝑗th element and the second one in |0⟩:

𝑃𝑗0 = 𝜋𝑗
𝐷−1
∑

𝑙=0

|

|

|

𝑎𝑙 𝑗 ||
|

2
𝜆𝑙 𝑗 = 𝜋𝑗⟨𝜓(𝑥)|𝜌̂𝑗 |𝜓(𝑥)⟩ (44)

The second passage has made usage of Eq. (32). At the end of the
process, in the phase of testing, it is possible to point out which class
the data 𝑥 belongs to by maximizing the probability:
max
𝑗

[𝜋𝑗⟨𝜓(𝑥)|𝜌̂𝑗 |𝜓(𝑥)⟩] (45) 𝑟

11 
8.5. Classical and quantum support vector machines

In the field of quantum machine learning, support vector machines
SVM) have been deployed for instance to distinguish anomalies from
ormal activities. More specifically, such algorithms has been em-
loyed to spot fraudulent credit card transactions or spurious bank
oan [28], to address malware detection [147] or rather to prevent

cyber attacks, such as DDoS attacks [27]. Support Vector Machines
are a classical supervised learning algorithm which aims to learn from
the training samples 𝐱𝑖 in order to classify a new data sample into
positive or negative class [148]. The data samples are given in the form
{(𝐱1, 𝑦1), (𝐱2, 𝑦2),… , (𝐱𝑁 , 𝑦𝑁 )}, with say two possible classes 𝐴 and 𝐵
and a relation to satisfy given by [149]
{

𝑦𝑘 = +1 if 𝑥𝑘 ∈ 𝐴
𝑦𝑘 = −1 if 𝑥𝑘 ∈ 𝐵

(46)

The space where the data 𝐱𝑖 are set is R𝑑 . In such a formulation,
it is possible to define a new set of coordinates 𝐳 such that 𝜙(𝐱) = 𝐳.
The 𝜙 are called feature maps, mapping the 𝐱𝑖 to the space of the 𝐳,
i.e. 𝜙 ∶ R𝑑 → R𝑀 , with 𝑀 ≥ 𝑑. The purpose is to set a hyper-plane,
given by the 𝐰 ⋅ 𝐳+ 𝑏 = 0 equation, where 𝐳 are the generic coordinates
n a R𝑀 space and {𝐰, 𝑏} define the parameters for the hyperplane. The

vector 𝐰 of parameters is defined as

𝐰 =
𝑑
∑

𝑖=1
𝛼𝑖𝜙(𝐱𝑖) (47)

where 𝐱𝑖 are the data for the training, and 𝛼𝑖 their corresponding
weights.

For the classification to succeed, at the end of the training 𝐰 and 𝐛
should be set such that 𝐰 ⋅𝐳+𝑏 ≥ 1 for a training point 𝐱𝑖 in the positive
lass, and 𝐰 ⋅ 𝐳+ 𝑏 ≤ −1 for a training point 𝐱𝑖 in the negative class. Via
he formulation in Eq. (47), the hyperplane 𝐷(𝐱) = 0 can be defined
s [130]

𝐷(𝐱) =
𝑑
∑

𝑖=1
𝛼𝑖𝜙(𝐱𝑖) ⋅ 𝐳 + 𝑏

=
𝑑
∑

𝑖=1
𝛼𝑖𝜙(𝐱𝑖) ⋅ 𝜙(𝐱) + 𝑏 =

𝑑
∑

𝑖=1
𝛼𝑖𝑘(𝐱𝑖, 𝐱) + 𝑏 (48)

where 𝐾𝑖𝑗 = 𝑘(𝐱𝑖, 𝐱𝑗 ) is called kernel function.

8.5.1. Kernel models
In Eq. (48), the kernel function is defined as the inner product

between feature maps, but many other definitions may arise. Linear
kernels are defined as [34,132,150]

𝑘(𝐱𝑖, 𝐱𝑗 ) = 𝜙(𝐱𝑖) ⋅ 𝜙(𝐱𝑗 ) (49)

In such case, 𝑑 and 𝑀 , the dimensions of the data and the feature
pace, are equal. Nevertheless, many models of different kernels may
rise. Depending on the nature of the problem to be tackled, different
ernels may induce different metrics for the classification tasks. The
olynomial kernel is defined as [33,34,131] 𝑘𝑠(𝐱𝑖, 𝐱𝑗 ) = (𝜆𝜙(𝐱𝑖) ⋅𝜙(𝐱𝑗 ) +
)𝑠, where 𝑠 is the polynomial degree and 𝜆, 𝑟 are constants to be tuned.
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Another class is given by the gaussian kernel [33,131,150], 𝑘𝑔(𝐱𝑖, 𝐱𝑗 ) =
xp

(

− ‖𝜙(𝐱𝑖)−𝜙(𝐱𝑗 )‖2

2𝜎2

)

, where 𝜎 is again a constant to be tuned. The last
ernel model frequently cited in literature is the Radial Basis Function
ernel (RBF) [34], 𝑘𝑅𝐵 𝐹 (𝐱𝑖, 𝐱𝑗 ) = exp (−𝛾‖𝜙(𝐱𝑖) − 𝜙(𝐱𝑗 )‖2

)

. Again, 𝛾 is a
parameter to tune for best fitting the real model.

In any of these formulations, 𝐾𝑖𝑗 still remains a symmetric matrix.

8.5.2. From hard to soft margins
Regardless of the choice for the kernel, the final goal of the algo-

rithm should be to reproduce the function in Eq. (46) and Ref. [127]:

𝑦(𝐱) = sgn (𝐷(𝐱)) = sgn
( 𝑚
∑

𝑖=1
𝛼𝑖𝑘(𝐱𝑖, 𝐱) + 𝑏

)

(50)

and therefore, the hyperparameters which need to be trained are now
𝑏, ⃗𝛼}. A way to express the affiliation of a 𝐱𝑖 data to one of the
wo classes, for 𝜙(𝐱) = 𝐱 (𝜙 thus being the identity map) is the
ollowing [18]:

(𝐰 ⋅ 𝐱𝑖 + 𝑏)𝑦𝑖 ≥ 1 (51)

With such a formulation, the closest data 𝐱𝑖 to the hyperplane yield
an equation 𝐰 ⋅ 𝐱𝑖 + 𝑏 = ±1. In Appendix B, we prove 2∕‖𝐰‖ to be
he distance between such points, thus calling ‖𝐰‖ to be minimized
or the classification to succeed at best. However, some data 𝐱𝑖 may
all into a so-called grey region, with distance 𝜀𝑖 with respect to the
orresponding hyperplane. The 𝜀𝑖 can be thought as errors, or soft-
ariables (because the margins of the hyperplanes are now ‘‘soft’’). The
ondition in Eq. (51) can be translated into an equality:

(𝐰 ⋅ 𝐱𝑖 + 𝑏)𝑦𝑖 = 1 − 𝜀𝑖 ⇒ (𝐰 ⋅ 𝐱𝑖 + 𝑏) = 𝑦𝑖(1 − 𝜀𝑖) (52)

𝑦𝑖 being ±1. We will refer to this condition in the next steps. Being 𝐰
he normal vector to the hyperplane with coordinates 𝐱, the distance

between the two separation hyperplanes for the two classes is given by
𝑇 ⋅𝐰, i.e. by the norm of 𝐰. Choosing the direction of 𝐰, it is possible

o minimize the distance between the two regions in the phase space
hich define the two classes, reducing therefore the probability to find

an error 𝜀𝑖. The purpose is now to minimize such distance, so that any
object falling in the between of the two planes can be classified with
o ambiguity. Such geometrical deduction can be pursued in Fig. 6(a).

Nevertheless, when some outliers inevitably occur, as in Fig. 6(b), we
are even interested in reducing the 𝜀𝑖 total distance. Summing these
onditions with the constraint in Eq. (52), the following system is
rovided:

⎧

⎪

⎨

⎪

⎩

min𝐰⟨𝐰,𝐰⟩ = ‖𝐰‖2

min𝜀𝑖
𝛾
2
∑

𝑖 𝜀
2
𝑖

(𝐰 ⋅ 𝐱𝑖 + 𝑏) = 𝑦𝑖(1 − 𝜀𝑖)
(53)

where 𝛾 is the sensitivity to the total amount of errors 𝜀𝑖. This op-
imization problem can be formulated via the Lagrangian multipliers
(𝑥) = 𝑓 (𝑥) − 𝜆𝑔(𝑥), where the condition 𝑓 (𝑥) is given by the inner

product of 𝐰 and the sum over the 𝜀𝑖, while the constraint 𝑔(𝑥) by the
last equation of the system [129]:

𝐿(𝐰, 𝑏, ⃗𝛼) = ‖𝐰‖2
2

+
𝛾
2
∑

𝑖
𝜀2𝑖 −

∑

𝑖
𝛼𝑖[⟨𝐰, 𝐱𝑖⟩ + 𝑏 − 𝑦𝑖(1 − 𝜀𝑖)] (54)

The 𝛼𝑖 coefficients play the role for the Lagrangian multipliers.
o get the best parameters, we derive the Lagrangian 𝐿(𝐰, 𝑏, ⃗𝛼) with
espect to 𝐰, 𝑏, 𝜀𝑖 and 𝛼𝑖:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇⃗𝐰𝐿 = 𝐰 −
∑

𝑖 𝛼𝑖𝐱𝑖
!
= 0 ⇒ 𝐰 =

∑

𝑖 𝛼𝑖𝐱𝑖
𝜕 𝐿
𝜕 𝑏 = −∑

𝑖 𝛼𝑖
!
= 0 ⇒

∑

𝑖 𝛼𝑖 = 0
𝜕 𝐿
𝜕 𝜀𝑗 = 𝛾 𝜀𝑗 − 𝛼𝑗𝑦𝑗

!
= 0 ⇒ 𝜀𝑗 =

𝛼𝑗𝑦𝑗
𝛾

𝜕 𝐿
𝜕 𝛼𝑗

!
= 0 ⇒ 𝐰 ⋅ 𝐱𝑗 + 𝑏 = 𝑦𝑗 − 𝜀𝑗𝑦𝑗

(55)

Afterwards, substitute the first and the third equation in the fourth
one, which yields
12 
∑

𝑖
𝛼𝑖𝐱𝑖 ⋅ 𝐱𝑗 + 𝑏 = 𝑦𝑗 −

𝛼𝑗
𝛾

(56)

as 𝑦2𝑖 = 1. The same expression can be rewritten in terms of the kernel
𝐾𝑖𝑗 and with all the parameters {𝑏, ⃗𝛼} on the left member:
∑

𝑖
𝛼𝑖𝐾𝑖𝑗 +

𝛼𝑗
𝛾

+ 𝑏 = 𝑦𝑗 (57)

8.5.3. Quantum advantage due to HHL algorithm
Taking into account the constraint ∑𝑖 𝛼𝑖 = 0 from Eq. (55), the same

expression in Eq. (57) can be reformulated into a matrix fashion as
(

0 1⃗𝑇

1⃗ 𝐾 + 𝛾−1𝐼

)

(

𝑏
𝛼⃗

)

= 𝐹
(

𝑏
𝛼⃗

)

=
(

0
𝑦

)

(58)

The first row holds because of the third equation in the system
rom Eq. (55). The dimension of the kernel matrix 𝐾 and the identity
I which multiplies 𝛾−1 is 𝑀 , i.e. the number of data from the training.
Therefore, it is possible to obtain the parameters {𝑏, ⃗𝛼} by just inverting
the 𝐹 matrix:
(

𝑏
𝛼⃗

)

= 𝐹−1
(

0
𝑦

)

(59)

The 𝐹 matrix can be expressed as 𝐽 +𝐾𝛾 , where

𝐽 =

(

0 1⃗𝑇

1⃗ O

)

, 𝐾𝛾 =

(

0 0⃗𝑇

0⃗ 𝐾 + 𝛾−1I

)

(60)

Back to Eq. (58), it is possible to encode the training parameters
𝑏, ⃗𝛼} as

|𝑏⟩|𝛼⃗⟩ = 1
√

𝐶

(

𝑏|0⟩ +
𝑀
∑

𝑖=1
𝛼𝑘|𝑘⟩

)

(61)

where the normalization constant is set to be 𝐶 = 𝑏2 +
∑𝑀
𝑖=1 𝛼

2
𝑘. As in

the classical case, there are many available definitions of kernels, the
first one of which can be

𝐾 =
∑

𝑖,𝑗

⟨

𝜙𝑖
|

|

|

𝜙𝑗
⟩

|𝑖⟩⟨𝑗| (62)

Just for instance, in order to reproduce a polynomial kernel, it
is possible to embed a state vector |𝑥𝑗⟩ in a higher dimensional
pace [127], |𝜙𝑗⟩ = |𝑥𝑗⟩⊗𝑠, and therefore the inner product

⟨

𝜙𝑗
|

|

|

𝜙𝑖
⟩

=
⟨

𝑥𝑗
|

|

|

𝑥𝑖
⟩𝑠

. To invert the matrix in Eq. (58), it is possible to apply the
HL algorithm, achieving an exponential speed-up. An overall expla-

nation for the HHL algorithm is provided in Appendix A. In the first
place, the linear system in Eq. (58) can be embedded into a quantum
transformation as 𝐹 |𝑏, ⃗𝛼⟩ = |𝑦⟩, where the matrix 𝐹 (and consequently
the 𝐹 operator) is defined as (𝐽 + 𝐾 + 𝛾−1I)∕ Tr{𝐽 +𝐾 + 𝛾−1I

}

. The
matrix has a (𝑀 + 1) × (𝑀 + 1) dimension, along with a norm

𝐹‖ = max𝑗 ‖𝐹𝐱𝑗‖∕‖𝐱𝑗‖ ≤ 1 (𝐱𝑗 being its eigenvectors) because of the
race normalization. Thanks to the Lie-Trotter formula, it is possible to
ecompose the exponentiation of 𝐹 as

𝑒𝑖𝐹 𝛥𝑡 = 𝑒−𝑖Î𝛾
−1𝛥𝑡∕𝐶𝑒−𝑖𝐽 𝛥𝑡∕𝐶𝑒𝑖𝐾̂ 𝛥𝑡∕𝐶 + 𝑂(𝛥𝑡2) (63)

where 𝐶 = Tr{𝐽 +𝐾 + 𝛾−1I
}

is the trace normalization. In order to
apply the HHL algorithm, the state 1|𝑦⟩ must be endowed with an an-
cillary qubit, in order to store the eigenvalues of 𝑒𝑖𝐹 𝛥𝑡, and decomposed
into a basis for 𝐹 :

|𝑦⟩ →
𝑀+1
∑

𝑗=1

⟨

𝑢𝑗
|

|

|

𝑦
⟩

|𝑢𝑗⟩|0⟩ (64)

Thus, applying the HHL algorithm, the |𝑦⟩|0⟩ state transforms into
𝑀+1
∑

⟨

𝑢𝑗
|

|

|

𝑦
⟩

|𝑢𝑗⟩∕𝜆𝑗 (65)

𝑗=1
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Fig. 6. The first two images represent a 2𝐷 region, split by two axes 𝑋1 and 𝑋2 (a) Tuning 𝐰 changes the direction of the hyperplane, and therefore the distance between the
data 𝐱𝑖 and the hyperplane itself. The 𝐰 vector is orthogonal to the hyperplane itself (b) Some data may follow into a disputed area, thereafter an error 𝜀𝑖 (soft variables) is
introduced to correct these margins (c) Introducing feature maps, a linear classification is made feasible, where otherwise, in a lower dimension space, it would not be possible.
8.6. Natively quantum kernel methods

The kernel method consists of embedding a set of data into a
higher-dimensional space (even infinite-dimensional) called feature
space [74]. Given the space of data  , the kernel 𝑘 is defined as a
map 𝑘 ∶  ×  → R. Such a map can be considered as a metric in
the  space of the data. In the previous section, the kernel function
𝑘 has been alternatively defined through the feature maps 𝛷, where
𝑘(𝑥, 𝑥′) = ⟨𝛷(𝑥)|

|

𝛷(𝑥′)⟩, where 𝑥, 𝑥′ ∈  . The feature map 𝛷 is a map
between the space of data  and the feature space , 𝛷 ∶  → .
A visual representation for this encoding can be seen in Fig. 6(c).
Such method turns to be useful in quantum machine learning, where
classical data need to be encoded into a Hilbert space to perform some
computation. It follows that the kernel function, encoding the data
into the quantum circuit, induces a norm on the Hilbert space , and
therefore a distance in the  space. Such feature accomplishes the
purpose for a classification algorithm: given a target 𝑦, it is possible
to compute the distance 𝑘(𝑥, 𝑦) thanks to the embedding in the feature
space . By this approach, the data can be directly analyzed into a
Hilbert space of features, where it is possible to deploy linear classifiers,
relying on the inner products between quantum states. Increasing the
size of the Hilbert space, such kernels turn to be classically intractable.

A way to encode the information into qubits (i.e. in the Hilbert
space) could be formulated by introducing an operator 𝑈̂𝛷, acting as
𝑈̂𝛷(𝑥)|0⟩ = |𝑥⟩ [34]. In such formulation, the 𝑈̂𝛷 operator acts as a
creator over the vacuum state |0⟩. Thus the kernel can be estimated by
confronting the 𝑈̂ operators:

𝑘(𝑥, 𝑥′) = |

|

|

𝑁 ⊗
⟨0|𝑈̂𝛷(𝑥)†𝑈̂𝛷(𝑥)|0⟩⊗𝑁

|

|

|

2
(66)

By such formulation, the kernel entry can be evaluated on a quan-
tum computer by measuring the 𝑈̂𝛷(𝑥)†𝑈̂𝛷(𝑥)|0⟩⊗𝑁 state in the com-
putational basis with repeated measurement shots and recording the
probability of collapsing the output into the |0⟩⊗𝑁 state.

9. Quantum unsupervised learning

Recently, unsupervised learning gained wide success due to gen-
erative techniques, which allow to produce genuine new data mim-
icking the original dataset. Such techniques rely on sampling data
from an unknown distribution, according to which the original ones
are distributed. Quantum devices allow to generate samples from any
distribution very efficiently, due to the intrinsic probabilistic nature of
quantum mechanics. For instance, in [24] it has been proved that a
Boltzmann Machine on an adiabatic quantum computer performs 64
times faster than its classical counterpart, involving tasks and data
concerning the field of cybersecurity. In the next Section, we detail how
classical generative-adversary techniques are designed and suited for
quantum computers and anomaly detection purposes.
13 
9.1. QGAN for anomaly detection

Differently from the approach based on SVM mentioned in the pre-
vious section, another approach has been proposed by Herr et al. [23]
relying on hybrid quantum GANs for the anomaly detection task.

GAN (Generative Adversary Network) is an unsupervised algorithm
of machine learning. This algorithm is based on two agents, the dis-
criminative and generative one. Given a distribution of data 𝐱 ∈ 𝑝𝑟(𝐱)
and a set of labels to pair 𝑝𝑟(𝐱) with, the former model tries to fit the
best conditional probability 𝑝(𝑦|𝐱), the latter how to generate the joint
probability 𝑝(𝑦, 𝐱) for the data distribution. It is possible to introduce
some latent variables, 𝐳, to mimic the distribution for the 𝐱 data. Given
a distribution 𝑝𝑔(𝐳) for the latent variables 𝐳 [151], the purpose for the
generative model is to get the best parameters 𝜃 to build a function
𝐺𝜃 ∶  →  . The data generated from 𝐺𝜃 will be distributed according
to a probability distribution P𝜃 , while the true (unknown) distribution
of data in the  space will be given by P𝑡 (𝑡 standing for true). The
purpose of the discriminative model, now that the hidden variables 𝐳
are embedded in the  space, is to distinguish which variables are dis-
tributed according to P𝑡 rather than P𝜃 : 𝐷𝜔 ∶  → [0; 1]. The problem
can be reformulated as a minmax one. In the WGAN (Wasserstrein GAN)
formulation [23], given a set of data 𝐱 distributed accordingly to P𝑡
(written as 𝐱 ∼ P𝑡), and a set of 𝐳 with a P𝑧 distribution, the purpose is
to maximize the expectation function over 𝐷𝜔, neutralizing at the same
time the ‘‘fraudulent’’ action of 𝐺𝜃 :
min
𝐺

max
𝐷∈

E𝐱∼P𝑡 [𝐷(𝐱)] − E𝐳∼P𝑧 [𝐷(𝐺(𝐳))] (67)

where  is the class of all the 1-Lipschitz functions. A 𝛼-Lipschitz
function 𝑓 is defined such that
‖𝑓 (𝑥) − 𝑓 (𝑥0)‖C ≤ 𝛼‖𝑥 − 𝑥0‖D (68)

where 0 < 𝛼 ≤ 1 (for 𝛼 = 1, 𝑓 is defined 1-Lipschitz), D and C
are respectively the domain and codomain of the function 𝑓 and are
metric spaces endowed with a distance and a norm (expressed by
‖.‖ in Eq. (68)). Thereafter, it is possible to state the proposition by
Gulrajani et al. [152]:

Proposition 1. Let P𝑡 and P𝑔 two distributions in a  compact metric
space. Then, there is a 1-Lipschitz function 𝑓 ∗ which is the optimal solution
of max

‖𝑓‖≤𝐿 E𝑦∼P𝑡 [𝑓 (𝑦)] − E𝑥∼P𝑔 [𝑓 (𝑥)].

As a corollary to the proposition, it is stated that 𝑓 ∗ has gradient
norm 1 almost everywhere under P𝑡 and P𝑔 . Without entering the math-
ematical details and proof for such proposition, which we recommend
to Gulrajani’s paper [152], it is possible to set the minmax problem
in Eq. (67) with Lagrangian multipliers:

𝑐 (𝜔, 𝜃) = E𝐳∼P𝑧 [𝐷𝜔(𝐺𝜃(𝐳))] − E𝐱∼P𝑡 [𝐷𝜔(𝐱)] + 𝜆EP𝐱̃ (𝐱̃)[(‖∇𝐱̃𝐷𝜔(𝐱̃)‖ − 1)2]

(69)
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where 𝐱̃ = 𝐱 + 𝜖(𝐺(𝐳) − 𝐱), 𝜖 being uniformly distributed in the range
(0, 1), i.e. 𝜖 ∼ 𝑈 (0, 1), while 𝐱 ∼ P𝑡 and 𝐳 ∼ P𝑔 still. The multiplier term
is called gradient penalty term to the critic loss function 𝑐 (𝜔, 𝜃).

9.1.1. Training the NNs as competitors
The training for a WGAN consists of two steps: in the first one, given

a set of generated 𝐺𝜃(𝐳) and true 𝐱 inputs, the purpose is to find the
global minimum for the Lagrangian loss function defined in Eq. (69),
w.r.t. 𝜔 hyperparameters for the 𝐷𝜔 model via a stochastic gradient
descent technique.

In the second step, the purpose is instead to enhance the pursuit of
he generator. The way to achieve such goal is to maximize the first
agrangian term, w.r.t. both the 𝜃 and 𝜔 hyperparameters:

𝑔(𝜃) = −E𝐳∼P𝑧 [𝐷𝜔(𝐺𝜃(𝐳))] (70)

In its classical fashion, the generative model 𝐺𝜃 is built up by a
series of 𝐿 layers. In the first place, the latent variables 𝐳 ∼ 𝑈 (0, 1) are
reshaped through a series of maps 𝑔𝑖 ∶ R𝑁 → R𝑁 , so that the overall
NN model results in
𝑔(𝜃 , 𝐳) = (𝑔𝜃𝐿◦𝑔𝜃𝐿−1 … ◦𝑔𝜃1 )(𝐳) (71)

where 𝜃 = (𝜃𝐿, 𝜃𝐿−1,… , 𝜃1). A set of activation functions can be applied
for each 𝑔𝜃𝑖 layer: in [23] leaky ReLU were deployed. Secondly, the final
form of the generator will be given by the 𝑊 ∶ R𝑁 → R𝑀 function:
𝐺𝜃(𝐳, 𝜙) = 𝑊 [𝑔(𝜃 , 𝐳), 𝜙] (72)

𝑊 in Ref. [23] is set to be a sigmoid function on 𝑤𝑖𝑗𝑧𝑗 + 𝑏𝑖, with
collecting the corresponding hyperparameters of the weight matrix
and the bias vector 𝐛. To update the hyperparameters, it is possible

o adopt any gradient descent method. The updating proceeds by the
sual chain rule in the derivation process:
𝜕𝑔
𝜕 𝜃𝑚

= −EP(𝐳)

[

𝜕 𝐷
𝜕 𝐺𝜃

𝜕 𝐺𝜃
𝜕 𝑔𝑚

𝜕 𝑔𝑚
𝜕 𝜃𝑚

]

(73)

The discriminative model 𝐷𝜔 ∶ R𝑀 → R is a NN endowed with
several hidden layers, mapping the data in a R𝑀 space to the label
space in R.

9.1.2. Quantum variational circuit for generative models
Quantum circuits support the generative procedure of the model.

n fact, quantum computers are expected to sample efficiently from
istributions which are hard in a classical way [76,87,153–155]. On
he contrary, the critic model needs lots of classical data, which requires
oo much time to be loaded and makes such transposition unfeasible in
he NISQ era [156].

When implementing the generative model on a quantum device, the
latent variables are given into a uniform distribution 𝐳 ∼ 𝑈 (−𝜋 , 𝜋),

whereas the encoded state |𝐳⟩ is given by the preparation layer
𝑆̂(𝐳)|0⟩⊗𝑁 . The operator 𝑆̂, which implements such preparation layer,
is composed as 𝑆̂(𝐳) = ⨂𝑁

𝑖=1 𝑅
𝑋
𝑖 (𝑧𝑖), 𝑅

𝑋
𝑖 being the X-rotation over

the 𝑧𝑖 angle. After the state has been encoded, it follows a layer of
rotations 𝑈̂𝜈 (𝜃) in all the {𝑋̂ , 𝑌 , 𝑍̂} basis, alternated to CNOT gates.
Therefore, two hyperparameters are given: 𝜈 stores the basis on which
to perform rotations, 𝜃 the angles. While 𝜈 encodes the architecture of
the circuit, the 𝜃 angles are the variational parameters to optimize on.
The multilayer generative function 𝑔 in Eq. (70) is transposed in an
expectation value over 𝐙̂ =

⨂𝑁
𝑖=1 𝑍̂𝑖:

𝑔(𝜃 , 𝐳) = ⟨𝐳|𝑈̂𝜈 (𝜃)𝐙̂𝑈̂𝜈 (𝜃)|𝐳⟩ (74)

where instead of composing … ◦𝑔𝑖+1◦𝑔𝑖◦… layers of activation func-
ions, there is a sequence of 𝑈̂𝜈 (𝜃) operators. At the end, a classical
ctivation function 𝑊 is applied to compose the last layer for the
enerative model. Beside this difference, the gradient descent method is
pplied in the same manner as from Eq. (73), but instead the derivative

of 𝑔 is given by
𝑚 O

14 
𝜕 𝑔
𝜕 𝜃𝑚

=
𝜕⟨𝐙̂⟩𝐳̂,𝜃 ,𝜈
𝜕 𝜃𝑚

(75)

9.2. Other approaches to quantum anomaly detection by unsupervised
learning methods

Generally speaking, quantum anomaly detection has been inten-
sively explored in the past few years [29]. Anomaly detection for
cybersecurity can take advantage of its development in other fields. For
instance, a field of application of anomaly detection is particle physics.
There, a number of algorithms have been proposed. For instance, Alve
et al. [157] have applied QAD to an analysis characterized by a low
tatistics dataset. They have explored anomaly detection task in the
our-lepton final state at the Large Hadron Collider that is limited by a
mall dataset, by a semi-supervised mode, without finding any evidence
f speed-up. On the contrary, other examples sharing the unsupervised
pproach provided quantum speed-up, as follows.

9.2.1. Quantum auto-encoders
Quantum auto-encoders have been assessed for unsupervised ma-

hine learning models based on artificial neural networks. The aim con-
ists of learning background distributions by quantum auto-encoders
ased on variational quantum circuits, as problem of anomaly detection
t the LHC collider. For representative signals, it turns out that a simple
uantum auto-encoder outperforms classical auto-encoders [31]. There,

a quantum auto-encoder has been developed, consisting of a circuit
ivided into three blocks, namely the state preparation that encodes

classical inputs into quantum states, the unitary evolution circuit that
evolves the input states, and the measurement and postprocessing
part that measures the evolved state and processing the obtained
observables.

9.2.2. Amplitude estimation-based method
An anomaly detection algorithm based on density estimation

(ADDE) has been proposed by Liang et al. [158] to potentially express
exponential speed-up, but it was later found not executing. Then,
another group demonstrated such an exponential speed-up based on
a modified version [159]. Such a new quantum ADDE algorithm is
based on amplitude estimation. It is shown that such algorithm can
achieve exponential speed-up on the number M of training data points
compared with the classical counterpart.

9.2.3. Natively quantum kernels and hardware benchmarking
In 2022, anomaly detection for credit card fraud detection have

been demonstrated by quantum kernels on 20 qubits by authors in-
cluding HSBC Bank affiliation [160]. The benchmarks consist of kernel-
based approaches, in particular unsupervised modeling on one-class
support vector machines (OC-SVM). Quantum kernels are applied to
different type of anomaly detection, leading to observe that quantum
fraud detection challenges the equivalent classical protocols at increas-
ing number of features, which are equal to the number of qubits for
data embedding. The better precision has been achieved by combining
quantum kernels with re-uploading, with the advantage increasing with
the size of the system. The Authors claim that with 20 qubits the
quantum–classical separation of average precision is equal to 15%. The
Authors estimate the computational cost to estimate the Gram matrix
representing the kernel is 𝑂(𝑁2

𝑠 ) where 𝑁𝑠 is the number of samples,
while the continuous retraining to update on-the-fly the kernel is 𝑂(𝑁𝑠).
Instead, the time needed for inference (to assign a label fraud or not)
or detecting 𝑁𝑑 new-coming samples is of 𝑂(𝑁𝑑𝑁𝑠) kernel evaluations.
he report is of particular interest as an evaluation is made for what
oncerns such inference time for three different hardware platforms:
1) superconducting circuits, (2) trapped ions and (3) optical systems.
ne can evaluate the training time for a dataset of 500 elements. In su-
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perconducting qubits, operation happen at MHz speed. A reproducible
kernel measurements may require at least 𝑁𝑠ℎ𝑜𝑡𝑠 = 103−6 measurement
shots. With 105 kernel evaluations, the training time is 100 s - 28 h
training time at optimistic MHz rate same cost of 28 h. The inference
time is significantly smaller down to 0.5 s in the case of reduced dataset.
Instead, for large datasets (100000 samples), it may raise to 16 weeks,
which could only be reduced with partial inference of Gram matrix.
In trapped ions, for 10 kHz per shots, with 105 kernel evaluations the
training time and 𝑁𝑠ℎ𝑜𝑡𝑠 = 103−6 is 3 h - 17 weeks. With photons on
deterministic gates, which is currently still an open field of research,
the expected time ranges between 10 ms and 10 s.

10. Quantum approximate optimization algorithm

Data clustering is the process of identifying natural groupings or
lusters within multidimensional data based on some similarity mea-
ure. Clustering is a fundamental process in many different disci-
lines [161], for instance, it can be employed to divide the data set into
 specified number of clusters, trying to minimize certain criteria (e.g. a
quare error function) falling into the class of optimization problems.
oreover, clustering algorithms are employed to perform network

raffic identification [162] and for graph-based network security [163].
In literature, in fact, a common approach consists of representing the
servers as nodes of a graph, and the flow of data between them as
the edges of the graph itself [164]. By monitoring the topology of the
graph, relying on a technique called graph similarity, any anomaly can
be straightforwardly detected. In 2022, Li et al. proposed an algorithm
of clustering in order to monitor the traffic flow on the web [162].
Nevertheless, despite the effectiveness of such approach, the graph
encoding for anomaly detections turns the problem to an NP-hard one
by scaling with the number of nodes – see [163,164]. Instead, quantum
omputation is able to tackle graph-based problems in a polynomial
ime. In the next Section, we provide a paramount example about how
n NP-hard graph problem could be leveraged by a quantum machine
earning approach.

10.1. The MaxCut problem

The MaxCut algorithm is a NP-hard combinatorial problem [165,
166] which can be set as follows. Given a 𝐺 = (𝑉 , 𝐸) graph, 𝑉 =
{1,… , 𝑛} being the vertices of the graph and 𝐸 their connections,
he weights of the (𝑖, 𝑗) ∈ 𝐸 connections are given by the weight
atrix 𝑤𝑖𝑗 . The purpose in the MaxCut problem is to find the best

ubset 𝑆 ⊂ 𝑉 of vertices and its complement 𝑆̄ to maximize the
um over the weights connecting the two subsets [165]: 𝑤(𝑆 , 𝑆̄) =
1
2
∑

𝑖∈𝑆 ,𝑗∈𝑆̄ 𝑤𝑖𝑗 . The MaxCut problem can be formulated as the following
integer quadratic program [165,166] and therefore mapped into a
Hamiltonian formulation, inspired by the Ising model:

max
∑

1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗
2

(1 − 𝑧𝑖𝑧𝑗 ) → 𝐻̂𝐶 =
∑

𝑖𝑗

𝑤𝑖𝑗
2

(𝐼 − 𝑍̂𝑖𝑍̂𝑗 ) (76)

The constraint 𝑧𝑖 = ±1 holds, allowing to replace such classical
variables with the third Pauli matrix from su(2) algebra, i.e. the 𝑍̂
operator. Nonetheless, it holds that 𝑧𝑖 = ⟨𝑍̂𝑖⟩. The cut is defined by
he condition 𝑆 = {𝑖 ∈ 𝑉 |𝑧𝑖 = +1}, and it can be set by maximizing the
𝐸𝐶 = ⟨𝐻̂𝐶 ⟩ observable [167]. When two vertices belong to the same
ubset 𝑆 or 𝑆̄, it follows that 𝑧𝑖 = 𝑧𝑗 and the contribution to 𝐸𝐶 is null.

Thus, the set of 𝑆 and 𝑆̄ can be thought as a partition of the system in
up and down spins.

The MaxCut problem can be employed in the field of data min-
ng and machine learning [168], with special regards to unsuper-

vised learning [169]: it is possible to recreate unsupervised learning
lustering of data by mapping the problem to a graph optimization

problem and finding the minimum energy for a MaxCut problem for-
mulation.
15 
10.2. QAOA formulation

The quantum approximate optimization algorithm (QAOA) has been
any times applied to tackle the MaxCut problem [94,169–171]. Such

algorithm consists of preparing a register of 𝑛-qubits in the eigenstate
f a Hamiltonian 𝐻̂𝐵 :

|𝛹 (𝑡 = 0)⟩ = |+⟩⊗𝑁 , 𝐻̂𝐵 =
𝑁
⨂

𝑖=1
𝑋̂𝑖 ⇒ 𝐻̂𝐵|𝛹 (0)⟩ = |𝛹 (0)⟩ (77)

More specifically, the state |+⟩⊗𝑁 is the maximum for the Hamilto-
ian 𝐻̂𝐵 . The purpose is now making |𝛹 (𝑡 = 0)⟩ evolve to the maximum
igenstate for the −𝐻̂𝐶 Hamiltonian from Eq. (76) via the adiabatic

theorem, i.e. to the minimum eigenstate for 𝐻̂𝐶 . The next step is thus
to encode a time-dependent Hamiltonian 𝐻̂(𝑡) to make the state |𝛹⟩
evolve [4]:

𝐻̂(𝑡) =
[

1 − 𝑡
𝑇

]

𝐻̂𝐵 − 𝑡
𝑇
𝐻̂𝐶 , 0 ≤ 𝑡 ≤ 𝑇 (78)

The annealing schedules are set by the 1 −𝑡∕𝑇 and 𝑡∕𝑇 terms, the 𝐻̂𝑃
amiltonian is shaped on the form of the 𝐻̂𝐶 Hamiltonian in Eq. (76),
hile the transverse field Hamiltonians (𝐻̂𝑇 and 𝐻̂𝐵) still keep the

ame form. Via the adiabatic theorem, it is possible to make |𝛹 (𝑡)⟩
evolve from the higher energy state of 𝐻̂𝐵 to the higher energy state
of −𝐻̂𝐶 (and therefore to the ground state of 𝐻̂𝐶 ). As the Hamiltonian
in Eq. (78) depends on time, the corresponding time evolution is given
by

|𝛹 (𝑇 )⟩ = exp
(

− 𝑖
ℏ ∫

𝑇

0
d𝑡 𝐻̂(𝑡)

)

|𝛹 (0)⟩ = exp
(

− 𝑖𝑇
ℏ ∫

1

0
d𝑠 𝐻̂(𝑠)

)

|𝛹 (0)⟩

(79)

where 𝑠 = 𝑡∕𝑇 . It is possible to approximate the above evolution
by splitting the continuous trajectory along 𝑡 (or 𝑠) in a patchwork
of 𝑝 small, discrete steps of duration 𝜀 = 1∕𝑝 [4,172]. By applying
the Trotter formula [173], the operator in the above equation can be
approximated as

exp

(

− 𝑖𝑇
ℏ ∫

1

0
d𝑠 𝐻̂(𝑠)

)

≈
𝑝−1
∏

𝑘=0
exp

(

− 𝑖𝑇
𝑝ℏ
𝐻̂𝑘

)

(80)

where 𝐻̂𝑘 = 𝐻̂(𝑘∕𝑝). In the limit for 𝑝 → ∞, it is possible to involve
again the Lie-Trotter formula [94,174] to split each 𝐻̂𝑘 Hamiltonian
into the 𝐻̂𝐶 and 𝐻̂𝐵 terms:
𝑝
∏

𝑘=1
exp

(

− 𝑖𝑇
𝑝ℏ

[

1 − 𝑘
𝑝

]

𝐻̂𝐶

)

exp
(

− 𝑖𝑇
𝑝ℏ

𝑘
𝑝
𝐻̂𝐵

)

|𝛹 (0)⟩ (81)

The bigger is 𝑝, the better both the approximations in Eqs. (80)
and (81) work. It is possible to treat the terms in the round brackets as
a set of angles 𝛾𝑗 , 𝛽𝑗 , to map the overall evolution into

|𝛹 (𝜸, 𝜷)⟩ = 𝑒−𝑖𝛽𝑝𝐻̂𝐵 𝑒𝑖𝛾𝑝𝐻̂𝐶 … 𝑒−𝑖𝛽1𝐻̂𝐵 𝑒𝑖𝛾1𝐻̂𝐶
|+⟩⊗𝑛 (82)

In such formulation, the time evolution via a parameter 𝑡 has
een substituted by 2𝑝 unitary transformations parameterized by a set
f (𝜸, 𝜷) angles. When implementing such operator on a circuit, the
umber of repetitions over the 𝑒−𝑖𝛽𝑗 𝐻̂𝐵 𝑒𝑖𝛾𝑗 𝐻̂𝐶 layers stands for the depth
of the circuit itself. The state |𝑥⟩ is therefore evolved naturally to the

olution under the action of the following unitary operator:

|𝛹 (𝜸, 𝜷)⟩ ∶=

( 𝑝
∏

𝑖=1
𝑈̂𝐵(𝛽𝑖)𝑈̂𝐶 (𝛾𝑖)

)

|+⟩⊗𝑛 (83)

Recall the cost function 𝐸𝐶 in terms of the number 𝑝 of layers
which are inserted in the evolution from Eq. (83), e.g. 𝐸𝑝: 𝐸𝑝(𝜸, 𝜷) =
⟨𝛹 (𝜸, 𝜷)|𝐻̂𝐶 |𝛹 (𝜸, 𝜷)⟩. More layers are inserted (i.e. the higher is 𝑝), the
more the solution is supposed to be exact. Afterwards, it is possible to
define the maximum value over the expectation of 𝐸𝑝: 𝑀𝑝 = max𝜷,𝜸 𝐸𝑝.
Therefore, by the adiabatic theorem, it is possible to state that 𝑀 ≥
𝑝+1
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𝑀𝑝. Eventually, it is possible to map the adiabatic process into an
optimization for the 2𝑝 parameters 𝜸, 𝜷, which can be achieved by a
ybrid algorithm combining gradient descent methods on CPUs/GPUs
ith backpropagation on the quantum circuits. A useful metric, to
ssess how far the state is from the solution (i.e. the ground state

of 𝐻̂𝐶 ), is given by the approximation ratio parameter 𝑟, formulated
as [34,167,175–182] 𝑟 = 𝐸∕𝐸𝑚𝑎𝑥. Here 𝐸 = ⟨𝛹 |𝐻̂𝐶 |𝛹⟩, with |𝛹⟩ being
the actual state of the system and 𝐸𝑚𝑎𝑥 the maximum eigenvalue of the
Hamiltonian operator, whose corresponding eigenstate is the goal of
the problem under consideration. When 𝑟 tunes to 1, the exact solution
is provided. The approximation ratio, by such definition, returns the
cost function (in our case, the Hamiltonian spectrum) normalized in
he [0; 1] codomain.

Said this, some critical considerations have to be done. Once the
AOA was proposed for finding approximate solutions to combinatorial
ptimization problems [94], it was subsequently shown that QAOA

solves the combinatorial problem Max E3LIN2 with better approxi-
ation ratio with respect to any polynomial-time classical algorithm

nown, at the time, but soon a better classical algorithm with better
approximation ratio was found [183]. The assignment of a quantum
lgorithm to a class of speed-up may suggest the priority around the
spects which can be investigated.

11. Quantum reinforcement learning

Reinforcement learning (RL) has been poorly explored in the field of
uantum information, and just in the last years some interest has been

raising towards this branch of Machine Learning [184–186]. For in-
tance, Chen et al. [187] proposed a variational quantum reinforcement

learning algorithm via evolutionary optimization with no evidence of
quantum speed-up. Another variational implementation is due to Acuto
et al. [188]. Dalla Pozza et al. [189] developed a quantum RL frame-
work to solve a quantum maze with speed-up, and Cherrat et al. [190]
how a quadratic speed-up under certain conditions for their quantum
L based on policy iteration. The field looks currently less developed
ith respect to quantum supervised and unsupervised paradigms and
ore development should be expected before prospecting an evident

mpact on security related tasks. Nevertheless, for sake of completeness,
his Section outlines some key aspects of quantum RL, which may
nspire future research around its intersection with cybersecurity.

According to one of the first proposals, when transposing classical
algorithms of reinforcement learning in the quantum domain, the ac-
ions and the states of the system can be described as elements spanning
wo different Hilbert spaces  = {|𝑎𝑖⟩} and  = {|𝑠𝑖⟩}, or even  (where

stands for environment) [191,192]. Apart from the qubits belonging
o these two  and  systems, an auxiliary system , called register,
an be added [26,184,193]. In such case, when initializing the overall
ystem, the state will be presented as

|𝛹⟩ = |⟩|⟩|⟩ (84)

As from the classical RL algorithms, three functions are required: a
olicy function, a reward function (RF) and a value function (VF) [26,

194]. The reward function is the criterion to evaluate the goodness
of an action taken by the agent, with respect to the fixed task. The
alue function evaluates the general convergence of the algorithm to
he goal it has to be achieved. The policy function defines which action
o take with respect to the fixed purpose. However, due to the nature of

quantum mechanics, even extracting information from the environment
to the space of actions needs a decision problem, which task is relied
to the policy function. The process of extracting information from the
environment to the actions can be though as an interaction with the
two systems.

The simplest case deals with one qubit for the environment  and
ne qubit for the action space . Depending on the RL protocol to
mplement, the register space can be endowed with one or two qubits.

Generally, such states are initialized to |0⟩, i.e. |𝛹⟩ = |0⟩ |0⟩ |0⟩ |0⟩ .
    l

16 
In the first step, the data need to be uploaded into the  space:

|𝛹⟩ = |0⟩

[

cos(𝜃∕2)|0⟩ + 𝑒𝑖𝜙 sin(𝜃∕2)|1⟩

]

|0⟩|0⟩ (85)

In the second place, apply a set of CNOT gates with |𝑎⟩ as control and
the |0⟩ as targets:

|𝛹⟩ = |0⟩

[

cos(𝜃∕2)|0⟩ |0⟩|0⟩ + 𝑒𝑖𝜙 sin(𝜃∕2)|1⟩ |1⟩|1⟩

]

(86)

11.1. Quantum adaptation algorithm

The quantum adaptation algorithm, proposed by F.
Albarrán-Arriagada et al. [26] and applied by Shang Yu et al. (including
Albarrán-Arriagada himself) in a semiquantum way [193] has been
tested to rebuild a quantum state, in order to describe a quantum
system. It consists of the following steps: start from a system where all
of the ,  and  subsystems take into account a single qubit. In the
first place, encode the overall system in a similar fashion as in Eq. (85):

|𝛹⟩ = |0⟩

[

cos(𝜃∕2)|0⟩ + 𝑒𝑖𝜙 sin(𝜃∕2)|1⟩

]

|0⟩ (87)

Therefore, apply a ̂𝐶 𝑋  operator (CNOT on  as control,  as target):

|𝛹⟩ = |0⟩

[

cos(𝜃∕2)|0⟩ |0⟩ + 𝑒𝑖𝜙 sin(𝜃∕2)|1⟩ |1⟩

]

(88)

Afterwards, perform a measurement over  in the computational basis
{|0⟩, |1⟩}, so that the  state is going to collapse in |0⟩ or |1⟩

ith probabilities cos2(𝜃∕2) or sin2(𝜃∕2), respectively. If the superpo-
ition collapses to |0⟩, the environment  and the action  share the
ame state, otherwise the latter needs to be updated. To update |0⟩,
ntroduce the following operator:

𝑈̂ (𝑘)
 (𝛼(𝑘), 𝛽(𝑘)) = 𝑒−𝑖𝑍̂𝛼(𝑘)𝑒−𝑖𝑋̂𝛽(𝑘) (89)

Here 𝑍̂ and 𝑋̂ stand for the elements from Pauli algebra su(2), and the
suffix  shows that they are acting over the action space. The index
𝑘 stands for the iteration over the process. The angles of rotation are
defined in the following range: 𝛼(𝑘), 𝛽(𝑘) ∈ [−𝛥(𝑘)∕2;𝛥(𝑘)∕2], where 𝛥(𝑘)
is the parameter to update per iteration 𝑘. The operator 𝑈̂ acts on the
|⟩ state depending on the outcome from the measurement:

̂ (𝑘)
 = [𝑚𝑘𝑈̂ (𝑘)

 (𝛼(𝑘), 𝛽(𝑘)) + (1 − 𝑚𝑘)𝐼] (90)

where 𝑚𝑘 is the outcome from the 𝑘th measurement, 1 if |1⟩, otherwise
0. To update the 𝛥 parameter, the following rule has been proposed:

𝛥(𝑘+1) = [(1 − 𝑚𝑘) + 𝑚𝑘]𝛥(𝑘) (91)

 and  are called the reward and punishment ratios, respectively
 = 𝜖 < 1 and  = 1∕𝜖 > 1, so that every time the outcome is |0⟩ the
value of 𝛥 is reduced, when |1⟩ it is increased. 𝜖 is a hyperparameter
to tune for every set of simulations, the better the 𝜖 parameter, the
higher the fidelity between the simulated qubit and the initial state (see
Table 4).

At the 𝑘th iteration, the system will be set in the state |𝛹⟩ =
U(𝑘)
 |0⟩|𝜓⟩ |0⟩, where the U(𝑘)

 operator accounts into memory all the
revious actions over :

U(𝑘)
 =  (𝑘)

 (𝛼(𝑘), 𝛽(𝑘))U(𝑘−1)
 (92)

12. Concluding remarks

Anomaly detection performed on quantum computers by quantum
achine learning algorithms is at its infancy, but reveals high potential.
t the same time, one may expect a transition for what concerns the
ind of data and the applications to be managed. Indeed, quantum
achine learning suffers of the bottleneck of the data loading issue.
iven that no qRAM does still exist, the 1 − 𝑡𝑜− 2𝑛 parallelized encoding
f data in qubits is currently not viable because of its exponential data
oading cost. Therefore, three options can be considered: (i) a robust
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Table 3
Taxonomy for Quantum feed-forward Neural Networks for all the reviewed algorithms.
AF acronym stands for activation functions. All the fields in the table refer to Fig. 1.

Algorithm Units Learning Architecture NNs Computation

QFFNN Qubits Supervised Circuital AF Fully quantum
QRBM Qubits Supervised Adiabatic Variational Fully quantum
CVNN Qumodes Supervised Circuital AF Fully quantum
DMKDC Qudits Supervised Circuital Variational Classical emulation
QSVM Qubits Supervised Circuital Variational Hybrid
QGAN Qubits Unsupervised Circuital Variational Hybrid
QAOA Qubits Unsupervised Circuital Variational Hybrid
QRL Qubits Reinforcement Circuital Variational Hybrid

but qubit-expensive 1 − 𝑡𝑜− 1 encoding of classical data to be loaded by
he register used as input of the quantum algorithm, or, alternatively

– in some special cases – (ii) to generate the data by a pre-trained
quantum circuit returning an approximate probability distribution (de-
rived from another probability distribution easier to generate) which
can introduce entangled states as input, or (iii) to feed the quantum
algorithms by quantum data – another option which potentially inputs
an entangled state. While it is still under investigation to which extent
the quantum machine learning can be more precise and faster than
classical machine learning methods on classical data, it is likely that the
major advantage appears when quantum data are considered. Indeed, a
quantum circuit naturally manages quantum states, while instead this
is not straightforward in machine learning. In several cases, there is
no knowledge whether strong quantum advantage does hold or not.
Algorithms with common quantum advantage should be better explored
by looking at demonstrating some stronger quantum speed-up degree
while empirically evaluating the trend of its performances when scaling
for instance the number of qubits. One should be aware that the
empirical search of asymptotic behavior may change the estimate of
the trend as soon as larger number of qubits are achieved. Cybersecurity
inherits the algorithms from quantum machine learning, but carries the
specificities of dealing with large datasets. Here, the mutually exclusive
hoice between kernel-based and variational learning shows the trade-
ff: kernel-based guarantees optimal kernel can always be found, but it
cales with 𝑂(𝑁2), while for variational learning it is possible in time
(𝑁). Any decision concerning application of machine learning to real
nomaly detection datasets should begin with a real problem based on
he dataset, on which a direct benchmarking comparison with classical
ethods could be evaluated.
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Appendix A. The HHL algorithm

The Harrow, Hassidim and Lloyd (HHL) algorithm aims to solve a
inear system 𝐴𝐱 = 𝐛 using a quantum computer [17]. Such algorithm

was proposed in [25]. The classical method known as the best scales
oughly 𝑂(𝑁 𝑠

√

(𝑘)log(1∕𝜖)) operations, versus a 𝑂(log(𝑁)𝑘2𝑠2∕𝜖) steps
on a quantum computer, yielding an exponential speed-up in terms
17 
of number of operations 𝑁 [25]. The other parameters, in the time-
caling complexity, are the sparsity 𝑠 of the matrix, i.e. the most number

of non-null entries from the rows of the 𝐴 matrix [77], the condition
number 𝑘, i.e. the ratio between the largest and smallest eigenvalues of
𝐴 [25] and eventually the error 𝜖. Thus, the HHL algorithm, to be better
erforming than the best classical algorithms, requires some caveats,
s the 𝐴 matrix to be sparse and to read out an expectation value over
, such as ⟨𝑥|𝑀̂|𝑥⟩ (𝑀̂ being an observable), rather than outputting
he exact |𝑥⟩ state. Nevertheless, such routines are quite common in
uantum computation, and may pave the road to future applications in
uantum machine learning.

In fact, the matrix inversion is a common routine for many computa-
tional processes. The HHL algorithm is a frequent subroutine for many
machine learning methods. As in Fig. A.1, the HHL algorithm consists
f three main blocks:

1. encoding the 𝐛 vector into a quantum state |𝑏⟩ (or assume |𝑏⟩ to
be already prepared);

2. perform a quantum phase estimation (QPE), apply a condi-
tioned rotation on an auxiliary qubit by the achieved result and
transform back the state by an inverse QPE;

3. measure the ancilla qubit.

Until the qRAM or other techniques of encoding will be leveraged,
the first step could turn to be the main overhead [17], in terms of
number 𝑁 of operations, as the classical information, encoded in 2𝑛

bits, needs to be compressed into 𝑛 qubits. Once such step has been
accounted, the QPE algorithm takes as input a state |𝜓⟩𝑚 ∈ C2𝑚 , an
ancilla |0⟩𝑛 ∈ C2𝑛 and a unitary operation 𝑈̂ ∈ C2𝑚×2𝑚 to perform
on |𝜓⟩𝑚. The |𝜓⟩𝑚 vector must be eigenvector for 𝑈̂ , under which
hypothesis the QPE works in the following manner:

̂𝑄𝑃 𝐸 [

𝑈̂ |0⟩𝑛|𝜓⟩𝑚
]

= |𝜃⟩𝑛|𝜓⟩𝑚 (A.1)

with 𝑈̂ acting over |𝜓⟩𝑚. From |𝜃⟩𝑛, it is possible to get the binary
ncoding of 2𝑛𝜃∕(2𝜋). Therefore, to get 𝜃 it is mandatory to divide the
esult by 2𝑛−1 and multiply by 𝜋. Just for instance, suppose to apply a
̂ gate on the |1⟩ qubit:

𝑇̂ |1⟩ =

[

1 0
0 𝑒𝑖

𝜋
4

]

(

0
1

)

(A.2)

For 𝑛 = 3, the QPE algorithm, applied on 𝑇̂ |1⟩, returns 001, which
s the binary encoding for 1. Thus, in order to get the correct phase,
ultiply by 𝜋 and divide by 22, obtaining 𝜃 = 𝜋∕4.

To apply the QPE for the HHL algorithm, the unitary operator 𝑈̂ can
e decomposed as the complex exponentiation of a Hermitian generator
𝐴̂:

𝑈̂ = 𝑒𝑖𝐴̂𝑡 =
2𝑚−1
∑

𝑗=0
𝑒𝑖𝜆𝑗 𝑡|𝑢𝑗⟩⟨𝑢𝑗 | (A.3)

where 𝜆𝑗 are the eigenvalues for 𝐴̂ and |𝑢𝑗⟩ its eigenvectors. Secondly,
as any C2𝑚×2𝑚 Hermitian operator can generate a basis in C2𝑚 by its
eigenstates, the |𝜓⟩𝑚 vector can be decomposed into its |𝑢𝑗⟩ generators:

|𝜓⟩𝑚 =
2𝑚−1
∑

𝑗=0
𝑏𝑗 |𝑢𝑗⟩ (A.4)

𝑏𝑗 being the coefficients for |𝜓⟩𝑚 in the {|𝑢𝑗⟩}2
𝑚−1
𝑗=0 basis. Afterwards, it

is possible to apply the QPE transformation:

̂𝑄𝑃 𝐸
[

|0⟩𝑛𝑒𝑖𝐴̂𝑡|𝜓⟩𝑚
]

= ̂𝑄𝑃 𝐸
[

|0⟩𝑛
2𝑚−1
∑

𝑗=0
𝑒𝑖𝜆𝑗 𝑡𝑏𝑗 |𝑢𝑗⟩

]

=
2𝑚−1
∑

𝑗=0
𝑏𝑗 |𝜆𝑗⟩|𝑢𝑗⟩

(A.5)

Up to this point, the 𝐛 vector has been encoded into a |𝜓⟩𝑚 =
∑2𝑚−1
𝑗=0 𝑏𝑗 |𝑢𝑗⟩ state, on which a QPE routine has been acted. The next

step is to introduce another ancilla qubit in the |0⟩ state on which to
perform a conditioned rotation, using the |𝜆 ⟩ as control qubits:
𝑗
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Table 4
List of generated or available datasets exploited by the authors of the reviewed papers.

Algorithm Dataset Task

QFFNN [21,123,126] Binary images (from 2 × 2 to 4 × 4) Image classification
QRBM [24] KDD CUP 99 [195], IDS2018 [196] Web monitoring
CVNN [10] Credit card transaction dataset [197] Fraud detection
DMKDC [22] Moonsandcircles dataset, Image classification

approximation of probability density functions
QGAN [23] Kaggle credit card fraud detection Fraud detection
QRL [26,194] Gridworld (20 × 20 size) Strategy planning
Fig. A.1. A scheme for the HHL circuit, as reported from qiskit documentation.
Fig. B.2. The distance 𝑑 = 2∕‖𝐰‖.
H

2𝑚−1
∑

𝑗=0
𝑏𝑗 |𝜆𝑗⟩|𝑢𝑗⟩|0⟩ ⟶

2𝑚−1
∑

𝑗=0
𝑏𝑗 |𝜆𝑗⟩|𝑢𝑗⟩

[
√

1 − 𝛬2

𝜆2𝑗
|0⟩ + 𝛬

𝜆𝑗
|1⟩

]

(A.6)

with |𝛬| < min𝑗 𝜆𝑗 . Applying the inverse for the QPE yields
2𝑚−1
∑

𝑗=0
𝑏𝑗 |0⟩|𝑢𝑗⟩

[
√

1 − 𝛬2

𝜆2𝑗
|0⟩ + 𝛬

𝜆𝑗
|1⟩

]

(A.7)

Measuring in |1⟩ the ancillary qubit (otherwise the algorithm needs
o be run again), the global output turns to be

𝛬
2𝑚−1
∑ 𝑏𝑗

𝜆
|0⟩|𝑢𝑗⟩ (A.8)
𝑗=0 𝑗

18 
Apart from a normalization factor, the final output is the state
encoding 𝐴−1𝐛 (𝜆−1𝑗 being the eigenvalues for 𝐴−1). In case 𝐴 not being

ermitian, it is always possible to fix it by building up the following
matrix:

𝐴̃ =
(

O 𝐴
𝐴† O

)

(A.9)

with the linear system turning to be

𝐴̃
(

0
𝐱

)

=
(

𝐛
0

)

(A.10)

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html#sphx-glr-auto-examples-classification-plot-classifier-comparison-py
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
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https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
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Appendix B. Distance between two hyperplanes

In the following, we prove the distance between the 𝐱𝑖 data closest
to the hyperplane 𝐰 ⋅ 𝑥 + 𝐛 = 0 to be 2∕‖𝐰‖. For such points, it holds
that 𝐰 ⋅ 𝐱 + 𝑏 = ±1. In the first place, we choose two points 𝐱1, 𝐱2 such
that 𝐰 ⋅ 𝐱1 + 𝑏 = 1, 𝐰 ⋅ 𝐱2 + 𝑏 = −1 and their midpoint 𝐱𝑀 to lie on
the hyperplane, i.e. 𝐰 ⋅ 𝐱𝑀 + 𝑏 = 0, as pictured in Fig. B.2 for the 2D
ase. The distance 𝑑 between the two points is given by the sum of the

distances between the points and the hyperplane, which we call 𝑑∕2:
𝑑
2
=

|

|

𝐰 ⋅ 𝐱𝑖 + 𝑐||
‖𝐰‖

= 1
‖𝐰‖

(B.11)

Therefore, the overall distance 𝑑 is set to be

𝑑 = 𝑑
2
+ 𝑑

2
= 2

‖𝐰‖
(B.12)

Data availability

No data was used for the research described in the article.
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