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Abstract
Background: Atrial arrhythmias, particularly atrial fibrillation (AF), are
prevalent cardiovascular disorders characterized by irregular heart rhythms
originating from the atria, and affecting approximately 2-3% of the global
population. These conditions are associated with increased risks of stroke,
heart failure, and other severe complications. Traditional detection methods,
primarily based on electrocardiograms (ECGs) analyzed by clinicians, are
often time-consuming and prone to human error, especially when dealing
with long-term monitoring (Holter recordings) and subtle, intermittent atrial
arrhythmias. Recently, the development of artificial intelligence (AI)-based
methods has garnered significant attention for automated AF detection
from ECGs.

Challenges: Developing AI-based, particularly deep learning (DL), models
to accurately detect atrial arrhythmias presents several significant chal-
lenges. First, extracting invariant representations across subjects of these
arrhythmias is complex, necessitating high-quality annotated data and a
substantial cohort of patients to ensure robust model training. Second, ECG
datasets are typically imbalanced due to the scarcity of abnormal cases,
complicating model training and evaluation, which can lead to bias and
reduced performance in detecting rare arrhythmic events. Third, current
methods are often validated on smaller patient populations of Holter record-
ings, which limits their clinical applicability and generalization, thereby
restricting their effectiveness in diverse real-world settings. Finally, de-
spite the promising performance of DL models in arrhythmia detection,
their susceptibility to overfitting necessitates the exploration of uncertainty
quantification to ensure safe integration into clinical practice.

Objectives: This thesis aims to design and develop DL models applied
to ECG data for the automatic detection of AF from Holter recordings.
Furthermore, it seeks to compare the performance of state-of-the-art models
and commercial software solutions with the proposed model using a large,
retrospective cohort of clinical data. Another key objective is to quantify the
uncertainty in AF detection to assess the model’s prediction confidence and
improve its clinical reliability.

Methods: We obtained 1,346 Holter recordings from 1,346 distinct patients
at Groupe Hospitalier Ambroise Paré in Paris, France, each with diverse
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cardiac conditions. We developed a DL model for arrhythmia detection,
focusing on residual attention models for comprehensive cross-comparisons
with state-of-the-art models and two rule-based algorithms: (1) ABILE, a
commercial software by AMPS LLC, New York, and (2) CBR, a research-
based solution developed at the Center for Biological Research at UCSF, San
Francisco. To enhance model performance, we systematically reviewed and
applied various data augmentation techniques to improve the diversity and
robustness of the training data. Furthermore, we investigated the impact
of annotation errors (noisy labels) on model accuracy and implemented
strategies to mitigate their effects. Additionally, we quantified the uncer-
tainty in our DL model to assess prediction confidence and benchmarked
11 uncertainty quantification (UQ) methods for robust AF detection.

Results: The proposed DL model achieved 92.8% sensitivity and 91.5%
specificity, outperforming state-of-the-art DL models. Moreover, when
compared with the ABILE model, the proposed model achieved 95.1%
sensitivity and 96.3% specificity, demonstrating superior specificity relative
to ABILE’s 48.9%, though with a slight reduction in sensitivity from ABILE’s
98.4%. Additionally, in comparison with the CBR, which obtained 44.2%
sensitivity and 99.9% specificity, the proposed model delivered a more
balanced performance. Data augmentation techniques may improve the
model’s generalization and accuracy; however, in this context, they showed
limited performance gains. Data augmentation techniques may improve
model generalization and accuracy. However, in this context, it showed
limited performance increase. The study of noisy labels provided valuable
insights into model resilience. The model was found resilient up to 40%
of a random change in label annotation. Finally, integrating UQ showed
improved model’s prediction confidence.

Conclusions: This research advances atrial arrhythmia detection through
DL, offering potential improvements in clinical diagnostics and patient mon-
itoring using Holter recordings. The methodologies and insights presented
in this thesis lay a foundation for future research in cardiac arrhythmia de-
tection using DL, addressing key challenges and enhancing the applicability
of these models in clinical settings.
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Chapter I

Introduction

1.1 Motivation

Atrial arrhythmias, particularly atrial fibrillation (AF), represent a signif-
icant and growing challenge in cardiovascular disease due to their high
prevalence and substantial impact on patient outcomes. AF is the most com-
mon sustained arrhythmia, affecting millions of individuals worldwide and
contributing to increased risks of stroke, heart failure, and premature mor-
tality [1]. As the global population ages and the prevalence of risk factors
such as hypertension and diabetes rises, the burden of atrial arrhythmias
is expected to escalate, necessitating advanced diagnostic and monitoring
tools. Continuous electrocardiogram (ECG) is used as a critical technology
for real-time assessment of cardiac electrical activity, offering the potential
to detect and manage atrial arrhythmias more effectively. However, the
performance of various algorithms designed for detecting these arrhyth-
mias from continuous ECG data varies widely, influenced by factors such
as the quality of the data, the specific algorithms used, and their validation
across diverse patient populations. This variability underscores the urgent
need for comprehensive cross-comparative studies to evaluate and enhance
the performance of these algorithms, ensuring they are robust and gener-
alizable across different clinical scenarios. This thesis aims to address this
need by systematically comparing existing algorithms and developing new
methodologies to improve their accuracy and reliability in detecting atrial
arrhythmias from clinical continuous ECGs.
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Importance of Accurate Atrial Arrhythmia Detection

The accurate detection of atrial arrhythmias, particularly AF, is essential
due to its substantial impact on patient outcomes and healthcare costs. The
prevalence of AF is expected to double by 2060, driven by aging popula-
tions and the increasing prevalence of cardiovascular risk factors such as
hypertension, diabetes, and obesity [1]. In the United States, an estimated
2.7 to 6.1 million people are currently living with AF, and this number is
projected to rise to over 12 million by 2030 [2, 3].

One of the most critical outcomes associated with undiagnosed AF is stroke,
with AF patients facing a fivefold increase in stroke risk compared to the
general population [4]. Strokes caused by AF are often more severe, leading
to greater morbidity, higher mortality rates, and longer hospitalizations.
However, early detection through continuous ECG monitoring can dra-
matically reduce stroke risk. Studies have shown that timely initiation of
anticoagulant therapy can reduce the risk of stroke by up to 64% in AF
patients [5].

In addition to stroke prevention, early detection of atrial arrhythmias en-
ables the prompt initiation of treatment strategies such as rate control,
rhythm control, and anticoagulation, which are most effective when applied
early in the disease course. Delays in diagnosis and treatment are associated
with disease progression, including atrial remodeling, which increases the
likelihood of persistent or permanent AF. Moreover, accurate and early
arrhythmia detection can identify patients who are candidates for advanced
interventions, such as catheter ablation, which has been shown to reduce
AF recurrence and improve patient outcomes when performed early [6].

From a healthcare system perspective, the early detection and effective
management of AF can lead to significant cost savings. AF-related strokes
are associated with prolonged hospital stays, long-term disabilities, and
considerable healthcare costs, with the average annual cost of treating an
AF-related stroke exceeding $25,000 per patient in the United States [7]. By
reducing the incidence of strokes and minimizing the need for repeated di-
agnostics, effective AF management helps to alleviate the economic burden
on healthcare systems [8]. Continuous ECG monitoring plays a crucial role
in achieving these outcomes, especially as the prevalence of AF continues
to rise globally.
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The Need for Cross-Comparison of Algorithms

The development of algorithms for atrial arrhythmia detection has seen sig-
nificant advancements in recent years, driven by the increasing availability
of large-scale ECG datasets and improvements in computational technolo-
gies. Despite these advancements, the performance of various detection
algorithms exhibits considerable variability, influenced by factors such as
the quality and diversity of the datasets utilized, as well as the specific
types of arrhythmias targeted. This variability underscores the necessity for
rigorous cross-comparative studies to evaluate and benchmark the efficacy
of different algorithms.

• Variability in Algorithm Performance: The effectiveness of atrial ar-
rhythmia detection algorithms can vary significantly due to differ-
ences in the underlying data and methodological approaches. For
instance, algorithms trained on specific types of ECG data, such as
those from a particular demographic or clinical setting, may not per-
form as well when applied to diverse or heterogeneous populations.
Studies have shown that algorithms that excel in detecting AF in one
population may exhibit reduced accuracy or increased false positive
rates when used in another population with different characteristics
[9]. This variability highlights the importance of evaluating algo-
rithms across a wide range of datasets to ensure their robustness and
generalizability.

• Cross-Comparative Studies and Benchmarking: Cross-comparative
studies are essential for identifying the strengths and weaknesses of
different arrhythmia detection algorithms. By systematically compar-
ing the performance of multiple algorithms on standardized datasets,
researchers can assess various metrics, such as sensitivity, specificity,
and predictive value, to determine which algorithms offer the most
reliable detection capabilities. Such studies can also reveal how differ-
ent algorithms handle specific challenges, such as noise, artifacts, or
variations in ECG signal quality. For example, a comparative analysis
may uncover that some algorithms are more adept at distinguishing
between AF and other arrhythmias, while others may be better suited
for detecting subtle or less frequent arrhythmias.

• Guiding Algorithm Development and Improvement: Insights gained
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from cross-comparative studies can guide the refinement and devel-
opment of more robust and generalizable algorithms. Understanding
the limitations and performance characteristics of existing algorithms
enables researchers to address specific weaknesses, such as improving
algorithm sensitivity to rare arrhythmias or enhancing performance
in noisy environments. Moreover, these studies can inform the design
of future algorithms by highlighting best practices and identifying
areas for innovation. For instance, integrating multiple data sources,
such as combining ECG with patient demographics or clinical history,
may enhance algorithm accuracy and utility.

• Implications for Clinical Practice and Research: Accurate and reliable
arrhythmia detection is crucial for effective patient management and
treatment. Algorithms that perform well across diverse populations
and settings can lead to more timely and precise diagnoses, ultimately
improving patient outcomes. Additionally, well-conducted cross-
comparative studies contribute to the standardization of performance
metrics and evaluation criteria, which can facilitate the adoption of
new technologies in clinical practice. For researchers, these studies
provide a benchmark for evaluating the impact of novel approaches
and technologies, ensuring that advancements in the field are both
scientifically rigorous and clinically relevant.

Overall, the cross-comparison of atrial arrhythmia detection algorithms
is vital for advancing the field of cardiac monitoring. By evaluating and
benchmarking different algorithms, researchers can enhance the develop-
ment of more effective, generalizable, and clinically applicable detection
methods. This approach not only improves algorithm performance but
also supports better patient outcomes and drives innovation in cardiac
healthcare technologies.

1.2 Background

1.2.1 Atrial Arrhythmias

Atrial arrhythmia refers to abnormal heart rhythms that originate in the
upper chambers of the heart, called the atria. These arrhythmias cause the
heart to beat irregularly or too quickly, which can reduce its ability to pump
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blood effectively. To get a basic idea of the cardiac rhythms being classified
in this work, a brief description of a few atrial arrhythmias follows.

• AF: AF is a common cardiac arrhythmia characterized by rapid and
disorganized electrical impulses originating in the atria, the upper
chambers of the heart. This irregular electrical activity causes the atria
to quiver (fibrillate) instead of contracting effectively, leading to ineffi-
cient blood flow. AF increases the risk of stroke, thromboembolism,
and heart failure due to the potential for blood to pool and clot within
the atria. Clinically, AF presents with symptoms such as palpitations,
fatigue, dyspnea, or may be asymptomatic. Management often in-
volves anticoagulation therapy, rate or rhythm control medications,
cardioversion, or catheter ablation. AF progresses through distinct
clinical stages: silent AF→ first detected→ paroxysmal→ persistent
→ long-standing persistent→ permanent. Silent AF is asymptomatic
and often undocumented, while paroxysmal AF lasts less than seven
days. Persistent AF extends beyond seven days, long-standing persis-
tent AF persists for over 12 months, and permanent AF occurs when
the heart’s rhythm cannot be restored to normal through drugs or
ablation [10]. Importantly, more than one-third of patients initially
diagnosed with paroxysmal AF are likely to progress to persistent AF
within a decade [11].

• Atrial Tachycardia (AT): AT is characterized by an abnormally rapid
heart rate, typically exceeding 100 beats per minute, originating from
the atria [12]. Unlike AF, AT maintains a regular rhythm but with an
elevated rate due to an abnormal electrical focus within the atrial tis-
sue. This condition may present as paroxysmal (occurring in sudden
bursts) or sustained, and it can result in symptoms such as palpita-
tions, lightheadedness, and shortness of breath. Treatment may in-
clude pharmacologic intervention (antiarrhythmics or beta-blockers),
catheter ablation, or lifestyle modification depending on severity and
frequency.

• Atrial Flutter (AFL): AFL is a type of supraventricular tachycardia
characterized by a rapid, but organized, electrical circuit within the
atria, typically resulting in atrial rates of 240 to 400 beats per minute
[12]. Although the atrial rhythm is regular, the rapid rate leads to sub-
optimal filling of the ventricles and reduced cardiac output. AF shares
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many clinical features with AF, including an increased risk of stroke
and thromboembolism. Symptoms include palpitations, dizziness,
and fatigue. Management strategies often include anticoagulation,
rate control medications, cardioversion, and catheter ablation.

• Premature Atrial Contractions (PACs): PACs are early electrical im-
pulses that originate from ectopic foci in the atria, leading to prema-
ture heartbeats. PACs are typically benign and often asymptomatic,
though individuals may experience palpitations or the sensation of a
skipped heartbeat. PACs can be triggered by factors such as stress, caf-
feine, alcohol, or electrolyte imbalances. While usually not clinically
significant, frequent PACs may warrant further evaluation to rule
out underlying heart conditions. Treatment is generally unnecessary
unless symptoms are severe, in which case beta-blockers or lifestyle
adjustments may be recommended.

1.2.2 Ventricular Arrhythmias

Ventricular arrhythmias refer to abnormal heart rhythms originating in
the ventricles, the lower chambers of the heart. These arrhythmias vary
in severity, ranging from relatively benign conditions, such as premature
ventricular contractions (PVCs), to potentially life-threatening disorders
like ventricular tachycardia and fibrillation (VT). In ventricular arrhythmias,
the electrical signals in the ventricles become disorganized or excessively
rapid, which can severely impair the heart’s ability to pump blood efficiently.
Symptoms may include palpitations, dizziness, fainting, and in severe cases,
cardiac arrest. Immediate treatment for dangerous ventricular arrhythmias
often requires defibrillation or antiarrhythmic medications, while long-term
management may involve an implantable cardioverter-defibrillator. Below,
the two ventricular arrhythmias relevant to this thesis are described:

• PVCs: PVCs occur when the ventricles depolarize prematurely, re-
sulting in an early heartbeat. This often leads to an irregular rhythm,
which may manifest as palpitations or the sensation of a "skipped"
beat. Although PVCs are typically benign and asymptomatic, frequent
occurrences may be linked to underlying cardiac conditions, espe-
cially in individuals with structural heart disease. Common triggers
for PVCs include stress, caffeine, alcohol, and electrolyte imbalances.
While occasional PVCs usually do not require treatment, recurrent or
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symptomatic cases may be managed with beta-blockers or catheter
ablation.

• VT: Ventricular tachycardia is a life-threatening arrhythmia character-
ized by a rapid heart rate exceeding 100 beats per minute, originating
in the ventricles. This accelerated rhythm can hinder the ventricles’
ability to pump blood efficiently, leading to hypotension, syncope,
or, in severe cases, progression to cardiac arrest. Immediate man-
agement of VT includes the use of antiarrhythmic drugs, electrical
cardioversion, or defibrillation. Long-term prevention may require
the implantation of an implantable cardioverter-defibrillator (ICD) to
regulate the heart’s rhythm and prevent future episodes.

1.2.3 Clinical Continuous ECG

Clinical continuous ECG is a vital diagnostic tool employed to monitor the
heart’s electrical activity over prolonged periods, typically in both inpatient
and outpatient settings. In contrast to the standard 12-lead ECG, which
provides only a brief snapshot of cardiac function, continuous ECG enables
real-time, uninterrupted tracking. This continuous monitoring is particu-
larly valuable in identifying transient cardiac events, such as arrhythmias
which may not be detectable through short-duration tests.

Recent technological advancements have significantly enhanced the util-
ity of continuous ECG, particularly through the incorporation of artificial
intelligence (AI). AI algorithms have been shown to increase the accuracy
of detecting abnormal cardiac rhythms and facilitate more efficient data
interpretation. Furthermore, the growing prevalence of wearable devices
equipped with ECG capabilities, such as smartwatches, has expanded the
possibilities for long-term, patient-initiated cardiac monitoring. These in-
novations allow for the continuous assessment of heart function outside
traditional clinical environments, thereby broadening the scope of cardiac
care.

Types of Continuous ECG Monitoring

Continuous ECG monitoring encompasses several methods, each tailored
to different clinical needs and durations of monitoring. These methods vary
in terms of how they collect and transmit data, as well as the length of time
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they can monitor the heart’s electrical activity. The most common types are
outlined below.

Holter Monitor: The Holter monitor is a portable, non-invasive device worn
by patients for a period typically ranging from 24 to 48 hours. It contin-
uously records the heart’s electrical activity, allowing for the detection of
transient arrhythmias or other abnormalities that may not be apparent dur-
ing a standard ECG. During the monitoring period, patients are encouraged
to engage in their normal daily activities, which provides a more compre-
hensive assessment of heart function across various conditions, such as
rest, exercise, and sleep. Patients are often asked to keep a diary of symp-
toms (e.g., palpitations, dizziness) to correlate with the recorded ECG data,
enhancing diagnostic accuracy. The Holter monitor is particularly useful
for diagnosing conditions like intermittent AF, bradycardia, tachycardia,
or unexplained syncope. However, its relatively short monitoring period
limits its ability to capture infrequent events.

Telemetry: Telemetry systems are primarily used in hospital settings to
provide continuous, real-time monitoring of cardiac activity. Data from
the patient’s heart is wirelessly transmitted to a central monitoring station,
where healthcare providers can observe heart rhythms and detect abnormal-
ities instantaneously. Telemetry is often employed in critical care units or
post-operative settings, where real-time monitoring is essential for detecting
and responding to acute cardiac events such as myocardial infarctions or
arrhythmias. Its immediate feedback system is crucial for patients with
high-risk cardiac conditions who require constant observation.

Event Monitors: Event monitors are portable devices similar to Holter mon-
itors but are typically used for longer periods, often up to 30 days. Unlike
Holter monitors, event monitors do not record continuously but instead
are activated either by the patient or automatically when abnormal heart
rhythms are detected. This allows for prolonged monitoring, which is bene-
ficial for patients who experience infrequent or unpredictable symptoms,
such as occasional palpitations or fainting episodes. Event monitors can be
external or implantable, and their ability to store episodic data makes them
useful for diagnosing arrhythmias that occur sporadically.

Implantable Loop Recorders (ILR): ILRs are small, subcutaneously im-
planted devices that continuously monitor the heart’s electrical activity
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for extended periods, sometimes lasting up to several years. These devices
are particularly useful for detecting rare, unexplained episodes of syncope,
AF, or cryptogenic stroke, where more short-term monitoring options like
Holter or event monitors might be insufficient. ILRs are programmed to au-
tomatically record abnormal heart rhythms and can be manually activated
by the patient when symptoms occur. Due to their long-term monitoring
capability and minimal interference with daily activities, ILRs provide a
highly effective solution for diagnosing elusive or infrequent cardiac events.

Clinical Applications of Continuous ECG

Continuous ECG monitoring plays a pivotal role in the diagnosis and man-
agement of various cardiac conditions. Its ability to provide uninterrupted,
long-term data makes it invaluable for detecting intermittent or transient
events that may be missed in conventional, short-duration monitoring. Key
clinical applications include:

Arrhythmia Detection: Continuous ECG is crucial for diagnosing irregular
heart rhythms, such as AF, ventricular tachycardia, and bradycardia. Many
arrhythmias occur sporadically and may not be captured during a brief
ECG. Long-term monitoring enhances the likelihood of detecting these
intermittent events, thus facilitating more accurate diagnosis and timely
intervention.

Ischemia Monitoring: Continuous ECG can assist in identifying silent or
transient episodes of myocardial ischemia, which may not produce notice-
able symptoms but are indicative of underlying coronary artery disease.
Early detection of ischemia through continuous monitoring enables more
prompt therapeutic interventions, potentially preventing more severe car-
diovascular events.

Post-Surgical and Cardiac Care Monitoring: Continuous ECG is widely
employed in the postoperative setting following cardiac surgeries or in-
terventional procedures such as angioplasty. It allows for the real-time
monitoring of heart function, providing early detection of complications
such as arrhythmias or myocardial ischemia. This close surveillance is es-
sential in the immediate recovery phase to ensure optimal patient outcomes.

Medication Monitoring: For patients undergoing treatment with medica-
tions that influence the heart’s electrical activity, such as antiarrhythmic
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drugs, continuous ECG monitoring is critical. It enables clinicians to assess
the efficacy of the treatment, ensure that the medications are achieving the
desired therapeutic effect, and identify any potential adverse effects, such
as proarrhythmia or QT interval prolongation.

1.3 Research Problems

The rapid advancement of AI technologies has significantly impacted the
field of cardiology, particularly in the detection of AF. However, the clinical
applicability of these state-of-the-art AI methods is often constrained by
several limitations. Most contemporary AI models for AF detection have
been validated on relatively small-scale datasets that may not adequately
represent the diverse array of clinical scenarios encountered in practice [13].
Additionally, many of these methods rely on 12-lead resting ECGs collected
over short durations, which fail to capture the complexities associated with
continuous ECG monitoring [14]. This limitation becomes particularly
pronounced when dealing with Holter data, which involves long-term
recordings and introduces challenges such as variations in signal quality
and the need for effective detection of intermittent or irregular arrhythmias.

The clinical significance of accurate AF detection is profound, given the
increasing prevalence of atrial arrhythmias and the emergence of new wear-
able ECG devices that offer continuous monitoring capabilities. These
devices generate large volumes of continuous data, which underscores the
necessity for robust and scalable AI-based approaches that can handle such
data effectively. Despite their potential, current deep learning (DL)-based
models face several critical challenges that need to be addressed to enhance
their clinical utility:

• Data Quality and Quantity: High-quality, annotated ECG datasets,
particularly those encompassing large and diverse patient popula-
tions, are scarce. The limited availability of such comprehensive
datasets hampers the development and training of AI models that can
generalize well across different demographics and clinical settings.
Models trained on limited or non-representative data may exhibit
poor performance when applied to broader or varied populations,
thereby reducing their clinical relevance and effectiveness.
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• Imbalanced Data: ECG datasets frequently suffer from significant
class imbalances, where normal recordings vastly outnumber those
with abnormal arrhythmias such as AFL or AF [15]. This imbalance
poses a major challenge for training models, as they may become
biased towards the majority class, leading to suboptimal performance
on rare but clinically significant arrhythmias. Addressing this issue
requires innovative approaches to dataset augmentation and algo-
rithmic adjustments to ensure that models can accurately detect and
classify less common arrhythmias.

• Invariant Representations: The variability and complexity inherent in
ECG signals present a challenge for AI models in extracting invariant
representations of atrial arrhythmias. Variations in signal quality,
noise, and individual patient differences can affect the performance
of detection algorithms [16]. Developing models that can effectively
generalize across these variations is essential for achieving reliable
and consistent results.

• Overconfidence in Predictions: DL models are known for their ten-
dency to be overconfident in their predictions, which can be problem-
atic, especially in clinical settings where accurate decision-making is
crucial [17]. This overconfidence can lead to erroneous conclusions
and inappropriate clinical actions if not properly managed. Ensuring
that model predictions are well-calibrated and that output proba-
bilities reflect true clinical uncertainty is vital for maintaining the
trustworthiness and reliability of AI-based diagnostic tools.

• Mis-annotation (Noisy Labels): ECG data can sometimes be mis-
annotated due to human error or variability in expert interpretation.
Mis-labelled data can adversely affect model training and perfor-
mance, leading to inaccurate predictions [18]. Addressing this issue
involves developing methods for robust handling of noisy labels to
ensure the reliability of training data.

1.4 Research Objectives

The main goal of this thesis is to advance the automatic detection of AF from
continuous ECG data using AI, specifically DL techniques. To achieve this,
the research focuses on several specific objectives aimed at improving the
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accuracy, reliability, and practical applicability of AF detection algorithms.
The detailed research objectives are as follows:

• Designing and Developing DL Models for AF Detection: This ob-
jective involves creating and refining AI techniques, particularly DL
models, to enhance the automatic detection of AF from continuous
Holter monitor recordings. The development process includes de-
signing novel neural network architectures tailored to the unique
characteristics of ECG signals, such as temporal dependencies.

• Evaluating and Comparing Model Performance Against State-of-the-
Art Methods: A comprehensive performance comparison is conducted
to benchmark the proposed model against existing state-of-the-art AI
algorithms and clinical software. This evaluation utilizes a large retro-
spective cohort of clinical data to ensure a robust assessment across
diverse patient populations and cardiac conditions. This objective
aims to identify strengths and areas for improvement in the new
models, providing insights into their potential for clinical integration.

• Quantifying and Addressing Uncertainty in Model Predictions: Given
the critical importance of reliable and trustworthy predictions in clini-
cal settings, this objective focuses on quantifying uncertainty associ-
ated with model predictions. Techniques such as uncertainty quan-
tification and confidence interval estimation are employed to assess
the reliability of the model outputs. This involves developing meth-
ods to measure prediction confidence and incorporating uncertainty
estimates into the clinical decision-making process. By addressing pre-
diction uncertainty, the research aims to enhance the trustworthiness
of the AI models and support their integration into clinical workflows.

• Addressing Data Imbalance through Augmentation Techniques: ECG
datasets often exhibit significant class imbalance, with a dispropor-
tionate number of normal recordings compared to those with atrial
arrhythmias. This imbalance can lead to biased model performance,
particularly in detecting less frequent arrhythmias. To address this
issue, this objective focuses on implementing data augmentation tech-
niques to balance the dataset. Strategies such as synthetic data genera-
tion are explored to improve model performance on underrepresented
arrhythmia classes.
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• Handling Noisy or Incorrect Labels: In practical settings, ECG data
may contain noisy or incorrect labels due to various factors, including
manual annotation errors or signal artifacts. This objective involves
developing robust techniques to handle and mitigate the impact of la-
bel noise on model training. Methods such as noise-resistant learning
algorithms are investigated to improve the models’ resilience to inac-
curate labels. By addressing label noise, the research aims to ensure
more reliable model training and evaluation.

These research objectives collectively aim to advance the field of atrial
arrhythmia detection by developing more effective and reliable AI-based
techniques. By addressing challenges related to model performance, data
imbalance, label noise, and representation learning, this thesis seeks to
contribute to improved clinical outcomes and the integration of advanced
cardiac monitoring technologies into routine practice.

1.5 Conclusion

In conclusion, the motivation for this thesis stems from the critical need to
improve the detection of atrial arrhythmias from continuous ECGs. While
significant progress has been made in the development of automated al-
gorithms, challenges remain in terms of signal quality, variability in ar-
rhythmias, patient diversity, computational efficiency, and interpretability.
Cross-comparative studies are essential for evaluating existing algorithms
and guiding the development of more robust solutions. Additionally, the
potential for DL offer exciting opportunities to advance this field.

The implications of this research extend beyond the technical domain, with
the potential to significantly impact clinical practice and patient care. By
improving the accuracy and efficiency of atrial arrhythmia detection, this
work aims to contribute to the early diagnosis and management of these
conditions, ultimately reducing the burden of cardiovascular disease on
patients and healthcare systems alike.

1.6 Thesis Structure

The remainder of this thesis is structured as follows:
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• Chapter II: Design and Development of Deep Learning Model for
AF Detection From Holter Recordings
This chapter outlines the process of data collection, preprocessing,
model design, and evaluation for AF detection. It delves into the
specific DL architectures used and provides a thorough explanation
of the uncertainty quantification methods integrated into the model.

• Chapter III: Systematic Review of Data Augmentation Techniques
for ECG Signals in AI Applications
This chapter presents experimental findings, focusing on the perfor-
mance of various data augmentation techniques for ECG signals.

• Chapter IV: Uncertainty Quantification in DL Models for AF Detec-
tion
This chapter explores the results of uncertainty quantification tech-
niques applied to DL models for AF detection. Performance com-
parisons among different uncertainty quantification methods are dis-
cussed, with a focus on clinical applicability. Additionally, an evi-
dential DL model that incorporates evidence-based theory is used to
quantify the uncertainty in AF and AFL detection.

• Chapter V: The Impact of Label Noise on Deep Learning Models
for Atrial Fibrillation Detection from Holter Recordings
This chapter details the experimental results concerning the impact
of noisy labels on DL models for AF detection. The findings are com-
pared to existing methods, and their relevance to clinical applications
is thoroughly analyzed.

• Chapter VI: Conclusions and Final Remarks
The final chapter encapsulates the primary contributions of this re-
search to AI-based arrhythmia detection and offers recommendations
for future studies in this evolving field.
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Chapter II

Design and Development of
Deep Learning Model for Atrial
Fibrillation Detection From
Holter Recordings

2.1 Introduction

Traditionally, AF detection from Holter recordings relies heavily on manual
interpretation by trained clinicians. However, this process is labor-intensive,
time-consuming, and prone to inter-observer variability [19]. Moreover,
the increasing prevalence of AF necessitates scalable and efficient detection
methods. In response to this challenge, automated systems have been used
since the 1970s [20], which can automate AF detection, enhance diagnostic
accuracy, and expedite patient care [21, 22].

The rapid advancement of AI has revolutionized medical diagnostics, of-
fering promising performance for automated AF detection [23, 24, 25, 26].
Traditional ML techniques necessitate manual feature engineering, which is
time-consuming and requires domain expertise. Additionally, these tech-
niques may struggle to capture complex patterns and relationships within
high-dimensional ECG signals. The dynamic nature of ECG data, influenced
by factors like patient movement, environmental noise, demographics, and
disease prevalence, poses challenges for traditional ML techniques.

DL emerged as a compelling solution to address the shortcomings of tra-
ditional ML models in AF detection [27, 14, 28]. DL models are typically
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defined by their architectures, with convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) being prominent examples. These ar-
chitectures, particularly CNNs and RNNs, demonstrate remarkable prowess
in learning hierarchical representations and capturing temporal dependen-
cies from raw data [29]. Nonetheless, DL models encounter challenges
in effectively leveraging long-range dependencies within sequential data,
which are prevalent in ECG signals. One notable advancement in DL archi-
tectures, the attention mechanism, presents a paradigm shift in addressing
these challenges [30]. The integration of residual-attention mechanisms
into DL models holds profound implications for AF detection from Holter
recordings. By leveraging both residual connections and attention mecha-
nisms, these models can effectively capture long-range dependencies and
salient features within ECG signals, thus likely improving performance for
AF detection.

Typically, many existing methods for AF detection from Holter recordings
have been validated using a small number of patients e.g., AFDB [31] and
long-term AF dataset [32], limiting their applicability to real-world clinical
settings. In contrast, our work aims to address this limitation by leveraging
a new and clinically significant dataset comprising diverse patient popula-
tions and high-quality ECG recordings. Being very flexible in nature, DL
models are prone to learning specific characteristics of the dataset used
to train them, potentially resulting in a model that struggles to generalize
in practice. By utilizing a larger and more representative dataset, we can
enhance the generalizability and reliability of DL models. Particularly in
the context of AF detection, the residual-attention DL model presents sig-
nificant advantages over other DL-based methods when applied to Holter
recordings. Firstly, the attention mechanism enables the model to focus
on important segments of the ECG signal, enhancing interpretability and
robustness [33, 34]. Secondly, the inclusion of residual connections facili-
tates the training of deeper networks, enabling a better capture of complex
temporal dependencies in ECG segments [33, 34].

• We obtained a large retrospective dataset from Holter monitors and
developed a residual-attention DL model specifically for detecting AF
from these recordings.

• We conducted a comparative analysis of the performance between our
proposed DL model and several leading state-of-the-art DL models.
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• We conducted a comprehensive evaluation comparing the effective-
ness of software solutions for detecting AF and AFL against the per-
formance of our proposed DL model. To the best of our knowledge,
this is the first study to perform such a comparison using Holter
recordings.

• We examined the performance of our DL model across various demo-
graphic groups to assess its generalizability.

2.2 Related Works

This section provides a comprehensive overview of AI techniques utilized
in the detection of AF. The review encompasses a range of methodologies,
with a primary focus on ML techniques and advanced DL models. The
DL approaches discussed are predominantly characterized by the use of
CNNs, RNNs, hybrid models that combine both CNNs and RNNs, and
attention-based mechanisms.

2.2.1 Machine Learning-Based Approaches

In the field of ML for AF detection, support vector machine (SVM) classifiers
have garnered significant attention and application. Asgari et al. [24] uti-
lized feature extraction across various frequency bands through stationary
wavelet transform, coupled with an SVM for AF detection, achieving a
sensitivity of 97.0% and specificity of 97.1% on the AFDB dataset. Similarly,
Colloca et al. [35] extracted ten R-peak-related features from ECG signals
and employed SVM for AF detection on both the AFDB and MIT-BIH NSR
datasets, obtaining a sensitivity of 96.35% and a specificity of 98.91% re-
spectively. Kumar et al. [36] utilized entropy-based features and applied a
random forest (RF) classifier, achieving a sensitivity of 95.8% and specificity
of 97.6%. Additionally, Czabanski et al. [25] computed various heart rate
features—such as mean, median, and quartiles—which were subsequently
used to train an SVM classifier for AF detection. These studies collectively
highlight the widespread use and effectiveness of SVM classifiers in AF
detection, demonstrating their robustness and adaptability across different
methodologies and datasets.

Kennedy et al. [37] proposed an integrated approach combining RF and k-
nearest neighbors (KNN) classifiers for AF detection based on R-R intervals
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(RRI) in ECG signals. However, this RRI-focused method has limitations,
notably its exclusion of additional relevant features such as P-wave analysis.
Zabihi et al. [38] extracted features across multiple domains, including time,
frequency, time–frequency, and phase space, and selected optimal features
for classification using an RF classifier, reporting an overall performance
score of 82.6% on the PhysioNet 2017 challenge dataset. Despite their
efficacy, ML-based approaches generally require manual feature extraction
and optimal feature selection, which can be cumbersome. These studies
underscore the need for more comprehensive feature consideration in AF
detection frameworks, highlighting the necessity for continued research to
refine methodologies and enhance clinical applicability.

2.2.2 Deep Learning-Based Approaches

In AF detection, CNNs have been employed extensively. Xia et al. [39]
utilized short-time Fourier transform and stationary wavelet transform
to convert one-dimensional ECG signals into two-dimensional representa-
tions, subsequently applying CNNs to achieve sensitivity and specificity
rates of 98.34% and 98.24%, respectively. Cai et al. [40] introduced a one-
dimensional DenseNet for AF detection using 12-lead ECG recordings;
however, the model’s large scale presents practical limitations. Fan et al.
[41] proposed a multi-scale CNN designed for single-lead ECG recordings,
which demonstrated a sensitivity of 97.72% for 10-second segments, though
its generalizability requires further validation on independent datasets.
Shi et al. [42] developed a multiple-input deep learning model leveraging
transfer learning and active learning to enhance classification performance,
but the incorporation of hand-crafted features increased computational
complexity. Tutuko et al. [43] proposed the CNN-based AFibNet model
for two-class (normal vs. AF) and three-class (normal, AF, and Non-AF)
detection tasks. Despite its focus on spatial features, the model overlooks
temporal aspects and lacks interpretability. Prabhakararao et al. [44] in-
troduced an ensemble method combining multiple CNN classifiers for
multi-class arrhythmia classification, achieving average F1-scores of 84.5%
and 88.3% on the PTBXL-2020 and Physionet-2017 datasets, respectively.

For RNN-based approaches, Maknickas et al. [45] utilized long short-term
memory (LSTM) networks to classify ECG signals based on pre-computed
QRS complex features. Sun et al. [46] developed a stacked LSTM network
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for AF detection, addressing gradient issues to improve feature learning.
Beak et al. [47] proposed a novel RNN algorithm for AF detection during
sinus rhythm using 12-lead ECGs. Wang [48] combined CNNs with bidi-
rectional GRU networks for AF and AFL classification, while Wang et al.
[49] developed a model based on an 11-layer CNN and an improved Elman
neural network, although requiring extensive and diverse training datasets.
Ping et al. [15] proposed a hybrid model integrating an 8-layer CNN with
a 1-layer LSTM, effectively managing long-term dependencies compared
to traditional RNNs and multi-scale CNNs. Wang et al. [13] designed a
DL model incorporating multi-scale convolution kernels and bidirectional
GRU, demonstrating high accuracy on the AFDB and MIT-BIH arrhythmia
datasets (MIT-BIH-AD). These RNN-based models, however, often fail to
address the differential contributions of spatial and temporal features in
ECG signals for effective AF detection.

Recent advancements in attention-based models include Jin et al. [50], who
developed a twin attentional convolutional LSTM to extract multi-domain
features from ECG signals, analyzing the impact of various input segments
on prediction accuracy. Zhang et al. [51] proposed a dual-domain attention
cascade network that utilizes channel-spatial and time series features to
identify discriminative AF patterns, achieving accuracies of 99.49% and
99.28% in two-class and three-class tasks, respectively, on the CPSC-2018
dataset. Zhao et al. [52] integrated a temporal CNN with a self-attention
mechanism to encode ECG heartbeat sequences, capturing both global
and local features, and achieved a sensitivity of 91.85% on the MIT-BIH
arrhythmia dataset. Li et al. [53] developed a model incorporating a self-
complementary attention mechanism to extract both shallow and deep
features from ECG signals, achieving AUC values of 99.79%, 95.51%, and
98.77% on the AFDB dataset, Physionet-2017, and CPSC-2018 datasets,
respectively.

After reviewing the literature, it becomes clear that many existing methods
for AF detection from Holter recordings have primarily been validated
on relatively small patient cohorts, such as the MIT-BIH-AD dataset [54],
AFDB [31], and the MIT-BIH long-term AF (LTAF) dataset [32]. While these
datasets have been pivotal in advancing AF detection research, their limited
sample size constrains the models’ ability to generalize effectively across
broader, more diverse populations. This issue raises significant concerns
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about the robustness, clinical relevance, and scalability of these methods
when applied in real-world settings, where patient variability is higher,
and the detection environment is more complex. Expanding the size and
diversity of the patient cohorts used for model training and validation
remains a critical challenge for improving the clinical applicability and
performance of AF detection techniques.

2.3 Dataset

In this chapter, we utilized three datasets to both develop and assess our DL
model for detecting AF from Holter recordings. Among these, one dataset is
private, while the remaining two—IRIDIA-AF and SHDB-AF—are publicly
available. Below, we provide short descriptions of each dataset.

Our Dataset: The dataset consists of 661 Holter recordings obtained from
661 patients at Groupe Hospitalier Ambroise Paré in Paris, France. Each
recording, with an average duration of approximately 23 hours, was cap-
tured using a Microport Spiderview Holter monitor. This system is a 2-lead
setup with a sampling rate of 200 Hz and an amplitude resolution of 10µV.
The details about the dataset are described in [55]. The patients had an
average age of around 60 years, and women represented about 39% of the
recordings. Approximately 50% of the recordings (totaling 333) documented
at least one episode of AF or AFL, with episode durations ranging from brief
occurrences to the entire recording period (indicating chronic AF or AFL).
The remaining recordings were predominantly in sinus rhythm (totaling
195), though they also included a notable number of PVCs (totaling 41),
episodes of AT (totaling 61), and VT (totaling 31). The distribution of these
conditions is depicted in Figure 2.1. The dataset shows that AF occupies
193,000 minutes, AFL accounts for 93,000 minutes, and AT covers 48,000
minutes, while normal sinus rhythm (NSR) encompasses 180,000 minutes.
To ensure high data quality, the annotations were meticulously reviewed,
with a minimum of 59 minutes per hour verified by a single cardiologist,
thus minimizing noise and enhancing the accuracy of the analysis.

IRIDIA-AF Dataset: The dataset comprised 167 Holter records collected
from 152 patients at an outpatient cardiology clinic located in Belgium [56].
The records were collected using a Microport Spiderview Holter recorder,
which is the same device employed for our data collection (please refer
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195 records NSR

29.5%

61(33) records AT

9.2%41 records with PVC

6.2%
31 records with episodes of VT

4.7%

252(104) records AF

38.1%
69(64) AFL

10.4%
12 records AF plus AFL

1.8%

FIGURE 2.1: Distribution of patients by records in the
dataset: Records with AF/AFL are shown in red, while
records without AF/AFL are shown in green. The number
of “chronic” records (i.e., entire records under the labeled

rhythm) is indicated in parentheses.

to the previous paragraph). Notably, records from patients with specific
conditions, such as cardiac implantable electronic devices, persistent or
permanent AF, or other cardiac diseases were excluded from the dataset.
These exclusion criteria were implemented to ensure the homogeneity of
the dataset and to focus the analysis on paroxysmal AF.

SHDB-AF Dataset: This dataset comprised ECG recordings from adult
patients who underwent Holter monitoring between November 2019 and
January 2022 in Japan [57]. The Holter monitors used were Fukuda devices,
which recorded data from two leads—modified CC5 and NASA—at a sam-
pling rate of 125 Hz. Each recording spans approximately 24 hours. In total,
147 Holter recordings were collected, from which a subset of 100 recordings,
each corresponding to a unique patient, was selected. The data underwent
preprocessing, including filtering with a zero-phase second-order infinite
impulse response bandpass filter with a passband of 0.67–100 Hz to re-
move baseline wander and high-frequency noise. The recordings were then
resampled to 200 Hz using an anti-aliasing filter. The patients exhibited
a variety of cardiac conditions, including supraventricular arrhythmias
such as AF, AFL, AT, and other supraventricular tachycardias, including
Wolf-Parkinson-White syndrome and intranodal tachycardia.

Preprocessing: The dataset was collected from two distinct batches. The
first batch (268 records) was used for training (250 records) and validation
(18 records) and included several AT events. The second batch (393 records),
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TABLE 2.1: Number of 10-s ECG segments (in thousand
units) for each of the three datasets considered.

Dataset
Training Validation Testing

Non-AF AF Non-AF AF Non-AF AF

NSR AT AF AFL NSR AT AF AFL NSR AF AFL

Our dataset 748 261 848 136 24 25 66 34 2324 498 124

IRIDIA-AF – 1872 536 –

SHDB-AF – 674 167 13

used exclusively for testing, did not contain AT episodes but included
other challenging ventricular rhythms, such as ventricular tachycardia.
Additionally, all 167 records from the IRIDIA-AF dataset and 100 records
from the SHDB-AF dataset were exclusively used for testing purposes.

During the preprocessing phase, a third-order zero-phase Butterworth band-
pass filter with cutoff frequencies of 0.5 Hz and 40 Hz was applied to mit-
igate baseline wander and reduce power line interference. Subsequently,
each recording was segmented into 10-second windows without overlap.
The number of 10-second segments for the training, validation, and testing
sets is detailed in Table 2.1. In our classification scheme for binary classifi-
cation, NSR and AT were collectively categorized as Non-AF, whereas AF
and AFL were grouped under AF. AT was classified as non-AF due to its
distinct characteristics in heart-rate stability, risk level, and treatment con-
siderations compared to AF and AFL. Additionally, we explored a ternary
classification scheme where NSR/AT remained “Non-AF”, but AF and AFL
were classified into separate categories.

2.4 DL Model

The DL architecture incorporated various layer types to perform both fea-
ture extraction and detection tasks. Figure 2.2 illustrates the schematic of
the residual-temporal attention (RTA) DL model proposed in this study.
This figure demonstrates the integration of an RTA block with a gated re-
current unit (GRU) layer. The addition of the GRU layer following the RTA
block enhanced the model’s ability to capture temporal dependencies and
sequential patterns within 10-second ECG segments, thereby improving its
accuracy in detecting AF [58]. The RTA block was utilized six times, with
the initial number of kernels set to 32 and doubling every two iterations,
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reaching a maximum of 128 kernels. This repetitive application of the RTA
block enabled the model to extract hierarchical representations of the input
signals effectively, which contributed to enhanced performance in AF detec-
tion. The RTA block itself consists of two components, which are detailed
below.

X

Convolutional Block

Convolutional Block

Convolutional Block

Convolutional Block

MaxPooling

Convolutional Block

UpSampling

Convolutional Block

Convolutional Block

Conv (1x1)+BN

Sigmoid

Attention Weight, A

Input

RTA Block

Maxpooling + BN

Droupout

×6

GRU(16)

GRU(16)

GlobalAveragePooling

Dense (64)

Droupout

Output

Trunk Branch

Attention Branch

RTA Block

X1

X1

X2

X3 = X2 ◦ A

X4 = X1 + X3

X5

X6

X7

X8 = X7 + X5

X9

X10

FIGURE 2.2: Diagram of the proposed DL architecture. Here,
Conv and BN refer to the convolutional layer and batch

normalization, respectively.

Trunk Branch: Assuming that X, a 10-second segment of ECG data, is
provided as input to the trunk branch of the RTA block, the RTA block is
repeated six times, with the output of each block serving as the input to
the subsequent block. The input X to the trunk branch passes through a
convolutional block to generate a feature map X1, which is then fed to the
attention branch.

In the trunk branch, the feature map X1 is passed through another con-
volutional block to generate X2, which is element-wise multiplied with
the attention map A (obtained from the attention branch). The product
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X3 = X2 ⊙ A results in a refined feature map, which is then combined with
X1 using a residual connection. This final refined feature map, X3, is passed
through another convolutional block to generate the feature map X4 before
proceeding to the next layer of the main DL architecture.

Attention branch: The attention branch starts with the intermediate feature
map X1 from the trunk branch. This feature map is then passed through
a convolutional block to generate the feature map X5. To capture global
features, the attention branch incorporates both down-sampling and up-
sampling operations. Down-sampling is performed using max-pooling,
while up-sampling is performed through the nearest-neighbour interpola-
tion. These operations facilitate the extraction of features at different scales,
thereby enhancing the model’s ability to capture relevant information from
the input data.

Following the down-sampling operation on X5, a convolutional block is
applied to expand the feature dimensions, yielding the feature map X6.
Subsequently, an up-sampling operation is performed, and the resulting
feature map is fed into another convolutional block, which produces the
feature map X7. This feature map X7 is then fused with the local feature
map X5 through a residual connection, resulting in the feature map X8. The
fused feature map X8 is passed through an additional convolutional block
to generate the refined feature map X9, which further refines the attention
map.

Finally, the feature map X9 is processed by a convolutional layer with a 1× 1
filter size and a sigmoid activation function. This operation produces the
output feature map X10, which contains the temporal attention weights, de-
noted as A. These attention weights are then used to adjust the importance
of each feature within the trunk branch, enabling the model to prioritize the
most relevant features of the input data, denoted as X.

Implementation Details: To optimize the model parameters, we employed
the focal cross-entropy loss function as described by Lin et al. [59]. The focal
loss is defined by the following equation:

focal loss(p) = −
C

∑
j=1

αj(1− pj)
γ log

(
pj
)

(2.1)

where C represents the number of classes (here, 2 and 3), pj denotes the
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predicted probability for the j-th class, αj is the class balancing parameter to
address class imbalance, and γ is the focusing parameter that down-weights
easy samples. In our study, we set αAF = 0.8 and αNon-AF = 0.2, with
γ = 3 for binary classification. For the three-class classification scenario,
we assigned the alpha values as follows: αNon-AF = 0.2, αAF = 0.3, and
αAFL = 0.5. The Adam optimizer was utilized with a learning rate of 0.001
to adjust the model parameters. The following hyperparameters were used
during training: 50 epochs and a batch size of 128. To enhance training
efficiency, a learning rate scheduler was implemented, which decreased the
learning rate by 75% if no improvement was observed over six consecutive
epochs. These hyperparameter values and the architecture of the DL model
were selected based on their performance on the validation set.

2.5 Results and Discussions

The performance of the DL model was evaluated using key metrics includ-
ing recall, false positive rate (FPR), and positive predictive value (PPV).
Additionally, the area under the ROC curve (AUC) was computed to pro-
vide a comprehensive assessment of the model’s overall performance in
detecting AF. The AUC score was calculated using a one-vs-all approach.
The recall, FPR, and PPV were calculated using the following formulas:

Recall =
TP

TP + FN
(2.2)

PPV =
TP

TP + FP
(2.3)

FPR =
FP

FP + TN
(2.4)

Here, TP, TN, FP, and FN represent true positives, true negatives, false
positives, and false negatives, respectively.

2.5.1 Results for Non-AF and AF Classification

In Table 2.2, we present a comparative analysis of the performance of our
proposed DL model against several state-of-the-art DL models on the test set
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from our dataset. To evaluate the efficacy of our model relative to existing
state-of-the-art DL models [27, 14, 28], we re-implemented these models
from scratch, utilizing the same hyperparameters as those used in our
proposed model. Notably, our DL model exhibits a marginal improvement
in performance compared to the others. Specifically, in terms of recall, our
model achieves scores of 0.915 for Non-AF and 0.928 for AF, surpassing
the results obtained by Burke et al. [28] and Ribeiro et al. [14] for AF.
Additionally, our model demonstrates superior performance in terms of
AUC, with scores of 0.961 for Non-AF and 0.972 for AF, outperforming all
other models listed, including those by Hannun et al. [27] and Ribeiro et al.
[14]. The values highlighted in yellow represent the highest performance
metrics observed, underscoring the superior accuracy and effectiveness of
our proposed model in distinguishing between AF and Non-AF instances.

TABLE 2.2: Comparing the performance of the proposed DL
model with other state-of-the-art DL models on our dataset.

The best values are highlighted in bold.

Method
Recall AUC

Non-AF AF

Hannun et al. [27] 0.913 0.870 0.949
Ribeiro et al. [14] 0.921 0.851 0.944
Burke et al. [28] 0.832 0.921 0.951
Our model 0.915 0.928 0.967

The efficacy of our proposed DL model for AF detection was further vali-
dated using two external datasets: the IRIDIA-AF and SHDB-AF datasets.
For the IRIDIA-AF dataset, the model achieved a recall score of 0.942 for
AF and 0.932 for Non-AF cases. On the SHDB-AF dataset, it attained a
recall score of 0.925 for AF and 0.924 for Non-AF cases. Across all test sets,
the model consistently achieved an AUC of over 0.960 for AF detection,
demonstrating its strong ability to accurately distinguish between AF and
Non-AF cases.

We further assessed the generalizability of our DL model across various
demographic groups, with a particular emphasis on gender and age. The
performance metrics are detailed in Table 2.3. In the gender-based analysis,
the model exhibited recall rates for AF of 0.897 in males and 0.949 in fe-
males. The recall rates for Non-AF were 0.938 in males and 0.908 in females.
Regarding age stratification (≤ 60 and > 60), the model demonstrated recall
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TABLE 2.3: Performance of our proposed DL model across
demographic groups on the test set of our dataset.

Group No of Records
Recall

Non-AF AF

Gender: Male 258 0.938 0.897
Gender: Female 135 0.908 0.949
Age ≤ 60 164 0.904 0.934
Age > 60 229 0.945 0.901
VT 31 0.832 0.973
PVC 41 0.934 –

rates for AF of 0.934 and 0.901, respectively, and recall rates for Non-AF of
0.904 and 0.945.

Additionally, we evaluated the performance of the model in two distinct
patient cohorts: individuals with a cardiac condition of VT and those with
PVC. In the VT cohort, the model achieved a recall rate for AF of 0.973 and
a recall rate for Non-AF of 0.832. In the PVC cohort, the model attained
a recall rate for Non-AF of 0.934. Notably, there were fewer than 18,000
10-second segments of AF in the VT group, and no 10-second segments of
AF in the PVC group. Overall, these findings underscore the robustness and
wide applicability of our DL model across diverse demographic groups,
highlighting its potential for extensive clinical implementation.

2.5.2 Results for Non-AF, AF, and AFL Classification

In Table 2.4, we present a comparative analysis of the performance of our
proposed DL model against several state-of-the-art DL models in the context
of distinguishing between Non-AF, AF, and AFL cardiac conditions. Our
model demonstrates superior performance across all evaluated metrics.
Specifically, in terms of recall, our model achieved scores of 0.951 for Non-
AF, 0.931 for AF, and 0.812 for AFL. These recall values surpass those of
the other models, highlighting its enhanced sensitivity in identifying each
condition. In terms of AUC, our model also outperforms the state-of-the-art
models with scores of 0.981 for Non-AF, 0.973 for AF, and 0.942 for AFL.
These AUC values reflect the model’s overall effectiveness in distinguishing
between the conditions, with our model achieving the highest scores across
all three categories.
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Comparatively, Hannun et al. [27] and Ribeiro et al. [14] exhibit strong
performance, but our model consistently delivers higher recall and AUC
values, particularly in the AF and AFL categories. Burke et al. [28] also
shows competitive results, yet our model surpasses it in recall and AUC for
Non-AF and AF.

TABLE 2.4: Comparing the performance of the proposed DL
model with other state-of-the-art DL models for Non-AF,

AF, and AFL on the test set of our dataset.

Model
Recall AUC

Non-AF AF AFL Non-AF AF AFL
Hannun et al. [27] 0.925 0.889 0.718 0.967 0.936 0.935
Ribeiro et al. [14] 0.898 0.936 0.735 0.964 0.956 0.923
Burke et al. [28] 0.924 0.898 0.674 0.912 0.902 0.853
Our Model 0.951 0.931 0.812 0.981 0.973 0.942

2.5.3 Performance Comparison with Rule-Based Software

TABLE 2.5: Performance comparison of our model with
rule-based software.

Metrics Our Model ABILE CBR

Recall

Non-AF 0.963 0.984 0.999

AF or AFL 0.951 0.489 0.442

AF 0.931 0.953 0.893

AFL 0.798 – 0.068

FPR
AF or AFL 0.037 0.016 0.001

AF 0.046 0.059 0.029

AFL 0.016 – 0.0

PPV
AF or AFL 0.898 0.915 0.991

AF 0.651 0.595 0.736

AFL 0.909 – 1.00

Table 2.5 presents a comparative analysis of the performance of our pro-
posed model against two rule-based software: (1) ABILE, a commercial
software by AMPS LLC, New York [55], and (2) CBR, a research-based solu-
tion developed at the Center for Biological Research at UCSF, San Francisco
[60]. The comparison is based on a subset of 193 records from a total of 393
records in the test set. Our model demonstrates a recall rate of 0.963 for
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Non-AF cases, which is slightly lower than ABILE’s recall rate of 0.984 and
CBR’s recall rate of 0.999. This suggests that while our model performs well
in identifying Non-AF cases, it is somewhat less effective compared to CBR
and slightly behind ABILE and CBR. In terms of recall for AF or AFL, our
model achieves a rate of 0.951, markedly outperforming ABILE (0.489) and
CBR (0.442). Additionally, our model exhibits a recall rate of 0.798 for AFL,
which is substantially better than CBR’s 0.068, although ABILE does not
provide data for AFL.

Regarding FPR, our model has a rate of 0.037 for AF or AFL, which is higher
than ABILE’s 0.016 and CBR’s 0.001, indicating that CBR is the most effec-
tive at minimizing false positives. For AF specifically, our model’s FPR of
0.046 is lower than ABILE’s 0.059 but higher than CBR’s 0.029. Concerning
PPV, our model’s value of 0.898 for AF or AFL is lower than CBR’s 0.991
and ABILE’s 0.915. For AF, our model’s PPV of 0.651 exceeds ABILE’s 0.595
but falls short of CBR’s 0.736. For AFL, our model achieves a PPV of 0.909,
while CBR attains a perfect score of 1. Overall, our model excels in detecting
AF and AFL with strong recall rates and demonstrates robust performance.
However, CBR generally exhibits superior results in reducing false positives
and achieving higher PPV, particularly for the Non-AF cases.

TABLE 2.6: Performance comparison of our model with
rule-based software without chronic AFL case.

Metrics Our Model ABILE CBR

Recall
Non-AF 0.963 0.984 0.999

AF 0.933 0.953 0.894

FPR
AF or AFL 0.037 0.016 0.001

AF 0.022 0.015 0.001

AFL 0.016 – 0.0

PPV
AF or AFL 0.750 0.874 0.986

AF 0.827 0.879 0.986

AFL 0.052 – 1.00

Additionally, we investigated the performance of our model after excluding
the 24 chronic AFL records from the test set. The results are detailed in Table
2.6. In terms of recall, our model achieves a value of 0.963 for Non-AF cases,
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which is slightly lower than ABILE’s 0.984 and CBR’s 0.999. This indicates
that while our model performs effectively in identifying Non-AF cases, it is
somewhat outperformed by CBR and slightly behind ABILE. For AF cases,
our model’s recall of 0.933 is comparable to ABILE’s 0.953 and surpasses
CBR’s 0.894. This demonstrates that our model is competitive in detecting
AF, with performance comparable to ABILE and superior to CBR.

Regarding the FPR, our model exhibits an FPR of 0.037 for AF or AFL, which
is higher than ABILE’s 0.016 and CBR’s 0.001. This suggests that CBR and
ABILE are more effective in minimizing false positives. Specifically for AF,
our model’s FPR is 0.022, slightly higher than ABILE’s 0.015 and CBR’s
0.001. For AFL, our model’s FPR is 0.016, with CBR achieving a perfect
score of 0.0, and ABILE not providing data for AFL.

In terms of PPV, our model has a value of 0.750 for AF or AFL, which is
lower than ABILE’s 0.874 and significantly less than CBR’s 0.986. This
indicates that CBR demonstrates the highest precision. For AF alone, our
model’s PPV is 0.827, lower than ABILE’s 0.879 and CBR’s 0.986. For AFL,
our model’s PPV is notably low at 0.052, while CBR achieves a perfect score
of 1.

In addition, to make a fair comparison, we adjusted the thresholds of the
DL model to match the recall values for Non-AF cases achieved by ABILE
and CBR. The thresholds were set to 0.999 for CBR and 0.978 for ABILE.
To determine these thresholds, we transformed the ternary classification
into a binary one by combining the probability predictions of AF and AFL
from the softmax output. Under this configuration, the recall values for
AF were 0.862 for the threshold aligned with ABILE and 0.338 for the
threshold aligned with CBR. When examining AFL detection within the
same configuration, the recall values for AFL were 0.588 for the DL model,
0.0 for ABILE (as it does not detect AFL by design), and 0.068 for CBR.

Overall, our DL model demonstrates competitive performance, particularly
in detecting AF and Non-AF cases. While ABILE and CBR outperform
the DL model in reducing false positives and achieving higher PPV, espe-
cially for Non-AF cases, the DL model shows a clear advantage in AFL
detection. Notably, ABILE does not provide results for AFL, and CBR’s
performance in this category is substantially lower. These findings position



2.6. Conclusion 31

our model as a strong alternative for scenarios prioritizing AFL detection,
while maintaining robust performance in AF and Non-AF detection.

TABLE 2.7: Performance comparison of our model with
rule-based software for patients with PACs.

Metric Our Model ABILE CBR

Recall (Non-AF) 0.954 0.941 0.999

Finally, we evaluated the performance using an additional set of 685 Holter
recordings from 685 patients. In this analysis, the recordings were cate-
gorized as Non-AF because they exclusively featured PACs as the cardiac
condition. Table 2.7 presents a comparison of specificity for our proposed
model with two software solutions, ABILE and CBR. Our model achieves
a specificity of 0.954, indicating a high rate of identification of Non-AF
cases, though CBR surpasses this with an impressive specificity of 0.999,
reflecting its exceptional ability to correctly classify Non-AF cases. ABILE,
with a specificity of 0.941.00, is slightly less effective than our model but still
performs well in distinguishing Non-AF cases. Overall, while our model
shows robust performance with high specificity, CBR excels in reducing
false positives and achieving the highest specificity, whereas ABILE shows
slightly lower specificity. While setting the thresholds to match the recall
values of Non-AF cases for ABILE and CBR, our DL model achieved recall
values of 0.980 and 0.992, respectively, for the 685 PACs patients.

2.6 Conclusion

Our DL model’s effectiveness and reliability are demonstrated by its per-
formance on a comprehensive and clinically relevant dataset, affirming
its practical value. The model leverages a residual temporal attention
mechanism to identify critical features in AF and AFL rhythms, leading
to strong performance across our dataset and two external test sets. It
outperforms three leading state-of-the-art DL models, showcasing its su-
perior capabilities. The model’s performance across diverse demographic
groups, including various genders and age ranges, reflects its robustness
and broad applicability. It consistently achieved high recall rates for both AF
and Non-AF cases, and showed notable improvements for specific patient
cohorts, such as those with VT and PVC, underscoring its versatility. In
comparison with rule-based software, our model demonstrated competitive
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results, particularly in detecting AF and AFL. It surpassed ABILE and CBR
in recall rates for AF or AFL, highlighting its effectiveness in identifying
these conditions. However, CBR and ABILE showed superior performance
in minimizing false positives and achieving higher PPV, pointing to areas
where our model could be further refined.
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Chapter III

A Systematic Survey of Data
Augmentation of ECG Signals
for AI Applications

3.1 Introduction

DL models rely heavily on the availability of large, high-quality labeled
datasets to achieve optimal performance. Insufficient or imbalanced data
can result in degraded model accuracy, unstable training processes, and
biased classification outcomes. Consequently, DL models typically require
extensive, well-balanced datasets for reliable performance. However, acquir-
ing such datasets presents significant challenges, especially in the domain of
ECG, where abnormal cardiac events are rare, and the labeling of waveforms
demands expertise from specialized cardiologists. The scarcity of annotated
data is further compounded by the fact that only trained physicians can
accurately interpret and label ECG recordings. To overcome these obstacles
and enhance model robustness, data augmentation (DA) techniques are
frequently employed. DA involves applying various transformations to
the original data to generate additional, non-redundant training samples,
thereby reducing the risk of overfitting and improving the model’s ability
to generalize effectively across a wider range of decision boundaries.

In the field of image recognition, DA has reached a mature phase, with
leading CNN architectures consistently incorporating various DA strategies
to improve performance. For example, residual networks (ResNet) utilize
techniques such as color augmentation, scaling, and cropping [61], while
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DenseNet incorporates methods like mirroring and translation [62], and In-
ception networks adopt mirroring and cropping techniques [63]. In contrast,
these random transformations are not as suitable for ECG data because
they can distort the clinical significance of key cardiac features, such as the
relative amplitudes and durations of P waves, the QRS complex, T waves,
and ST segments. For instance, applying time inversion to ECG signals
would result in an unrealistic reversal of wave sequences, which is clinically
unacceptable. While specific augmentation techniques like spectral modifi-
cation might offer some benefits, most DA methods tailored for image data
are often counterproductive for ECG signals. Randomly cropping or merg-
ing ECG segments, for example, could inadvertently alter a normal sinus
rhythm into an abnormal arrhythmia, compromising diagnostic accuracy.

To the best of our knowledge, no comprehensive review focusing specif-
ically on data DA techniques for AI applications in ECG signal analysis
had been conducted prior to 2023. Considering the practical significance
and the potential impact of these techniques in the development of ECG
classification models, a review of DA methods employed in AI-based ECG
classification is both timely and essential. In this study, we systematically
examined relevant literature, identifying key features of the various meth-
ods. As a result of our analysis, we introduce, for the first time, a taxonomy
of ECG DA techniques, as depicted in Figure 3.1. This taxonomy categorizes
the techniques into two main groups: basic DA techniques and advanced
DA techniques.

Magnitude
Domain

Time
Domain

Hybrid
Domain

Statistical
Model

Learning
Model

Basic DA Techniques Advanced DA Techniques

ECG DA Techniques

FIGURE 3.1: Taxonomy of ECG DA techniques.

Basic DA techniques involve random or structured transformations of ECG
signals in the amplitude, time, or combined time-amplitude domains. In
contrast, advanced DA methods utilize more sophisticated approaches,
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including statistical and learning-based models, to better capture the under-
lying data distributions and generate novel patterns. Notable examples of
statistical models used for ECG generation include the Gaussian mixture
model (GMM) and Markov chain model (MCM), both of which have been
employed to produce synthetic ECG samples [64, 65, 66]. More recent ad-
vancements in learning-based models, such as the variational autoencoder
(VAE) [67] and generative adversarial networks (GANs) [68], offer even
greater capability in generating realistic ECG data.

This chapter is structured as follows:

• A comprehensive review of contemporary techniques for ECG signal
analysis employing DA methods.

• A detailed taxonomy and classification of ECG DA techniques, includ-
ing their applications, datasets, and pertinent AI approaches.

• The implementation of DA techniques specifically for minority classes,
such as AFL, and an evaluation of the effectiveness of these augmen-
tations in enhancing the performance of DL classifiers.

• An in-depth discussion of existing research gaps and unresolved chal-
lenges within the field that warrant further investigation.

3.2 Method

3.2.1 Literature Search Strategy

A thorough literature search was performed across three major databases:
IEEE Xplore, PubMed, and Web of Science. The search strategy encom-
passed a wide range of topics, such as different signal types (e.g., ECG), AI
methodologies, and various DA techniques. To ensure the relevance and
validity of the results, the search was limited to peer-reviewed articles, con-
ference papers, book chapters, and magazine articles published in English
over the past decade, from January 1, 2013, to January 31, 2023. Details of
the specific search terms and queries used in the search are presented in
Table 3.1.
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TABLE 3.1: List of search queries and the final query.

Parameter Search Query

Signal type (Q1) “ECG” OR “electrocardiography” OR “electrocardiogram” OR
“EKG”

AI technique (Q2) “DNN” OR “deep learning” OR “neural network” OR “AI” OR
“artificial intelligence” OR “machine learning”

DA technique (Q3) “augmentation” OR “synthesis” OR “generation”
Specific technique (Q4) “GAN” OR “generative adversarial network” OR “normalizing

flow” OR “stable diffusion”
Final query Q1 AND Q2 AND (Q3 OR Q4)

3.2.2 Study Selection

To ensure a rigorous and systematic approach to article selection, we ad-
hered to the guidelines established by the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) [69]. Initially, we used refer-
ence management software to remove duplicate entries. We then screened
the remaining studies by evaluating their titles and abstracts. Following
this initial screening, we performed a comprehensive review of the full texts
to apply our inclusion and exclusion criteria. For transparency and clarity, a
flowchart summarizing our selection process is presented in Figure 3.2. This
approach allowed us to effectively refine our search and identify studies
that were most relevant to our research objectives.

3.2.3 Results of the Research

Following the application of our search query and the established inclu-
sion/exclusion criteria, we initially identified 625 articles. From this pool,
193 duplicates were removed using reference management software and
through manual review. The remaining 432 articles were then screened
based on their titles and abstracts, resulting in the selection of 350 papers
for full-text evaluation, in accordance with the criteria detailed in Table
3.2. Ultimately, 119 papers met our criteria and were retained for further
analysis. In the following, the key findings derived from the literature
review were described.

In the following sections, we present the major outputs of the literature
review.
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TABLE 3.2: Inclusion and exclusion criteria for selecting
papers

Inclusion criteria Exclusion criteria

Works published between January 1,
2013, and January 31, 2023

Review papers and papers not
written in English

Studies applying DA specifically to
ECG signals

Studies not applying DA or lacking a
clear description of DA and datasets

Papers providing a clear description
of DA Studies not considering ECG signals

Inclusion of AI techniques Papers not reporting performance
metrics
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Records identified through
database searches (Web of
Science, IEEE Xplore, and

PubMed): 625

Records removed before screening:
193 duplicates

Number of titles
screened: 432

Number of abstracts
screened: 392

Full article access for eligibility: 350
Records excluded by exclusion

criteria: 231

Records excluded due to
irrelevant abstracts: 42

Records excluded: irrelevant titles,
40

Studies meeting the inclusion
criteria: 119

FIGURE 3.2: The search method for identifying relevant
studies.
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3.3 Applications and Datasets of ECG

3.3.1 Common Applications of ECG Analysis

AI has significantly enhanced ECG analysis, with automatic ECG interpreta-
tion being one of the most prevalent applications [70, 71, 67, 68]. Other criti-
cal applications include the localization and annotation of specific rhythms
and beats, which are instrumental in detecting conditions such as myocar-
dial infarction (MI) [66] and classifying fetal heart rate series [72]. Recent
advances in biometric-based human identification also highlight the po-
tential of ECG data for accurate personal recognition [73, 74]. Further-
more, ECG analysis has proven useful in detecting emotions and stress [75],
pain [76], sleep apnea [77, 78], and even identifying COVID-19 infections
[79, 80, 81, 82]. It is also employed in assessing signal quality [83, 84], among
various other applications. This study encompasses all applications that
investigate the use of AI techniques for ECG DA.

3.3.2 Datasets

The majority of the studies reviewed utilized a limited number of ECG
datasets. The MIT-BIH-AD was employed in 46% of the studies, followed by
PhysioNet-2017 at 13%, PTB at 7%, PhysioNet-2020 at 5%, and PhysioNet-
2021 at 3%. The INCART, CPSC-2018, and PTB-XL datasets were each
used in 2% of the studies. The specific characteristics of these datasets are
described in detail below.

• MIT-BIH-AD: This dataset contains 48 ambulatory ECG records, each
comprising two leads and spanning 30 minutes. The recordings were
collected between 1975 and 1979 [54]. Each record is sampled at 360
Hz with an 11-bit resolution over a 10 mV range and was gathered
from 47 individuals tested in the BIH Arrhythmia Laboratory. The
dataset includes a variety of cardiac abnormalities, such as AF, atrial
bigeminy, AFL, ventricular premature beats, right bundle branch block
(RBBB), and left bundle branch block (LBBB).

• PhysioNet-2017: This dataset comprises 8,528 single-lead ECG records
obtained from 3,658 individuals [85]. The data are sampled uniformly
at 300 Hz and span durations of 9 to 61 seconds. It includes four
distinct rhythm categories: normal, AF, noise, and other.
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• INCART: The St. Petersburg INCART dataset consists of 75 records
extracted from 32 Holter recordings, each spanning 24 hours. These
recordings include patients diagnosed with various heart conditions
such as coronary artery disease, ischemia, conduction abnormalities,
and arrhythmia. In this dataset, 17 patients are male and 15 patients
are female, and the mean age of the patients is 58. The data are
sampled at 257 Hz, capturing subtle changes in heart function, and
each record contains 12 standard leads.

• CPSC-2018: The China Physiological Signal Challenge 2018 dataset
features 6,877 recordings of 12-lead ECG data from a diverse patient
population [86]. The average age of the patients was about 89. The
number of female patients was 4788. The recordings, collected from 11
hospitals, vary in length from 6 to 60 seconds and are sampled at 500
Hz. The dataset includes nine different types of cardiac abnormalities,
including AF, LBBB, RBBB, normal, premature atrial contraction, pre-
mature ventricular contraction, intrinsic paroxysmal atrioventricular
block, ST-segment depression, and ST-segment elevation.

• PTB: The PTB dataset consists of 549 ECG records, which include
15 leads (12 standard leads and 3 Frank leads) from 290 individuals
[87]. The data were sampled at 1000 Hz with 16-bit resolution. Each
individual has up to five records, allowing for longitudinal health
assessments. Of the subjects, 216 were diagnosed with various heart
diseases, including MI, cardiomyopathy/heart failure, bundle branch
block, dysrhythmia, myocardial hypertrophy, valvular heart disease,
and myocarditis. The remaining 52 individuals constitute a healthy
control group, while the health status of 22 individuals remains un-
known.

• PTB-XL: The PTB-XL dataset is a comprehensive collection of clinical
ECGs, including 21,837 records from 18,885 patients [88]. The ECGs
are 10 seconds in length and were recorded at two sampling rates, 100
Hz and 500 Hz, with 16-bit resolution. The dataset includes several
ECG rhythms and abnormalities, such as normal, MI, conduction
disturbances, and hypertrophy.

• PhysioNet-2021: The PhysioNet-2021 dataset features 12-lead ECG
recordings from a large cohort of 6,877 patients with various cardiac
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abnormalities [89]. The recordings were collected from six different
hospital systems across four countries on three continents. The dataset
is publicly available as training data, with over 88,000 ECGs provided.
Some of the databases previously mentioned (e.g., INCART, PTB, and
PTB-XL) are included in PhysioNet-2021.

3.4 Basic Data Augmentation Methods

The concept of basic DA techniques for ECG signals is derived from random
transformations commonly applied to images and time series, such as
scaling, flipping, and noise addition. Broadly, basic DA methods for ECGs
can be categorized into three types: time domain, magnitude domain, and
hybrid domain transformations.

Time domain transformations modify the ECG signal along the time axis,
shifting the data points to different time steps while preserving the sequence
structure. In contrast, magnitude domain transformations retain the original
time steps but alter the signal values (e.g., in millivolts). Techniques such as
scaling, noise addition, and dropping fall under this category, where only
the amplitude of the signal is changed. Hybrid methods combine both time
and magnitude transformations to manipulate the signal.

In general, basic DA generates a transformed pattern x
′

by applying a
random transformation function to the original pattern x:

x
′ ← f (x), (3.1)

where x is represented as x = [x1, x2, . . . , xN ]
⊺, with N denoting the number

of time steps in the original dataset. Each xn corresponds to the ECG
amplitude at time step n, collected across L leads. For instance, a standard
clinical ECG is often stored in an N × 12 matrix (or its transpose).

Based on our review of the literature, we identified several works related to
basic DA methods, summarized in Table 3.3. Below, we outline the most
frequently used DA techniques applied in these studies:

• Noise Addition: Gaussian noise, denoted as n, is applied to the ECG
signal x. This noise is characterized by a mean of 0 and a standard de-
viation of σ. The resulting transformation is expressed as the addition
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of the noise to the original signal, i.e., x + n [90, 91, 92, 72, 93, 94, 95,
96, 97].

• Scaling: Each lead of the ECG signal is scaled by a random factor,
which is sampled from a normal distribution [90, 91, 98, 92, 94, 74,
78]. Mathematically, this process can be represented by multiplying
the ECG signal by a diagonal matrix, where each diagonal element
corresponds to the scaling factor for a specific lead.

• Temporal Inversion: The ECG signal undergoes a reversal in the time
domain, represented as x

′
= [xN , xN−1, . . . , x1]

⊺ [90, 92, 99, 93].

• Spatial Inversion: This method applies a spatial inversion by multiply-
ing the amplitude of the ECG signal by −1, resulting in an inverted
waveform, denoted as −x [90, 92, 93].

• Temporal-Spatial Inversion: A combination of temporal and ampli-
tude inversion is applied, where the signal is first vertically inverted
and then horizontally reversed, resulting in a temporal-spatial trans-
formation [100, 99, 93].

• Permutation: The ECG signal is divided into multiple segments, which
are then shuffled to randomly alter the temporal sequence before
recombining [90, 92].

• Dropping: Random segments of the ECG signal are masked with a
certain probability [90, 92, 96, 101].

• Cutout: Similar to dropping, cutout randomly zeros out portions of
the signal. However, each portion has a fixed length [90, 102, 92, 72].

• Sine Wave Addition: A sine wave with randomly chosen frequency
and amplitude is added to the ECG signal [90, 92].

• Square Pulse Addition: A square pulse, with randomly varying fre-
quency and amplitude, is added to the ECG signal [90, 92].

• Time Warping: Segments of the ECG signal are randomly stretched or
compressed along the time axis [90, 103].

• Baseline Wandering: Low-frequency sinusoidal signals are generated
and added to simulate baseline wandering [104, 103].
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• Lead Removal: A random lead is selected, and its values are set to
zero [104].

• Lead Order Shuffling: The order of ECG leads, or a subset of them, is
randomly rearranged [104, 91].

• High-Pass Filtering: A Butterworth filter with a fixed cutoff frequency
(e.g., 0.5 Hz) is applied to remove baseline wander noise [104].

• Low-Pass Filtering: A Butterworth filter (e.g., cutoff frequency 47 Hz)
is used to eliminate high-frequency noise [104]. This technique is also
known as Gaussian blur when a one-dimensional Gaussian kernel is
applied.

• Band-Pass Filtering: A Butterworth filter with low and high cutoff
frequencies (e.g., 0.5 Hz and 47 Hz) is used to remove both baseline
drift and high-frequency noise [104, 91, 97].

• Sigmoid Compression: This technique applies a sigmoidal activation
function to compress the ECG signal [104].

• Powerline Noise Addition: Powerline interference (50 Hz or 60 Hz) is
added to the signal to simulate environmental noise [103, 105, 98].

• EMG Noise Addition: Simulated electromyographic (EMG) noise,
induced by muscle contractions, is added to the ECG signal [103, 105].

• Baseline Shift: Random direct current offsets are added to simulate
baseline shifts caused by changes in electrode-skin impedance [103,
105, 98].

• Peak Alteration: This involves modifying the shape or duration of
peaks, such as the QRS complex or T-wave [106, 74].

• Mixup: New signals are generated by linearly interpolating between
two real signals with varying weights [107].

3.5 Advanced Data Augmentation Techniques

Conventional DA techniques often modify the characteristics of ECG signals
in ways that introduce “noise” rather than generating meaningful new sam-
ples, which can negatively impact classification performance. For instance,
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TABLE 3.3: Summary of basic DA methods for ECG classifi-
cation using AI techniques.

Type Lead Input Classifier Improvem. af-
ter DA

Dataset Refs.

CA 12 ECG CNN 2.24% Physionet-2020 [108]
CA 12 ECG CNN-LSTM 3% Physionet-2020 [91]
CA 12 ECG ResNet −0.063–2.54% CPSC-2018 [104]
CA 12 ECG CNN – Physionet-2020 [102]
CA 12 ECG CNN – Physionet-2020 [109]
CA 12 ECG ResNet 1.4–3.5% ICBEB and PTB-XL [98]
CA 1 ECG CNN – MIT-BIH AD [110]
CA 1 Spectral Residual Attention 0.8% MIT-BIH AD [111]
CA 12 ECG CNN 7.73% Physionet-2021 [92]
CA 1 ECG CNN – MIT-BIH-AD [112]
CA 12 ECG ResNet 40% INCART [106]
CA 2 ECG CNN 2.3% Physionet-2017 [113]
CA 1 Spectral CNN – MIT-BIH-AD [114]
CA 1 ECG CNN 0.028% MIT-BIH-AD [115]
CA 1 Spectral CNN – MIT-BIH-AD [116]
CA 12 ECG CNN – Physionet-2020 [117]
CA 8 ECG CNN – Private [95]
CA 12 ECG CNN 1% Physionet-2020 [118]
CA 12 Spectral CNN 4.64% PTB [119]
CA 1 Spectral CNN – Physionet-2017 [120]
CA 1 ECG CNN 5% MIT-BIH-AD [99]
CA 12 ECG CNN – Physionet-2021 [97]
CA 1 ECG BeatGAN 0.28% MIT-BIH-AD [121]
CA 1 ECG ResNet-LSTM – MIT-BIH-AD, AFDB

and Physionet-2017
[122]

CA 1 Spectral Residual-Attention – MIT-BIH-AD and
Supraventricular Ar-
rhythmia

[123]

CA 1 Spectral CNN – MIT-BIH-AD [124]
CA 1 ECG LSTM 42% Physionet-2017 [125]
CA 2 ECG CNN-RNN – Private [126]
CA 1 ECG CNN-LSTM 3% MIT-BIH-AD [127]
CA 1 ECG CNN-RNN 1.91% Physionet-2017 [107]
CA – Spectral CNN – MIT-BIH-AD and PTB [128]
CA 1 ECG CNN – Physionet-2017 [96]
CA 1 ECG CNN – Physionet-2017 [129]
CA 1 ECG CNN – Physionet-2017 [101]
CA 1 ECG ResNet-RNN – Physionet-2017 [130]
CA 12 ECG CNN – Physionet-2021 [131]
CA 1 ECG CNN 0.62–5.61% MIT-BIH-AD [132]
CA 1 Spectral Transformer – MIT-BIH-AD [133]
Biometric 1 ECG CNN – CYBHi and UofTDB [134]
Biometric 1 ECG CNN 0.19% PTB and LivDet2015

[135]
[136]

Biometric 1 ECG CNN 12% Physionet-2018 [74]
Frailty Iden-
tification

1 ECG LSTM 3.2% Private [94]

Sleep apnea 1 ECG CNN – Private [78]
Peak detec-
tion

2 ECG CNN 2.5% MIT-BIH-NST [137]

QA 1 ECG CNN 2% Physionet-2017 [138]
QA 12 Spectral CNN 2.91% PhysioNet-2011 [83]
QA 2 ECG U-Net – QT [139] [84]
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in [104], it was reported that certain basic DA techniques, such as horizon-
tal and vertical flipping, adversely affected the accuracy of their classifier.
To address the limitations of traditional DA methods, more sophisticated
techniques have been developed as viable alternatives. Through a literature
search, we identified several studies that explore advanced DA approaches,
the key findings of which are summarized in Table 3.5. These techniques
can be broadly classified into two categories: statistical generative models
and learning-based models. A detailed description of each approach is
provided in the following subsections.

3.5.1 Statistical Generative Models

Advanced ECG DA methods based on statistical generative models aim
to model the underlying dynamics of ECG signals through statistical tech-
niques. For example, Hatamian et al. [64] proposed a GMM to address class
imbalance in AF detection. Their results showed that the GMM outper-
formed traditional oversampling methods for minority class augmentation.
Similarly, Silva et al. [65] developed a cardiorespiratory signal synthesizer
using conditional sampling from a multimodal stochastic system based on
Gaussian copulas, integrated with a Monte Carlo (MC) approach. Zhu et al.
[66] introduced an innovative DA technique that leveraged both probabilis-
tic distribution and geometric information. Their method applied variations
to the data distribution along the geodesic path in Wasserstein space, a
mathematical framework that measures the distance between probability
distributions. By analyzing cardiovascular features within ECG signals, they
were able to account for geometric properties when generating augmented
samples, which were subsequently fed into a multi-feature transformer
model alongside real data. This approach yielded substantial performance
gains, improving the AUC-ROC on the PTB-XL dataset by 6-17% compared
to models trained on unaugmented data.

3.5.2 Learning-Based Models

In the realm of AI, DL-based generative models have emerged as powerful
tools for producing diverse synthetic data samples that closely resemble
real-world data. These models have garnered significant attention due
to their ability to generate high-quality data, making them suitable for a
variety of applications. While numerous generative models exist, only a
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subset has been applied to ECG DA. In the following subsection, we focus
on specific learning-based approaches that have been employed for ECG
DA, with the goal of addressing the challenge of limited labeled data in
AI-driven ECG applications.

Embedding Space

ECG DA techniques should not only be capable of generating diverse sam-
ples but also adept at mimicking the characteristics of real ECG signals. It
is hypothesized that applying transformations to encoded representations,
rather than raw inputs, could result in more convincing synthetic data due
to the unfolding of manifold structures in the feature space. For instance,
Zhang et al. [100] employed fundamental DA techniques for representa-
tional learning within the embedding space. Their learning model consists
of two primary modules: an encoder and a classifier. The encoder creates
representations using a temporal-spatial reverse detection method, while
the classifier executes the temporal-spatial reverse detection task during
training. After training is complete, the encoder is transferred to the second
stage, where the classifier applies the learned representations to various
downstream tasks.

TABLE 3.5: Summary of advanced DA methods for ECG
classification using AI techniques.

Types Lead
DA

Methods
Input Classifier

Improvem.
after DA

Dataset Refs.

CA 1
Style-

transfer
ECG CRN 3%

Physionet-2017
& Private

[140]

CA 2 CGAN ECG CNN 1.3–2.6%
MIT-BIH-AD &
Physionet-2017

[141]

CA 12 VAE Spectral CNN 0-6% Private [67]
CA 1 GAN ECG CNN 1% MIT-BIH-AD [142]
CA 1 GAN ECG CNN 1.3% MIT-BIH-AD [68]

CA 1
Embed-

ding
space

ECG CNN – Physionet-2017 [100]

CA 1 GAN Spectral
CBAM-
ResNet

– MIT-BIH-AD [143]

CA 12
Embed-

ding
space

ECG
Self-

supervised
– Physionet-2021 [144]

CA 1 GAN Spectral CNN 3% Physionet-2017 [64]
CA 1 GAN ECG CNN – MIT-BIH-AD [70]
CA 1 GAN ECG CNN 5-37% MIT-BIH-AD [71]

Continued on next page
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Table 3.5 – Continued from previous page

Types Lead
DA

Methods
Input Classifier

Improvem.
after DA

Dataset Refs.

CA 1 GAN
ECG-
PPG

CNN – BIDMC [145]

CA 1 MC ECG CNN – MIT-BIH-AD [65]

CA 1
Embed-

ding
space

ECG CNN 5.8%
ICENTIA11K

[146]
[147]

CA 1 GAN ECG CNN – MIT-BIH-AD [148]

CA 1 VAE ECG
CNN-
LSTM

2% MIT-BIH-AD [149]

CA
1 &
12

BiLSTM-
CNN &

TimeGAN
ECG CNN –

MIT-BIH-AD &
PTB

[150]

CA 12 GAN ECG ResNet 5% CPSC-2018 [151]
CA 1 GAN ECG CRNN 14% Physionet-2017 [152]
CA 1 GAN ECG Bi-LSTM 1.9% MIT-BIH-AD [153]
CA 1 GAN ECG RF 11% MIT-BIH-AD [154]

CA 1 GAN ECG LSTM –
MIT-BIH-AD &
MIT-BIH NSR

[155]

CA 1 GAN ECG CNN 1.45% MIT-BIH-AD [156]
CA 1 GAN ECG CNN – MIT-BIH-AD [157]

CA 1 GAN ECG
CNN-
LSTM

2.65% MIT-BIH-AD [158]

CA
1 &
12

GAN ECG CNN –
MIT-BIH-AD &

PTB
[159]

CA 1 GAN ECG CNN 0.24% MIT-BIH-AD [160]
CA 2 GAN ECG SVM 32% MIT-BIH-AD [161]
CA 1 GAN ECG Bi-LSTM 2–51% MIT-BIH-AD [162]

CA 1
VAE &
GAN

ECG CNN 5% MIT-BIH-AD [163]

CA 1 GAN ECG CNN – MIT-BIH-AD [164]
CA 1 GAN ECG CNN – MIT-BIH-AD [165]
CA 1 GAN ECG LSTM – MIT-BIH-AD [166]

CA 1 GAN ECG
ResNet-
BiLSTM-
attention

– MIT-BIH-AD [167]

CA 1 AE ECG CNN – Physionet-2017 [168]
CA 1 GAN Spectral CNN – MIT-BIH-AD [169]

CA 1 GAN ECG
Multi-head
Attention

5–10% MIT-BIH-AD [170]

CA 1 GAN ECG CNN 20.5% MIT-BIH-AD [171]
CA 1 GAN ECG CNN – MIT-BIH-AD [172]
CA 1 GAN ECG CNN 32% MIT-BIH-AD [161]

CA 1 BiRNN ECG
Ensemble
Bagged

Trees
– MIT-BIH-AD [173]

CA 1 GAN ECG CNN 4.8–8.1% Private [174]
CA 1 GAN ECG LSTM 4% MIT-BIH-AD [175]
CA 1 GMM ECG ResNet 6.7% MIT-BIH-AD [176]

Continued on next page
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Table 3.5 – Continued from previous page

Types Lead
DA

Methods
Input Classifier

Improvem.
after DA

Dataset Refs.

CA 12
Embed-

ding
space

Spectral
Self-

supervised
– Private [177]

CA 1 GAN ECG CNN –
AHADB, VFDB,

& CUDB
[178]

MI 1
Encoder-
decoder

ECG CNN – PTB [179]

MI 12

Wasser-
stein

Geodesic
Perturba-

tion

ECG MFT 6–17% PTB-XL [66]

MI 1 GAN ECG CNN 4–6% PTB [180]
Fetal 1 GAN ECG CNN 12% CTU-UHB [181]
Emo-
tion

1 GAN ECG LSTM 17% CASE [182]

Biomet-
ric

1 GAN ECG CNN – ECG-ID [183]

Sleep-
Apnea

1 GAN ECG
CNN-
LSTM

1.78
Apnea-ECG &
MIT-BIH AD

[77]

Emo-
tion

– GAN ECG CNN 5.64% Private [184]

MI 12 GAN ECG SVM 0.75% PTB [185]
Emo-
tion

1 GAN ECG SVM – DECAF [75]

Pain in-
tensity

1 DDCAE ECG NN –
BioVid Heat

Pain
[76]

3.5.3 Deep Generative Models

Deep generative models (DGMs) have recently shown remarkable promise
in generating realistic high-dimensional data, such as images, time series,
and sequential data. In the context of ECG data, DGMs can be broadly
categorized into two types: encoder-decoder networks and GANs. The
following sections elaborate on these two DGMs.
Variational Autoencoder: The VAE is a powerful DL architecture that
has significantly advanced unsupervised learning. At its core, the VAE
consists of three essential components: an encoder, a decoder, and a loss
function. The encoder and decoder are distinct neural networks, with the
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encoder responsible for mapping high-dimensional inputs into a lower-
dimensional latent space and the decoder tasked with reconstructing those
inputs back into high-dimensional outputs. The loss function used in VAEs
includes a negative log-likelihood term, augmented with a regularization
term to ensure that the generated outputs closely resemble the original data.
By sampling vectors from the latent space and decoding them, VAEs can
generate novel patterns, making them highly effective for data synthesis
and augmentation. In [67], the authors utilized a vector-quantized VAE
(VQ-VAE) to augment training samples of spectral ECG images, reporting a
6% performance improvement over unaugmented data. Al Nazi et al. [149]
applied a VAE model to enhance the diversity of ECG data, while Thiam et
al. [76] employed deep denoising convolutional autoencoders (DDCAEs).
Their method optimizes both the joint representation of input channels,
generated by a multimodal DDCAE, and an additional neural network that
is trained concurrently to perform classification.

Generative Adversarial Networks: GANs, introduced by Ian Goodfellow
and his colleagues in 2014 [186], have become a standard approach for gen-
erating synthetic samples for training datasets. GANs rely on adversarial
training to simultaneously optimize two neural networks: a generator and
a discriminator. The generator creates samples that resemble those from
the original data distribution, typically by sampling from a multivariate
normal distribution and feeding it as input. The discriminator compares
the generator’s outputs with real samples, assigning a probability between
0 and 1 to determine whether a sample is synthetic or real.

In the context of ECG DA, several studies [142, 68, 70, 71, 148, 153, 155, 156,
157, 158, 159, 160, 162, 163, 164, 165, 166, 167, 170, 171, 172, 175, 77] utilized
GANs to augment the minority class samples in the MIT-BIH arrhythmia
dataset (MIT-BIH-AD). These augmented samples were subsequently used
in DL models for ECG beat classification, yielding significant performance
improvements, with gains ranging from 0.24% to 32% compared to unaug-
mented samples. Additionally, other studies such as [154] and [161] also
implemented GANs for ECG DA but employed machine learning classifiers
like RF and support SVM, respectively.

Zhou et al. [141] introduced a Conditional Generative Adversarial Net-
work (CGAN) to generate diverse ECG signals aimed at enhancing the
training efficiency of DL models. Their approach resulted in a performance
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improvement of 1.3–2.6% across two datasets, namely MIT-BIH AD and
PhysioNet-2017. In contrast to using raw ECG signals as input for GANs,
some researchers have transformed ECG data into spectral images. For
instance, Hatamian et al. [64] converted ECG signals into images using a
logarithmic spectrogram.

Xiong et al. [140] developed an ECG generator comprising three main
components: clinical ECG recordings, a mathematical model based on ordi-
nary differential equations, and a 37-layer convolutional recurrent network
(CRN) for style transfer. Initially, the mathematical model was employed
to generate ECG waveforms that simulate an idealized heart rate and RR
interval pacing, using parameters such as the mean and standard deviation
of the heart rate. These synthetic ECG waveforms were then input into the
neural network for style transfer. The authors reported that their approach
improved AF detection accuracy by 3% when DA techniques were applied.

Similarly, Fangyu et al. [150] introduced an innovative method to enhance
the accuracy of abnormal ECG signal detection. To mitigate the impact
of imbalanced data on model performance, they implemented two DA
techniques—BiLSTM-CNN and TimeGAN—to enrich the semantic repre-
sentation of different ECG features. Additionally, they proposed a con-
trastive learning framework to ensure consistency in data representation
across two channels. By maximizing the similarity between data representa-
tions and minimizing contrastive loss, they achieved more comprehensive
data embeddings and correlations, resulting in a 3% performance improve-
ment over a model that did not utilize contrastive learning.

Some researchers have exclusively utilized GANs for ECG synthesis. ECG
synthesis holds the potential to advance our understanding of the underly-
ing mechanisms of various cardiac conditions and foster the development
of more precise diagnostic models. However, it is essential to rigorously
validate the accuracy and reliability of models trained on synthetic ECG
data before their application in clinical settings. Based on our review crite-
ria, we identified several papers that employed generative methods solely
for ECG synthesis; a summary of these methods is presented in Table 3.6.
In these studies, various metrics were used to evaluate the performance
of GAN models for ECG synthesis, with the choice of metrics depending
on the specific objectives and characteristics of the generated ECG signals.
Commonly used evaluation metrics include:
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• Mean Squared Error (MSE) and Root MSE (RMSE): These metrics
assess the average squared difference between generated and real
ECG signals. Lower values indicate better performance.

• Signal-to-Noise Ratio (SNR): This metric evaluates the ratio of sig-
nal power to noise power in generated ECG signals. A higher SNR
suggests better quality.

• Fréchet Inception Distance (FID): FID measures the distance between
the distributions of generated and real ECG signals. Lower FID values
indicate greater similarity between the two distributions.

• Maximum Mean Discrepancy (MMD): MMD evaluates the distance
between two distributions by comparing the means of their feature
representations in a reproducing Kernel Hilbert Space. A smaller
MMD indicates that the two distributions are more similar.

• Dice Coefficient (DC): The Dice coefficient measures the similarity or
overlap between two sets or binary masks. Values range from 0 to 1,
with 0 indicating no overlap and 1 indicating a perfect match.

• Percent Mean Square Difference (PMSD): PMSD is calculated as the
square of the difference between generated and real ECG values,
divided by the average of the values, expressed as a percentage. Lower
PMSD values reflect better performance.

• Kernel Maximum Mean Discrepancy (KMMD): KMMD, an extension
of MMD, maps data to a high-dimensional space using a kernel func-
tion to evaluate similarity between data points. Lower KMMD values
suggest greater similarity between generated and real data.

3.6 Implementation of DA Techniques to Enhance Atrial
Flutter Performance

In our DL model, we observed relatively lower recall values for AFL cardiac
conditions, as reported in Table 2.4. We hypothesized that this performance
discrepancy could be attributed to the class imbalance problem. To ad-
dress this issue, we implemented DA techniques aimed at improving the
model’s performance on AFL cases. Specifically, we employed two basic
DA methods—lead order changing and Mixup (see Section 5.3.3)—along
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TABLE 3.6: Summary of generative methods for ECG syn-
thesis using AI techniques.

Lead Input Method Metric Dataset Refs.

1 ECG GAN MMD (3.83 × 10−3) LUDB [187] [188]
1 ECG GAN KMMD (5.53) MIT-BIH AD [189]
1 ECG GAN MSE (0.017–0.099) PTB-XL [190]
1 ECG GAN SNR (40.85 dB) MIT-BIH AD [191]
1 ECG GAN RMSE (0.126) MIT-BIH AD [192]
1 ECG AE MSE (0.2) MIT-BIH AD [193]
1 ECG GAN FID (4.77–17.19) MIT-BIH AD [194]
2 ECG GAN PMSD (7.21%) – [195]
1 ECG BiLSTM-CNN GAN RMSE (0.276) – [196]

12 ECG U-Net generator DC (0.868) Private and INCART [197]
1 ECG GAN RMSE (0.015–0.028) MIT-BIH AD [198]

12 ECG Genetic Algorithm-NN RMSE (44.9–90) µV PTB [199]
12 ECG CycleGAN MSE ([0.5–31]×10−3) Private [200]

with three advanced techniques to effectively double the AFL sample size
to 2× 136, 000. The synthetic samples were then integrated with the real
minority class samples to train our DL model. For more details on the
model architecture and training process, refer to Section 2.4. The advanced
DA methods used are described below:

• WaveGAN: This generative model takes a one-dimensional input vec-
tor of 2000 data points, sampled from a uniform distribution, and
processes it through five deconvolution blocks to generate a signal
with 2000 time steps across 2 ECG leads. Each deconvolution block
consists of four layers: upsampling, padding, one-dimensional convo-
lution, and ReLU activation. Both the generator and discriminator in
this model are configured with 50 units. For further details, refer to
[201].

• Pulse2Pulse GAN: Pulse2Pulse is a neural network architecture in-
spired by U-Net, designed specifically for generating ECG signals
using one-dimensional convolutional layers. The generator receives
an input of 2000 time steps across 2 leads, sampled from a uniform
distribution. This input is processed through a series of five down-
sampling and five upsampling blocks. The upsampling process is
similar to that in WaveGAN, while the downsampling blocks use
one-dimensional convolutions followed by Leaky ReLU activation
functions. Additional details can be found in [201].

• Diffusion Model: Diffusion models consist of two main processes:
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the forward process and the backward process. The forward process
progressively adds noise in a Markovian manner, corrupting the data
incrementally. The backward process involves the model removing
the added noise to reconstruct the original data distribution. Our
implementation of this model is adapted to our specific use case.
More information is available in [202].

Performance for DL model after DA

Table 3.7 presents a comparative analysis of the performance of DA tech-
niques applied to our DL model (see details in Section 2.2) across three
diagnostic categories: Non-AF, AF, and AFL. The model without DA serves
as the baseline, achieving Recall values of 0.951 for Non-AF, 0.931 for AF,
and 0.812 for AFL, with corresponding AUC values of 0.981, 0.973, and
0.942.

Among the DA methods, Mixup demonstrates the most notable improve-
ment in AFL detection, achieving the highest AUC for AFL (0.982). How-
ever, this gain in AFL performance is accompanied by a slight reduction in
AF Recall, which decreases to 0.921. This trade-off reflects Mixup’s focus
on enhancing AFL detection, albeit at the cost of a marginal decline in AF
performance.

In contrast, methods such as WaveGAN, Pulse2Pulse, and the Diffusion
technique exhibit more balanced performance across all diagnostic cate-
gories but do not surpass Mixup in AFL detection. For instance, WaveGAN
attains a Recall of 0.801 and an AUC of 0.952 for AFL, which, although
respectable, falls short of Mixup’s performance. However, WaveGAN main-
tains a higher Recall for AF (0.945), indicating that while these methods
provide more consistent performance, they do not achieve the same level of
efficacy in AFL detection as Mixup.

3.7 Discussion

Small-scale and imbalanced datasets present significant challenges for the
application of AI-based models in cardiology. DA is a widely adopted
solution to these issues, demonstrating success across various fields. How-
ever, applying DA to ECG signals poses unique challenges. ECG signals
contain fine-grained information, such as the relative amplitudes of ECG
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TABLE 3.7: Comparative performance of DA techniques
applied to generate synthetic samples for the AFL cardiac
condition and their impact on the performance of our DL

model.

Method
Recall AUC

Non-AF AF AFL Non-AF AF AFL

Baseline 0.951 0.931 0.812 0.981 0.973 0.942
Lead-Shuffling 0.921 0.950 0.791 0.981 0.972 0.941
Mixup 0.960 0.921 0.830 0.989 0.973 0.982
WaveGAN 0.963 0.945 0.801 0.988 0.970 0.952
Pulse2Pulse 0.954 0.952 0.798 0.980 0.972 0.963
Diffusion 0.951 0.961 0.792 0.982 0.973 0.960

waveforms (accurate to a few microvolts) and temporal relationships be-
tween data points (on the scale of milliseconds). These details are critical
for AI classifiers. Synthetic ECG signals can be beneficial if they accurately
capture this fine-grained information; otherwise, DA may degrade model
performance. Another challenge in DA is universality—DA techniques are
highly dependent on factors such as input type, input shape, the number of
leads, and the hyperparameters of the AI or DL model. Furthermore, the
same DA technique may have varying effectiveness depending on the type
of ECG rhythm, enhancing performance in one scenario while deteriorating
it in another.

Several DA methods have been developed to generate synthetic ECGs and
improve AI model performance. These methods can be broadly categorized
into basic and advanced techniques. Basic DA methods are typically easy
to apply and computationally efficient, often producing promising results.
However, certain techniques, such as time inversion, spatial inversion, per-
mutation, and lead shuffling, should be avoided. Careful design is required
for other basic methods, as inappropriate augmentation can produce non-
physiological ECGs or signals that belong to different diagnostic categories.
For example, scaling the QRS complex can simulate cardiac hypertrophy,
while artificially prolonging the PR interval may mimic atrioventricular
block. Similarly, in the context of MI, preserving the correct lead order is
essential for accurate infarct localization.

In the field of advanced DA, researchers have extensively explored genera-
tive models such as GANs for synthesizing ECG data. Most research focuses
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on generating ECG beats, particularly from datasets like MIT-BIH, rather
than on rhythm-level augmentation. This emphasis limits the generalizabil-
ity of DA techniques for applications that require rhythm generation. The
lack of research on rhythm generation poses a challenge for determining the
optimal DA techniques in applications where broader rhythmic patterns
are of primary importance.

Moreover, the effectiveness of DA varies significantly depending on the
technique, dataset, preprocessing, and specific application. It is often impos-
sible to predict the best augmentation method for a given dataset without
empirical testing. Advanced DA techniques, particularly generative models,
offer the potential to generate high-quality synthetic data that closely match
the statistical properties of real-world data. This makes them promising for
enhancing the accuracy and robustness of AI-based models.

In Sections 3.4 and 3.5, we discussed methods for generating ECG signals.
Several studies, however, implement DL models using spectral images
as inputs (see Tables 3.3 and 3.5). In these approaches, ECG signals are
transformed into spectral images, which are then used for classification
instead of raw ECG signals [67, 114, 64, 79, 143, 111]. DA is applied directly
to the spectral images, bypassing the ECG signal itself. While this method is
motivated by the observation that ECG features often correlate with changes
in frequency band energy, it neglects the role of the phase of sinusoidal
components, potentially reducing model performance. Although spectral
methods have shown promising results, interpretability and explainability
are compromised, as changes in spectral images are not directly linked to
ECG features recognized by cardiologists.

Our analysis also reveals several unresolved challenges. First, there is no
consensus on the optimal ratio of real to synthetic ECG data for improving
model performance and addressing overfitting. Some studies suggest that
increasing the number of synthetic samples does not always lead to im-
proved performance [140, 98, 185]. The ideal ratio depends on the specific
application and must be empirically determined for each dataset. Further
research is needed to explore the most effective balance between real and
synthetic ECGs in AI models for different applications.

Second, quantifying the quality of synthetic ECG signals remains a signif-
icant challenge. There is no universally accepted method for measuring
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the similarity between synthetic and real ECGs. Visual inspection is of-
ten employed to determine if a synthetic signal appears realistic, but this
method requires domain expertise and lacks scalability. Most studies focus
on evaluating the performance improvements of classifiers, rather than
directly assessing the quality of synthetic ECGs. One potential solution
is to extract key ECG features (e.g., heart rate, QRS complex amplitude,
peak-to-peak differences) from both real and synthetic signals, then apply
distance metrics such as Wasserstein distance, Kullback-Leibler divergence,
or Kolmogorov-Smirnov tests to quantify the similarity of distributions.

While DA often enhances model performance by enabling it to learn more
robust features, it is not a universal solution that guarantees improvement
across all tasks or diagnostic categories. Several factors must be considered
when assessing the effectiveness of DA techniques, including the desired
performance improvement, the size of the available training data, and the
specific diagnostic objectives. As illustrated in Table 3.7, the application of
DA techniques to our DL model (detailed in Section 2.2) produced mixed
outcomes across three diagnostic categories: Non-AF, AF, and AFL. Among
these techniques, Mixup significantly improved the model’s ability to detect
AFL, raising the AUC for AFL detection to 0.982. This result demonstrates
DA’s potential to address specific weaknesses in model performance. How-
ever, the improvement in AFL detection came at the expense of a slight
decline in AF recall, which dropped from 0.931 to 0.921. This trade-off
underscores an important point: enhancing performance in one diagnostic
category may lead to a reduction in another. Thus, it is crucial to carefully
evaluate how much performance improvement is needed and whether the
trade-offs are acceptable. The size and balance of the training data also play
a critical role in determining the impact of DA. For small or imbalanced
datasets, DA can significantly improve model generalization by generating
additional, diverse training samples. However, when working with large
and varied datasets, the benefits of DA may diminish. In some cases, overly
aggressive augmentation can even degrade performance by introducing
noise or unrealistic variations into the training process.

Overall, further research is required to address these challenges. One
promising direction is the combination of various DA techniques to ex-
pand datasets, such as applying adversarial learning for secondary aug-
mentation on synthetic ECGs generated from basic DA techniques. This
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approach could increase the variability of synthetic data. Moreover, inte-
grating meta-learning with DA might provide insights into how DA affects
the performance of AI models for ECG classification. While DA through ad-
versarial learning is gaining popularity, improving the quality of synthetic
ECGs remains essential. Ongoing development in this area is crucial for ad-
vancing the utility of DA in ECG analysis, particularly in terms of enhancing
sample quality and evaluating performance across diverse datasets.

3.8 Conclusion

Collecting large-scale ECG datasets poses significant challenges due to
limitations in patient availability, access to expert cardiologists, lengthy
recording times, and operational complexities. DA is a promising strategy
for addressing these issues, particularly in augmenting small-scale datasets
and balancing minority classes to reduce overfitting and improve the per-
formance of AI models. This study reviews the current research on DA
techniques for ECG interpretation using AI. Overall, our findings suggest
that DA generally enhances the performance of automatic ECG analysis.
However, its success depends on application, ensuring that improvements
in one diagnostic area do not come at the expense of another. In conclusion,
this study provides practical insights from the literature, offering guidance
for ECG research and assisting in modeling the inter-patient variability in
ECG interpretation. It highlights the potential of DA to improve AI-driven
ECG analysis while emphasizing the importance of tailoring DA methods
to specific goals and challenges.
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Chapter IV

Uncertainty Quantification of
Deep Learning Model for Atrial
Fibrillation Detection from
Holter Recordings

4.1 Introduction

In recent years, DL models have shown promising success for AF detection
[203, 27, 28]. However, concerns about the reliability and acceptance of
these models in clinical practice persist. Variability in ECG signal charac-
teristics—due to factors such as artifacts, noise, and the diversity of ECG
patterns—further exacerbates these concerns. Additionally, DL models
often demonstrate inconsistent performance on new, unseen data, eroding
the trust of medical professionals and limiting their integration into clinical
workflows.

To mitigate these issues, it is essential to provide clinicians with supple-
mentary information, such as the confidence levels associated with model
predictions, rather than simply presenting the outputs themselves. The
increasing volume of ECG recordings requiring interpretation has further
highlighted the need for efficient review processes, as manual examination
of automated ECG analyses has become increasingly time-consuming and
resource-intensive. By incorporating uncertainty information into model
outputs, clinicians can focus their attention on cases where the model ex-
hibits uncertainty, thereby optimizing the allocation of time and clinical
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resources.

A potential solution to enhance the reliability of DL models is uncertainty
quantification (UQ). UQ reflects the model’s confidence in its predictions,
such as distinguishing between AF and Non-AF rhythms. Two primary
types of uncertainty arise in DL classifiers: data (aleatoric) uncertainty and
model (epistemic) uncertainty [204]. Data uncertainty is caused by factors
such as sensor noise, data collection errors, and labeling ambiguity, while
model uncertainty stems from a lack of knowledge about the model’s pa-
rameters—especially when the model is trained on limited or insufficient
data, resulting in incomplete representations of underlying data patterns.
Addressing these uncertainties is essential for developing robust and reli-
able DL models for AF detection. Clinically, uncertainty estimates can guide
or automate label corrections, reject unreliable model outputs, and aid in
detecting classification failures at the patient level.

Several UQ methods have been developed and applied in the context of
AF detection [205, 206, 207, 208, 209, 210, 211]. One approach is through
variational inference (VI), where the weights of a DL model are treated
as random variables and their posterior distribution is approximated [205,
207, 212]. However, VI-based methods can present challenges related to
scalability, both in terms of model architecture and data size. Another
commonly used UQ approach involves ensemble methods, where multiple
models are trained independently, and uncertainty is captured through
averaging their predictions [207, 213].

The majority of prior research has focused on deep ensemble (DE) and
Monte Carlo dropout (MCD) methods for UQ. However, these methods face
limitations in terms of scalability, particularly when applied to large datasets
or complex architectures [214]. While innovative UQ techniques have been
proposed across various domains, their application in AF detection remains
underexplored. As a result, there is a critical need for a comprehensive
evaluation of UQ methods tailored specifically for AF detection across
diverse datasets.

This study addresses this gap by conducting a comparative analysis of
various UQ techniques on three public datasets, utilizing both internal and
external validation sets. The key contributions of this study are as follows:
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• We developed a benchmark for evaluating different UQ methods
specifically designed for AF detection using Holter ECG recordings.

• We assessed these UQ techniques under real-world conditions by
introducing random Gaussian noise into the data, thereby simulating
real-world noise and variability.

• We analyzed the performance of the UQ methods across varying
rejection thresholds, offering critical insights into their robustness and
reliability in clinical settings.

In this chapter, we conducted an additional study focused on the evidential
(EDL) model [215]. The EDL model utilizes a variational Dirichlet distribu-
tion to capture and quantify the uncertainty associated with predictions. By
parameterizing a Dirichlet distribution over categorical output probabili-
ties, the EDL model offers a principled measure of epistemic uncertainty,
providing varying levels of confidence in its predictions.

EDL presents several distinct advantages over traditional UQ techniques
such as MCD, DE, and VI. One of its main advantages is the ability to
represent uncertainty directly through belief functions, facilitating a clear
interpretation of confidence levels in predictions. Moreover, EDL supports
soft classification, allowing for degrees of belief across multiple classes
rather than making binary decisions, thereby enhancing decision-making in
ambiguous scenarios.

The model effectively captures both aleatoric and epistemic uncertainty
simultaneously, a feature often lacking in methods like MCD. Addition-
ally, EDL can be trained end-to-end within deep learning architectures,
streamlining integration and reducing computational costs by requiring
only a single model, in contrast to the multiple models needed for DEs. Its
predictions are well-calibrated, ensuring that confidence levels closely align
with actual outcome probabilities.

Overall, EDL’s flexibility, fewer hyperparameters, and enhanced inter-
pretability position it as a powerful and versatile approach for uncertainty
quantification across various applications. The objectives of this additional
study are twofold: (i) to develop a DL model incorporating evidence-based
theory for improved AF detection from Holter recordings, and (ii) to evalu-
ate the advantages of the EDL model over traditional deterministic (softmax-
based) DL models.
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4.2 Related Works

In recent years, there has been growing interest in quantifying the uncer-
tainty of DL models for AF detection. This section of the study reviews
recent research, highlighting current approaches to addressing uncertainty
in AF detection.

Belen et al. [205] employed a variational autoencoder DL model, integrat-
ing the Kullback-Leibler (KL) Divergence loss function, for AF detection
using the AFDB dataset. To assess uncertainty, they iteratively fed the input
data through the DL model and computed the standard deviation of the
softmax probabilities. Vranken et al. [207] explored several UQ methods e.g.,
MCD, VI, DE, and snapshot ensemble (SE) techniques. The efficacy of these
methods in estimating uncertainties was assessed using rank-based metrics,
calibration assessment, and out-of-distribution (OOD) detection. The find-
ings revealed that the utilization of VI with Bayesian decomposition and
ensemble methods with auxiliary output exhibited superior performance.

In [208], a weakly supervised learning approach was developed by incor-
porating the MCD approach to consider a limited amount of labeled data.
The model achieved a classification performance with an F1-score ranging
from 0.64 to 0.67 and an expected calibration error (ECE) ranging from 0.05
to 0.07. Aseeri et al. [206] developed a gated recurrent unit-based DL model
trained using three types of datasets and estimated uncertainty using MCD
and DE methods. They demonstrated that DE methods outperformed the
MCD method. Elul et al. [209] conducted an extensive investigation into
the integration of AI within clinical settings, focusing on the crucial role of
uncertainty estimation in managing OOD instances and enabling multil-
abel diagnoses. Their approach involved the development of a DL model
comprising 10 binary classifiers, each corresponding to distinct trained ECG
abnormalities. This design facilitated the model’s capacity to identify any
combination of recognized rhythms and address unknown classes when
the model generated negative predictions across all binary classifications.
To gauge prediction confidence, they implemented the MCD method.

Zhang et al. [216] employed a Bayesian DL model with MCD for arrhyth-
mia classification with a rejection option. They computed total uncertainty
using an entropy-based decomposition of data and model uncertainty and
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explored different uncertainty thresholds to improve classification perfor-
mance by rejecting high-uncertainty instances. Jahmunah et al. [211] de-
veloped a Dirichlet distribution-based Densenet model with reverse KL
divergence to compute predictive entropy for model uncertainty in a multi-
class classification task. The authors argue that their approach is faster and
computationally lightweight compared to previous uncertainty quantifi-
cation methods. Additionally, they included noisy ECG in their analysis.
Recently, Park et al. [210] proposed a self-attention-based LSTM-FCN DL
architecture using a DE approach to quantify uncertainty. Their results
achieved state-of-the-art performance, showing that epistemic uncertainty
is reliable for classifying the six arrhythmia types.

4.3 Dataset and Preprocessing

In this study, three public ECG datasets are utilized to create the UQ bench-
mark: the IRIDIA-AF dataset, the MIT-BIH Long-Term Atrial Fibrillation
(LTAF) dataset [32], and the AFDB dataset [217, 217]. The AFDB dataset
is used exclusively for testing. The IRIDIA-AF is described in Sections 2.3.
The LTAF and AFDB datasets are described below.

LTAF: This database contains 2-lead ECG signals from 84 patients of subjects
with paroxysmal or sustained AF events with varying record durations but
are typically 24 to 25 hours. The records are sampled at a frequency of 128
Hz. The rhythm annotations within the LTAF dataset are classified into two
types: AF and N.

AFDB: This database contains 2-lead ECG signals from 23 patients sampled
at a frequency of 250 Hz. The rhythm types within AFDB are classified into
four types: AF, AFL, J (atrioventricular junctional rhythm), and N (sinus
rhythm). In this study, the annotations of N are considered as “non-AF”,
while AF and AFL were merged as “AF”.

To reduce baseline drift and powerline interference in the recordings, we
used the same Butterworth filter configuration described in 2.3. A patient-
wise partitioning technique is employed to ensure robust model develop-
ment, validation, and testing, with the datasets split into training, valida-
tion, and testing sets in an 8:1:1 ratio. Each recording is segmented into
non-overlapping 10-second windows. In this study, the NSR rhythm is
categorized as “Non-AF”, while AF and AFL rhythms are grouped together
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as “AF”. Table 4.1 provides a summary of the total number of 10-second AF
and Non-AF segments across the three datasets.

TABLE 4.1: Number of 10-second segments of LTAF, IRIDIA-
AF and AFDB datasets.

Dataset
Training Validation Test

Non-AF AF Non-AF AF Non-AF AF

LTAF 193,470 168,707 34,410 18,291 14,991 26,839
IRIDIA-AF 1,150,662 353,063 331,214 94,759 390,131 88,521
AFDB – – – - 42,041 26,247

4.4 Model Architecture

We consider a DL model whose architecture consists of 18 layers. To man-
age the optimization of such a complex network, shortcut connections are
incorporated, similar to the residual network architecture. The network
comprises 8 residual blocks, each containing two convolutional layers. The
number of residual blocks is selected by maximizing the accuracy on the
validation set. These convolutional layers have a filter size of 3 and 32× 2k

filters, where k is a hyper-parameter that starts at 0 and increments by
1 every two residual blocks. Additionally, every alternate residual block
reduces the input size by a factor of 2 through subsampling.

To improve convergence and training stability, the ReLU activation func-
tion and batch normalization are applied after each convolutional layer.
Furthermore, dropout with a probability of 0.3 is introduced to prevent
overfitting. Subsequently, two dense layers comprising 128 and 64 neurons
are employed. Each dense layer is followed by ReLU activation, batch nor-
malization, and a dropout layer. Ultimately, a softmax activation function is
utilized to generate a probability in AF detection. The model architecture
is depicted in Figure 4.1. It is important to note that all UQ methods are
employed within the same DL architecture. In the subsequent subsections,
the most commonly used UQ methods are described in detail.
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FIGURE 4.1: Diagram of the DL model. BN and RB stand
for batch normalization and residual block, respectively.

4.5 Uncertainty Quantification Methods

Bayesian inference diverges from deterministic predictions by embracing a
probabilistic approach. Instead of providing a single, definitive answer, it
considers a range of possible values for model parameters, facilitating the
incorporation of prior knowledge and the refinement of beliefs based on
observed data.

To illustrate this concept, let us consider a training datasetD = {(xi, yi)}N
i=1

comprising N instances and labels, considered sampled from the random
variable (X, Y) ∼ PX,Y. For simplicity, let xi ∈ Rd denote a vector and yi a
categorical variable. The input data xi is fed into a neural network (NN)
ŷ = fθ(xi) with parameters θ, yielding a classification output. This NN is
conceived as a probabilistic model, where fθ(xi) = P(Y | X = xi, θ) and,
differently from a deterministic approach, θ is considered a random variable
as well. The posterior distribution of θ given the observed training set D
can be used as a proxy for UQ using Bayesian inference.

In the context of Bayesian modeling, ensemble methods provide a means
to quantify uncertainty by combining multiple models. The parameters of
each model within the ensemble represent a distinct sample of the posterior
distribution over the model parameters. Having at disposal different mod-
els, the ensemble prediction ŷensemble is obtained by aggregating individual
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predictions from multiple models:

ŷensemble =
1
M

M

∑
j=1

fθj(xi), (4.1)

where j = 1, 2, . . . , M denotes the distinct models in the ensemble and
ŷensemble indicates the probabilities for the label to predict. For all methods
investigated in our study, we utilize an ensemble comprising M = 4 models,
each parameterized differently to capture a diverse array of hypotheses
from the DL model. This approach is implemented for the UQ methods,
details of which are provided in the following subsections.

4.5.1 Monte Carlo Dropout

MCD is a powerful technique within the realm of DL that extends the tradi-
tional dropout regularization method [218]. In standard dropout, random
units are dropped during training to prevent overfitting and encourage
model robustness. MCD takes this concept further by employing dropout
not only during training but also during the inference phase of a model.
Instead of obtaining a single deterministic prediction, the model is run
multiple times with dropout enabled, generating a distribution of predic-
tions. The final prediction is then derived from the mean of these sampled
predictions.

4.5.2 Ensemble Method with Different Initializations (DE)

In this approach, we leverage the fact that the typical strategy for training a
NN is to initialize its weights randomly and then adjusting them through
back-progatation. Here, we trained M = 4 different NNs with four different
intializations and obtained ŷensemble as the average of these four output
probabilities [219].

4.5.3 Snapshot Ensemble

SE creates multiple models through the training of a DL model using distinct
snapshots of its parameters, obtained at various epochs during the training
process [213]. These individual snapshots encapsulate the configuration of
the model at different epochs, thereby offering diverse vantage points on
the data manifold. The predictions derived from these varied models within
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the SE framework possibly serve not only to enhance predictive accuracy
but also to furnish a more robust estimation of uncertainty belonging to the
predictions of the models. In this study, with M = 4, we took a snapshot at
every 20 epochs to develop the SE model.

4.5.4 Batch Ensemble

Unlike traditional ensembles that combine predictions from independently
trained models, batch ensemble (BE) utilizes ensemble members that share
the same weights during training [220]. BE builds up an ensemble from
a single base network (shared among ensemble members) and a set of
layer-specific weight matrices unique to each member.

At each layer, the weight of each ensemble member is generated from the
Hadamard product between a weight matrix shared among all ensemble
members, called “slow weights” and a Rank-1 matrix that varies among
all members, called “fast weights”. Formally, let Wshare ∈ Ru×v be the slow
weights in an NN layer with input dimension u and output dimension v.
Each member m from an ensemble of size M owns a fast weight matrix
Wm ∈ Ru×v. Wm is a Rank-1 matrix computed from a tuple of trainable
vectors rm ∈ Ru and sm ∈ Rv, with Wm = rms⊤m . BE generates from them
a family of ensemble weights by Wm = Wshare ⊙Wm, where ⊙ denotes
the Hadamard product. Each Wm member of the ensemble is essentially a
Rank-1 perturbation of the shared weights Wshare. We implemented BE on
all convolutional and dense layers in the NN. The loss function was Binary
Cross Entropy averaged across the ensemble members.

4.5.5 Packed Ensemble

The utilization of ensemble methods is widely recognized for its advantages.
However, a significant drawback is the considerable increase in both train-
ing time and memory usage during inference, which scales linearly with
the number of models employed. To address these challenges, Olivier et al.
[221] introduced the pack-ensembled (PE) method. This approach leverages
grouped convolutions to significantly expedite the training and inference
computations of ensembles. Grouped convolutions offer computational
advantages by reducing the size of the subnetworks. Group convolutions
can be extended to dense layers as well and the number of groups was set
to M = 4. Here, PE was used for all convolutional and dense layers.
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4.5.6 Mean Field Variational Inference

Mean field variational inference (MFVI) is a technique used in the Bayesian
framework to approximate complex posterior distributions [222]. The goal
of MFVI is to approximate the true posterior distribution by parameterizing
it with a simpler, factorized distribution, known as the mean field distribu-
tion. The true posterior is often difficult to compute analytically due to its
complexity. MFVI seeks to approximate this distribution by a factorized
parametric distribution that factorizes over the individual parameters:

q(θ; ω1, · · · , ωK) =
K

∏
i=1

qi(θi; ωi), (4.2)

where θi represents the i-the parameter of the model, ωi the parameters
of the i-th qi(θi; ωi) distribution, q(θ; ω1, · · · , ωK) represents the complete
variational distribution, and K is the total number of parameters. Each
distribution qi(θi; ωi) was set as normal distribution over the variable θi.
The mean field approximation implies that the parameters are assumed
to be independent given the mean field distribution. The objective is to
find the mean field parameters ωi that minimize the Kullback-Leibler (KL)
divergence between the true posterior and the mean-field approximation.

Minimizing this divergence is equivalent to maximizing the Evidence Lower
Bound (ELBO), which is defined as:

ELBO = Eq(θ;ω1,··· ,ωK)[log p(Y|X, θ)− log q(θ; ω1, · · · , ωK)] (4.3)

which is a tractable objective function that can be optimized using various
optimization algorithms, such as stochastic gradient descent (SGD).

MFVI was implemented in the first and last layers of our NN.

4.5.7 Rank-1 MFVI

Rank-1 MFVI method aims to approximate complex probability distribu-
tions by introducing a simplified, tractable family of distributions [223].
This approach merged the key ideas from BE and MFVI by constructing a
posterior distribution over the parameters of the rank-1 matrices rs⊺. Simi-
lar to MFVI, we used the normal distribution for each of these parameters.
Please, notice that in this case there are no four members, but only one.
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Rank-1 MFVI was used for all convolutional and dense layers. The ELBO
was maximized for this method too.

4.5.8 Stochastic Weighting Average Gaussian

Stochastic weighted average (SWA) centers around a learning rate schedule
within SGD, and considers the weights of the models it encounters at con-
secutive epochs [224]. In this method, the weights obtained after each epoch,
denoted as θ(e), contribute to a running average, i.e., the SWA solution, after
T epochs: θSWA = 1

T ∑T
e=1 θ(e).

Maddox et al. [225] extends this method to estimate Gaussian posteriors for
model parameters, by also estimating a covariance matrix for the parame-
ters, using a low-rank plus diagonal posterior approximation. The diagonal
part is obtained by keeping a running average of the second uncentered
moment of each parameter, and then at the end of the training calculating:

Σdiag = diag

(
1
T

T

∑
e=1

θ(e)
2 − θ2

SWA

)
(4.4)

while the diagonal part is approximated by keeping a matrix GG⊤ with
columns Ge = (θ(e) − θ̂(e)), θ̂(e) standing for the running estimate of the
parameters’ mean obtained from the first e epochs. The rank of the ap-
proximation is restricted by retaining last L vectors of the Ge vectors and
dropping the previous, with L being a hyperparameter of the model, as
follows

Σlow-rank ≈
1

L− 1
GG⊤

=
1

L− 1

T

∑
e=T−L+1

(θ(e) − θ̂(e))(θ(e) − θ̂(e))⊤
(4.5)

The overall posterior approximation is given by:

θSWAG|D ∼ N
(

θSWA,
1
2
(Σdiag + Σlow-rank)

)
(4.6)

Once the posterior distributions are approximated, the model is used at
test time by sampling from these approximations. Specifically, we used
T = 80, L = 4 and a learning rate schedule dropping the learning rate
by 25% every 20 epochs. After training, we draw M = 4 samples from
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the approximated posterior distributions and compute the average of the
predicted distributions from these samples.

4.5.9 Improved Variational Online Gauss-Newton

Improved variational online Gauss-Newton (iVOGN) introduces an en-
hanced Bayesian learning algorithm tailored to address positive-definite
constraints within the learning process [226]. This method is part of the
variational inference domain where the posterior distribution is approx-
imated by a simpler one q(θ|ω), where ω are the parameters. However,
the parameters ω most often requires to satisfy constraints. For example,
when a multivariate Gaussian variable is used for such approximation,
the covariance matrix must be positive-definite. In this study, we assume
the approximate distribution q(θ|ω) to be a multivariate Gaussian distri-
bution where ω representing the average and the covariance matrix for
the multivariate variable θ. The method ensures the covariance matrix to
be positive-definite. Here, all model parameters were considered for this
approximation.

4.5.10 Stein Variational Gradient Descent

Stein variational gradient descent (SVGD) is a gradient-based sampling
algorithm for approximate inference [227]. Briefly, let consider the posterior
distribution p(θ|D), SVGD finds a set of n particles {zi}n

i=1 to approximate
the posterior p. Each particle z is a vector containing the model parameters.
Particles’ "positions" are updated by the following expression:

zi ← zi + ϵ
1
n

n

∑
j=1

[
k(zj, zi)∇zj log p(zj|D) +∇zj k(zj, zi)

]
, (4.7)

for all i = 1, . . . , n, where ϵ is a step-size, and k(z, z′) is any positive defi-
nite kernel specified by the users, such as the radial basis function kernel
k(z, z′) = exp

(
− 1

h∥z− z′∥2
2
)
, which can be thought of as encoding some

similarity measure between different particles z. In this update, the term
that contains the gradient of log p(z|D) drives the particles towards the
high probability regions of p(θ|D), while the term with∇zj k(zj, zi) acts as a
repulsive force to push zi away from zj to avoid the particles from collapsing
together. All model parameters were sampled using this technique, and
SVGD’s hyper-parameters were n = 10, h = 10 and ϵ = 0.001.
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4.5.11 Last Layer Laplace Approximation (LLLA)

Laplace approximation (LA) is derived through a second-order Taylor ex-
pansion centered around the mode of a distribution [228]. The mode can be
determined using conventional gradient-based methods or, as in our case,
substituted with a local optimum found with gradient descent. Specifically,
this is achieved by approximating the log posterior over the weights of a
NN given a dataset D around the Maximum A Posteriori (MAP) estimate
θMAP. Mathematically, this can be represented by the following expression.

log p(θ|D) ≈ log p(θMAP|D)−
1
2
(θ − θMAP)

⊤H̄(θ − θMAP), (4.8)

where θ are the model parameters, and H̄ denotes the Hessian of the nega-
tive log posterior. The absence of the first-order term is due to the expansion
around a maximum (θMAP), where the gradient is zero. Upon exponen-
tiating this equation, it becomes evident that the right-hand side adopts
a Gaussian functional form for θ, leading to the approximation of a nor-
mal distribution through integration. The posterior over the weights is
approximated as:

θ|D ∼ N (θMAP, H̄−1). (4.9)

In our study, we implement LA only for the last layer of our DL model.

4.5.12 Evidential Deep Learning

EDL combines DL with uncertainty quantification using evidence theory,
specifically Dempster-Shafer Theory [215, 229]. Unlike softmax-based DL
models, which produce point predictions, EDL models aim to explicitly
model epistemic uncertainty in predictions in a principled way. In EDL, a
set of belief masses bk ≥ 0 is assigned to each class k ∈ [1, K], representing
the potential class labels for a given input. These belief masses, along with
an overall uncertainty mass u ≥ 0 (corresponding to an “I don’t know”
category), must satisfy the constraint: u + ∑K

k=1 bk = 1. The belief mass bk

for class k and the uncertainty mass u are defined as follows:

bk =
ek

S
, u =

K
S

, S = K +
K

∑
k=1

ek, (4.10)
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where ek represents the evidence supporting the assignment of the input to
class k. This formulation shows that as the evidence ek for a class increases,
the associated uncertainty u decreases. Conversely, in the absence of any
evidence, u = 1 reflects complete uncertainty. This framework relates to
the Dirichlet distribution through the concentration parameter αk = ek + 1
for class k. The Dirichlet distribution, serving as the conjugate prior to the
categorical distribution, enables sampling of probability assignments across
all possible classes, denoted as p ∼ Dir(p | α) and ŷ ∼ Cat(y | p). The
expected probability for class k is computed as the mean of its corresponding
Dirichlet distribution: p̂k = αk/S.

Evidential Loss Function

Let f (x | Θ) represent the evidence vector e ∈ RK predicted by the DL
model for an input x, with Θ denoting the model parameters. The param-
eters of the corresponding Dirichlet distribution are defined as α = f (x |
Θ) + 1.

Given an observation xi, let yi be the one-hot encoded vector representing
the true class, where yij = 1 for the true class j and yik = 0 for all k ̸= j.
The Dirichlet distribution Dir(pi | αi) is used to model the uncertainty over
the class probabilities pi. The Dirichlet distribution acts as a prior for the
multinomial likelihood of the class labels.

To train the model, we minimize the following evidential loss function for
each instance i, which penalizes incorrect predictions while accounting for
uncertainty:

Lev,i(Θ) =
∫
∥yi − pi∥2 1

B(αi)

K

∏
j=1

p
(αij−1)
ij dpi

=
K

∑
j=1

(yij − p̂ij)
2 +

p̂ij(1− p̂ij)

Si + 1
,

(4.11)

where p̂ij = αij/Si with Si = ∑K
j=1 αij is the total evidence for observation

i, and B(αi) represents the multivariate Beta function. The term ∥yi − pi∥2

corresponds to the squared error between the ground-truth label and the
predicted class probabilities, and the second term regularizes the variance
of the predicted probabilities. Additionally, to prevent overconfidence and
encourage appropriate uncertainty, a regularization term is introduced
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by penalizing the divergence between the predicted Dirichlet distribution
Dir(pi | αi) and the uniform Dirichlet prior Dir(pi | 1). The total loss
function is thus formulated as:

L(Θ) =
N

∑
i=1

Lev,i + λt

N

∑
i=1

KL (Dir(pi | α̃i)∥Dir(pi | 1)) , (4.12)

where λt is an annealing coefficient that controls the impact of the regu-
larization term during training. It is defined as λt = min

(
1, t·Batch size

10·N

)
where t is the current training step, and N represents the total number of
training samples. The KL(·∥·) represents the Kullback-Leibler divergence
between two Dirichlet distributions. The adjusted Dirichlet parameters α̃i

are computed to update the prior belief about the class probabilities by
incorporating the true label, effectively removing non-informative evidence
and focusing on the true class. They are computed as: α̃i = yi +(1− yi)⊙ αi.
Equation 4.12 enables the model to simultaneously minimize the prediction
error and maintain calibrated uncertainty, particularly in cases where the
available evidence is limited.

4.5.13 Training Details

We used an NVIDIA A100 80GB GPU to run all methods within the PyTorch
environment. For training the DL model, we employed the Adam optimizer
with a learning rate of 0.001 and a batch size of 128. The training process was
capped at a maximum of 100 epochs, with early stopping applied to prevent
overfitting: training was halted if the validation loss did not improve for
6 consecutive epochs. Given the imbalance in the dataset, we addressed
this issue by incorporating focal loss during training, with parameters set
to α = 0.1 and γ = 2.

4.6 Results

4.6.1 Evaluation Metrics

In this section, we present the results of our benchmark study on uncertainty
estimation in DL models for AF detection. We evaluate the performance of
the models using key metrics, including sensitivity, specificity, ECE, AUC
and negative log-likelihood (NLL).
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Sensitivity and specificity are fundamental metrics for assessing the per-
formance of AF detection from the DL model. Sensitivity measures the
ability of the model to correctly identify positive cases (AF), while speci-
ficity gauges the model’s accuracy in identifying negative cases (Non-AF).

ECE is a measure of how well the predicted probabilities align with the
actual outcomes. It measures the difference between the average predicted
probability and the actual observed frequency of events across various
confidence intervals. Lower ECE values indicate better calibration. Formally,
ECE is computed as follows:

ECE =
Z

∑
z=1

|Bz|
N
|acc(Bz)− conf(Bz)|

acc(Bz) =
1
|Bz| ∑

i∈Bz

I(ŷi = yi)

conf(Bz) =
1
|Bz| ∑

i∈Bz

p̂i

(4.13)

where I(ŷi = yi) denotes the indicator function, which equals 1 if the pre-
dicted label ŷi matches the true label yi for the i-th sample, and 0 otherwise.
Bz is the set of samples whose confidence predicted by the model (i.e.,
model’s output probability) is in the interval [z− 1, z)/Z where Z repre-
sents the total number of bins. N is the total number of instances across
all bins, acc(Bz) denotes the accuracy of the z-th bin, and conf(Bz) refers to
the average confidence score of the samples in the z-th bin. i ∈ Bz indicates
a subset of instances that have similar confidence scores and are grouped
together in the same bin. We set the total number of bins Z = 10.

NLL is a measure of how well model’s predicted probabilities match the
true distribution of the data. Lower NLL values suggest better alignment.
Mathematically, the NLL is formulated as:

NLL = − 1
N

N

∑
i=1

log
(

pi,yi

)
, (4.14)

where pi,yi denotes the predicted probability for instance i and the correct
class yi.
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TABLE 4.2: Performance for different UQ methods on the
test set of IRIDIA-AF dataset.

Model Sensitivity Specificity AUC ECE NLL

MCD 0.936 0.937 0.962 0.054 0.241
DE 0.935 0.936 0.961 0.054 0.251
SE 0.937 0.937 0.962 0.054 0.230
BE 0.934 0.948 0.973 0.053 0.622
PE 0.937 0.942 0.974 0.046 0.312
SGVD 0.840 0.850 0.911 0.089 0.441
MFVI 0.833 0.841 0.892 0.082 0.412
MFVI (rank-1) 0.830 0.840 0.901 0.091 0.433
SWAG 0.929 0.955 0.971 0.056 0.201
iVOGN 0.943 0.880 0.951 0.115 0.272
LLLA 0.935 0.935 0.961 0.069 0.085

4.6.2 Comparative Performance for Different UQ Methods

Table 4.2 presents a comparative performance of UQ methods applied to the
test set of IRIDIA-AF dataset. Methods such as PE, BE, and SWAG stand
out for their robust performance, characterized by high sensitivity, speci-
ficity, AUC, and well-calibration (low ECE). Additionally, these methods
demonstrate competitive performance in terms of NLL, indicating their
ability to provide accurate probabilistic predictions. In contrast, SGVD and
MFVI exhibit comparatively weaker performance across these metrics, indi-
cating more uncertainty, poorer calibration, and less accurate probabilistic
predictions.

Additionally, Table 4.3 presents the performance of each UQ method on
the LTAF dataset. Similar to the results on the IRIDIA-AF dataset, PE and
BE exhibit high AUC scores and low ECE and NLL values, underscoring
their superior discriminative ability and calibration. In contrast, models like
SGVD and iVOGN show lower performance and higher uncertainty.

Table 4.4 presents the performance various UQ methods trained on the
LTAF dataset and tested on the AFDB (external) dataset. In this case, the
MCD, DE, SE, SWAG, and iVOGN methods demonstrate competitive sen-
sitivities, specificities, and AUC scores. MCD provides a low NLL of 0.08,
while DE, SE, SWAG, and iVOGN exhibit higher NLLs greater than 0.11.
The PE and BE methods demonstrate high sensitivities of 0.959 and 0.872,
respectively, along with competitive AUC scores of 0.94 and 0.88, indicating
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TABLE 4.3: Performacne for UQ methods on the test set of
LTAF dataset.

Model Sensitivity Specificity AUC ECE NLL

MCD 0.826 0.978 0.960 0.095 0.092
DE 0.834 0.978 0.960 0.092 0.123
SE 0.915 0.978 0.970 0.061 0.232
BE 0.951 0.988 0.991 0.020 0.121
PE 0.996 0.994 0.992 0.007 0.021
SWAG 0.941 0.948 0.960 0.051 0.201
MFVI 0.851 0.931 0.971 0.087 0.232
MFVI (rank-1) 0.885 0.941 0.971 0.067 0.210
SGVD 0.802 0.931 0.920 0.121 0.191
iVOGN 0.791 0.930 0.920 0.112 0.173
LLLA 0.873 0.986 0.992 0.013 0.061

TABLE 4.4: Performance of different UQ methods on the
entire AFDB dataset.

Model Sensitivity Specificity AUC ECE NLL

MCD 0.887 0.602 0.861 0.150 0.080
DE 0.897 0.601 0.871 0.131 0.110
SE 0.894 0.648 0.851 0.081 0.141
BE 0.872 0.632 0.881 0.160 0.050
PE 0.959 0.578 0.941 0.133 0.071
SWAG 0.836 0.693 0.862 0.101 0.142
MFVI 0.827 0.622 0.861 0.112 0.091
MFVI (rank-1) 0.857 0.602 0.871 0.142 0.101
SGVD 0.826 0.703 0.870 0.099 0.152
iVOGN 0.940 0.621 0.861 0.110 0.181
LLLA 0.893 0.752 0.891 0.159 0.341
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their effectiveness in identifying true positive cases. Despite lower speci-
ficities of 0.578 and 0.632, PE and BE maintain relatively low NLL values
of 0.07 and 0.05, suggesting robust probabilistic predictions. In contrast,
SGVD and MFVI (rank-1) show varying performance, with SGVD demon-
strating a higher specificity of 0.703 but a relatively lower sensitivity of
0.826 compared to PE. These models also exhibit moderate to high NLL
values, indicating potential challenges in probabilistic modeling for AF
detection on the AFDB dataset. Finally, the LLLA method exhibits balanced
sensitivity of 0.893 and specificity of 0.752, achieving an AUC of 0.89. How-
ever, its higher NLL of 0.34 indicates significant challenges in probabilistic
predictions despite its overall balanced performance.

4.6.3 External Validation

Our study underscores the critical importance of selecting UQ methods that
maintain consistent performance across external test sets, particularly those
trained on one dataset and tested on another. In this case, we trained a DL
model using the LTAF dataset and evaluated its performance on the AFDB
dataset, with results detailed in Table 4.4. Notably, the sensitivity dropped
from approximately 90% during internal validation to a range of 57.74% to
75.28% during external testing. These findings are consistent with existing
literature, such as the work by Seo et al. [230], which demonstrates that
models trained on data from a specific source may not generalize well to
external datasets, underscoring the adage “one-size-does-not-fit-all”.
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FIGURE 4.2: Comparative performance of different UQ
methods under random noise addition. (A) Sensitivity
across models with random noise addition to the ECG sig-
nal. (B) Specificity across models with random noise addi-

tion to the ECG signal.
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4.6.4 Impact of Random Noise Addition

By evaluating UQ methods under noisy conditions, our study provides
insights into their reliability in real-world environments where data may
be corrupted. To achieve this, we added a Gaussian noise to the ECG sig-
nal during inference, with standard deviations ranging from 0.01 to 0.055
mV with step of 0.005 mV, ensuring a comprehensive assessment of the
UQ methods’ performance under varying noise intensities. The sensitivity
analysis, illustrated in Figure 4.2a, portrays the performance of various
UQ methods across distinct noise levels on the test set of the LTAF dataset.
Notably, the PE model outperforms its counterparts in this scenario. Despite
the consistent performance of the MCD and DE methods, their computa-
tional demands and inference times are notably higher compared to the PE
model, as shown in Table 4.5. In Figure 4.2b, the SE, BE, and PE models
exhibit consistent performance across varying noise levels. Interestingly,
under specific noise levels, a trade-off is observed between the specificity
and sensitivity of UQ methods. While specificity diminishes, sensitivity
increases, indicating a major impact of noise on the performance of these
methods.

4.6.5 Classification with a Rejection Thresholds

Classification with a rejection threshold, also known as reject inference, may
enhance conventional classification models by enabling them to discard
predictions when uncertainty is high. This approach is particularly bene-
ficial in handling inputs that present classification challenges, as making
low-confidence predictions could lead to errors.

In this study, we implement a decision threshold mechanism to assign class
labels based on predicted probabilities. By varying the threshold from
0.55 to 0.95 with the interval of 0.05, we let the model to reject predictions
when confidence is below the threshold. Our findings show that increas-
ing the rejection threshold enhances the classifier’s performance. Figure
4.3a demonstrates the sensitivity of various UQ methods across different
rejection thresholds, revealing that higher thresholds improve overall perfor-
mance with minimal impact on PE methods. Similarly, Figure 4.3b shows a
corresponding trend in specificity across different UQ methods, paralleling
the sensitivity results.
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FIGURE 4.3: Comparative performance of different UQ
methods under rejection thresholds. (A) Sensitivity (B)
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FIGURE 4.4: Number of samples are discarded for different
UQ methods under different rejection thresholds. (A) No.
of Non-AF samples. (B) No. of AF samples. The total
number of Non-AF and AF samples are 14,991 and 26,839,

respectively, in the test set of the LTAF dataset.
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In Figure 4.4, the rejection rate for each method pertains to the number of
AF and Non-AF instances discarded at various thresholds. As the rejec-
tion threshold increases, the model becomes more confident in discarding
instances, leading to higher rejection rates. Methods such as SE, SVGD,
MFVI (Rank-1), SWAG, and iVOGN exhibit high rejection rates for AF
cases, indicating a strong sensitivity to uncertainty and a more aggressive
approach. This conservatism reduces false positives but risks over-rejecting
true AF cases, potentially missing some genuine AF instances. In contrast,
methods like MCD, DE, and MFVI show a more balanced rejection rate,
increasing steadily with higher thresholds. These methods provide a mod-
erate trade-off, aiming to reject Non-AF instances while minimizing the risk
of misclassifying true AF cases as Non-AF. On the other hand, BE, PE, and
LLLA demonstrate a more conservative strategy, rejecting fewer AF cases
compared to other methods. This cautious approach suggests a focus on
reducing false negatives, ensuring that fewer true AF cases are incorrectly
classified as Non-AF. Thus, selecting the appropriate method involves bal-
ancing the rejection of Non-AF instances with the risk of missing true AF
cases, tailored to the specific needs and priorities of the application.

4.6.6 Efficiency of UQ Methods

In addition to assessing performance metrics, our study explores the practi-
cal efficiency of various UQ methods by evaluating trainable parameters,
inference time, and floating-point operations (FLOPs). Understanding the
computational efficiency of these methods is crucial for their integration
into clinical workflows, where resource constraints are prevalent.

Table 4.5 provides an evaluation of UQ techniques for efficiency on the
LTAF dataset. Among these methods, MCD and DE demonstrate moderate
inference times, each equipped with one million parameters and 5056 billion
FLOPs. Notably, the SE stands out due to its expedited inference time,
marginally reduced parameter count (0.99 million), and significantly lower
FLOPs (1,686 billion), making it particularly suitable for efficiency-oriented
applications.

The MFVI (rank-1) exhibits an increase in both parameters and FLOPs.
While SGVD, iVOGN, and LLLA show competitive inference times, their
performance metrics—including sensitivity, specificity, AUC, ECE, and
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NLL—do not meet high standards. Conversely, PE excels in efficiency, boast-
ing an exceptionally fast inference time of 3.36× 10−5 seconds, a modest
0.07 million parameters, and minimal 130 billion FLOPs. This unparalleled
combination of speed and simplicity positions PE as an attractive choice for
scenarios with stringent computational resource constraints.

Similarly, BE achieves an optimal balance, demonstrating a reasonable infer-
ence time of 9.48× 10−5 seconds, 0.26 million parameters, and 421 billion
FLOPs. This notable performance, particularly with respect to both speed
and model complexity, highlights the advantages of PE and BE over other
methods in our comparative analysis. Their efficiency makes them promi-
nent candidates in scenarios where resource optimization is of paramount
importance.

TABLE 4.5: Average efficiency of UQ methods for a 10-s
segment of the test set of LTAF dataset

Model Inference Time (s) Parameters (106) FLOPs (109)

MCD 1.33× 10−4 1.00 5056
DE 1.33× 10−4 1.00 5056
SE 8.00× 10−5 0.99 1686
BE 9.48× 10−5 0.26 421
PE 3.36× 10−5 0.07 130
SWAG 3.20× 10−5 0.25 421
MFVI 3.17× 10−5 0.25 1264
MFVI (Rank-1) 1.89× 10−4 0.52 842
SGVD 3.23× 10−5 0.25 421
iVOGN 3.23× 10−5 0.25 421
LLLA 3.17× 10−5 0.25 1264

Overall, our comprehensive analysis of diverse UQ methods in AF detec-
tion highlights the multifaceted considerations essential for their effective
application in clinical settings. By evaluating these methods through exter-
nal validation, robustness under noise, classification with rejection options,
and computational efficiency, we provide a holistic view of their strengths
and limitations. Notably, while methods like PE and BE demonstrate supe-
rior efficiency and performance consistency, their integration into clinical
workflows must be carefully balanced with the specific requirements of
sensitivity, specificity, and computational resources.
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4.6.7 Results for EDL

We trained and evaluated the EDL model, considering the architecture
of the RTA model and the datasets used in our study. For more detailed
information about the RTA model and the datasets, please refer to Section
2.2 and Section 2.3, respectively. Table 4.6 presents a comparative analysis
of the performance of both our RTA model and the EDL model across key
metrics. Both models demonstrate strong performance in the Non-AF and
AF classes, achieving identical recall scores of 0.98, indicating their ability
to accurately detect Non-AF and AF cases. They also exhibit excellent
discriminative power for Non-AF and AF, with nearly identical AUC scores
of 0.982 for Non-AF and 0.977 for AF.

TABLE 4.6: Performance of softmax-based DL and EDL
model for AF detection.

Model
Recall AUC

ECE
Non-AF AF AFL Non-AF AF AFL

Softmax-DL (RTA Model) 0.951 0.931 0.812 0.981 0.973 0.942 0.16
EDL 0.953 0.934 0.838 0.982 0.977 0.972 0.09

Table 4.6 presents a comparative analysis of the performance of both our
RTA model and the EDL model across key metrics. Both models demon-
strate strong performance in the Non-AF and AF classes, achieving identical
recall scores of approximately 0.95 for Non-AF and 0.93 for AF, indicating
their ability to accurately detect Non-AF and AF cases. They also exhibit
excellent discriminative power for Non-AF and AF, with nearly identical
AUC scores of 0.982 for Non-AF and 0.977 for AF.

A slight difference emerges in the AFL class, where the EDL model out-
performs the softmax-DL model, achieving a recall of 0.838 compared to
0.812. Additionally, the EDL model shows superior AUC performance for
AFL, with a score of 0.972 compared to 0.942 for the softmax-DL model,
highlighting the EDL model’s enhanced ability to detect and differentiate
AFL cases.

Furthermore, the EDL model demonstrates better calibration, as indicated
by its lower ECE of 0.09, compared to the softmax-DL model’s ECE of
0.16. This suggests that the EDL model’s predicted probabilities are more
accurately aligned with the true outcomes.
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The results of this study highlight the effectiveness of the EDL model for
AF detection from Holter ECG recordings, addressing key limitations of
the softmax-based DL model. By explicitly modeling uncertainty, this
framework offers significant advantages over the softmax-based DL model,
particularly in clinical settings where decision-making under uncertainty is
critical.

4.7 Discussion

This study conducts a comprehensive analysis of different UQ methods,
focusing specifically on their application in AF detection. Acknowledging
the pivotal role of uncertainty awareness in clinical decision-making, our
objective is to identify the most suitable UQ methods for this purpose.

PE and BE consistently performed well across the IRIDIA-AF, LTAF, and
AFDB datasets, demonstrating high sensitivity, specificity, and AUC values.
These methods also provided low ECE and competitive NLL scores, reflect-
ing their robustness and calibration abilities. This aligns with findings from
previous studies which suggest that methods incorporating probabilistic ap-
proaches or ensembles, such as Bayesian methods and perturbation-based
techniques, can offer enhanced reliability [231, 221].

SGVD and MFVI showed comparatively weaker performance, especially
in terms of sensitivity and calibration. These methods faced challenges
in aligning predicted probabilities with true outcomes, resulting in higher
ECE and NLL values. The less effective performance of SGVD and MFVI
is consistent with literature indicating that methods relying on variational
inference or optimization techniques might struggle with calibration and
probabilistic accuracy [232, 233].

The drop in performance when models trained on the LTAF dataset were
evaluated on the AFDB dataset underscores a common issue in ML and
medical diagnostics: model generalizability. The significant decrease in
sensitivity from internal to external validation highlights the challenge
of achieving robust performance across different datasets. This finding
emphasizes the need for models to be trained on diverse datasets to improve
their generalizability and reduce the risk of overfitting to specific data
characteristics [234].
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Our noise robustness analysis demonstrated that methods like PE main-
tained superior performance compared to others when subjected to varying
levels of noise. This finding supports the use of PE in real-world applica-
tions where data corruption is a common concern. Conversely, methods
like MCD and DE, while robust, exhibited higher computational demands,
which may limit their practical applicability in scenarios with limited re-
sources [220]. This is consistent with studies suggesting that while certain
methods provide robustness, they may come at the cost of increased com-
putational complexity.

Implementing rejection thresholds improved performance metrics, par-
ticularly sensitivity and specificity [235, 236]. This approach allows for
high-confidence predictions while avoiding uncertain cases, thereby poten-
tially reducing error rates. However, it also presents a trade-off between
rejecting too many instances and missing true positives. The conservative
strategies of methods like BE and PE, which reject fewer AF cases, indicate a
focus on minimizing false negatives: a critical aspect in medical diagnostics
where missing a true positive can have serious consequences.

In terms of computational efficiency, PE and BE emerged as the most bal-
anced methods, offering both high performance and low computational
overhead. PE, in particular, stood out for its minimal inference time and
parameter count, making it highly suitable for scenarios with stringent
resource constraints. This is particularly relevant given the practical con-
straints of deploying UQ methods in clinical settings where real-time per-
formance is crucial.

Regarding the additional study, the EDL model presents substantial advan-
tages for the detection of AF from Holter ECG recordings. In comparison
to traditional softmax-based models, the EDL model demonstrates supe-
rior recall, enhanced discriminative power, and improved calibration. By
providing well-calibrated confidence estimates, the EDL model facilitates
more reliable clinical decision-making, thereby minimizing the occurrence
of both false positives and false negatives. These advancements position
the EDL model as a promising tool for accurate AF detection and diagnosis.
Future research will focus on validating these findings within larger patient
populations and investigating additional clinical applications, particularly
in the context of out-of-distribution datasets.
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4.8 Conclusion

In this study, we made a contribution to the field of AF detection through a
comprehensive investigation of UQ methods. Firstly, we examine 11 distinct
UQ techniques specifically tailored for AF detection using Holter recording
data, thereby expanding the analytical toolkit available to healthcare pro-
fessionals and researchers. Secondly, we conduct a rigorous evaluation of
these UQ methods by introducing random Gaussian noise into the data, to
evaluate the impact on UQ methods. This approach not only assesses the
robustness of the methods but also underscores their practical applicability
in noisy environments. Thirdly, by analyzing the performance of the UQ
techniques across various rejection thresholds, we provide valuable insights
into their reliability and robustness. Lastly, we used the EDL model to quan-
tify uncertainty and compare its performance with that of our RTA model.
Overall, these detailed assessments aid in understanding the strengths and
limitations of each method, facilitating more informed decision-making in
clinical settings.
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Chapter V

The Impact of Label Noise on
Deep Learning Models for
Atrial Fibrillation Detection
from Holter Recordings

5.1 Introduction

The effectiveness of DL models in detecting AF is largely dependent on
the availability of large, accurately labeled datasets. However, the manual
labeling of ECG data is a labor-intensive process that is prone to human
error, even among experts. The ambiguous characteristics of the signals,
along with their overlap with other arrhythmias, further complicate the
annotation process, often leading to label noise [237, 238]. Additionally,
Holter recordings, which capture long-term cardiac activity, introduce fur-
ther variability that challenges accurate labeling.

A common strategy to mitigate these challenges involves employing multi-
ple annotators to review the same samples in order to establish a consensus
label. While this approach effectively reduces subjective bias, it is resource-
intensive and impractical for large-scale training datasets, typically being
reserved for test sets [238].

DL models are particularly vulnerable to overfitting when trained on noisy
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data, which can result in significant performance degradation [239]. Re-
search has demonstrated that even small amounts of label noise can ad-
versely affect the performance of DL models [240]. While certain archi-
tectures, such as ResNet, exhibit some resilience to label noise [241], the
development of innovative algorithms capable of tolerating and managing
label noise remains essential.

These challenges underscore the necessity for noise-robust DL architectures
that can accommodate label imperfections while preserving high diagnostic
accuracy. In this study, we simulate the effects of both random and class-
dependent label noise in the training data to replicate real-world annotation
errors arising from human fatigue and bias. The core contributions of this
study are as follows:

• Analyzing the impact of different levels of label noise on the perfor-
mance of DL models for AF detection.

• Comparing the effectiveness of various techniques to identify those
that are most resilient to label noise.

• Evaluating the performance of noisy label handling techniques using
two external datasets for AF detection from Holter recordings.

5.2 Related Work

Various methods have been developed to tackle label noise, including semi-
supervised learning approaches, where models leverage both labeled and
unlabeled data, selectively utilizing the labeled data [242], and techniques
designed to identify and filter noisy labels from the training set [243]. How-
ever, discarding noisy data can risk losing critical information, particularly
in the medical field, where mislabeled instances may still contain essen-
tial patterns. Label noise can propagate through models, leading to erro-
neous clinical predictions. Despite its significant consequences, research
addressing label noise in biomedical data classification—especially AF de-
tection—remains sparse.

Zhang et al. [244] highlighted the vulnerability of DL models to label noise,
noting that at high noise levels, these models often memorize incorrect
labels, a phenomenon known as “overfitting to noise”. This issue arises
due to the capacity of DL models to fit both correct and incorrect data.
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Nonetheless, the authors also pointed out that regularization techniques,
such as dropout and weight decay, can help alleviate some negative effects
of label noise. Similarly, Pasolli et al. [245] employed a genetic algorithm
for optimal subset selection, aiming to remove data outside the optimal
subset. While effective, their approach only managed label noise up to
20%. Another study by Li et al. [246] applied multiple machine learning
classifiers to detect mislabeled samples, achieving comparable accuracy
to clean datasets when label noise remained below 20%. However, these
studies primarily focus on identifying noisy labels rather than exploring
how noise impacts model performance.

In contrast, Liu et al. [247] proposed a data-cleaning method that combines
a bootstrapped hard loss function to improve classification accuracy by
minimizing the influence of mislabeled data. They experimented with
tuning parameters for the loss function and identified an optimal epoch for
data cleaning. Tested on the MIT-BIH-AD using a 1-D CNN, their method
effectively mitigated the impact of noisy labels, even at noise levels reaching
50%.

Accurate labeling is critical for training reliable DL models for AF detec-
tion. However, label noise remains a substantial challenge, particularly in
medical applications. While prior research has primarily focused on beat
classification in the MIT-BIH-AD, the effects of noisy labels on rhythm classi-
fication—critical for AF detection—are less explored. This gap underscores
the necessity for developing robust methods tailored to managing noisy
labels in AF detection, especially for classification tasks involving 10-second
ECG segments.

5.3 Methodology

5.3.1 Model

To evaluate the effect of label noise on the performance of our DL model, we
utilized the RTA-DL model, designed to process 10-second ECG segments
using two leads as input. This model was selected based on previous
research, which conducted a comprehensive comparison of state-of-the-art
DL models for AF detection. For detailed information on the architecture
and development of the RTA-DL model, refer to Chapter II. In this study,
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we used the same hyperparameters as used in the original RTA model to
ensure consistency in our analysis.

5.3.2 Artificial Label Noise

This study investigates the impact of two common forms of label noise that
often complicate manual annotation and affect classification performance.

The first type is random label noise, which simulates errors arising from fac-
tors like annotator fatigue or external distractions. This noise uniformly af-
fects all classes, reflecting the conditions under which the annotator worked
rather than the data’s inherent properties. To replicate random label noise,
we randomly selected a specified percentage of labels and changed them to
other classes. For example, we converted “Non-AF” labels to “AF/AFL”,
“AF” labels to “Non-AF/AFL”, and “AFL” labels to “Non-AF/AF”. In bi-
nary classification, we inverted “Non-AF” labels to “AF” and vice versa. To
assess the influence of varying noise levels, we introduced increments of
noise at 10%, 20%, 30%, 40%, 50%, and 60% of the labels, thereby creating
multiple variations of the training dataset with increasing noise levels. For
binary classification, we limited the maximum noise level to 40%. Notably,
the test set remained unaltered, ensuring that all modifications were con-
fined to the training set. Although we cannot definitively confirm that the
error rate on the test set is 0%, we reasonably assume a very low error rate
due to the high level of curation and quality control applied to this dataset.

The second type, class-dependent noise, reflects the biases that can occur
during human annotation, where certain classes may be misclassified more
frequently due to subjective influences. To model this bias, we systemat-
ically flipped labels within a specific class while leaving the other class
unchanged. We then repeated this process for the opposite class to deter-
mine if the impact varied based on the class subjected to noise. Similar to
the random noise approach, we examined noise levels up to 60% for the
three-class classification problem and 40% for the binary classification sce-
nario, simulating varying degrees of class-specific mislabeling to evaluate
its effect on overall model performance.

At each designated noise level, we trained the DL model for a fixed number
of epochs. After each epoch, we evaluated the model on a separate vali-
dation set with clean labels, selecting the best-performing model based on
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validation accuracy for subsequent testing. In addition to our DL model
trained with focal cross-entropy loss, we implemented several techniques
to mitigate the effects of noisy labels. The following sections provide a
comprehensive description of each methodology used in this study.

5.3.3 Techniques for Noisy Label Handling

There are numerous techniques available for handling noisy labels in DL.
In this study, we focus on several methods that are explained in more detail
below.

Label-Smoothing

Label smoothing is a regularization technique designed to mitigate overcon-
fidence in deep learning models by modifying the one-hot encoded target
distributions [248]. Rather than assigning a probability of 1 to the correct
class and 0 to all other classes, label smoothing distributes a small amount
of probability mass across the incorrect classes. Formally, for a true class
label y for an instance, the one-hot encoded target vector is represented as:

y = [0, 0, . . . , 1, . . . , 0, 0] (5.1)

With label smoothing, this target distribution is adjusted to:

ysmooth =

[
ϵ

K− 1
, . . . , 1− ϵ, . . . ,

ϵ

K− 1

]
(5.2)

where ϵ is a small constant (typically between 0.1 and 0.2) and K is the
number of classes. This adjustment prevents the model from becoming
excessively confident in its predictions, thereby reducing the likelihood of
overfitting, especially in the presence of noisy labels. In our study, we set
ϵ=0.2.

Bootstrap

We implemented a loss correction technique based on the method proposed
by Reed et al. [249]. This approach modifies the cross-entropy loss function
to account for noisy labels by incorporating the model’s predicted probabili-
ties. Specifically, we employed a bootstrapping technique that combines the
original labels with the model’s predictions to reduce the impact of noisy
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labels over time. In this method, the loss function is adjusted as follows:

Lboot = −
N

∑
i=1

[λ yi log pi + (1− λ) ŷi log pi] (5.3)

where N is the number of samples, pi is the predicted probability for the
true class of sample i, ŷi is the model’s prediction for sample i after the
initial training phase, λ is a weight parameter that controls the balance
between the original label and the model’s prediction. The parameter λ

typically ranges from 0 to 1. When λ is close to 1, the loss function heavily
relies on the original labels, whereas a smaller λ places more emphasis on
the model’s predictions. This technique iteratively refines the model by
progressively correcting the influence of noisy labels, possibly leading to
improved robustness and accuracy in the presence of label noise. In this
study, we set λ = 0.8.

Huber Loss

Unlike the traditional cross-entropy loss, which can be sensitive to outliers
and noisy labels, Huber loss provides a balance between MSE and mean
absolute error (MAE) and is designed to be less sensitive to label noise by
reducing the influence of incorrect labels during training [250, 251].

Lδ(y, ŷ) =

 1
2 (y− ŷ)2 if |y− ŷ| ≤ δ,

δ ·
(
|y− ŷ| − 1

2 δ
)

otherwise,
(5.4)

where δ is a threshold parameter that determines the transition between
quadratic and linear behavior. For small errors (i.e., when the absolute dif-
ference between the true label and the predicted value is less than δ), Huber
loss behaves like mean squared error (quadratic loss). However, for larger
errors (i.e., when the error exceeds δ), it behaves like mean absolute error
(linear loss). This combination provides the benefit of smooth gradients for
small errors, while limiting the impact of larger errors, which are often the
result of noisy labels or outliers. In our study, we set δ = 0.8.

Even though the Huber loss may seem appropriate to regression tasks only,
in scenarios where labels may not accurately reflect the true class (noisy
labels), it reduces the effect of large discrepancies, thus preventing the
model from being overly influenced by potentially incorrect labels.
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Mixup

Mixup is a DA strategy that generates new training examples by interpolat-
ing both the input data and their corresponding labels, thereby smoothing
decision boundaries and mitigating overfitting [252].

Given two randomly selected training samples (xi, yi) and (xj, yj), Mixup
constructs a synthetic training sample (x̃, ỹ) using a convex combination of
the two original samples. This is formalized as:

x̃ = λxi + (1− λ)xj (5.5)

ỹ = λyi + (1− λ)yj (5.6)

where λ ∈ [0, 1] is a mixing coefficient sampled from a Beta distribution
Beta(α, α), with α as a hyperparameter controlling the degree of interpo-
lation. The label ỹ is similarly a linear interpolation of the original labels,
resulting in a soft label for the new synthetic example. In this study, we set
α = 0.2.

Forward Loss Correction (FLC)

Forward Loss Correction (FLC) is a technique designed to modify the stan-
dard loss function to account for label noise, thereby enhancing the robust-
ness of the model. This adjustment aligns the training process with the
underlying true distribution of the labels, as demonstrated by Patrini et al.
(2017) [253].

Let y̌ ∈ {1, . . . , C} represent the observed, potentially noisy label, where C
denotes the number of classes. The relationship between the true label and
the noisy label is modeled through a noise transition matrix T ∈ RC×C. The
entry Tij of the matrix represents the probability of observing label y̌ = j
given that the true label is y = i:

Tij = P(y̌ = j | y = i) (5.7)

Under this formulation, the distribution of noisy labels y̌ can be expressed
as a transformation of the true label distribution using the noise transition
matrix T:

P(y̌ | x) = T⊤P(y | x), (5.8)
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where P(y | x) denotes the true class probability given input x. This
relationship allows us to represent the noisy label distribution as a product
of the true label distribution and the noise transition matrix T.

In this study, the noise transition matrix T is defined as follows:

T =

0.9 0.1 0.1
0.1 0.9 0.1
0.1 0.1 0.9

 (5.9)

In Equation 5.9, the diagonal entries indicate a probability of 0.9 for correctly
identifying the true class, while the off-diagonal entries indicate a probabil-
ity of 0.1 for misclassification among the other classes. This configuration
assumes that the model is generally reliable but also acknowledges the
presence of label noise.

To correct the influence of noisy labels during training, we adjust the stan-
dard loss function using the noise transition matrix T. Let L(θ) denote the
loss function (e.g., cross-entropy loss) used to train DL model. The corrected
predicted probabilities ŷ are calculated as follows:

ŷ = ypredT, (5.10)

where ypred ∈ RN×C represents the predicted probabilities from the model
for each class c. The multiplication effectively adjusts the predicted prob-
abilities by incorporating the noise characteristics captured in T. Notably,
this calculation can also be expressed equivalently in terms of the label
distribution:

P(y̌ | x) = ŷ, (5.11)

indicating that the corrected predicted probabilities and the distribution of
noisy labels are the same. The modified loss function incorporating FLC is
then expressed as:

LFLC(θ) = −
C

∑
c=1

yc log(ŷc), (5.12)

where yc represents the true class labels, and ŷc represents the adjusted
predictions after accounting for noise.



5.4. Results 93

Knowledge Distillation

Knowledge distillation (KD) is a model compression and training technique
that transfers the knowledge from a large, complex model (the “teacher”) to
a smaller, more efficient model (the “student”). KD has shown effectiveness
in improving robustness against noisy labels by leveraging soft predictions
from the teacher model, which smooth out noisy or incorrect labels [254].

In KD, the teacher model is first trained on the dataset, including noisy
or mislabeled examples. Once trained, the teacher generates a set of soft
predictions, which represent class probabilities rather than hard labels.
These soft labels are used to train the student model, which minimizes the
following objective:

LKD = (1− α) · LCE(y, zs) + α · τ2 · LKL(zt/τ, zs/τ) (5.13)

where LCE is the cross-entropy loss between the y and the student model’s
output zs, and LKL is the Kullback-Leibler divergence between the teacher’s
softened output zt and the student’s output zs. The parameter τ (tempera-
ture) controls the smoothness of the teacher’s probabilities, while α balances
the contribution of the true labels and the distilled knowledge. In this study,
we used our DL model as the teacher model. For the student model, we
removed the last RTA block from our DL model. We set α = 0.5 and τ = 2.

5.4 Results

We assess the performance of various techniques under two types of label
noise: random label noise and class-dependent label noise, applied to both
binary and ternary classification tasks. The following subsections provide a
detailed evaluation of the results.

5.4.1 Performance for Non-AF, AF and AFL Under Different Noise
Levels and Techniques

Table 5.1 presents the classification performance of various methods for de-
tecting three classes—Non-AF, AF, and AFL—on our test set under different
levels of random label noise. The noise levels range from 0% to 60%, with
the performance metrics displayed for each method across these increments.
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At 0% noise, our DL model achieved high accuracy across all classes, partic-
ularly with Non-AF (95.1%) and AF (93.1%). As the noise level increased to
10%, 20%, and beyond, the performance of most methods varied, indicating
the models’ sensitivity to label noise. For instance, Label Smoothing per-
formed well at low noise levels, particularly with AF, where it reached an
accuracy of 96.0% at 0% noise and maintained competitive performance up
to 20% noise. However, its effectiveness diminished at higher noise levels,
particularly for AFL, dropping to 62.1% accuracy at 20% noise.

In contrast, the Mixup method consistently demonstrated resilience against
increasing noise levels, maintaining strong performance across all classes,
especially at higher noise levels, where it achieved an accuracy of 83.4%
for AFL at 60% noise. The Bootstrap method exhibited a similar trend,
particularly excelling in the Non-AF and AF categories, where it achieved
an accuracy of 96.1% at 0% noise and remained robust across varying noise
levels.

Overall, the results indicate that while all methods experienced a decline
in performance as noise levels increased, some methods, such as Mixup
and Bootstrap, were more effective at mitigating the impacts of label noise
compared to others.

TABLE 5.1: Recall for Non-AF, AF, and AFL on our test
set with varying levels of random label noise (NL=0% to

NL=60%).

(a) NL=0% to NL=30%

Methods
NL=0% NL=10% NL=20% NL=30%

Non-AF AF AFL Non-AF AF AFL Non-AF AF AFL Non-AF AF AFL
Our DL Model 0.951 0.931 0.812 0.945 0.954 0.785 0.954 0.956 0.792 0.902 0.932 0.783
Huber Loss 0.931 0.961 0.781 0.939 0.945 0.785 0.947 0.939 0.784 0.932 0.941 0.780
Label Smoothing 0.941 0.960 0.621 0.970 0.941 0.642 0.922 0.950 0.707 0.971 0.920 0.721
Mixup 0.960 0.921 0.831 0.951 0.929 0.820 0.950 0.923 0.821 0.952 0.941 0.801
Bootstrap 0.941 0.961 0.741 0.931 0.948 0.781 0.925 0.935 0.781 0.948 0.956 0.800
FLC 0.931 0.960 0.820 0.930 0.950 0.791 0.941 0.951 0.781 0.940 0.950 0.741
KD 0.932 0.952 0.788 0.944 0.951 0.783 0.942 0.956 0.790 0.942 0.933 0.781

(b) NL=40% to NL=60%

Methods
NL=40% NL=50% NL=60%

Non-AF AF AFL Non-AF AF AFL Non-AF AF AFL
Our DL Model 0.951 0.944 0.803 0.915 0.924 0.821 0.912 0.920 0.868
Huber Loss 0.932 0.944 0.763 0.925 0.913 0.804 0.941 0.901 0.869
Label Smoothing 0.841 0.951 0.702 0.930 0.912 0.735 0.929 0.901 0.743
Mixup 0.942 0.944 0.823 0.931 0.944 0.819 0.931 0.941 0.834
Bootstrap 0.931 0.941 0.744 0.921 0.902 0.860 0.834 0.881 0.921
FLC 0.941 0.952 0.741 0.931 0.940 0.734 0.931 0.942 0.742
KD 0.924 0.931 0.779 0.945 0.922 0.780 0.941 0.932 0.767
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Table 5.2 presents the classification performance of various methods under
different levels of class-dependent label noise ranging from 0% to 60%. Each
method’s performance is measured using accuracy scores for each class,
indicating how well the model predicts the correct labels amidst increasing
noise levels. Our DL model shows strong performance across all noise levels,
with the highest accuracy of 0.951 for Non-AF at 0% noise and a drop to 0.871
at 60% noise. Other techniques, such as Huber Loss and Label Smoothing,
also demonstrate competitive accuracy, particularly at lower noise levels.
For instance, Label Smoothing achieves its best accuracy of 0.971 for Non-
AF at 10% noise but experiences a decline at higher noise levels, reflecting
the challenges posed by label noise. The Mixup technique and Bootstrap
methods show varied performance, with the Mixup technique maintaining
relatively high accuracy across most noise levels for AF and AFL classes.
FLC and KD also yield comparable results, particularly in the Non-AF and
AF classes, indicating that these methods can effectively mitigate the impact
of label noise to some extent. Overall, the table highlights how different
methodologies influence classification performance in the presence of label
noise, providing valuable insights into their robustness and effectiveness in
practical scenarios.

TABLE 5.2: Recall for Non-AF, AF, and AFL on our test set
with varying levels of class-dependent label noise (NL=0%

to NL=60%).

(a) NL=0% to NL=30%

Methods
NL=0% NL=10% NL=20% NL=30%

Non-AF AF AFL Non-AF AF AFL Non-AF AF AFL Non-AF AF AFL
Our DL Model 0.951 0.931 0.812 0.945 0.954 0.785 0.954 0.956 0.792 0.902 0.932 0.783
Huber Loss 0.931 0.961 0.781 0.935 0.954 0.785 0.934 0.945 0.791 0.912 0.922 0.784
Label Smoothing 0.941 0.960 0.621 0.971 0.941 0.645 0.922 0.950 0.687 0.983 0.910 0.731
Mixup 0.960 0.921 0.831 0.951 0.921 0.780 0.951 0.942 0.741 0.950 0.941 0.780
Bootstrap 0.941 0.961 0.741 0.941 0.957 0.750 0.945 0.931 0.756 0.948 0.956 0.752
FLC 0.931 0.960 0.820 0.931 0.951 0.791 0.940 0.951 0.780 0.941 0.952 0.741
KD 0.932 0.952 0.788 0.941 0.942 0.791 0.942 0.951 0.783 0.941 0.951 0.739

(b) NL=40% to NL=60%

Methods
NL=40% NL=50% NL=60%

Non-AF AF AFL Non-AF AF AFL Non-AF AF AFL
Our DL Model 0.921 0.934 0.803 0.925 0.923 0.801 0.921 0.923 0.871
Huber Loss 0.911 0.924 0.801 0.922 0.932 0.801 0.891 0.892 0.860
Label Smoothing 0.840 0.951 0.701 0.935 0.925 0.735 0.934 0.921 0.740
Mixup 0.943 0.945 0.763 0.933 0.954 0.789 0.920 0.951 0.841
Bootstrap 0.931 0.942 0.745 0.961 0.901 0.780 0.961 0.891 0.781
FLC 0.942 0.951 0.740 0.921 0.953 0.723 0.951 0.962 0.708
KD 0.941 0.952 0.732 0.920 0.951 0.721 0.939 0.943 0.721
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5.4.2 Performance for Non-AF and AF

Table 5.3 presents the classification performance of different methods for
detecting Non-AF and AF across different levels of random label noise,
ranging from 0% to 40%. At 0% noise, Mixup achieved the highest ac-
curacy for Non-AF (0.951), but its performance for AF (0.895) was lower
compared to other methods like Label-Smoothing (0.929). As label noise
increased, the performance of most methods showed some degradation,
particularly at 40% noise. For instance, Mixup and Bootstrap saw drops in
AF classification accuracy at higher noise levels (0.87 and 0.87, respectively).
In contrast, Label-Smoothing maintained relatively stable performance,
achieving strong results even at 40% noise (Non-AF: 0.921, AF: 0.930), indi-
cating its robustness to label noise. Overall, while all methods are affected
by increasing noise, Label-Smoothing and Huber Loss demonstrate better
resilience, particularly in the AF classification task.

TABLE 5.3: Recall for Non-AF and AF on our test set with
varying levels of random label noise.

Methods NL=0% NL=10% NL=20% NL=30% NL=40%
Non-AF AF Non-AF AF Non-AF AF Non-AF AF Non-AF AF

Our DL Model 0.915 0.928 0.921 0.914 0.913 0.925 0.918 0.924 0.949 0.901
Huber Loss 0.925 0.922 0.919 0.904 0.909 0.915 0.920 0.912 0.909 0.911
Label-Smoothing 0.925 0.929 0.924 0.904 0.912 0.914 0.920 0.932 0.921 0.930
Mixup 0.951 0.895 0.932 0.914 0.913 0.905 0.918 0.891 0.901 0.871
Bootstrap 0.931 0.895 0.916 0.923 0.913 0.915 0.929 0.895 0.932 0.870
FLC 0.932 0.898 0.920 0.921 0.911 0.908 0.918 0.895 0.909 0.901
KD 0.912 0.918 0.911 0.921 0.913 0.918 0.914 0.910 0.917 0.901

The results presented in Table 5.4 compare the classification performance
of different methods under varying levels of class-dependent label noise,
specifically for distinguishing between Non-AF and AF. At 0% noise, the
methods generally exhibit strong performance, with most achieving ac-
curacy levels above 0.92 for both Non-AF and AF classifications. Label-
Smoothing and Huber Loss yield the highest performance at this noise-free
level. As the noise level increases, most methods maintain stable perfor-
mance up to 20% noise. However, at higher noise levels (30% and 40%),
performance begins to degrade more noticeably, particularly for methods
like Mixup and Bootstrap, which show a significant drop in AF classifica-
tion accuracy at 40% noise. Huber Loss and Label-Smoothing demonstrate
greater resilience to noise, maintaining relatively consistent performance
even at higher noise levels. Conversely, FLC and Mixup techniques suf-
fer from more pronounced decreases in AF classification accuracy as noise
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increases. These results indicate that while some methods are robust to mod-
erate noise, their efficacy varies significantly under severe class-dependent
label noise conditions.

TABLE 5.4: Recall for Non-AF and AF on our test set with
varying levels of class-dependent label noise

Methods
0% 10% 20% 30% 40%

Non-AF AF Non-AF AF Non-AF AF Non-AF AF Non-AF AF
Our DL Model 0.915 0.928 0.939 0.923 0.930 0.934 0.942 0.921 0.912 0.932
Huber Loss 0.939 0.921 0.940 0.920 0.932 0.934 0.942 0.921 0.941 0.921
Label-Smoothing 0.944 0.922 0.938 0.923 0.929 0.934 0.942 0.921 0.921 0.934
Mixup 0.940 0.932 0.933 0.929 0.935 0.914 0.932 0.920 0.901 0.871
Bootstrap 0.921 0.933 0.923 0.920 0.915 0.933 0.912 0.901 0.911 0.871
FLC 0.921 0.921 0.913 0.903 0.915 0.914 0.922 0.911 0.921 0.901
KD 0.935 0.932 0.913 0.922 0.915 0.914 0.922 0.904 0.941 0.911

5.4.3 Performance on External Test Sets

We assess the performance of each method at two distinct noise levels: 0%
and 40% label noise, using two external datasets, IRIDIA-AF and SHDB-AF,
as test sets for classifying Non-AF and AF cases. The model was trained
on our dataset, and the resulting performance metrics for each method are
summarized in the table below.

TABLE 5.5: Performance on the IRIDIA-AF dataset for Non-
AF and AF classification. Values in parentheses indicate

results with class-dependent label noise.

Methods
NL=0% NL=40%

Recall Recall

Non-AF AF Non-AF AF

Our DL Model 0.942 0.932 0.951 (0.941) 0.882 (0.922)
Huber Loss 0.911 0.932 0.972 (0.941) 0.843 (0.921)
Label-Smoothing 0.912 0.923 0.921 (0.931) 0.853 (0.911)
Mixup 0.961 0.920 0.912 (0.952) 0.903 (0.886)
Bootstrap 0.912 0.922 0.909 (0.911) 0.903 (0.921)
FLC 0.902 0.922 0.912 (0.932) 0.902 (0.908)
KD 0.932 0.921 0.943 (0.932) 0.90 (0.922)

Table 5.5 presents the recall performance of various methods for classifying
Non-AF and AF on the IRIDIA-AF dataset, evaluated at two noise levels:
0% and 40% label noise. For the noise-free scenario (0% label noise), Mixup
achieves the highest recall for Non-AF (0.961), while our DL model exhibits
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strong performance for AF classification (0.932). At 40% label noise, the
results vary, with Mixup maintaining robust recall for AF (0.903), while our
DL model achieves the highest Non-AF recall (0.951). Notably, under class-
dependent label noise (values in parentheses), most methods show slight
performance degradation, though Mixup and our DL model demonstrate
resilience, particularly for Non-AF classification. Among noise-handling
techniques, Huber Loss and FLC perform comparably well, though they
show a decline in AF recall. Overall, Mixup and our DL model emerge as
the most effective across both noise levels.

TABLE 5.6: Performance on the SHDB-AF dataset for Non-
AF and AF Classification. Values in parentheses indicate

results with class-independent label noise.

Methods
NL=0% NL=40%

Recall Recall

Non-AF AF Non-AF AF

Our DL Model 0.925 0.924 0.961 (0.962) 0.813 (0.913)
Huber Loss 0.946 0.945 0.982 (0.940) 0.861 (0.941)
Label-Smoothing 0.943 0.953 0.953 (0.952) 0.851 (0.939)
Mixup 0.951 0.922 0.931 (0.982) 0.921 (0.892)
Bootstrap 0.931 0.921 0.935 (0.942) 0.861 (0.941)
FLC 0.925 0.901 0.922 (0.932) 0.871 (0.927)
KD 0.935 0.934 0.931 (0.953) 0.891 (0.931)

Table 5.6 presents the performance of various methods on the SHDB-AF
dataset for Non-AF and AF classification. At 0% noise, all methods demon-
strate strong recall performance for both Non-AF and AF classes, with
Huber Loss and Mixup achieving the highest recalls. At 40% noise, there
is a noticeable decline in recall for most methods, especially for the AF
class, reflecting the challenge of handling label noise. However, Huber
Loss, Mixup, and KD show relatively better robustness, particularly with
class-independent label noise (indicated in parentheses). Notably, our DL
model shows a drop in AF recall under 40% noise but performs better when
class-independent noise is applied. Mixup and Huber Loss exhibit the most
consistent performance across noise levels, suggesting their effectiveness in
mitigating the impact of label noise on classification tasks.
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5.5 Discussion

In this study, we observed that the performance of DL models for AF
detection did not significantly degrade, even under high levels of label noise
as high as 40%. This result may seem counterintuitive, as it is commonly
expected that DL models suffer from substantial performance loss when
trained on noisy labels. However, this phenomenon can be rationalized
through several theoretical and empirical insights from existing literature.

First, DL models, particularly CNNs and architectures like ResNet, have
been shown to possess a certain degree of robustness to label noise. Rolnick
et al. [241] demonstrated that DL models can tolerate surprisingly high
levels of label noise, particularly in cases where the noise is random or
symmetric across classes. In such scenarios, the model learns to generalize
the underlying patterns in the data while disregarding mislabeled instances,
especially when trained with sufficient data. This could explain why the
model’s performance in AF detection remains relatively stable, even at high
noise levels. Li et al. [246] used five different ML classifiers to improve the
reliability of the mislabeled samples identification. The authors reported
that if the label noise level is not higher than 20%, the classification accuracy
can be improved to the same level as there is no mislabeled sample in the
training set.

Additionally, it has been observed that the early training phase of DL mod-
els predominantly focuses on learning clean and easy-to-classify samples
before memorizing noisy or mislabeled data. Arpit et al. [255] provide
evidence that DL models, during their initial epochs, tend to learn mean-
ingful representations of the data, which enables them to build a strong
predictive model, even in the presence of noise. This phenomenon, known
as the “memorization effect”, allows models to maintain competitive perfor-
mance in noisy settings, provided that training is stopped before extensive
overfitting to mislabeled data occurs.

Moreover, the class imbalance and domain characteristics in the AF de-
tection task may further contribute to the model’s resilience to noise. AF
detection from ECG signals is a relatively well-defined task with distinc-
tive features, such as irregular heart rhythms, that may be less prone to
confusion with normal or other arrhythmic signals, even under noisy condi-
tions. This domain-specific feature distinctiveness could reduce the negative
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impact of noisy labels.

Furthermore, advanced techniques for mitigating the effects of label noise,
such as robust loss functions and early stopping, were likely beneficial. For
instance, Zhang and Sabuncu [256] showed that robust loss functions like
focal loss or Huber loss can make DL models less sensitive to mislabeled
data. These methods down-weight the influence of potentially noisy or
hard-to-classify samples, thereby improving model robustness in high-noise
environments. In our study, the use of focal cross-entropy loss may have
played a critical role in preventing significant performance degradation
under noisy conditions.

Lastly, the evaluation of the model on external datasets (e.g., IRIDIA-AF and
SHDB-AF) also suggests that noisy labels during training did not drastically
impact the generalization ability of the model. This is consistent with the
findings of Frenay and Verleysen [239], who argue that DL models can
maintain robust generalization in real-world noisy data, as long as the noise
does not dominate the entire dataset.

In summary, the observed stability in performance under high label noise
can be attributed to several factors, including the inherent noise robust-
ness of DL architectures, the memorization effect during early training,
domain-specific feature clarity in AF detection, and the use of advanced
noise-handling techniques. These insights are supported by various stud-
ies, reinforcing the notion that, under certain conditions, DL models can
exhibit considerable resilience to label noise without suffering substantial
performance degradation.

5.6 Conclusion

Label noise poses a significant challenge for deploying DL models within
the healthcare system, especially in sensitive tasks like AF detection from
ECG signals, where the risk of classifiers learning from mislabeled data
is heightened. An ideal model should effectively differentiate between
representative patterns and label noise. This study demonstrated that DL
models, particularly those tailored for noisy label handling, outperform
traditional methods, showing less performance degradation in the presence
of substantial label noise. Notably, annotation bias, particularly against
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minority classes, proved more detrimental than random noise. This high-
lights the importance of selecting robust models that can adapt to real-world
scenarios where label noise is prevalent. Overall, this research provides
a systematic evaluation of how various types of label noise affect model
performance, offering valuable insights into model selection strategies to
mitigate the challenges posed by noisy label data.
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Chapter VI

Conclusions and Final Remarks

6.1 Conclusions

Accurate detection of AF is of paramount clinical significance, especially
given the rising prevalence of atrial arrhythmias and the increasing adop-
tion of wearable ECG devices that offer continuous monitoring. These
devices generate vast amounts of data, highlighting the urgent need for
robust and scalable AI-based approaches. This thesis has explored various
methodologies to enhance the automatic detection of atrial arrhythmias
within clinical continuous ECG signals. Recognizing the critical role of
precise AF detection in patient care, we investigated multiple strategies
aimed at developing a reliable AI-based system for the detection of atrial
arrhythmias from clinical continuous ECG data.

6.1.1 Design and Development of Deep Learning Model for Atrial
Fibrillation Detection From Holter Recordings

This study utilized a comprehensive dataset of 1,346 retrospective Holter
recordings, representing one of the largest collections available for the
analysis of atrial arrhythmias across a wide spectrum of cardiac conditions.
Through this dataset, we successfully developed and validated a residual
attention-based DL model, which demonstrated superior performance in
detecting AF and AFL compared to existing state-of-the-art DL models and
two rule-based software, namely ABILE and CBR. The model exhibited
high recall rates across diverse demographic groups, including patients
with VT and PVC, underscoring its robustness and versatility.
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Our model achieved a specificity rate of 0.963, which, while slightly lower
than ABILE’s 0.984 and CBR’s 0.999, indicates its effectiveness in correctly
identifying Non-AF cases. Conversely, the sensitivity for AF/AFL reached
0.951, substantially outperforming both ABILE (0.489) and CBR (0.442).
These findings highlight the model’s capability in accurately predicting AF
events, which is crucial for clinical decision-making.

In terms of FPR, our model recorded a value of 0.037 for AF or AFL, which
is higher than ABILE’s 0.016 and CBR’s 0.001. Specifically for AF, the FPR
was measured at 0.046, which is lower than ABILE’s 0.059 but higher than
CBR’s 0.029. The PPV for AF or AFL was determined to be 0.898, which,
although lower than CBR’s 0.991, was slightly superior to ABILE’s 0.915.
For AF, the PPV stood at 0.651, exceeding ABILE’s 0.595 yet falling short of
CBR’s 0.736. Notably, for AFL, our model achieved a PPV of 0.909, while
CBR attained a perfect score of 1.00.

Furthermore, we assessed the performance of our model using an additional
dataset of 685 Holter recordings categorized as Non-AF, based solely on the
presence of PACs. Our model demonstrated a specificity of 95.4%, reflecting
strong accuracy in identifying Non-AF cases, although CBR maintained a
lead with a specificity of 99.0%. ABILE followed closely with a specificity of
94.1%, which was slightly below that of our model.

In summary, while our model exhibits robust performance characterized
by high specificity and a moderate FPR, it also identifies critical areas for
enhancement, particularly in minimizing false positives and improving
PPV. The findings of this study contribute valuable insights to the ongoing
discourse in AF detection and provide a foundation for future research
aimed at refining predictive models for better clinical outcomes.

6.1.2 A Systematic Survey of Data Augmentation of ECG Signals
for AI Applications

This study systematically reviewed current research on DA techniques for
AI-based ECG analysis. The findings indicate that DA can significantly
improve the performance of automated ECG systems; however, its effective-
ness is highly dependent on the specific application.

Our experiments revealed that while DA often enhances model performance
by facilitating the learning of more robust features, it is not a one-size-fits-all
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solution. The success of DA varies across different tasks and diagnostic
categories. Several key factors must be considered when evaluating the
effectiveness of DA techniques, including the extent of desired performance
improvement, the size of the available training data, and the specific diag-
nostic objectives. Therefore, it is essential to assess the required performance
enhancement and determine whether the trade-offs associated with DA are
acceptable.

Additionally, the size and balance of the training dataset are critical in
influencing the impact of DA. For small or imbalanced datasets, DA can
substantially improve model generalization by generating diverse training
samples. Conversely, in the context of large and heterogeneous datasets, the
benefits of DA may diminish. In some instances, excessive augmentation
can lead to performance degradation by introducing noise or unrealistic
variations into the training process.

6.1.3 Uncertainty Quantification of Deep Learning Model for
Atrial Fibrillation Detection from Holter Recordings

While the effectiveness of DL has shown considerable promise, the sus-
ceptibility of DL models to overfitting underscores the need for robust
UQ methods to facilitate safe integration into clinical practice. Despite the
availability of various UQ approaches for DL models, there is a significant
lack of comprehensive evaluations that systematically compare these tech-
niques within a scalable framework. This gap is particularly evident when
employing metrics that elucidate the trade-offs between performance and
computational cost in the context of AF detection.

In this study, we assess eleven distinct UQ techniques using Holter record-
ing data. To evaluate their robustness, we introduce random Gaussian
noise and examine the performance of each method in noisy environments.
Additionally, we explore the effectiveness of UQ across varying rejection
thresholds, thereby providing valuable insights into the reliability of these
techniques.

Moreover, in a related investigation, we incorporate evidence theory into
our DL model, referred to as the RTA model, to quantify calibration error.
Our findings indicate that the evidential DL model outperforms traditional
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softmax-based DL models. This study elucidates the strengths and lim-
itations of each UQ method, thereby supporting more informed clinical
decision-making and contributing to the development of more robust tools
for AF detection.

Overall, this research enhances the understanding of UQ methods in AF
detection and paves the way for the development of more accurate and
reliable diagnostic tools.

6.1.4 The Impact of Label Noise on Deep Learning Models for
Atrial Fibrillation Detection from Holter Recordings

Label noise is a significant challenge in healthcare, particularly in AF de-
tection from ECG signals, where mislabeled data can mislead classifiers
and compromise diagnostic accuracy. In such scenarios, a robust DL model
must be capable of distinguishing true patterns from noisy labels to ensure
reliable performance. This thesis demonstrates that DL models specifically
designed to handle label noise show remarkable resilience, exhibiting min-
imal performance degradation even in the presence of substantial noise.
Notably, the model maintains stability when up to 60% of labels are altered
across three cardiac conditions (non-AF, AF, and AFL) and up to 40% for
two conditions (non-AF and AF). These findings underscore the critical role
of DL models that can manage random label noise while also addressing
systematic labeling biases. This research offers a thorough evaluation of the
impact of label noise on model performance, providing valuable insights
into strategies for mitigating the effects of noisy data in AF detection from
Holter recordings.

6.2 Final Remarks

The findings of this thesis contribute to the advancement of AI-driven atrial
arrhythmia detection from Holter recordings. The research highlights the
critical importance of robust DL model design, data augmentation, uncer-
tainty quantification, and effective label noise management in achieving
accurate and reliable AF detection. The implications of this research extend
beyond mere algorithmic improvements; they pave the way for enhanced
patient care through early detection and timely intervention, which are
crucial for reducing AF-related complications.
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However, it is essential to acknowledge some limitations inherent in our
DL-based AF detection from Holter recordings. While our model effectively
predicts 10-second segments of ECG data, this design raises concerns in the
context of continuous monitoring, particularly regarding the management
of false alarms. In a continuous monitoring environment, even a small
number of false alarms can lead to unnecessary anxiety for patients and
clinicians, as well as potentially inappropriate medical responses. This
raises a critical issue: how can we effectively manage false alarms in real-
time monitoring scenarios? Addressing this question remains an area for
further exploration. One potential approach could involve implementing a
decision rule to merge predictions of consecutive 10-s segments detected
as AF, allowing the system to differentiate between isolated anomalies and
sustained arrhythmias.

Overall, the findings of this thesis not only demonstrate the current ca-
pabilities of AI in atrial arrhythmia detection but also establish a strong
foundation for future research and model refinement, ultimately enhancing
the reliability, robustness, and clinical applicability of AI systems in atrial
arrhythmia detection.
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