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Abstract

The advancement of quantum computing significantly depends on the effective de-
sign and synthesis of quantum reversible circuits. This thesis introduces innovative
methods for quantum circuit synthesis, with a particular emphasis on Boolean func-
tions and multi-valued logic systems. We investigated the inherent regularities in
dimension-reducible functions to develop novel methodologies for generating com-
pact reversible circuits. These techniques lead to substantial reductions in quan-
tum cost and area while enhancing the overall efficiency of quantum circuit design.
Additionally, we extend our work to autosymmetric and dimension-reducible func-
tions, demonstrating improved circuit compactness and cost-effectiveness. We also
explore the application of the Projected Sum of Product (PSOP) decomposition
technique, which facilitates the optimization of gate count and circuit depth, ad-
dressing essential challenges in modern quantum hardware. This method simplifies
complex operations, enabling the design of practical quantum circuits that are both
efficient and scalable. In the latter part of this thesis, we transition to multi-valued
logic, specifically focusing on ternary and quaternary circuits. We propose novel
designs for quantum reversible ternary decoders, multiplexers, and demultiplexers
that aim to reduce circuit width while enhancing overall performance, thus over-
coming the limitations of traditional binary systems. Our research also includes
the development of a quantum ternary image processing circuit utilizing ternary
reversible gates to lower quantum cost and enhance functionality. We present a
balanced ternary reversible comparator that showcases significant improvements
in quantum cost and efficiency, highlighting the advantages of balanced ternary
logic in quantum applications. Finally, we establish a comprehensive framework
for optimizing quaternary reversible circuits, concentrating on scalable designs for
multiplexers and demultiplexers, which are crucial components in arithmetic logic
units. This thesis contributes to the field of quantum computing by advancing
the synthesis of efficient quantum circuits. We exploit function regularities and
decomposition techniques to optimize quantum binary circuit designs, resulting in
enhancements in circuit size and cost. Additionally, we develop multi-valued re-
versible circuits that demonstrate greater efficiency compared to existing designs.
These findings not only enhance theoretical understanding but also lay the ground-
work for future research and practical applications in quantum technologies.
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Chapter 1

Introduction

The reversible computation paradigm has gained considerable interest as a viable
alternative to traditional irreversible logic. In reversible computation, all opera-
tions are bijective, allowing computations to move both forward and backwards.
This characteristic enables the retrieval of inputs from outputs and vice versa, en-
suring that information processing is lossless. The initial enthusiasm for reversible
computation stems from the groundbreaking research conducted by Landauer and
Bennett. [83, 11] proposed that logical reversibility could play a vital role in devel-
oping energy-efficient circuits. Their research shows that the loss of information
associated with non-reversibility is fundamentally related to a circuit’s power con-
sumption, as energy dissipation is directly proportional to the energy required to
represent the signal [51, 150]. In theory, since reversible computations do not result
in information loss, energy dissipation could be eliminated. Additionally, reversible
computation has been applied in a range of areas, including adiabatic circuits, en-
coder design, on-chip interconnects, and quantum computing [109, 143]. Numerous
experiments have shown the successful implementation of universal quantum gate
sets in various physical systems, including atomic-scale applications [4], super-
conducting circuits [48, 117], linear optical systems [142, 50], and other physical
architectures. Quantum computing has the potential to significantly reduce the
computational complexity of many problems, providing greater efficiency compared
to classical computing. For instance, by employing quantum algorithms, only

√
N

steps are needed to search an unstructured database, as opposed to the N steps
required by classical algorithms [57, 31, 148].

In recent times, advancements in quantum architectures have reignited inter-
est in quantum computing and ensuring the creation of innovative secure cryp-
tographic protocols. Consequently, the area of quantum logic synthesis has gar-
nered significant attention. Many quantum algorithms, such as Grover’s search
algorithm, often necessitate the computation of oracles, which are subroutines de-
fined as classical logic functions [109]. The conventional approach to synthesizing
quantum oracles generally involves two main stages: reversible logic synthesis and
quantum compilation. Given that the evolution of quantum systems is governed
by reversible unitary operators, classical logic functions must initially be imple-
mented as reversible circuits. Subsequently, each reversible gate is broken down
into a series of basic unitary quantum gates according to a specified quantum gate
library. These two steps should aim to minimize the overall gate count of the quan-
tum circuits. Recently, new techniques for reversible circuit synthesis and quantum
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compilation have been introduced in the literature [91, 130, 128, 92]. Among these,
one method leverages a structural regularity known as autosymmetry to synthesize
compact quantum circuits, as discussed in [13].

Furthermore, multiple-valued logic is attracting significant interest as future
challenges for binary logic are expected to be considerable, primarily due to signifi-
cant thermal and reliability concerns [123]. In the domain of reversible binary logic,
reversible multiple-valued logic has also been shown to be more secure in quantum
cryptography and more efficient in quantum information processing [10, 30, 133].
Additionally, it offers lower interconnection complexity, decreased power consump-
tion, and enhanced error tolerance in quantum computations [81, 96].

In multi-valued systems, ternary logic exhibits enhanced noise immunity [46]
and represents the most cost-effective radix, determined by analyzing the width
and depth of number representation [63, 80]. Furthermore, recent studies indicate
that quantum computers utilizing ternary logic are 37% more compact than those
using binary logic [61]. In quantum ternary systems, each unit of information is
referred to as a qutrit. Theoretically, reversible ternary logic can be employed
to design quantum computing structures [106]. Consequently, researchers have
recently dedicated considerable attention to reversible ternary logic, leading to
numerous contributions in the literature regarding ternary reversible circuit designs
[1, 105, 121].

It is important to note that ternary arithmetic functions can be represented in
two forms: balanced and unbalanced. In the unbalanced representation, a qutrit
is depicted by the values 0, 1, or 2, while in the balanced representation, it is rep-
resented by the values 1̂, 0, or 1. Compared to unbalanced ternary representation,
balanced ternary representation allows for a more efficient implementation of arith-
metic functions. When designing efficient arithmetic circuits, balanced ternary
representations offer significant advantages, including straightforward ternary in-
version, the removal of the additional sign digit, equivalence between rounding to
the nearest integer and truncation, ease in generating partial products, a reduced
likelihood of carry generation, and shorter carry ripple structures in comparison
to unbalanced ternary representations [46].

Another popular logic multi-valued systems is quaternary. In this logic, two
bits can be combined into quaternary values to represent binary logic functions [77],
which is consider as a limitation in ternary logic. In quantum quaternary logic, the
memory unit is referred to as a qudit. Recently, numerous essential circuits have
been developed using quaternary reversible logic, including comparators, parallel
adders, full adders, half adders, subtractors, and decoders [136, 59, 111, 118, 108].

In general, metrics such as quantum cost, garbage outputs, and constant (an-
cilla) inputs play essential roles in the design and optimization of quantum and
reversible circuits. Minimizing these key factors can significantly enhance the over-
all efficiency of quantum reversible logic design, resulting in circuits that are more
effective and resource-efficient. A sample circuit is included in Figure 1.1 to illus-
trate these concepts. The following sections provide explanations of these metrics:

• Quantum cost refers to the number of primitive gates, required to realize the
circuit.

• The number of garbage outputs indicates the outputs which are generated
to preserve one-to-one mappings but have unimportant values.

2



|0⟩ H H

|0⟩ X

Figure 1.1: Simple quantum circuit.

• The number of constant inputs signifies the number of inputs which must be
maintained constant in order to synthesize the specified logic function.

In this thesis, the aim is to reduce the total gate count of quantum circuits to
improve their execution efficiency concerning quantum cost and circuit size. Our
investigation into quantum circuit optimization is organized around two intercon-
nected approaches:

In Part I: Exploiting Function Regularities and Decomposition for
Quantum Synthesis, we focus on minimizing the cost of quantum circuits by uti-
lizing inherent regularities in Boolean functions and implementing decomposition
techniques. In Chapter 2, we introduce the fundamental concepts of decomposi-
tion and quantum computing, emphasizing function regularities, PSOP decompo-
sition, and quantum synthesis. Chapter 3 discusses quantum circuit synthesis for
dimension-reducible Boolean functions, demonstrating through experiments that
the proposed strategy enables the computation of compact quantum circuits for
D-reducible functions. This results in area reductions (measured by the num-
ber of elementary quantum gates) of approximately 38% from standard ESOP
forms. Furthermore, when considering XAG-based quantum compilation [91], ex-
perimental findings indicate an area gain (measured in T-gates) of about 21%. It is
noteworthy that XAG-based quantum compilation typically yields highly compact
implementations. The outcomes of this research have been published at the DSD
Conference 2023 [27]. Chapter 4 builds on this by investigating the synthesis
of autosymmetric and dimension-reducible functions, emphasizing improvements
in circuit compactness and cost efficiency. Chapter 5 explores the application
of PSOP decomposition techniques, focusing on the challenges of optimizing gate
count and circuit depth for quantum circuit synthesis. This chapter details the
proposed pre-processing method and the reconstruction strategy, demonstrating
that after PSOP decomposition and quantum synthesis of the components, it is
possible to reconstruct the original function. The experimental results indicate
that the proposed pre-processing phase exhibits better outcomes for 61% of the
benchmarks, with an average gain of about 22% in terms of T-gates. The result
of this research has been published at the DSD Conference 2024 and invited for a
special issue in the WiPiEC Journal-Works in Progress in Embedded Computing
Journal [26].

Part II: Multivalued Reversible Designs for Quantum Circuits, where
we transition to multi-valued logic, beginning with Chapter 6, where we introduce
the fundamental concepts of multi-valued reversible logic, with focus on ternary
and quaternary logic. In Chapter 7 we present innovative designs for a quantum
ternary decoder, multiplexer, and demultiplexer, highlighting the benefits of the
proposed ternary logic in minimizing circuit width and improving performance.
Specifically, the enhancements in quantum cost, garbage outputs, and constant in-
puts for the proposed multiplexers are 48%, 4%, and 9%, respectively. Moreover,
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the newly designed demultiplexer shows improvements in quantum cost (48%),
garbage outputs (7%), and constant inputs (5%) when compared to its predeces-
sor [68]. The outcomes of this research were published in the Quantum Information
Processing journal [135]. Chapter 8 introduces a novel quantum ternary image
processing circuit that utilizes quantum ternary gates, with a focus on reducing
quantum cost while enhancing functionality. Notably, our design exhibits a 20.56%
reduction in quantum cost, along with 11% and 100% improvements in constant
inputs and garbage outputs, respectively, compared to its counterpart in [42]. The
outcomes of this research were published in the Quantum Information Processing
journal [134]. Chapter 9 discusses the development of a balanced ternary re-
versible comparator, demonstrating significant advancements in quantum cost and
efficiency. Specifically, the proposed balanced ternary 1-qutrit comparator shows
substantial improvements in quantum cost (65%), the number of constant inputs
(50%), and garbage outputs (33%) when compared to existing unbalanced com-
parator designs [41, 103, 147]. Chapter 10 addresses quaternary reversible circuit
optimization for multiplexers and demultiplexers, which are crucial for arithmetic
logic units. Our proposed designs exhibit reduced quantum cost, garbage outputs,
and constant inputs compared to previous designs in [59, 72, 74]. The result of
this research were published in the IEEE Access journal [102].

Finally, Chapter 11 concludes the thesis by illustrating how the proposed
approaches address significant challenges in quantum computing, including circuit
size, quantum cost, and scalability. This contribution enhances practical applica-
tions in quantum computing and sets the stage for future advancements in quantum
circuit design.
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Chapter 2

Preliminaries on Decomposition
and Quantum Compilation

2.1 Function Regularities

2.1.1 The Concept of Dimension Reducible Functions

In this section, we explore the concept of dimension reducibility (D-reducibility),
a particular regularity based on affine spaces[38, 39], which has been detailed
in [17, 15, 16]. Recall that a vector subspace V of the classical Boolean vector
space ({0, 1}n,⊕) is a subset of {0, 1}n containing the zero vector 0 = (00 . . . 0),
such that for each v1 and v2 in V we have that v1 ⊕ v2 is still in V . We have the
following:

Definition 1 Let α ∈ {0, 1}n be a Boolean point (or vector), the set A = α⊕V =
{α⊕ v | v ∈ V } is an affine space over V with translation point α.

Example 1 In Figure 2.1, columns correspond to the variables x1, x2, · · ·x6, and
the set A = α ⊕ V is an affine space over the vector space V = {000000,
001001, 010010, 011011, . . . , 111111}, with translation point α = 000001 ∈ {0, 1}6.
The dimension of A is the dimension of the corresponding vector space V and α is a
point in {0, 1}6. As shown in the figure, the vector space V = {000000, 001001, 01
0010, 011011, . . . , 111111} and the vector 000001 ∈ {0, 1}6. The set A = α⊕V =
000001⊕V = {000001, 001000, 010011, 011010, . . . , 111110} is an affine space over
V .

Definition 2 Consider an affine space A over a vector space V. The canonical
translation point αA is the minimum point of A in binary order.

Definition 3 Consider a vector space V of dimension k, sorted in binary order
from index 0 to 2k − 1. The canonical basis BV of V consists of the vectors with
indices 20, 21, . . . , 2k−1.

Example 2 In the vector space V shown in Figure 2.1, rows are indexed from 0
to 2k − 1 and the points with indices 20, 21, 22, ..., 2k−1 (k=3) form the canonical
basis BA of V . The canonical translation point αA is the point of A with index 0.
Generally, the canonical representation of an affine space is given by its canonical
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A
x1x2x3x4x5x6
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 1 1 0

V
x1x2x3x4x5x6
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

Figure 2.1: An affine space A and the corresponding vector space V.

translation point and its canonical basis. In each canonical basis vector, the variable
corresponding to the first 1-component from left is called canonical variable. The
variables that are not canonical in the canonical basis are called non-canonical
variables.

Example 3 Consider the affine space A in Figure 2.1. We have that αA = 000001
and BA = {001001, 010010, 100100}, and the canonical variables in v1, v2, and v3
are equal to x3, x2, and x1, respectively. Therefore, the non-canonical variables are
x4, x5, and x6.

An affine space can be algebraically represented by a pseudoproduct consisting
of an AND of XORs or literals [38]. There are several ways to express affine space
characteristic functions as a pseudoproduct, out of them we use the canonical
expression (CEX) [87].

The following definition describes how to derive the CEX expression from an
affine space [38]:

• each non-canonical variables appears in exactly one XOR factor, and each
XOR factor is composed by one non-canonical variable and possibly some
canonical variables;

• the canonical variables that appear in the XOR factor corresponding to the
non-canonical variable x are the canonical variables (if any) appearing with
value 1 in the vectors of BA where x is equal to 1;

• all the canonical variables are not complemented, a non-canonical variable is
complemented in its XOR factor if and only if its corresponding component
in αA is 0.

Example 4 In the affine space A the canonical translation point αA is 000001
and the canonical basis BA is {001001, 010010, 100100}. The first vector in BA

illustrates that the canonical variable is x3 and the non-canonical variable is x6,
the second vector shows that x2 is canonical variable and x5 is the non-canonical
variable, and x1 and x4 are the canonical and non-canonical variables, respectively,
in the third vector in BA. Also, according to the vector αA, x5 and x4 are com-
plemented while x6 is not complemented. Therefore, the CEX expression for this
example is equal to (x3 ⊕ x6)(x2 ⊕ x̄5)(x1 ⊕ x̄4).
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Figure 2.2: Karnaugh maps of a D-reducible function f (left) and its corresponding
projection fA (right).

Based on these definitions, we can now explain the regular functions that are
considered D-reducible. Essentially, the points (or minterms) of D-reducible func-
tions are entirely located within an affine space that is strictly smaller than the
entire Boolean cube {0, 1}n. The formal definition of a D-reducible function is
given below [17]:

Definition 4 A Boolean function f : {0, 1}n → {0, 1} is D-reducible if f ⊆ A,
where A ⊂ {0, 1}n is an affine space with a dimension strictly smaller than n.

When a function f is classified as D-reducible, it can be expressed as f = χA·fA,
where A represents the smallest affine space containing f and is referred to as the
associated affine space of f . Additionally, χA denotes the characteristic function
of A, while fA signifies the projection of f onto A.

Example 5 The Karnaugh map on the left side of Figure 2.2 illustrates the D-
reducible function f = {00011, 01010, 01110, 10001, 10101, 11000}. According to
the Karnaugh map on the right side of the figure, the new function fA depends
on three variables x1, x2, x3. It should be noted that although the number of the
onset minterms is the same for both f and fA, they are compacted in a smaller
space (map) in the fA function. If we synthesize f and fA in the classical SOP
framework, we obtain f and fA equal to x1x2x3x4 + x1x2x3x4 + x1x2x3x4x5 +
x1x2x3x4x5 and x3 + x1x2 + x1x2, respectively. As a result, the overall number of
products is reduced from 4 to 3, and the overall number of literals is reduced from
18 to 5. Moreover, the canonical basis can be derived in polynomial time exploiting
the Gauss-Jordan elimination as described in [85]. Finally, a more compact form
for the function f can be derived as (x1 ⊕ x4)(x2 ⊕ x5)(x3 + x1x2 + x1x2) , where
(x1 ⊕ x4)(x2 ⊕ x5) is the CEX representing the affine space χA.
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2.1.2 The Concept of Autosymmetric Functions

Another particular type of regularity can be observed in autosymmetric functions
based on affine spaces, which is also based on affine space [19, 20, 87]. Informally,
the idea behind this concept is to call k-autosymmetric any Boolean function f
depending on n variables that can be simplified to a smaller function fk, depending
only on n− k variables. Following this idea, the degree of regularity of a Boolean
function f is determined by its autosymmetry degree k, where 0 ≤ k ≤ n. If k = 0,
the function has no regularity. However, if k ≥ 1, the function is identified as
autosymmetric. Generally, an autosymmetric function f can be expressed through
its restriction function fk as follows:

f(x1, x2, . . . , xn) = fk(y1, y2, . . . , yn−k)

where the variables y1, y2, . . . , yn−k are XOR combinations of subsets of the original
input variables xi. These combinations are denoted as XOR(Xi), where Xi ⊆
{x1, x2, . . . , xn}. The equations:

yi = XOR(Xi), i = 1, . . . , n− k

are termed as reduction equations. Thus, the autosymmetry test involves deter-
mining the value of k, the restriction fk, and the reduction equations.

It is worth mentioning that autosymmetric functions depend in general on all
their input variables, i.e., they are non-degenerate. However, degenerate functions,
which do not depend on all their variables, are always classified as autosymmetric.

It is possible to synthesize the function f through its restriction fk. This
reconstruction requires an additional logic level of XOR gates, which take the
original variables as inputs and generate the new n−k variables that serve as inputs
to the circuit for fk. Typically, the function fk can be synthesized using different
techniques for any logic minimization problem. For instance, in [14, 18, 21], an
XAG representation of the restricted function has been derived to improve the
evaluation of multiplicative complexity and in [13] this representation has been
leveraged to design compact reversible and quantum circuits.

As demonstrated in [20, 19], any k-autosymmetric function f has a corre-
sponding k-dimensional vector space Lf , which contains all minterms α such that
f(x) = f(x ⊕ α) for all x ∈ {0, 1}n. The vectors in Lf are sorted by increas-
ing binary order and indexed from 0 to 2k − 1. The subset of vectors indexed
by 20, 21, . . . , 2k−1 is termed the canonical basis BL of Lf . There are k fully in-
dependent variables in Lf , which are known as canonical variables and assume
all the possible combinations of 0, 1 values in the vectors of the vector space Lf .
Conversely, noncanonical variables in Lf , which are not canonical, assume either a
constant value or are formed as linear combinations of the canonical variables. In
the canonical basis BL of Lf , canonical variables are those corresponding to the
first 1-component from the left. In order to define the function f in its compact
form fk, these variables are essential.

The restriction fk represents a more compact form of f , containing only |S(f)|/2k
minterms, where |S(f)| represents the total number of minterms in f . As discussed
in [13], the reversible synthesis of f can be simplified to the synthesis of its re-
striction fk, which can be determined in time polynomial in the dimension of some
standard representations of the input function f , as for example a Reduced Ordered
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Figure 2.3: Karnaugh maps of an 1-autosymmetric function f (left) and its corre-
sponding projection fk (right).

Binary Decision Diagram (ROBDD) representation [19]. The formal definition of
a autosymmetric function is given below [22]:

Definition 5 A Boolean function f is k-autosymmetric, 0 ≤ k ≤ n, if its vector
space Lf has dimension k. The function f is autosymmetric if it is k-autosymmetric
with k ≥ 1.

Example 6 Figure 2.3 illustrates the Karnaugh map of the function f = {00011,
01010, 01110, 10001, 10101, 11000}. According to the explanation of the algorithm
given in reference [19], which details the process to determine the vector space Lf

associated to f , we get Lf = {00000, 11011}. We can also determine the autosym-
metry degree by calculating log2 |Lf |. In this case, k = 1, which indicates that the
function f is 1-autosymmetric. This means that all the points in the function f
can be projected in the space {0, 1}4 with respect to the reduction equations y1, y2,
y3 and y4. Consequently, the restricted function f1 is a more compact represen-
tation form of the function f with only 3 minterms which is shown in the right
side of the figure. In this example the canonical basis is 11011, which designates
x1 as the canonical variable while x2, x3, x4 and x5 are non-canonical variables.
Therefore we can obtain the reduction equations, which are y1 = x1 ⊕ x2, y2 = x3,
y3 = x1⊕x4, and y4 = x1⊕x5. The restricted function f1 shows a simplified form
of the original function f , having only 3 minterms, which are {0011, 1010, 1110},
as can be observed in the Karnaugh map on the right side of the figure.

2.2 PSOP Decomposition

2.2.1 Projections of Functions

In this section, we review some fundamental concepts of Boolean space partitioning
and we show the projections exploited in this specific decomposition approach.
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Figure 2.5: Karnaugh maps of a function f (left) and its corresponding projections
onto f |x1=p and f |x1 ̸=p (right), with p = x2.x3 + x4.

Let us consider the Boolean space defined by variables x1, x2, . . . , xn, where xi
represents one of these variables. Suppose p denotes a function over a subset of
variables excluding xi, denoted by {x1, . . . , xi−1, xi+1, . . . , xn}. The Boolean space
B = {0, 1}n can then be partitioned into two distinct subsets: the set Bxi=p, where
xi equals the function p, and the set Bxi ̸=p, where xi is not equal to the function p.
Formally, we have Bxi=p = {(v1, . . . , vn) ∈ {0, 1}n | vi = p(v1, . . . , vi−1, vi+1, . . . ,
vn)}, and Bxi ̸=p = {(v1, . . . , vn) ∈ {0, 1}n | vi ̸= p(v1, . . . , vi−1, vi+1, . . . , vn)},
respectively.

Example 7 Let us consider the function p = x2.x3+x4 and the variable x1 in the
Boolean space {0, 1}4, which can be partitioned into two sets. The first set consists
of the subspace where x1 = p and the second one consists of the subspace where x1 ̸=
p. Figure 2.4 depicts a Karnaugh map illustrating these two sets, the black points
correspond to Bxi=p = {0000, 0010, 0100, 1001, 1011, 1101, 1110, 1111}, while the
white points correspond to Bxi ̸=p = {0001, 0011, 0101, 0110, 0111, 1000, 1010, 1100}.

It is important to note that the Boolean space partitions evenly into these
two sets, showing the following general property [25]: When xi is a Boolean
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variable and p is a function represented as p : {0, 1}n−1 → {0, 1} on variables
{x1, . . . , xi−1, xi+1, . . . , xn}, the sets Bxi=p and Bxi ̸=p are such that:

1. Bxi=p ∪Bxi ̸=p = {0, 1}n

2. |Bxi=p| = |Bxi ̸=p| = 2n−1

3. Bxi=p ∩Bxi ̸=p = ∅

In the Boolean space B = {0, 1}n, the most straightforward partitioning occurs
when p equals 1 (or 0). In this context, Bxi=1 and Bxi ̸=1 denote the subspaces of
B where xi equals 1 and xi equals 0, respectively. These subspaces can be charac-
terized using functions xi and xi, as discussed in [12]. Note that Bxi=1 and Bxi ̸=1

correspond to the fundamental partitions in the classical Shannon decomposition

f = xif |xi=1 + xif |xi ̸=1 ,

where f |xi=1 and f |xi ̸=1 denote the two cofactors of f obtained by setting xi with
1 and 0, respectively.

In [29, 67], a Boolean functional decomposition method is introduced, general-
izing the classical Shannon decomposition as follows

f = (xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi ̸=p .

This method projects the function f onto the two complementary subsets Bxi=p

and Bxi ̸=p of the Boolean space B = {0, 1}n. The expressions xi ⊕ p and xi ⊕
p represent the characteristic functions of Bxi=p and Bxi ̸=p, respectively. It is
noteworthy that that the Shannon decomposition is a specific instance of this
partitioning method, where xi ⊕ 1 equals xi and xi ⊕ 1 equals xi.

Example 8 Figure 2.5 illustrates the Karnaugh map of the function f = x1x2x3x4
+x1x2x3x4+x1x2x3x4+x1x2x3x4+x1x2x3x4+x1x2x3x4+x1x2x3x4, in the right
side. Consider Bx1=p and Bx1 ̸=p as two projecting sets with p = x2.x3 + x4. As
shown in the left side of this figure, the function f can be projected onto the two
spaces Bx1=p and Bx1 ̸=p. The resulting projected functions depend on x2, x3, x4
and can be represented by f |x1=p = x2x3x4 + x2x3x4 + x2x3x4 + x2x3x4 + x2x3x4
and f |x1 ̸=p = x2x3x4 + x2x3x4, respectively.

It is crucial to note that Hamming distances can vary when points are projected
onto different subspaces. As a result, they may be merged into larger terms and
may reveal new implications not apparent in the original function. For instance,
consider the two points described in Example 8, represented by the minterms
x1x2x3x4 and x1x2x3x4. Initially, their Hamming distance is equal to 2 (due
to differences in the variables x1 and x4). After the projection onto the subspace
where x1 ̸= p, these two points are represented by the minterms x2x3x4 and x2x3x4.
Now, their Hamming distance is reduced to 1 as they become more similar; thus it
is possible to combine them into the larger product (x2x3) in f |x1 ̸=p. It should be
noted that (x2x3) is an implicant of f |x1 ̸=p, but it is not an implicant of f directly.
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2.2.2 PSOP Representation of Functions

The PSOP decomposition and synthesis approach involves creating a circuit for f
by exploiting p and the two projected functions f |xi=p and f |xi ̸=p. Constructing
circuits for these projected functions is generally simpler compared to f , as they
involve one fewer variable, often resulting in more compact circuit designs. The
functions p, f |xi=p and f |xi ̸=p can be synthesized using various logic minimization
techniques, including SOP synthesis, EXOR-based synthesis and also quantum
synthesis methods. When expressed as sums of products, they form the Projected
Sum of Products form, abbreviated as PSOP(f), as defined in [12].

Definition 6 Let f |xi=p and f |xi ̸=p denote the projections of f onto Bxi=p and
Bxi ̸=p, respectively. The PSOP of f with respect to p is expressed as

PSOP(f) = (xi ⊕ p)f |x1=p + (xi ⊕ p)f |x1 ̸=p ,

where p, f |xi=p, and f |xi ̸=p are expressed as SOP forms.

It should be highlighted that to achieve an overall minimal form, additional
steps should be taken to reduce the SOP form for p along with the two projected
SOP forms f |xi=p and f |xi ̸=p after projection.

Definition 7 Let p̃ be a minimal SOP form for the function p and let the minimal
SOP expressions for the projections of f onto the sets Bxi=p and Bxi ̸=p be repre-
sented by f̃ |xi=p and f̃ |xi ̸=p, respectively. The minimal PSOP of f with respect to
p is expressed as:

PSOP(f) = (xi ⊕ p̃)f̃ |x1=p + (xi ⊕ p̃)f̃ |x1 ̸=p .

Example 9 Consider the function f described in Example 8, the minimal SOP
form of this function is x1x2x3+x1x3x4+x1x2x4+x2x3x4+x1x2x3x4+x1x2x3x4.
As shown in Figure 2.5, the function f is projected onto the two sets. The minimal
SOP forms for the sets Bx1=p and Bx1 ̸=p, can be represented by f̃x1=p = x4+x2x3
and f̃ |x1 ̸=p = x2x3, respectively. As the minimal SOP form of p is p̃ = x2x3+x4,
the overall minimal PSOP form for f is then (x1⊕ (x2x3+x4))(x4+x2x3)+(x1⊕
(x2x3 + x4))(x2x3).

Another valuable representation is the Pr-SOP (Projected Sum of Products)
for the function f , which is also recognized as the PSOP with remainder [12]. This
form includes a remainder component that encompasses all products present in the
SOP expression of f intersecting both projection sets. These products are termed
crossing products, while products entirely included in one of the two projection
sets are referred to as non-crossing products.

Definition 8 Let f |xi=p and f |xi ̸=p denote the projections of all non-crossing prod-
ucts in a SOP representation of f , and let r denote the sum of all crossing products.
The Pr-SOP of f with respect to p is expressed as:

Pr-SOP(f) = (xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi ̸=p + r .
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Minimizing all SOP expressions, we derive a minimal PSOP with remainder.

Definition 9 Let p̃ and r̃ be minimal SOPs form for the function p and the re-
mainder r, respectively. Let the minimal SOP expressions for the projections of
all non-crossing products of f onto Bxi=p and Bxi ̸=p be represented by f̃ |xi=p and
f̃ |xi ̸=p, respectively. The minimal Pr-SOP of f with respect to p is expressed as:

Pr-SOP(f) = (xi ⊕ p̃)f̃ |x1=p + (xi ⊕ p̃)f̃ |x1 ̸=p + r̃ .

Example 10 Consider the Karnaugh map in Figure 2.5. The minterms x1x2x3
and x2x3x4 intersect both Bxi=p and Bxi ̸=p, it means that they are not fully con-
tained within either projection set, making them crossing products. As a result, the
Pr-SOP of f with respect to p is given by this expression:

(x1 ⊕ (x2x3 + x4))(x4 + x2x3) + (x1x2x3 + x2x3x4)

Algorithms and heuristic approaches for minimizing PSOP expressions have
been proposed and analyzed in [25, 28].

2.3 Quantum Synthesis

2.3.1 ESOP Forms

In the Exclusive-or Sum-of-Products (ESOP) form, a Boolean function is expressed
using a series of AND gates at the first level and one multi-input XOR gate at
the next level. ESOP forms continue to be of interest in research due to their
important applications in various emerging technologies. Compared to standard
SOP forms, ESOP provides several benefits, such as requiring fewer products to
realize randomly generated functions [125, 126], more compact representations for
arithmetic or communication circuits [127], higher testability properties [54, 66]
and security [82, 98]. Furthermore, due to the inherent reversibility of the XOR
operation [119], ESOP forms are essential for reversible logic circuits synthesis and
quantum computing [47].

Recall that, for a Boolean function to be expressed in ESOP form, it must
contain a set of product terms involving the input variables. In the off-set, each
minterm should be covered by an even number of these product terms or not at
all, whereas in the on-set, each minterm must be covered by an odd number of
these product terms.

It is possible for a function to have multiple ESOP forms that are structurally
different but semantically equivalent. The goal of ESOP minimization is to find
the form with the lowest cost based on a given cost metric.

Example 11 In Figure 2.2, the function fA can be represented in ESOP form
with 2 products and 3 literals as follows:

ESOP (fA) = 1⊕ x2x3 ⊕ x1x3

ESOP minimization is a computationally very hard problem that has garnered
significant interest of algorithm designers. due to its potential for reducing the
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overall costs of hardware realizations and software implementations. For this pur-
pose, several heuristic and exact methods have been designed [119, 97, 115, 116,
122, 130].

Based on heuristic methods, although ESOP forms can be identified fast, only a
subset of the possible search space is examined. It is also possible to produce small
ESOP forms using these methods in reasonable time, but they suffer from local
minima that are difficult to escape. In exact methods, while a minimal number
of product terms can be found, more than 8 Boolean variables and a few product
terms can be hardly handled. In [119] a novel approach for exact synthesis based
on Boolean satisfiability is presented, which is particularly fast and unaffected by
the number of Boolean variables involved.

2.3.2 Quantum Logic and Gates

The applications of quantum computing in number theory, encryption, search,
and scientific computation make it one of the most promising emerging computing
paradigms [151, 37, 146].

In a binary quantum system, the unit of information (memory) is termed as
qubit (quantum bit). There are two basis states for a qubit which are depicted by
|0⟩ and |1⟩ , corresponding to the states 0 and 1 for a classical bit. Each of these
states are called a qubit state and can be represented by 2 × 1 matrix as below:

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
In addition, a qubit can be defined as linear combination of the states, this

technique is known as superposition. The following equation defines the notation
for the superposition (ψ):

ψ = α |0⟩ + β |1⟩

where α and β are complex quantities that represent probability amplitudes of
basis states, and ψ is the wave function. The probability measurement of the
occurrences for states |0⟩ and |1⟩ are equal to |α|2 and |β|2, respectively. The
sum of these probabilities is described with following notation:

|α|2 + |β|2 = 1

Quantum computation can be performed with the composition of elementary
quantum operations or gates in a quantum system. In the quantum circuit, there
is a small library of gates that interact with one or two qubits.

2.3.3 Reversible Circuits and Quantum Compilation

The reversible circuit ensures one-to-one correspondence between each input vector
and each output vector. Accordingly, the number of inputs equals the number of
outputs. In these circuits, constant inputs are called ancilla inputs, while garbage
outputs are produced to maintain the one-to-one mapping although their specific
values are not important. Generally, reversible circuits are constructed from a
sequence of Mixed-Polarity Multiple-Control (MPMC) Toffoli gates, which are
able to implement any logic function.
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Figure 2.6: The symbolic representation of MPMC Toffoli gates.

Figure 2.6 illustrates MPMC Toffoli gates: the conventional symbol ⊕ repre-
sents the target line, while control lines are indicated by • for positive connections
and ◦ for negative connections. If there are no control connections on the MPMC
Toffoli gate, it operates as a NOT gate; with a positive control connection, it func-
tions as a C-NOT gate; and when there are only positive connections, it functions
as a Multiple-Control Toffoli gate[110].

More formally, given a set of circuit lines X = x1, x2, ..., xn, an MPMC Toffoli
gate T (C, t) has control lines C = {xj1, xj2, ..., xjc} ⊂ X and a target line t ∈ X\C.
The gate maps t → t ⊕ (xp1j1 ∧ x

p2
j2 ∧ . . . ∧ xpljl), where each literal xpiji is either a

propositional variable x1ji = x or its negation x0ji = x̄. All remaining other lines
are passed through unaltered. Note that, whenever t is equal to 0, the MPMC
Toffoli gate computes the AND of all control lines on the target line.

A common approach in reversible logic design is ESOP-based synthesis, which
is based on the relationship between product terms in ESOP (Exclusive Sum of
Products) forms and MPMC Toffoli gates [47, 45, 58]. In an ESOP expression,
MPMC Toffoli gates are derived from product terms, with their literals serving as
control lines. The circuit effectively computes the XOR of all product terms on
the same target line because all gates act on the same target line.

As a preliminary step towards building quantum circuits, reversible circuit
synthesis plays an important role in quantum computing. A Quantum compilation
step is then required to convert a reversible circuit containing MPMC Toffoli gates
into a quantum circuit. In this process, each reversible gate can be decomposed
into basic quantum gates, following a specified quantum gate library [89, 94]. In
this thesis, we use the Clifford+T library, which includes Pauli, Hadamard, CNOT
gates, and the T gate, which is considered the most expensive one [110]. It is worth
mentioning that design of quantum logic gates and circuits by using this set makes
them fault tolerant with error correcting codes [3, 95].

• X gate: This gate is a 1-qubit operation gate and complements the state
of a qubit. Generally, this gate is equivalent to a classical NOT gate. The
corresponding unitary matrix for this gates is shown below:

X =

[
0 1
1 0

]

• S gate: The phase gate (S gate) is a 1-qubit operation in Clifford+T gate
set and represents a 90-degree rotation around the z-axis, the corresponding
matrix for this gate is:
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S =

[
1 0
0 i

]

• H gate: The Hadamard gate is one of the 1-qubit operations in the set of
Clifford+T gate and often used to create superposition. In this gate, the
state |0⟩ transforms to (|0⟩ + |1⟩)/

√
2 and the state |1⟩ transforms to

(|0⟩ − |1⟩)/
√
2. The corresponding unitary matrix for this gate is shown

as below:

H = 1√
2

[
1 1
1 −1

]

• T gate: This 1-qubit gate is part of the Clifford+T gate set, which is universal
for quantum computation. The corresponding unitary matrix for the T gate
is given by:

T =

[
1 0

0 e
iπ
4

]

• C-NOT gate: The Controlled-NOT (C-NOT) is the only 2-qubit operation
in the set of Clifford+T gate. In this gate, the state of one qubit called target
is complemented according to the state of the other qubit called control, the
corresponding matrix is:

CNOT =


1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0


Table 2.1 reports the classical cost in terms of Hadamard, CNOTs, T gates,

and ancillary qubits of the realization of k-controlled MPMC Toffoli gates with the
algorithm described in [88].

Table 2.1: The cost of k-controlled Toffoli gates in number of T, H and CNOT
gates.

k T H CNOT ancillary qubits
2 7 2 6 0
3 16 6 14 1
≥ 4 8k-8 8k-12 4k-6 ⌈k−2

2 ⌉

Recent advancements in quantum compilation techniques have led to more ef-
ficient circuit designs. In [91], for instance, a novel method described and focused
on compiling quantum circuits representations from XAG (XOR-And Graph) rep-
resentations, reducing the number of T gates required for implementing Toffoli
gates. [120] and [144] provide more detailed information on reversible circuits and
effective quantum compilation strategies.
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Chapter 3

Quantum Synthesis of Dimension
Reducible Functions

This chapter introduces a novel approach to quantum oracles by demonstrating
the effective generation of reversible circuits. Classical methods, which use less
compact reversible circuits, often result in higher quantum costs. In response, this
study proposes a new technique that streamlines the synthesis process by leveraging
the inherent regularities of dimension-reducible Boolean functions. The results of
the proposed approach show that it generates significantly more compact circuits,
hence reducing the overall cost. The experimental results also demonstrated that
the effectiveness of the proposed approach leads to considerable area savings and
cost reduction in the quantum circuits.

3.1 Introduction

As stated in the previous chapter, reversible logic synthesis and quantum compi-
lation are two fundamental steps in the synthesis of quantum oracles. Since the
evolution of quantum systems is governed by reversible unitary operators, classical
logic functions must first be synthesized into reversible circuits. These circuits
are then converted into quantum circuits by decomposing the reversible gates into
sequences of basic quantum gates using a predefined gate library. In recent times,
several new approaches for reversible circuit synthesis and quantum compilation
have been proposed in the literature. One such method, discussed in [22], uti-
lizes a structural regularity called autosymmetry to synthesize compact quantum
circuits.

This chapter introduces a novel approach for quantum synthesis of Boolean
functions that exhibit a different structural regularity known as Dimension re-
ducibility, or D-reducibility. D-reducible functions are characterized by their min-
terms being confined to an affine subspace that is smaller than the full Boolean
cube. These functions are notably prevalent in classical benchmarks, with the
experimental results in [17] indicating that approximately 70% of functions the
classical ESPRESSO benchmark suite [145] have at least one D-reducible out-
put. Additionally, the decomposition of D-reducible functions can be computed
efficiently in polynomial time, making them an attractive target for quantum syn-
thesis.

The proposed approach utilizes D-reducibility to design more compact quan-
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tum circuits. Circuits optimized for quantum compilation can be obtained by the
quantum synthesis process by structurally decomposing these functions. A major
benefit of this approach is that the resulting reversible circuits have an uncomput-
ing component that relies solely on CNOT gates instead of T-gates, which are more
resource-intensive and do not require extra input lines. The experimental results
demonstrate the effectiveness of this approach, achieving reductions in circuit area
measured by the number of basic quantum gates of approximately 38% compared
to standard ESOP forms. When applied to XAG-based quantum compilation [91],
the approach achieves a 21% reduction in T-gates, demonstrating its potential for
generating efficient quantum circuits. The outcomes presented in this chapter have
been published at the DSD Conference 2023 [27].

The chapter is organized as follows. Section 3.2 describes our proposed new
methodology for construction of reversible circuit for dimension reducible func-
tions. Section 3.3 shows the evaluation of the proposed decomposition and reports
our experiments on a set of benchmarks. Finally, the conclusion of this work is
given in Section 3.4.

3.2 Reversible Circuits for D-Reducible Functions

As already reviewed in the previous section, there is a natural correspondence
between ESOP expressions and reversible circuits, based on the fact that product
terms in an ESOP expression can be easily represented with a reversible MPMC
Toffoli gate. Thus, given an ESOP expression, one can extract a sequence of
MPMC Toffoli gates whose control lines correspond to the literals in the product
terms of the ESOP form, and whose target line corresponds to the output of the
function. Notice that all gates act on the same target line, thus realizing the
exclusive OR sum of all product terms. The main problem of this approach is due
to the fact that MPMC Toffoli gates are only an intermediate representation. They
need to be mapped into elementary quantum gates using an additional synthesis
step, whose goal is to transform the reversible circuit of MPMC Toffoli gates into
a functionally equivalent quantum circuit implementation. Unfortunately, this
mapping step might be very onerous, especially for MPMC Toffoli gates controlled
by many variables, thus leading to quantum circuits of high size and depth.

In this section, we therefore propose to exploit the regularity of D-reducible
functions to ease their reversible synthesis, in order to obtain a final quantum cir-
cuit of reduced size and depth. Given a D-reducible function f = χA · fA, the idea
is to concatenate two reversible circuits: a circuit computing the characteristic
function χA of the affine space A and a reversible circuit implementing the projec-
tion fA. Since the characteristic function χA may depend on all input variables,
the inputs of the circuit for χA are all variables: non-canonical and canonical ones.
The circuit for fA, instead, depends only on the canonical variables. To compute
f , we then need a final Toffoli gate computing the AND between the two subfunc-
tions χA and fA, with f as target line. Note that this approach requires three
additional lines (and therefore 3 new qubits in the quantum implementation of the
reversible circuit for f): one line for χA, one for fA, and finally one for f . The
overall circuit structure is shown in Figure 3.1.

Let us now discuss how to implement the circuits for χA and fA. The circuit
for fA can be derived from an ESOP representation of the projection fA. Since
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Figure 3.1: A reversible circuit for a D-reducible function based on the decompo-
sition f = χA · fA.

fA depends only on the canonical variables that are a subset of the input vari-
ables, we can reasonably expect that its ESOP representation will contain product
terms with less literals. Therefore, the corresponding MPMC Toffoli gates will be
controlled by less input lines, thus leading to a quantum circuit of smaller size
and depth after the quantum compilation with respect to the Clifford+T library.
A reversible circuit for χA can be implemented directly from its canonical CEX
expression. Indeed, recall from Section 2.1.1 in Chapter 2, a CEX consists of an
AND of XOR factors, and each XOR factor can be implemented using CNOT
gates. In particular, a XOR factor of k literals can be implemented using k − 1
CNOTs. Finally, an MPMC Toffoli gate is required to implement the AND of all
XOR factors. The number of control lines in input to this gate corresponds to the
number of XOR factors, and therefore to the number of non-canonical variables of
the affine space A. Interestingly, we do not need to introduce new input lines to
represent each XOR factor, as proved in the following proposition [27].

Proposition 1 Let χA : {0, 1}n → {0, 1} be the canonical CEX expression repre-
senting an affine subspace A of {0, 1}n. Then, a reversible circuit for χA can be
implemented without adding new input lines.

Proof. An affine subspace A ⊆ {0, 1}n can be defined by linear equations that
relate the input variables. The canonical CEX expression χA, which representing
an affine subspace A of {0, 1}n, uses only XOR and AND operations. These oper-
ations can be implemented directly using reversible gates like CNOT and Toffoli
gates without adding extra input lines.

Observe that the modification of the non-canonical variables has no effect on
the successive calculation of the projection fA, as fA depends only on the canonical
variables. Once the overall function f has been computed on the output line (the
last line in Figure 3.1), we can restore the non-canonical variables to their initial
values applying the so-called uncomputing procedure [110]: we uncompute the XOR
factors stored in the non-canonical variables by re-applying the CNOTs in reverse
order. This disentangles the variables, reverting them to their initial values. The
overall methodology is summarized in the algorithm in Figure 3.2.
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Algorithm 1 Reversible synthesis of D-reducible functions
1: INPUT:
2: f ▷ D-reducible Boolean function with affine space A
3: fA ▷ Projection of f onto A
4: χA ▷ Characteristic function of A
5: OUTPUT:
6: Q ▷ Quantum circuit for f
7: QA ← ReversibleSynthesis(fA)
8: QχA ← ReversibleSynthesis(χA)
9: Q← Toffoli(QA, QχA)

10: Q← UncomputingProcedure(Q)
11: return Q

Figure 3.2: Reversible synthesis of D-reducible functions.

Example 12 Consider the function f = x1x2x3x4+x1x2x3, as represented on the
Karnaugh map shown on the left side of Figure 3.3. This function is D-reducible
and can be projected onto fA= x2 + x2x4, with canonical variables x2 and x4, as
shown on the Karnaugh map shown on the right side of Figure 3.3. It can be
decomposed as follows f = x1(x2 ⊕ x3)(x2 + x2x4) , where χA = x1(x2 ⊕ x3) and
fA = x2 + x2x4. To derive a reversible circuit of f exploiting this decomposition,
we first need to represent fA in ESOP form. For this example, since the two
products x2 and x2x4 are disjoint, we can immediately derive an ESOP form simply
replacing the OR operator with a XOR: fA = x2⊕x2x4. To implement the reversible
computation of χA we only need a CNOT for computing x2 ⊕ x3 onto the line
corresponding to the non-canonical variable x3, and a Toffoli gate for computing
the AND between the first factor x1 and the factor x2 ⊕ x3 (first and second gate
in Figure 3.4). The projection fA can be computed with two gates corresponding
to the two terms in its ESOP form (third and forth gate in Figure 3.4). Then,
the next Toffoli gate computes the AND between χA and fA. Finally, the last
CNOT gate implements the uncomputing procedure. Figure 3.5 shows a reversible
circuit derived from the ESOP representation f = x1x2x3x4 ⊕ x1x2x3 of the same
function. This circuit contains only two MPMC Toffoli gates, and may appear
more convenient than the one exploting the D-reducibility properties. However, the
first circuit contains Toffoli gates with at most two control variables, while the gates
in the second circuit are controlled by up to 4 variables. This has a very important
impact on their quantum implementations. Indeed, if we compute the cost in terms
of T, H, and CNOT gates of these two implementations (using the costs reported
in Table 2.1, in Chapter 2) we can easily verify that the first circuits requires 21
T gates, 6 H gates and 21 CNOTs, leading to an overall size of 48 gates. On
the other hand, the second circuits has a cost of 40 T gates, 26 H gates and 24
CNOTs, and an overall size of 90 gates.

Finally, observe that the same strategy can be applied also when the two parts
of the decompostion, i.e., fA and χA, are represented in XAG form, as discussed
in Section 3.3.
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Figure 3.3: Karnaugh maps of a D-reducible function f (left) and its corresponding
projection fA (right).
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Figure 3.4: Reversible circuit, with the uncomputing procedure, for the D-reducible
function f of Example 12, derived from its decomposition as f = χA · fA. After
quantum compilation with the Clifford+T library, the size of the circuit becomes
equal to 48 elementary quantum gates.
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Figure 3.5: Reversible circuit for the D-reducible function f of Example 12, derived
without exploiting the D-reducible decomposition. After quantum compilation
with the Clifford+T library, the size of the circuit becomes equal to 90 elementary
quantum gates.

3.3 Experimental Results

In this section we evaluate the proposed decomposition in the context of reversible
circuit synthesis and quantum compilation. In particular, we conducted two dif-
ferent experimental evaluations. The first one, discussed in Section 3.3.1, aims at
measuring to what extent the D-reducibility property can be exploited to imple-
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Table 3.1: Comparison between quantum circuits computed without and with the
D-reducible decomposition

without decomposition with decomposition
Benchmark_output input T H CNOT ancillae T H CNOT ancillae T gain
b10_3 15 488 448 133 27 406 354 129 23 17%
dk48_2 15 512 492 200 30 110 92 45 5 79%
dk48_4 15 520 500 204 31 80 76 38 5 85%
gary_2 15 488 448 133 27 406 354 129 23 17%
gary_4 15 744 686 246 44 646 588 198 36 13%
in0_3 15 232 216 71 13 181 154 65 9 22%
in0_5 15 856 812 306 53 615 556 198 33 28%
in2_5 19 1520 1410 491 89 1118 1002 307 63 26%
in2_9 19 2144 2002 715 127 1878 1736 581 107 12%
in5_9 24 1568 1492 574 94 1423 1342 504 83 9%
m181_1 15 135 114 26 7 103 70 46 5 24%
newtpla_0 15 200 188 66 12 134 112 38 7 33%
newtpla_2 15 704 652 208 42 382 322 94 20 45%
rckl_6 32 1928 1862 817 120 1814 1748 759 106 6%
spla_21 16 752 724 298 45 142 120 56 7 81%
spla_32 16 1560 1492 592 93 1094 1024 387 64 30%
t2_6 17 494 452 165 29 287 262 91 17 42%
vg2_2 25 1152 1096 421 70 527 462 111 30 54%
vg2_6 25 520 492 182 30 231 182 64 11 56%
vtx1_5 27 4096 3984 1739 244 1287 1154 387 78 69%
Average Benchmark Suite 379 352 126 22 236 204 80 13 38%

ment compact circuits, in the context of standard reversible synthesis starting from
ESOP forms. The aim of the second experimental evaluation, discussed in Sec-
tion 3.3.2, is to establish whether more advanced quantum compilation methods
could also benefit from the decomposition based on D-reducibility.

These two experimental evaluations have been conducted on D-reducible func-
tions taken from the LGSynth’89 benchmark suite [145]. Since D-reducibility is a
property of single outputs, we consider single outputs of the benchmark functions.

3.3.1 Standard Reversible Synthesis

Following the strategy depicted in Figure 3.1, we implement a reversible circuit for
a D-reducible function f = χA ·fA. To better evaluate the quality of the reversible
circuits derived for D-redicibile funtions, and to compare them with those derived
without exploiting the D-reducibility property, we have measured their size in terms
of elementary quantum gates. More precisely, instead of considering the overall
number of MPMC Toffoli gates, we have mapped each Toffoli gate into elementary
quantum gates, considering the Clifford+T low-level quantum gate library and the
algorithm described in [88].

Table 3.1 reports a significant subset of benchmarks as representative indicators
of our experiments. The first column reports the name of the benchmark and the
number of the output. The following group of 3 columns reports the costs, in terms
of elementary quantum gates, of the reversible circuits derived from minimal ESOP
expressions of the benchmarks, without exploiting the D-reducibility structural
regularity. The last group of columns reports the costs of the reversible circuits
derived exploiting the D-reducibily decomposition, as explained in Section 3.2.
ESOP minimization of the benchmarks and of their projections onto the associated
affine spaces is performed using the EXORCISM-4 heuristic [97]. Due to the
heuristic nature of this ESOP minimizer, the synthesis times for the functions and
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Table 3.2: Comparison of the number of T gates in quantum circuits compiled
without and with the D-reducible decomposition

T gates without T gates with
Benchmark_output input decomposition decomposition T gain
b10_3 15 76 96 -26%
dk48_2 15 84 52 38%
dk48_4 15 76 40 47%
gary_2 15 84 96 -14%
gary_4 15 124 96 23%
in0_3 15 64 52 19%
in0_5 15 156 136 13%
in2_5 19 240 184 23%
in2_9 19 228 292 -28%
in5_9 24 152 168 -11%
m181_1 15 24 24 0%
newtpla_0 15 56 48 14%
newtpla_2 15 80 68 15%
rckl_6 32 120 120 0%
spla_21 16 96 56 42%
spla_32 16 324 88 73%
t2_6 17 68 44 35%
vg2_2 25 120 80 33%
vg2_6 25 68 64 6%
vtx1_5 27 184 116 37%
Average Benchmark Suite 63 49 21%

their projections are similar and very short, leading to negligible gain in synthesis
time. Finally, the last column reports the gain in the number of T gates, and
the last row reports the average costs for all the benchmarks considered in our
experiments. The gain obtained synthesizing a reversible circuit exploiting this
structural regularity is quite interesting. Indeed, the cost gain for T gates is about
38%, the cost gain for H gates is about 42%, the cost gain for CNOTs is about
37% (including the cost of the uncomputing procedure), and the gain in ancillary
qubits is about 42%. Notice that the uncomputing procedure does not introduce
new T gates.

3.3.2 XAG-Based Quantum Compilation

We now discuss the experimental results obtained by applying the quantum com-
pilation heuristic proposed in [91]. In particular, we are interested in evaluating
experimentally whether this recent technique could benefit from the decomposition
of the target function based on the D-reducibility property.

The considered compilation heuristic starts from a XAG representation of a
Boolean function f and produces quantum circuits containing elementary quantum
gates taken from the Clifford+T gate set. Since, as already observed, the T gate
is particularly expensive to be applied, the overall number of T gates is considered
a good measure for the cost of the quantum implementation. Therefore, in this
experimental evaluation, we only consider the number of T gates in the circuits
obtained applying the XAG-based quantum compilation heuristic with and without
exploiting the decomposition based on D-reducibility.

A very interesting result shown in [91] is that the number of T gates in a
quantum circuit for a Boolean function f can be expressed in terms of the number
of AND gates in its XAG representation. This implies that it is possible to provide
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an upper bound on the number of T gates in a circuit for a function f in terms of
its multiplicative complexity, i.e., the minimum number of AND gates required to
realize f in XAG form. Computing the multiplicative complexity for an arbitrary
Boolean function is intractable, however as shown in [23], it is sometimes possible to
derive good estimates of this complexity measure exploiting structural regularities
of the functions, as for instance the D-reducibility property. We can derive a
quantum circuit for a D-reducible function f = χA · fA combining the quantum
circuits obtained applying this heuristic to χA and fA separately. This approach
should be convenient since 1) we are able to compute the exact multiplicative
complexity of χA, and build a XAG with the minimum number of AND gates
required to realize χA (see Theorem 2 in [23]); 2) fA is a function that depends on
fewer variables, so its XAG representation might contain a reduced number of AND
gates (as already experimentally verified in [23]); 3)the two circuit components can
be combined by adding a single AND gate, and therefore only 4 T gates in the
final quantum circuit. Therefore, this strategy should lead to a reduced number of
T gates in the final quantum implementation of the function f . The experimental
results confirm this expectation, showing a significant reduction in the number of
T gates: compiling a quantum circuit exploiting the decomposition of the target
function f as χA · fA, we can obtain a cost gain in T gates of about 21%.

We report in Table 3.2 a subset of all the benchmarks that are considered
for our experiments. The first column contains the name and the number of the
output of the considered benchmark. The second column reports the number of
inputs. The following column reports the cost, in terms of T gates, of the quantum
circuit compiled without exploiting the D-reducibility regularity. Finally, the last
two columns report the cost of the quantum circuits derived exploiting the D-
reducibily decomposition, and the gain in the number of T gates. The last row
reports the average results for all the benchmarks considered in our experiments.

From the results reported in Table 3.2, we can notice how some benchmarks
highly benefit from the proposed strategy. For example, the benchmark spla_32
shows a gain of 73%, in T gates. For other benchmarks the gain is much less sig-
nificant, for example m181_1 and vg2_6. There are also cases where the strategy
based on D-reducibility gives circuits with a higher number of T gates (see for
instance, b10_3 and in2_9). This fact is due to the heuristic nature of both the
XAG minimizer, used to derive the initial representation of the function, and of
the quantum compiler itself. In general, we can observe how the overall T cost
of the XAG based quantum compiler is much lower than the cost of the circuits
derived from standard ESOP forms, both for decomposed and non-decomposed
benchmarks.

3.4 Conclusion

In this chapter, we have explored the class of D-reducible functions and demon-
strated how this structural regularity can be harnessed to implement more compact
reversible circuits. Our approach leverages the inherent properties of D-reducible
functions, which are characterized by their minterms being confined to a smaller
affine subspace within the Boolean cube. This structural insight allows for the
creation of reversible circuits that are optimized for quantum synthesis and com-
pilation.
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To validate our method, we conducted extensive experimental evaluations using
both standard ESOP (Exclusive Sum of Products) forms and XAG (And-Inverter
Graph) representations of the decomposed Boolean expressions. These experiments
confirmed that our approach yields significant improvements in circuit compact-
ness. Specifically, we observed notable reductions in the number of elementary
quantum gates required, demonstrating the effectiveness of our technique in mini-
mizing circuit size and enhancing efficiency.

Overall, the findings presented in this chapter lay the groundwork for contin-
ued advancements in quantum circuit design, with the potential for substantial
improvements in both theoretical and practical aspects of quantum computing.
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Chapter 4

Quantum Synthesis of
Autosymmetric and Dimension
Reducible Functions

This chapter introduces a new technique that streamlines the quantum synthesis
process by leveraging the inherent regularities of autosymmetric and dimension-
reducible Boolean functions. The results of the proposed approach show that it
generates significantly more compact quantum circuits, reducing the overall quan-
tum cost. The experimental results also demonstrated that the effectiveness of the
proposed approach leads to considerable reduction in terms of cost required for the
quantum circuits.

4.1 Introduction

As mentioned in the previous chapters, the synthesis of quantum circuits for
Boolean functions is a critical area of research, particularly in the context of op-
timizing performance and resource utilization. This chapter introduces a novel
approach for the quantum synthesis of functions characterized by the autosym-
metry and dimension reducibility (D-reducibility) structural properties reviewed
in Chapter 2 [13, 27]. The simultaneous presence of both autosymmetry and
D-reducibility in Boolean functions opens up a new avenue for designing more effi-
cient quantum circuits, as these functions exhibit both regularity in their algebraic
structure and a reduction in their computational complexity.

D-reducible and Autosymmetric functions are defined by their minterms be-
ing confined to an affine subspace smaller than the whole Boolean cube and
also presenting a structural regularity easily expressed using the XOR operator
[19, 20, 87, 17]. These functions are prevalent in classical benchmarks; for in-
stance, approximately 24% of the functions in the classical ESPRESSO benchmark
suite [145] exhibit at least one autosymmetric output [19, 20], and 70% exhibit a
D-reducible output [17]. Efficiently decomposing these regular functions in poly-
nomial time makes them attractive targets for quantum synthesis, allowing for the
development of circuits that are not only compact but also easier to implement.

Our approach leverages both autosymmetry and D-reducibility to design quan-
tum circuits that minimize cost. By structurally decomposing these functions, we
can reduce the number of quantum gates required for implementation, leading
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to circuits that are optimized for quantum compilation. A significant advantage
of this method is that the resulting reversible circuits predominantly use CNOT
gates, which are less expensive compared to T-gates that require additional input
lines. This chapter provides a comprehensive discussion on how the combination
of autosymmetry and D-reducibility offers a promising path toward optimizing
quantum circuit synthesis.

The quantum compilation phase produces compact quantum circuits as vali-
dated by the experimental results that are conducted starting with XAG (XOR-
AND-Inverter graphs) representation on the decomposed expressions. Experimen-
tal results demonstrate the effectiveness of our synthesis method for functions that
are both autosymmetric and D-reducible. When applied to XAG-based quantum
compilation [91], our approach results in a 30% reduction in T-gates, highlighting
its potential for designing efficient quantum circuits in terms of quantum cost.

The organization of this chapter is as follows: Section 4.2 explains the com-
pletely specified autosymmetric and D-reducible Functions. Section 4.4 details
our proposed methodology for constructing reversible circuits for autosymmetric
and D-reducible functions. Section 4.5 evaluates the proposed decomposition and
presents experimental findings on benchmark sets. Finally, we conclude this work
in Section 4.6.

4.2 Completely Specified Autosymmetric and D-Reducible
Functions

It is possible to use two principal decomposition strategies in the study of Boolean
functions that exhibit both autosymmetry and D-reducibility. The first strategy
involves beginning with D-reducibility, followed by applying autosymmetry. Con-
versely, the second strategy involves starting with autosymmetry and then pro-
ceeding to apply D-reducibility. This chapter presents quantum circuit synthesis
specifically for these two approaches applied to completely specified functions.

When employing the first strategy, the decomposition starts with D-reducibility.
This involves expressing the Boolean function f as f = χA ·fA, where A represents
an affine space and fA is the projection of f onto A. Following this, autosymmetry
is applied to fA, leading to the representation f = χA ·fAk, where fA is based on its
autosymmetric properties. This sequential approach ensures that the function f is
represented in terms of both its affine space and its autosymmetric characteristics.

Example 13 Consider the function f presented in Figure 2.2, in Chapter 2. We
apply D-reducibility first, followed by autosymmetry to the function. As demon-
strated in the Example 5, in Chapter 2, f is D-reducible, and its projection is
fA(x1, x2, x3). The set of minterms for fA is given by fA = {000, 010, 011, 100, 101,
110}. Next, we compute the autosymmetry decomposition for fA. The Karnaugh
map of fA is also depicted on the left side of Figure 4.1, where it is observed that
fA exhibits autosymmetry. The corresponding vector space is LfA = {000, 110},
which has dimension k = log2 |LfA | = 1, indicating that fA is 1-autosymmetric.
Projecting the minterms onto the Boolean space {0, 1}2 of the variables y1 and y2,
we obtain the function fA1(y1, y2) = {00, 10, 11}, which is represented in the Kar-
naugh map on the right side of Figure 4.1. The corresponding reduction equations
are y1 = x1 ⊕ x2 and y2 = x3. A Sum-of-Products (SOP) form for fA1 is equal to
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Figure 4.1: Karnaugh maps of the function fA(x1, x2, x3) (left) and of its corre-
sponding projection fA1(y1, y2) (right).

y1 + y2. Substituting the reduction equations, we obtain y1 + y2 = (x1 ⊕ x2) + x3.
Recalling that the characteristic function of A is χA = (x1 ⊕ x4)(x2 ⊕ x5), the
original function f can now be written as

f(x1, . . . , x5) = (x1 ⊕ x4) · (x2 ⊕ x5) · [(x1 ⊕ x2) + x3)].

Conversely, the second strategy begins with autosymmetry. In this approach,
we first determine the autosymmetry of the function f and obtain fk, which is the
restriction of f that reflects its autosymmetric property. Afterward, D-reducibility
is applied to fk, leading to the representation f = χA · fkA, where A denotes the
affine space, and fkA is the projection of fk onto A.

Example 14 Let us consider the ongoing function again, but this time apply-
ing the decomposition method where autosymmetry is performed first, followed by
D-reducibility. Referring to Figure 2.3 and Example 6 in Chapter 2, which demon-
strate that f is 1-autosymmetric, and the restriction f1 corresponds to the set
of minterms f1(y1, y2, y3, y4) = {0011, 1010, 1110} in {0, 1}4. Next, we perform
the D-reducibility decomposition on f1. The Karnaugh map for f1 is shown on
the left side of Figure 4.2. Projecting f1 onto A, we derive the Boolean function
f1A(y1, y2) = {00, 10, 11}, which is illustrated in the Karnaugh map on the right
side of Figure 4.2 . The characteristic function for A is y3 · (y1⊕ y4). For simplic-
ity, we represent f1A is SOP form as f1A = (y1 + y2). It is worth noting that f1A
can be represented in various forms, in particular we will use the XOR-And Graph
(XAG) representation in the experimental section. Thus, we have

f1(y1, y2, y3, y4) = χA · f1A = (y3 · (y1 ⊕ y4)) · (y1 + y2).

To reconstruct the original function f , we substitute the variables y1, y2, y3, y4 with
their corresponding reduction equations as computed in Example 6. This gives us

f(x1, . . . , x5) = [(x1 ⊕ x4) · ((x1 ⊕ x2)⊕ (x1 ⊕ x5))]
·[(x1 ⊕ x2) + x3)] .

After simplification, the final expression becomes

f(x1, . . . , x5) = (x1 ⊕ x4) · (x2 ⊕ x5) · [(x1 ⊕ x2) + x3)].

Finally, it is worth noting that this decomposition is identical to the one ob-
tained using the alternate strategy in the previous example. We explore two decom-
position strategies for representing the function f and show that they provide the
same final representation. First, we decompose f by applying the D-reducibility
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Figure 4.2: Karnaugh maps of the function f1(y1, y2, y3, y4) (left) and of its corre-
sponding projection f1A(y1, y2) (right).

property and subsequently leveraging autosymmetry on the projected function fA,
resulting in f = χAfAk

. Alternatively, if we initially exploit the autosymmetry
property of f and then apply the D-reducibility property to the restricted function
fk, we obtain f = χAfkA . Note that both fAk

and fkA depend on the same set of
a− k variables.

The following theorems, originally stated in [14], establish the required prop-
erties of D-reducibility and autosymmetry for both approaches.

Theorem 1 Let f be a completely specified k-autosymmetric Boolean function de-
pending on n binary variables. If f is D-reducible with an associated affine space
A, then the projection fA of f onto A is k-autosymmetric.

To establish that these two decomposition strategies provide the same final rep-
resentation of f , we also need to show that the restriction fk of an autosymmetric
function retains the D-reducibility property, as outlined in the following theorem.

Theorem 2 Let f be a completely specified D-reducible Boolean function depend-
ing on n binary variables, with an associated affine space A. If f is k-autosymmetric,
then the restriction fk of f is also D-reducible with respect to the same affine space
A.

Having established the properties of each decomposition path through The-
orems 1 and 2, we can now assert that these two strategies yield an identical
representation of f , as captured in the following theorem [14].

Theorem 3 The two decomposition strategies are equivalent, that is, fAk
= fkA.

This theorems confirms that regardless of the sequence in which D-reducibility
and autosymmetry are applied, the same compact representation of f is obtained.

4.3 Incompletely Specified Autosymmetric and D-reducible
Functions

In this section, the situation where an incompletely specified Boolean function f is
both D-reducible and autosymmetric. The autosymmetry test for such a function
assigns each “don’t care” to either 0 or 1, producing a fully specified function with
the highest possible degree of autosymmetry [14]. As a result, after performing
the autosymmetry test, the reduced function fk is completely specified.
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At the same time, D-reducibility reduction aims to find the smallest affine space
A that encompasses all minterms of f . Points in A that are not minterms of f
may be assigned 0 or left as “don’t cares,” meaning that the projected function
fA remains incompletely specified. Nevertheless, if f is both D-reducible and
autosymmetric, the resulting decomposed functions fkA and fAk are fully specified
due to the autosymmetry test.

Building on the findings in [14], if f is incompletely specified, fkA and fAk may
differ based on the order of application and different reduction sequences can lead
to distinct final results. Thus, it should be noted that for incompletely specified
functions, both approaches should be applied, with the most optimal result selected
afterward.

4.4 Quantum Circuit Synthesis for Autosymmetric and
D-Reducible Functions

As discussed in the previous chapter, there is a natural correspondence between
ESOP expressions and reversible circuits. This arises from the fact that product
terms in an ESOP expression can be effectively represented using reversible MPMC
Toffoli gates. Given an ESOP expression, one can generate a sequence of MPMC
Toffoli gates, where the control lines are associated with the literals in the product
terms and the target line represents the output of the function. It should be noted
that all gates act on the same target line, thereby implementing the exclusive OR
of the product terms.

The primary challenge with this approach lies in the fact that MPMC Toffoli
gates are only intermediate representations. To implement these gates in quantum
circuits, an additional synthesis step is required to map the reversible MPMC
Toffoli gates into functionally equivalent quantum circuits. Unfortunately, this
mapping step can become very onerous, particularly when the MPMC Toffoli gates
are controlled by many variables, leading to quantum circuits with significant size
and depth.

To address these challenges, in this section, we therefore propose a compre-
hensive approach for designing circuits that implement functions exhibiting both
autosymmetry and D-reducibility. These methods are intended to optimize the
reversible synthesis process, leading to quantum circuits that are efficient and min-
imized in terms of size and depth. The methodology is divided into two distinct
strategies, depending on the order in which autosymmetry and D-reducibility are
considered during the circuit construction.

4.4.1 Autosymmetric-D-Reducible Design

The first approach focuses on functions that are first analyzed for autosymme-
try and then subjected to D-reducibility. Initially, an autosymmetry test is con-
ducted to determine the linear space L, identify the characteristic function χA,
and compute the restricted function fk, which corresponds to the autosymmetric
structure of the original function. Once the autosymmetry analysis is complete,
D-reducibility is applied to the restricted function fk. At this stage, the affine
space A is derived based on the restricted function fk, and provides the founda-
tion for the D-reducibility step. The restricted function fk is then projected onto
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the affine space A, resulting in the simplified function fkA. This sequential decom-
position approach highlights the interplay between autosymmetric properties and
affine projections, where autosymmetry is applied first to reduce the complexity
of the function, and D-reducibility is subsequently used to further simplify it by
projecting onto an affine space.

The circuit design under this approach involves the integration of three key
reversible circuits:

• Circuit for Deriving Reduction Equations: The initial circuit is designed to
derive the reduction equations for the linear space L. These equations involve
both canonical and non-canonical variables within L. The primary aim of
this circuit is to simplify the function by reducing the number of variables,
thus preparing the function for subsequent processing.

• Circuit for the Characteristic Function χA: The next circuit computes the
characteristic function χA of the affine space A. This function depends on
non-canonical variables within the linear space L, which includes both canon-
ical and non-canonical variables within the affine space A. Computing χA is
crucial as it provides the necessary foundation for the final projection step.

• Circuit for Implementing Function Projection fkA: The next circuit imple-
ments the projection of the function onto the restricted function, resulting in
fkA. This projection circuit focuses on the non-canonical variables within the
affine space A, ensuring that the function is further simplified and optimized
for the final quantum synthesis.

• Circuit for Restoring Initial Variables: This stage in the synthesis process
focuses on designing a circuit to restore the initial values of canonical and
non canonical variables of the linear space L after performing the required
computations.

To compute the final function f , a Toffoli gate is utilized to perform an AND
operation between the subfunctions χA and fkA, with f as the output target.
This structured approach ensures that the synthesis of the quantum circuit is
both streamlined and efficient, minimizing resource usage while maintaining the
integrity of the function.

Figure 4.3 illustrates the overall structure of the circuit designed using this
method. As shown, this approach requires three additional lines, corresponding
to three extra qubits in the quantum implementation: one for χA, one for fkA,
and one for f . These additional qubits are essential for handling the intermediate
results of the subfunctions before combining them to produce the final output.

Overall, the implementation of the circuit begins with the construction of the
XOR layer. This layer, composed of multiple XOR gates, is necessary to realize the
reduction equations, which are based on linear combinations of the variables. The
XOR layer is a critical component as it enables the reduction process by simplifying
the function’s dependency on certain variables, making the final quantum circuit
more compact and efficient. Then, a reversible circuit for χA can be implemented
directly from the CEX expression of the affine space A, and a reversible circuit
for fkA depends only on the canonical variables of the affine space A. Finally an
uncomputing procedure restores all variables to their initial values.
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Figure 4.3: Reversible circuit with Autosymmetric-D-Reducible strategy.

Example 15 Consider the function f = {00011, 01010, 01110, 10001, 10101, 11000}
in the running example. To compute the reduction equations defining the new vari-
ables y1, y2, y3, y4, we use three CNOT gates to perform the XOR operations
x1 ⊕ x2, x1 ⊕ x4 and x1 ⊕ x5. As mentioned in Section 2.1.1, a CEX consists of
a conjunction of XOR factors, with each XOR factor being implementable using
CNOT gates. In particular, an XOR factor with k literals can be realized using
k − 1 CNOT gates. In this case, for χA we use a CNOT gate to perform y1 ⊕ y4,
and a Toffoli gate that combines y3 with the result of y1 ⊕ y4. The projection fkA
can be computed by a Toffoli gate, which is initialized with a qubit in state |1〉 to
compute the NAND between the complement of y1 and y2, to perform y1 + y2 op-
erations. Recall that, to simplify the description of our example, we represent the
function fkA in SOP form. Note that fkA can be expressed in various forms, but
we will use the XAG representation in the experimental section. Subsequently, the
next Toffoli gate computes the AND between χA and fkA. Finally four additional
gates are used to restore the input variables. As can be observed in Figure 4.4, this
quantum implementation requires three Toffoli and eight CNOT gates.

In this example, four T-gates suffice to represent χA, as proved in the following
proposition.

Proposition 2 Let χA : {0, 1}n → {0, 1} be the canonical CEX expression repre-
senting an affine subspace A of {0, 1}n, where the number of factors in χA is de-
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noted by |F|. Then, a quantum circuit for χA can be implemented using 4 ·(|F|−1)
T-gates.

Proof. The function χA : {0, 1}n → {0, 1} represents the characteristic func-
tion of an affine subspace A ⊆ {0, 1}n, thus it is a conjunction (AND) of XOR
factors. If the number of factors in the expression for χA is |F|, then the number
of AND gates required to implement χA is |F| − 1. This is because each AND
gate operates on two inputs, and to compute a conjunction of |F| terms, we need
|F| − 1 binary AND operations. Each AND gate in a quantum circuit can be im-
plemented using a Toffoli gate. It is known that a Toffoli gate can be decomposed
into Clifford and T-gates, specifically requiring 4 T-gates. Therefore, each AND
gate in the circuit corresponds to 4 T-gates. Overall, there are |F| − 1 AND gates
to compute χA, and each AND gate corresponds to a Toffoli gate, which in turn
requires 4 T-gates. In addition, the XOR gates are not implemented exploiting T-
gates. Finally, the total number of T-gates needed to implement χA is 4 · (|F|−1).

Proposition 3 Let χA : {0, 1}n → {0, 1} be the canonical CEX expression rep-
resenting an affine subspace A of {0, 1}n, and let fkA be the function projected
onto the affine subspace A. Then, reversible circuits for f that is obtained by
autosymmetric-D-reducible can be implemented with just two additional ancilla
lines.

Proof. The implementation of χA requires a Toffoli gate to realize the nec-
essary AND operations, with each Toffoli gate necessitating one ancilla qubit to
store its output. Consequently, a single additional ancilla line is sufficient for the
implementation of χA. Similarly, the function fkA also relies on a Toffoli gate for
its implementation. Each Toffoli gate again requires one ancilla qubit, resulting in
the need for just one additional ancilla line for fkA. Thus, both functions can be
efficiently implemented with only two additional ancilla lines, ensuring the outputs
are preserved for further computation, as shown in Figure 4.3.

4.4.2 D-Reducible-Autosymmetric Design

The second approach reverses the order of analysis, starting with D-reducibility
before addressing autosymmetry. In this strategy, the process begins with the
identification of the characteristic function χA and also the projection fA, which
are derived from the D-reducibility test. Once these components are established,
the autosymmetry properties of the function are considered and tested directly
onto fA, leading to the reduction equations and restriction function fAk.

The circuit design for this approach involves the following three reversible cir-
cuits:

• Circuit for the Characteristic Function χA: The initial step involves designing
a circuit to compute the characteristic function χA of the affine space A. This
function depends on all variables within A, including both canonical and non-
canonical variables. Calculating χA is crucial for understanding the structure
of the affine space and provides the foundation for subsequent steps in the
synthesis process.
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Figure 4.4: Reversible circuit for the function f with Autosymmetric-D-Reducible
strategy.

• Circuit for Deriving Reduction Equations: After computing χA, the next
circuit focuses on deriving the reduction equations for the linear space L.
This circuit processes the canonical variables of the affine space A, which
includes both non-canonical and canonical variables within L, simplifying
the function by reducing the number of variables involved. This reduction is
essential for optimizing the function and preparing it for the final projection.

• Circuit for Implementing Function Projection fAk: The next step involves a
circuit that projects the function onto the restricted space, resulting in fAk.
This projection circuit utilizes only the non-canonical variables within the
linear space L, ensuring that the function is appropriately reduced and ready
for the final synthesis process.

• Circuit for Restoring Initial Variables: This step in the synthesis process
involves designing a circuit to restore the initial values of canonical and
non canonical variables of the affine space A after performing the required
computations.

To compute the final function f , a Toffoli gate is used to perform an AND
operation between the subfunctions χA and fAk, with the output f serving as the
final result. This structured strategy ensures that the quantum circuit synthesis
is both effective and efficient, with careful consideration given to minimizing the
circuit’s size and depth.

The overall circuit structure, as depicted in Figure 4.5, shows that this ap-
proach necessitates three additional lines, corresponding to three extra qubits in
the quantum implementation: one for χA, one for fAk, and one for f . These ad-
ditional qubits are crucial for managing the intermediate computations required
during the synthesis process.

In implementing these circuits, the process begins with constructing the re-
versible circuit for χA that is implemented starting from the CEX expression of
the affine space A. Then, the XOR layer for the reduction equations is constructed,
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followed by a reversible subcircuit for computing fAk. Note that this subcircuit
depends only on the non-canonical variables of the linear space L. Finally an
uncomputing procedure restores all variables to their initial values.
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Figure 4.5: Reversible circuit with D-Reducible-Autosymmetric strategy.

Example 16 Consider the function f = {00011, 01010, 01110, 10001, 10101, 11000}
from the running example once again. To compute χA, the detailed process for de-
riving χA is provided in Section 2.1.1, in Chapter 2, we use two CNOT gates to
perform x1 ⊕ x4 and x1 ⊕ x5, and also a Toffoli gate that combines the result of
x1⊕x4 with the result of x1⊕x5. We also use a CNOT gate to perform the reduc-
tion equation y1 and y2. To compute fAk, a Toffoli gate, which is initialized with
a qubit in state |1〉 to compute the NAND between the complement of y1 and y2,
is used to compute the y1 + y2 operation. Then, the next Toffoli gate computes the
AND between χA and fAk. Finally, three additional gates are used to restore the
original input variables. As depicted in Figure 4.6, this quantum implementation
requires three Toffoli gates and six CNOT gates. It should be noted that, according
to proposition 2, the number of T-gates for χA in this example equals four.
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Figure 4.6: Reversible circuit for the function f with D-Reducible-Autosymmetric
strategy.

Overall, both approaches provide a systematic and efficient pathway for design-
ing quantum circuits that handle functions with autosymmetry and D-reducibility,
ensuring that the final circuits are not only functional but also optimized for quan-
tum implementation.

4.5 Experimental Results

In this section, we assess the effectiveness of the proposed method for quantum syn-
thesis of autosymmetric and dimension reducible functions. We present the com-
putational results obtained by constructing decomposed expressions for Boolean
functions and comparing them to their standard quantum synthesis counterparts,
which do not utilize these structural regularities. The objective of this experi-
ment is to measure the extent to which the proposed strategy can be exploited to
implement more compact circuits.

All experiments were conducted on an Intel i7-8550U CPU running at 1.80GHz
with 16GB of RAM. We used classical benchmarks in PLA format, specifically from
the Espresso and LGSynth’89 benchmark suites [145]. It should be noted that
autosymmetry and D-reducibility are properties of single outputs, which means
different outputs from the same benchmark can have different autosymmetry de-
grees and D-reducibility for each output. As a result, each output is considered as
a separate Boolean function for analysis, leading to the examination of 237 (non-
degenerate) autosymmetric and D-reducible functions. The given functions, along
with their restrictions or projections, were synthesized using the structural decom-
position strategies depicted in Figures 4.3 and 4.5, with ESPRESSO [32] employed
in heuristic mode for SOP synthesis and then they were synthesized by applying
the XAG-based quantum compilation heuristic proposed in [139]. Our major focus
was to experimentally determine whether advanced quantum compilation methods
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could benefit from the decomposition based on D-reducibility and autosymmetry,
or they are capable of deriving compact quantum circuits without exploiting these
structural regularities.

To evaluate the reversible circuits derived from proposed decomposition strate-
gies and compare them with those derived without decomposition, we measured
the cost in terms of elementary quantum T-gates. Specifically, we mapped each
MPMC Toffoli gate into elementary quantum gates based on the Clifford+T li-
brary and the algorithm outlined in [91]. Since the T-gate is recognized as the
most costly gate in the library, the cost of a Toffoli gate is typically expressed
according to the number of T-gates required for its implementation. Therefore, in
this experimental evaluation, we only consider the number of T- gates in the cir-
cuits obtained applying the XAG-based quantum compilation heuristic with and
without exploiting the decomposition based on D-reducibility-autosymmetry and
autosymmetry-D-reducibility strategies.

A noteworthy result highlighted in [91] indicates that the number of T gates in
a quantum circuit for a Boolean function f can be expressed as a function of the
number of AND gates in its XAG representation.

Table 4.1 reports a significant subset of benchmarks as representative indica-
tors of our experiments. The first column reports the name and the number of
the considered autosymmetric and D-reducible output of each benchmark. The
second column reports the costs, in terms of elementary quantum gates, of the
reversible circuits derived from minimal SOP expressions of the benchmarks, with-
out exploiting the structural regularities. The following column reports the cost
of the reversible circuits derived exploiting the autosymmetry-D-reducibility de-
composition, as explained in Section 4.4.1. The next column reports the required
costs of the reversible circuits derived exploiting the D-reducibility-autosymmetry
decomposition, as described in Section 4.4.2. The last group of 2 columns re-
ports the T-gain of the reversible circuits derived exploiting the autosymmetry-
D-reducibility decomposition and D-reducibility-autosymmetry decomposition, re-
spectively. SOP minimization of the benchmarks and of their projections onto the
associated affine spaces is performed using the ESPRESSO heuristic [97]. Due
to the heuristic nature of this SOP minimizer, the synthesis times for the func-
tions and their projections are similar and very short, leading to negligible gain in
synthesis time.

Finally, the last column reports the gain in the number of T gates, and the last
row reports the average costs for all the benchmarks considered in our experiments.

As shown in Table 4.1, it is clear that some benchmarks experience significant
advantages from decomposed expressions in terms of the number of T-gates com-
pared to standard synthesis. For instance, the benchmarks exp11 and rd53 achieve
a significant reduction in T-gates when utilizing D-reducibility-autosymmetry and
autosymmetry-D-reducibility decomposition, respectively. Specifically, exp11 shows
a 67% reduction in T-gates, while rd53 shows a 75% reduction in T-gates. How-
ever, in some cases, such as with the b10 benchmark, standard synthesis results in
circuits with fewer T-gates compared to synthesis that utilizes structural regular-
ities.

The gain obtained synthesizing a reversible circuit exploiting these structural
regularities is quite interesting. The experiments demonstrate that approximately
41% of the functions benefit from autosymmetry and D-reducibility decomposi-
tion, resulting in an average reduction of about 30% in the number of T gates.
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Table 4.1: Comparison between standard synthesis and the proposed strategies
for functions that are both autosymmetric and D-reducible.

Standard Synthesis With Decomposition T-Gain
Benchmark T-count T-count (A+D) T-count (D+A) A+D D+A
add6_0 12 4 4 67% 67%
adr4_4 12 4 4 67% 67%
apla_3 28 20 16 29% 43%
apla_5 28 28 16 0% 43%
b10_4 60 64 64 -7% -7%
bench_3 32 12 12 63% 63%
bench_7 20 20 20 0% 0%
dk17_10 24 12 12 50% 50%
dk17_4 40 16 20 60% 50%
dk27_0 20 12 8 40% 60%
exam_4 60 104 52 -73% 13%
exep_6 72 64 64 11% 11%
exp_11 60 24 20 60% 67%
p1_0 0 12 8 0% 0%
p3_7 116 156 128 -34% -10%
rd53_1 16 4 12 75% 25%
spla_22 92 52 52 43% 43%
t1_19 20 20 12 0% 40%
xor5_0 12 4 4 67% 67%
Z5xp1_8 12 4 4 67% 67%

Particularly, The autosymmetry-D-reducibility strategy results in a 31% reduc-
tion in T-gates, while the D-reducibility-autosymmetry approach achieves a 41%
reduction in T-gates.

Overall, we can conclude that the quality of reversible circuits obtained by
applying the decomposition scheme with D-reducibility first, followed by autosym-
metry, tends to outperform those derived from the scheme where autosymmetry is
applied before D-reducibility.

It is worth mentioning that, the running times are significantly influenced by
the XAG heuristic [139], which generally varies based on the dimension of the input
function. Consequently, when both testing procedures are performed, the overall
running times are often reduced, as the input function for the XAG heuristic tends
to be smaller. In other words, the time saved in constructing the XAG outweighs
the time needed to test the two regularities. Additionally, for completely specified
functions, where the results of A+D and D+A are the same, the D+A strategy is
more convenient due to its superior running times, and for incompletely specified
functions, it is convenient to test both the strategies A+D and D+A in order to
find the best result [18].

4.6 Conclusion

In this chapter we have considered the class of D-reducible and autosymmetric
functions and have shown how these regularities can be exploited to implement
compact reversible circuits at any order. The proposed quantum circuits require
just two additional input lines, and the final reversible circuit exhibits an uncom-
puting part implemented with CNOT gates only, no T-gates are required for this
part. Experimental results, based on XAG representations of the decomposed
expressions, have validated the proposed approach. The results show that the
reversible circuits obtained by first applying the decomposition scheme with D-
reducibility, followed by autosymmetry, tend to outperform those derived from the
scheme where autosymmetry is applied before D-reducibility. Future work can
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consider new regularities to improve quantum compilation. Moreover, we plan to
investigate the potential of alternative decomposition techniques in deriving more
compact quantum circuits.
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Chapter 5

Quantum Synthesis for PSOP
Based Functions

This chapter explores the application of PSOP decomposition techniques in quan-
tum circuit synthesis, addressing the challenges of optimizing gate count and cir-
cuit depth on current quantum hardware. By breaking down complex operations
into simpler, more efficient components, these techniques significantly enhance the
practicality of quantum circuits with lower cost. The chapter presents a detailed
methodology, along with theoretical and experimental validation, demonstrating
the effectiveness of these approaches in reducing circuit quantum cost. The find-
ings contribute to the ongoing efforts to optimize quantum circuit design, offering
valuable insights for future research and the development of more efficient quantum
computing systems.

5.1 Introduction

In recent years, studies like [91, 129, 144] have highlighted efforts to optimize
reversible circuits for quantum synthesis. Additionally, several pre-processing
methods have emerged to enhance reversible synthesis and quantum compilation.
These methods often leverage structural regularities in the input Boolean func-
tions [22, 27], making them primarily useful for specific types of functions, such as
autosymmetric and D-reducible functions.

This chapter presents a novel pre-processing approach designed to overcome
this limitation by applying the method to any Boolean function, regardless of
regularities. The approach involves decomposing the original function f and re-
composing it after the quantum compilation phase. The decomposition process
operates with linear-time complexity, while the recomposition step is constant in
time, ensuring high efficiency.

These characteristics make the proposed strategy an effective and fast pre-
processing step before performing reversible synthesis and quantum compilation.
The method relies on a structural non-disjoint decomposition of the input function,
called the Projected Sum of Products (PSOP), which is an EXOR-based decompo-
sition. PSOP forms extend the standard Shannon decomposition, and this choice
is advantageous because EXOR-based reconstructions have a very low quantum
cost, and the decomposition itself is very fast, with linear-time complexity. Fig-
ure 5.1 provides a comparison between standard quantum synthesis techniques and
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the proposed approach.
The theoretical framework in this chapter explains the pre-processing method

and the reconstruction strategy in detail. Specifically, it shows that after per-
forming the PSOP decomposition and synthesizing the quantum components, it is
possible to reconstruct the original function f by adding only a few Toffoli gates,
typically two or three, equivalent to 8 or 12 T-gates [91].

To validate the effectiveness of this approach, we compare the quantum syn-
thesis of PSOP-decomposed functions against traditional quantum compilation
techniques. The experimental results indicate that the proposed pre-processing
step improves performance for 61% of the benchmarks, with an average gain of
around 22% in terms of T-gates, utilizing the XAG-based quantum compilation
described in [91]. The results presented in this chapter were presented at the
DSD Conference 2024 and have been invited for a special issue in the WiPiEC
Journal-Works in Progress in Embedded Computing Journal [26].

The chapter is organized as follows. Section 5.2 describes our proposed new
methodology for construction of quantum circuit based on PSOP decomposition.
Section 5.3 shows the evaluation of the proposed decomposition and reports our
experiments on a set of benchmarks. Finally, the conclusion of this work is given
in Section 5.4.

5.2 Quantum Circuits Synthesis Based on PSOP De-
composition

In this section, we describe how the PSOP decomposition of a Boolean function
f can be exploited to ease its quantum compilation. More precisely, we show how
to combine quantum circuits for the two projected functions f|xi=p and f|xi ̸=p,
the function p, and the remainder r, if present, in order to derive a quantum
circuit for the original function f , following the strategies depicted schematically
in Figure 5.1. Potential benefits of this approach are a reduced compilation time,
and a final quantum circuit of reduced area with respect to the quantum circuit
derived compiling directly the function f without leveraging its PSOP decomposed
forms.

As already observed, this new quantum compilation strategy can be applied
to any Boolean function, after the fast PSOP decomposition step, whose cost is
linear in the initial SOP representation of the target function.

Let f be a Boolean function depending on n binary variables, and let PSOP(f)
and Pr-SOP(f) denote its PSOP forms, without and with remainder r:

PSOP(f) = (xi ⊕ p)f|xi=p + (xi ⊕ p)f|xi ̸=p ,

Pr-SOP(f) = (xi ⊕ p)f|xi=p + (xi ⊕ p)f|xi ̸=p + r ,

where xi is one input variable, p is a function that does not depend on xi, f|xi=p and
f|xi ̸=p are the two projections of the SOP expression of f , and r is the remainder.
Recall that both forms can be derived in linear time.

It is worth mentioning that in the Projected Sum of Products (PSOP), insert-
ing remainders avoids cutting through crossing products, thus limiting the overall
number of terms. However, the disadvantage arises when a crossing cube is re-
moved from the projection: by excluding these cubes, the opportunity to form
larger cubes in the projected part is limited.
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Figure 5.1: Classical and new minimization strategies without SOP synthesis.

Before the quantum synthesis step, a heuristic SOP minimization step could
be performed to facilitate quantum compilation and possibly derive more compact
circuits, as shown in Figure 5.2. This step can be performed by applying poly-
nomial time SOP heuristics on all components of the PSOP(f) and Pr-SOP(f)
expressions, which are generally smaller functions, that depend on fewer variables
and contain fewer minterms than the target function f . Notice that a similar step
in the standard quantum compilation flow, not based on decomposition, would
require the more costly heuristic SOP minimization of the whole function f . This
preliminary minimization is not mandatory and can be avoided in case of large
benchmarks, whose SOP minimization could result too time demanding.

After the optional SOP minimization step, quantum compilation is applied
independently onto the subfunctions p, f|xi=p, f|xi ̸=p, and the remainder r (if
present).

Finally, we derive a quantum circuit for the overall function f using the quan-
tum circuits for p, f|xi=p, f|xi ̸=p, and the remainder r as building blocks, as shown
in Figures 5.3 and 5.4.

Before describing how to derive a quantum circuit for a function f from PSOP
decomposition, we state and prove a proposition that allows to ease the recon-
struction strategy.

Proposition 4 Let f be a Boolean function depending on n binary variables, and
let PSOP(f) and Pr-SOP(f) be its PSOP decomposition without and with remain-
der, respectively. The disjunction between the first two terms in both algebraic
expressions can be replaced with an Exclusive Or:

PSOP(f) = (xi ⊕ p)f|xi=p ⊕ (xi ⊕ p)f|xi ̸=p ,

Pr-SOP(f) =
(
(xi ⊕ p)f|xi=p ⊕ (xi ⊕ p)f|xi ̸=p

)
+ r .

Proof. Observe that the first two terms in both PSOP(f) and Pr-SOP(f) rep-
resent disjoint sets of points. Indeed, the two subspaces Bxi=p and Bxi ̸=p do not
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Figure 5.2: Classical and new minimization strategies with SOP synthesis.

intersect, and the product of their characteristic functions (xi ⊕ p) and (xi ⊕ p) is
the zero function. This immediately implies that the disjunction can be replaced
with an exclusive OR.

This result is important for the reconstruction procedure since an EXOR can
be easily implemented in a quantum circuit using a CNOT instead of a Toffoli
gate.

We now describe the reconstruction procedure of a quantum circuit for f ,
considering first the case of PSOP decomposition without remainder.

The overall quantum circuit for f in this case is obtained concatenating the
two quantum subcircuits for the projections, that depend on all variables but xi,
with the quantum circuit for (xi ⊕ p), possibly depending on all input variables.
The quantum circuit for (xi ⊕ p) can be derived inserting a CNOT, controlled
by xi, on the output line of a quantum circuit for p. Note that four additional
lines (and therefore four new qubits) are needed: one for f|xi=p, one for f|xi ̸=p,
one for (xi ⊕ p) and finally one output line for f . The overall circuit structure
is shown in Figure 5.3, where two swap gates are used to bring the qubits for
the intermediate results closer to the corresponding subcircuits. Eventually, two
Toffoli gates are inserted for computing the AND between the projections and
the corresponding subspaces, one described by the subcircuit for (xi ⊕ p) and the
other by its complement. Both Toffoli gates act on the output line for f , thanks
to the fact that the OR operator in the PSOP expression has been replaced with
an EXOR. The overall methodology is summarized in the algorithm in Figure 5.5,
and its cost in terms of elementary quantum T-gates is discussed in the following
proposition.

Proposition 5 The number of T-gates required to synthesize the PSOP-based
quantum circuit for f is given by the overall number of T-gates occurring in the
subcircuits for f|xi=p, f|xi ̸=p, and (xi ⊕ p), plus 8 additional T-gates.

Proof. Observe from Figure 5.3 that the three quantum subcircuits for f|xi=p,
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Figure 5.3: Quantum circuit based on PSOP without remainder.

f|xi ̸=p, and (xi ⊕ p) are combined using only two additional swap gates and two
Toffoli gates. Since swap gates are implemented using CNOTs, only 8 additional
T-gates are required, four for each Toffoli gate [91].

Figure 5.4 shows the circuit for f based on the PSOP decomposition with
remainder. As already noted in Proposition 4, the first disjunction can be replaced
by an EXOR. Moreover, using De Morgan’s laws, we can replace the remaining
OR with a NAND. Thus the form becomes

Pr-SOP(f) =
(
(xi ⊕ p)f|xi=p ⊕ (xi ⊕ p)f|xi ̸=p

)
) ∧ r

The overall quantum circuit for f is thus obtained concatenating the subcircuits for
the projections, for the characteristic function (xi⊕ p) of the projection subspace,
and for the remainder r, possibly depending on all input variables.

This time, six additional lines are used: two for f|xi=p and f|xi ̸=p, one for (xi⊕
p), one for the remainder, one for storing the intermediate result (xi ⊕ p)f|xi=p ⊕
(xi⊕p)f|xi ̸=p, and one as output line for f . As before, swap gates are used to bring
the qubits for the intermediate results closer to the corresponding subcircuits.

Two Toffoli gates, both acting on the same line, are then used for computing the
EXOR of the products between the projections and the corresponding subspaces.
A third Toffoli gate on the output line for f , inizialized with a qubit in state |1⟩, is
finally used to compute the NAND between the complement of the EXOR of the
two products on the second to last line, and the complement of the remainder r.

The overall methodology, summarized in the algorithm in Figure 5.5, requires a
constant number of additional T-gates for combining the four quantum subcircuits,
as stated and proved in the following proposition.

Proposition 6 The number of T-gates required by the quantum circuit based on
PSOP decomposition with remainder is given by the overall number of T-gates
occurring in the subcircuits for f|xi=p, f|xi ̸=p, (xi ⊕ p), and r, plus 12 additional
T-gates.
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Figure 5.4: Quantum circuit based on PSOP with remainder.

Proof. Observe from Figure 5.4 that the four quantum subcircuits for f|xi=p,
f|xi ̸=p, (xi⊕p), and r are combined using three additional swap gates, implemented
using CNOT gates only, and three Toffoli gates. Thus, only 12 additional T-gates
are required, four for each Toffoli gate [91].

Algorithm 2 Quantum synthesis based on PSOP decomposition without
remainder
1: INPUT:
2: f ▷ Function in SOP form depending on n variables {x1, . . . , xn}
3: xi ▷ An input variable
4: p ▷ Function in SOP form depending on all input variables but xi
5: f|xi ̸=p ▷ Projection of f onto the subspace (xi ⊕ p)
6: f|xi=p ▷ Projection of f onto the subspace (xi ⊕ p)
7:
8: OUTPUT:
9: Q ▷ Quantum circuit for f

10: OPTIONAL: Heuristic SOP minimization of p, f|xi ̸=p, f|xi=p

11: Qf ̸= ← QuantumSynthesis(f|xi ̸=p)
12: Qf= ← QuantumSynthesis(f|xi=p)
13: Qp ← QuantumSynthesis(xi ⊕ p)
14: Q← Toffoli(Qf ̸= , Qp)⊕ Toffoli(Qf= , Qp)
15: return Q

Figure 5.5: Quantum synthesis based on PSOP decomposition without remainder.
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Algorithm 3 Quantum synthesis based on PSOP decomposition with
remainder
1: INPUT:
2: f ▷ Function in SOP form depending on n variables {x1, . . . , xn}
3: xi ▷ An input variable
4: p ▷ Function in SOP form depending on all input variables but xi
5: f|xi ̸=p ▷ Projection of non-crossing products of f onto subspace

(xi ⊕ p)
6: f|xi=p ▷ Projection of non-crossing products of f onto subspace

(xi ⊕ p)
7: r ▷ Sum (OR) of the crossing products of f
8: OUTPUT:
9: Q ▷ Quantum circuit for f

10: Optional: Heuristic SOP minimization of p, f|xi ̸=p, f|xi=p, r
11: Qf ̸= ← QuantumSynthesis(f|xi ̸=p)
12: Qf= ← QuantumSynthesis(f|xi=p)
13: Qp ← QuantumSynthesis(xi ⊕ p)
14: Qr ← QuantumSynthesis(r)
15: Q1 ← Toffoli(Qf ̸= , Qp)⊕ Toffoli(Qf= , Qp)

16: Q← 1⊕ Toffoli(Qr, Q1)
17: return Q

Figure 5.6: Quantum synthesis based on PSOP decomposition with remainder.

The overall computational cost of the proposed approach includes the cost of
the projections (linear in the initial SOP of f), the cost of the optional heuristic
SOP minimization of f|xi=p, f|xi ̸=p, p, and r (polynomial), the cost of their quan-
tum compilation, and the (constant) cost for combining the quantum subcircuits
into a quantum circuit for f .

The cost of the standard quantum compilation would include the cost of the
optional heuristic SOP minimization of f and the cost of its quantum compilation.

5.3 Experimental Results

In this section we evaluate the effectiveness of the proposed method for the quan-
tum synthesis of PSOP-decomposed functions. We, then, present the computa-
tional results achieved by constructing PSOP expressions for Boolean functions,
and comparing these expressions to their standard quantum synthesis forms. In
order to assess reversible circuits derived from PSOP decomposition and compare
them with standard synthesis derived circuits, we have measured their number
of qubits and also evaluated their cost in terms of elementary quantum T-gates.
Specifically, we mapped each MPMC Toffoli gate into elementary quantum gates.
This mapping was performed based on the Clifford+T library and the algorithm
detailed in [91]. Since the T-gate is considered the most expensive gate in the
library, usually the cost of a Toffoli gate is expressed in the number of T-gates
needed for its realization. For this reason we report the number of T-gates in the
tables.
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Table 5.1: Comparison between the compilation heuristic proposed in [91] (Stan-
dard synthesis) applied after espresso in the heuristic mode, and the proposed
strategy with different options of p with and without remainder.

PSOP with AND PSOP with variable PSOP with EXOR
Standard synthesis Without remainder With remainder Without remainder With remainder Without remainder With remainder

Benchmark T -count # qubits T -count # qubits T -count # qubits T -count # qubits T -count # qubits T -count # qubits T -count # qubits
addm4 1680 429 2048 521 2156 548 2240 569 2244 570 2352 597 2352 597
adr4 108 35 264 74 120 38 216 62 216 62 352 96 440 118
amd 1244 325 1096 288 1128 296 1124 295 1132 297 1140 299 1140 299
apla 404 111 776 204 824 216 724 191 748 197 616 164 632 168
b3 1220 338 1320 363 1200 333 1304 359 1340 368 1272 351 1272 351
b10 1520 396 1424 372 1428 373 1436 375 1468 383 1552 404 1524 397
b12 280 85 344 101 260 80 260 80 236 74 408 117 256 79
bench 228 63 280 76 296 80 264 72 260 71 332 89 332 89
br1 504 138 580 157 496 136 444 123 504 138 524 143 524 143
br2 348 99 348 99 388 109 360 102 368 104 432 120 436 121
co14 192 62 244 75 224 70 192 62 192 62 172 57 180 59
dc2 328 90 424 114 364 100 328 90 328 91 424 114 424 115
exp 1132 292 1280 329 1284 330 1192 307 1208 311 1208 311 1272 327
f51m 454 121 412 111 400 108 508 135 508 135 420 113 416 112
fout 820 211 932 239 928 238 916 235 916 235 900 231 900 231
gary 1716 444 1792 463 1488 387 1612 418 1592 413 1692 438 1440 375
in0 1720 445 1656 429 1668 432 1712 443 1708 442 1720 445 1744 451
in2 1352 357 1632 427 1340 354 1316 348 1352 357 1328 351 1332 352
in3 1284 356 1164 326 1256 349 1224 341 1272 353 1280 355 1240 345
in4 1344 368 1384 378 1288 355 1372 375 1380 377 1344 368 1320 363
in5 1216 328 1160 314 1072 293 1052 287 956 264 1168 316 1088 297
in7 480 146 536 160 348 114 592 174 332 110 432 134 316 106
inc 364 98 444 118 444 118 380 102 384 103 388 104 388 104
m3 1024 264 936 242 948 245 1008 260 1052 271 888 230 912 236
m4 2128 540 1692 431 1592 406 1680 428 1836 467 1944 494 1932 491
max128 1392 356 1196 307 1232 316 1220 313 1260 323 1496 382 1496 382
mlp4 1264 324 1336 342 1308 335 1388 355 1388 355 1316 337 1316 337
newapla 136 46 196 61 72 31 140 47 40 23 200 62 76 32
newcpla1 336 93 464 125 248 72 280 79 320 90 364 100 260 75
newcpla2 228 64 216 61 148 45 236 66 168 49 240 67 152 46
newxcpla1 508 136 528 141 184 56 368 101 128 42 584 155 184 56
p3 632 167 736 193 720 189 584 155 592 157 628 166 620 164
p82 292 78 328 87 320 85 320 85 328 87 368 97 372 98
rckl 520 162 864 248 568 175 544 168 296 107 528 164 568 175
rd73 352 95 344 93 344 93 388 104 312 85 300 82 180 52
root 516 137 520 138 524 139 452 121 452 121 468 125 452 121
spla 2536 650 2720 696 2828 723 3356 855 3464 882 3308 843 3484 887
sqr6 404 108 408 109 416 111 392 105 392 105 440 117 428 114
sym10 1420 365 1080 280 1080 280 804 211 804 211 748 197 756 199
t1 568 163 792 219 792 219 572 164 592 169 816 225 816 225
t3 252 75 244 73 228 69 276 81 272 80 320 92 272 80
tms 744 194 828 215 840 218 704 184 744 194 680 178 692 181
vg2 444 136 440 135 360 116 512 153 364 116 348 112 292 99
x6dn 1112 317 1224 345 1180 334 1080 309 1092 312 1248 351 1308 366
x9dn 408 129 428 134 348 115 436 136 348 115 320 107 256 92
Z5xp1 456 121 380 102 392 105 512 135 520 137 356 96 352 95
Z9sym 828 216 804 210 788 206 692 182 692 182 680 179 680 179

All computational experiments have been run on a Intel i7-8550U CPU of
1.80GHz with 16GB of RAM. The benchmarks utilized are classical benchmarks in
PLA form (classical Espresso and LGSynth’89 benchmark suite [145]). This choice
is due to the fact that the computation of the function p described in [24] derives
from a statistical analysis of the initial SOP (or PLA) form. The benchmarks in
other classical sets (such as EPFL benchmark suite [137, 138]) are, unfortunately,
not given in PLA form. We further discuss this point in the concluding section.
As representative indicators of our experiments, we report only a significant subset
of the functions.

The experiments have been conducted using the SOP minimization as described
in the strategy depicted in Figure 5.2, using Espresso [32] in the heuristic mode
for the SOP synthesis. The experimental results are obtained by applying the
XAG-based quantum compilation heuristic proposed in [91]. In particular, we are
interested in evaluating experimentally whether this recent technique could benefit
from the PSOP decomposition of the target function.

The decomposition phase is extremely fast, coherently with the linear time
complexity of the corresponding algorithm [24]. Therefore, the computational
times of the standard minimization and the decomposed one are extremely similar.
For this reason the comparison of computational times is not interesting, and we
do not report them in the tables.

In Table 5.1, the names of a significant set of benchmarks, included in our
experiments, are listed in the first column. The following four columns provide
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details on the number of T-gates, which determine the cost, and the number of
qubits required for the quantum circuits obtained from standard synthesis and
PSOP expressions of the benchmarks. As can be seen, we investigate three scenar-
ios for PSOP expressions: the projection of f with respect to p is first explored as
an AND of two variables (PSOP with AND), secondly as a simple Boolean vari-
able (PSOP with variable), and lastly as an EXOR of two variables (PSOP with
EXOR). In each scenario, we examine PSOP expressions both with and without
remainder.

As shown in Table 5.1, it is clear that some benchmarks experience signifi-
cant advantages from PSOP expressions in terms of the number of T-gates and
the number of qubits compared to standard synthesis. For instance, the bench-
marks rd73 and sym10 achieve a significant reduction in T-gates and qubits when
utilizing PSOP with EXOR ( with remainder) and PSOP with EXOR (without
remainder), respectively. Specifically, rd73 shows a 49% reduction in T-gates and
a 45% reduction in qubits, while sym10 shows a 47% reduction in T-gates and
an 46% reduction in qubits. However, in some cases, standard synthesis results in
circuits with fewer T-gates and qubits compared with PSOP-based synthesis. For
example, the addm4 benchmark.

Overall, we can note that the best strategy seems to be the one where p is a
single variable (with or without remainder). Moreover, the one that uses p as an
AND gate is less useful. This is probably due to the fact that an AND gate has
an expensive (in terms of T-gates) quantum representation. Meanwhile, the single
variable or the EXOR gates require less expensive quantum gates.

Table 5.2 reports a subset of all the benchmarks used in our experiments. The
first column lists the name of each benchmark. The next group of 2 columns
detail the cost and the number of qubits for the the quantum circuits derived from
standard synthesis and the best PSOP expressions of the benchmarks. Finally, the
last column reports the gain in the number of T-gates.

According to the results shown in Table 5.2, it is evident that some benchmarks
benefit greatly from the proposed strategy. For instance, the benchmarks newapla
and newxcpla1 achieve a 71% and 75% reduction in T-gates, respectively. However,
the gain is much less significant for some benchmarks, such as in0 and in2. In some
cases, the best PSOP strategy results in circuits with a higher number of T-gates,
for example adr4 and apla. Overall, the T cost of the best PSOP-based quantum
circuit is significantly lower than that of circuits derived from standard synthesis.

It is also crucial to minimize the number of qubits in quantum circuit design.
As can be observed in Table 5.2, it is clear that the best PSOP strategy has a sig-
nificant effect on some benchmarks in terms of the number of qubits. For example,
the benchmark newapla and newxcpla1 experiences more that 50% reduction in
qubit numbers. However, the improvement is much smaller for some benchmarks
like b3 and sqr6. In some instances, the best PSOP strategy leads to circuits with
a higher number of qubits, such as in the case of adr4. In general, we can see that
the number of qubits in quantum circuits based on the best PSOP is notably fewer
compared to the circuits obtained through standard synthesis.

In summary, we have that the proposed strategy gives better results for the 61%
of the benchmarks with an average gain of about 22% in terms of T-gates, within
the same time limit. Some benchmarks particularly benefit from this strategy,
since their cost gain is more than the 70%.
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Table 5.2: Comparison between the compilation heuristic proposed in [91] (Stan-
dard synthesis) applied after espresso in the heuristic mode, and the best solution
of the proposed strategy.

Standard synthesis Best PSOP Gain
Benchmark T -count # qubits T -count # qubits (T-gates)
addm4 1680 429 2048 521 −
adr4 108 35 216 62 −
amd 1244 325 1096 288 12%
apla 404 111 616 164 −
b3 1220 338 1200 333 2%
b10 1520 396 1424 372 6%
b12 280 85 236 74 16%
bench 228 63 260 71 −
br1 504 138 444 123 12%
br2 348 99 348 99 −
co14 192 62 172 57 10%
dc2 328 90 328 90 −
exp 1132 292 1192 307 −
f51m 454 121 400 108 12%
fout 820 211 900 231 −
gary 1716 444 1440 375 16%
in0 1720 445 1656 429 4%
in2 1352 357 1316 348 3%
in3 1284 356 1164 326 9%
in5 1216 328 956 264 21%
in7 480 146 316 106 34%
inc 364 98 380 102 −
m3 1024 264 888 230 13%
m4 2128 540 1592 406 25%
max128 1392 356 1196 307 14%
mlp4 1264 324 1308 335 −
newapla 136 46 40 23 71%
newcpla1 336 93 260 75 23%
newcpla2 228 64 148 45 35%
newxcpla1 508 136 128 42 75%
p3 632 167 584 155 8%
p82 292 78 320 85 −
rckl 520 162 296 107 43%
rd73 352 95 180 52 49%
root 516 137 452 121 12%
spla 2536 650 2720 696 −
sqr6 404 108 392 105 3%
sym10 1420 365 748 197 47%
t1 568 163 572 164 −
t3 252 75 228 69 10%
tms 744 194 680 178 9%
vg2 444 136 292 99 34%
x6dn 1112 317 1080 309 3%
x9dn 408 129 256 92 37%
Z5xp1 456 121 352 95 23%
Z9sym 828 216 680 179 18%

5.4 Conclusion

This chapter has detailed a pre-processing procedure and a reconstruction method
designed to facilitate quantum synthesis. The core of the proposed strategy lies in
a PSOP (Projected Sum of Products) decomposition method, which utilizes the
expression xi ⊕ p to simplify the synthesis process. This approach addresses the
challenges associated with quantum circuit design by leveraging a decomposition
technique that refines Boolean functions into more manageable components.

The proposed PSOP decomposition method has been rigorously tested through
experimental validation. Specifically, the algorithms were evaluated on decomposi-
tions where p varied as a single variable, an AND combination of variables, and an
XOR combination of variables. These experiments demonstrated the effectiveness
and robustness of the PSOP-based approach in practical scenarios, confirming its
utility in simplifying complex Boolean functions and aiding in quantum synthesis.

The synthesis method, based on PSOP decomposition, has yielded promising
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results. However, it is important to note that this decomposition is specifically
applicable to SOP forms. The PSOP decomposition relies on statistical analysis
of the variables within the initial SOP representation, necessitating that the input
Boolean function be expressed in a PLA format or another two-level logic repre-
sentation. This requirement highlights a limitation of the current approach, as it
may not directly apply to Boolean functions represented in alternative formats.
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Chapter 6

Preliminaries on Multivalued
Reversible Logic

This chapter explains the fundamental concepts of multi-valued reversible logic,
with a focus on ternary and quaternary logic systems. Additionally, an overview of
ternary and quaternary Galois fields, as well as reversible gates, is provided, setting
the stage for their application in subsequent discussions. This foundational knowl-
edge is crucial for understanding the advanced topics explored in the following
chapters.

6.1 The Concept of Ternary Reversible Logic

Quantum ternary logic is an essential concept within the broader field of quantum
multi-valued logic, gaining significant attention due to its potential applications in
next-generation computing technologies. Unlike traditional binary logic, which op-
erates on two states (0 and 1), ternary logic utilizes three distinct states, making it
a prime candidate for advanced computational systems, such as ternary quantum
computers and digital filtering technologies. This shift from binary to ternary logic
offers several notable advantages, including reduced power consumption, enhanced
fault tolerance, and increased security, especially in the field of quantum cryp-
tography [10, 30, 133]. These advantages make ternary logic highly attractive for
future quantum information systems and secure communications, where classical
binary methods are less efficient and robust.

In multi-valued systems, ternary logic is distinguished by its interesting noise
immunity [46], and it is considered the most economical radix, as determined
by examining the width and depth of number representation [63, 80]. Hurst [63]
demonstrated that circuit complexity (C) associated with processing specific quan-
titative data (N) can be expressed as:

C = K(R · d), (6.1)

where R is the number of basis states, d is the number of signals, and K is
the proportional coefficient. Additionally, d = logRN . It can be concluded that C
reaches its lowest point when R is approximately equal to e ≈ 2.718. Considering
that R must be an integer, 3 is the nearest integer to e, thus confirming ternary
logic’s efficiency. Table 6.1 provides the relationship between R and the associated
circuit complexity C.
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R C = K(R · d)
2 100.0
3 94.6
4 100.0
5 107.7
10 150.5

Table 6.1: The relationship between values of R and C

In comparison to binary circuits, where R = 2, the complexity of ternary
circuits (R = 3) is lower. The complexity C can be further refined using the
following equation:

K =
50

log2N
, (6.2)

and for cases where R ̸= 2, the equation becomes:

C = 50R
ln(2)

ln(R)
. (6.3)

These equations indicate that R = 3 is the optimal radix for reducing circuit
complexity [42].

At the core of quantum ternary logic is the concept of the "qutrit," analogous
to the qubit in binary quantum computing, serving as the basic unit of quantum
information in a ternary system. A qutrit can exist in three possible states, denoted
as |0⟩, |1⟩, and |2⟩, mathematically represented as three-dimensional vectors:

|0⟩ =

10
0

 , |1⟩ =

01
0

 , |2⟩ =

00
1

 .
A qutrit can also exist in a superposition of these basis states, expressed as:

|ψ⟩ = α|0⟩+ β|1⟩+ γ|2⟩,

where α, β, and γ are complex probability amplitudes associated with each
state. The normalization condition ensures that the total probability of measuring
the system in any state sums to one:

|α|2 + |β|2 + |γ|2 = 1.

Quantum computers based on ternary logic are found to be 37% more compact
than binary logic systems [61]. Additional advantages of quantum ternary logic
include increased security [10, 30], improved quantum information processing effi-
ciency [55], greater density of stored information [33], enhanced error tolerance [81],
simplified interconnection complexity, and reduced power consumption [33, 96].

In the design of ternary systems, researchers have also explored reversible
ternary logic, which holds promise for quantum computing structures [106]. Re-
versible ternary logic offers numerous advantages, such as the ability to design
efficient quantum circuits with minimized power loss. Balanced and unbalanced
ternary arithmetic functions are often used in such systems, where the balanced
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representation (with values 1̂, 0, and 1) proves advantageous for efficient arith-
metic operations [46]. Balanced ternary representations simplify operations like
inversion, partial product generation, and carry ripple structures, making them
highly suitable for arithmetic circuit design.

Moreover, in quantum ternary circuits, metrics like quantum cost, garbage
outputs, and constant inputs are critical factors in the design and performance
optimization of these circuits [9, 99], which are explained as follows:

• Quantum cost refers to the number of ternary primitive gates, which are
1-qutrit Shift gates and 2-qutrit Muthukrishnan-Stroud gates, required to
realize the circuit.

• The number of garbage outputs indicates the outputs which are generated
to preserve one-to-one mappings but have unimportant values.

• The number of constant inputs signifies the number of inputs which must be
maintained constant in order to synthesize the specified logic function.

Minimization of the above mentioned features increases the efficiency of ternary
quantum reversible logic design [9, 99].

In summary, quantum ternary logic provides a more compact, efficient, and
secure framework for quantum computing compared to traditional binary logic.
The optimal complexity of ternary circuits and their favorable characteristics in
noise immunity, arithmetic operations, and quantum cryptography underscore
their growing importance in the development of future quantum technologies.

6.1.1 Ternary Galois Field Logic

Ternary logic can be represented using the Galois Field GF3. This field can be
applied in both unbalanced and balanced ternary systems. In unbalanced ternary
logic, the Galois Field GF3 consists of the elements {0, 1, 2}, with operations de-
fined modulo 3 [70, 101]. The addition and multiplication tables for this system
are provided in Tables 6.2 and 6.3.

Table 6.2: Truth table of GF3 addition operation (unbalanced).⊕
0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Table 6.3: Truth table of GF3 multiplication operation (unbalanced).⊙
0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

In balanced ternary logic, the Galois Field GF3 consists of the elements T =
{1̂, 0, 1}, where 1̂ represents −1. This balanced representation offers various advan-
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tages in computation. The addition and multiplication tables for balanced ternary
logic are shown Tables 6.4 and 6.5.

Table 6.4: Truth table of GF3 addition operation (balanced).⊕
1̂ 0 1

1̂ 1 1̂ 0
0 1̂ 0 1
1 0 1 1̂

Table 6.5: Truth table of GF3 multiplication operation (balanced).⊙
1̂ 0 1

1̂ 1 0 1̂
0 0 0 0
1 1̂ 0 1

The following axioms rules are also derived according to the tables provided
above, which demonstrate the behavior of addition and multiplication operations
in the algebraic structure [34].This field can be applied in both unbalanced and
balanced ternary systems.

Addition:
(A1) Associative Law: a⊕ (b⊕ c) = (a⊕ b)⊕ c
(A2) Commutative Law: a⊕ b = b⊕ a
(A3) Identity Element: There is an element 0 such that a⊕ 0 = a for all a
(A4) Additive Inverse: For any a, there is an element (−a) such that a⊕ (−a) = 0

Multiplication:
(M1) Associative Law: a⊙ (b⊙ c) = (a⊙ b)⊙ c
(M2) Commutative Law: a⊙ b = b⊙ a
(M3) Identity Element: There is an element 1 (not equal to 0) such that

a⊙ 1 = a for all a
(M4) Multiplicative Inverse: For any a ̸= 0, there is an element a−1 such that

a⊙ a−1 = 1

Distribution:
(D) Distributive Law: a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c)

6.1.2 Ternary Shift Gates

In ternary reversible logic, any transformation of the qutrit is expressed using a
3× 3 unitary matrix, as demonstrated in Figure 6.1. Each column or row in these
matrices contains three elements which are 0 or 1. The transformations are used
to shift or exchange elements within the matrices [68, 61]. Z(+0) is an initial state
and each column or row of the matrix shows 0, 1 or 2 values. Z(+1) shifts the
qutrit state by 1 and Z(+2) shifts the qutrit state by 2. Z(12) exchanges the qutrit
states 1 and 2, Z(01) exchanges the qutrit states 0 and 1, and Z(02) exchanges
the qutrit states 0 and 2.

Each of these unitary matrices can be realized as a 1-qutrit Shift gate. These
gates are uncontrollable, it means that there is no controlling input. The symbolic
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Z(0) =

1 0 0
0 1 0
0 0 1

 Z(+1) =

0 0 1
1 0 0
0 1 0

 Z(+2) =

0 1 0
0 0 1
1 0 0


Z(12) =

1 0 0
0 0 1
0 1 0

 Z(01) =

0 1 0
1 0 0
0 0 1

 Z(02) =

0 0 1
0 1 0
1 0 0


Figure 6.1: Unbalanced representation of 1-qutrit permutative transforms.

A z P

Figure 6.2: The symbolic representation of ternary shift gates.

representation of ternary shift gates can be observed in Figure 6.2. As depicted,
A is the input to the gate, and P is the output. P corresponds to the Z transform
of A. The quantum cost associated with these gates is 1 [68]. Table 6.6 shows the
truth table of ternary Shift gates, named Identity, Single Shift, Dual Shift, Self
Shift, Self Single Shift and Self Dual Shift, respectively. As shown in Table 6.7,
these gates have unitary inverse gates that return the inputs to their original values
[68, 61]. As can be observed in this table, Z(01), Z(02) and Z(12) are self-inverse
gates.

Table 6.6: Truth table of ternary Shift gates.

Input Z(0) Z(+1) Z(+2) Z(12) Z(01) Z(02)

0 0 1 2 0 1 2
1 1 2 0 2 0 1
2 2 0 1 1 2 0

Table 6.7: Inverse gates of ternary Shift gates.

Gates Z(+1) Z(+2) Z(12) Z(01) Z(02)

Inverse gates Z(+2) Z(+1) Z(12) Z(01) Z(02)

6.1.3 Ternary Muthukrishnan and Stroud Gate

Muthukrishnan and Stroud introduced a family of 2-qudit ternary gates that can
be theoretically implemented using quantum technologies, such as liquid ion trap
technology, as an elementary gate [106]. The symbolic representation of balanced
ternary Muthukrishnan and Stroud gate can be observed in Figure 6.3. As de-
picted, this gate is controllable, A and B are the inputs to the gate, A is con-
trolling input and B is controlled input. P and Q are the outputs. The output
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A P

B Z Q

Figure 6.3: The symbolic representation of ternary Muthukrishnan and Stroud
gate.

P corresponds to the input A and the output Q corresponds to the Z transform
of B where Z ∈ {0,+1,+2, 12, 01, 02}, but only when the input A is equal to 2,
otherwise the output P is equal to the input B. The quantum cost associated with
this gate is 1 [101].

6.1.4 Ternary Controlled Feynman Gate

Figure 6.4a shows the symbolic representation of the ternary Feynman gate. In
this gate, the inputs are A and B, and the outputs are P and Q, where P = A
and Q = A⊕B. This gate can be implemented using Muthukrishnan-Stroud gates
and 1-qutrit permutation gates, as depicted in Figure 6.4b. The evaluation matrix
of the ternary Feynman gate can be expressed as discussed in [2, 100].

H.A. Khan in [68] designed a ternary Controlled Feynman gate and demon-
strated its realization using 2-qutrit Muthukrishnan-Stroud gates. Figure 6.5a
illustrates the symbolic representation of the ternary Controlled Feynman gate.
This gate has inputs A, B, and C, and outputs P , Q, and R. For this gate,
P = A, Q = B, and R = B ⊕ C when A ̸= 2; otherwise, R = C. This gate can
be realized using Muthukrishnan-Stroud gates and 1-qutrit permutation gates, as
shown in Figure 6.5b. The quantum cost for this gate is 4. However, if input B is
not required at the output Q, the fourth 2-qutrit Muthukrishnan-Stroud gate can
be removed, reducing the quantum cost to 3.

A P

B Q

(a) Symbol.

A 12 12 P

B +2 +1 Q

(b) The realization using M-S and Shift gates.

Figure 6.4: The ternary reversible Feynman gate.
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2A P

B Q

C R

(a) Symbol.

A P

B 12 12 Q

C +2 +1 R

(b) The realization using M-S and Shift gates.

Figure 6.5: The ternary reversible controlled Feynman gate.

X P

Y Q

Z Z R

Figure 6.6: The graphical representation of Toffoli gate.

6.1.5 Ternary Toffoli Gate

Khan and Perkowski in [79] present a 3-qutrit generalized Toffoli gate along with its
realization in ion-trap technology. The symbolic representation of this gate can be
observed in Figure 6.6. In this gate, X,Y and Z are the inputs and P,Q and R are
the outputs. The outputs P and Q are equal to the input X and Y , respectively.
The output R, which is the target output, is equal to the Z transform of the input
Z when X and Y are equal 2, where Z can be +1,+2, 01, 02, 12. Otherwise, the
output R is equal to the input Z. The quantum cost associated with this gate is
5 + (2× {number of controlling values which are not 2}).

6.2 The Concept of Quaternary Reversible Logic

Quaternary quantum logic is also a type of multiple-valued quantum logic that has
been advocated by many researchers. In quaternary quantum systems, the unit of
memory (information) is termed a qudit (quantum digit) and can be denoted by
|0⟩, |1⟩, |2⟩, or |3⟩, represented by the following 4× 1 vectors [136, 102]:

|0⟩ =


1
0
0
0

 , |1⟩ =


0
1
0
0

 , |2⟩ =


0
0
1
0

 , |3⟩ =


0
0
0
1


Qudits exist in a linear superposition of basis states. This technique is called

superposition. In quaternary quantum logic, the superposition is denoted as:
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ψ = α|0⟩+ β|1⟩+ γ|2⟩+ δ|3⟩

This can also be written as a vector:

ψ = (α, β, γ, δ)

where α, β, γ, and δ are complex numbers. The probability of measuring state
|0⟩ is |α|2, state |1⟩ is |β|2, state |2⟩ is |γ|2, and state |3⟩ is |δ|2. The sum of these
probabilities must satisfy the normalization condition:

|α|2 + |β|2 + |γ|2 + |δ|2 = 1

In general, an N -qudit system represents 4N distinct computational basis
states. These basis states can be depicted as:

|000 · · · 0⟩, |000 · · · 1⟩, . . . , |333 · · · 3⟩

All possible states of the N -qudit system are indicated by the tensor product
of N qudits [109].

In quaternary reversible circuit design, several important figures of merit de-
termine the efficiency of the circuit. Minimizing these parameters is an important
consideration in the design of quaternary quantum reversible logic circuits.

• Quantum cost refers to the cost of a circuit, calculated by the number of
quaternary 1-qudit gates.

• The number of constant inputs refers to the number of inputs assigned con-
stant values such as 0, 1, 2, or 3 in the synthesis of a given logic function.

• The number of garbage outputs refers to the number of unused outputs in
the synthesis of the given logic function.

6.2.1 Quaternary Galois Field Logic

The quaternary Galois field, denoted as GF(4), consists of the set of elements
T = {0, 1, 2, 3} along with two binary operations: addition (⊕) and multiplication
(⊙) [75]. The operations within GF(4) follow the rules outlined in Tables 6.8 and
6.9. These operations satisfy the following axioms [24]:

Addition:
(A1) Associative law: a⊕ (b⊕ c) = (a⊕ b)⊕ c
(A2) Commutative law: a⊕ b = b⊕a (A3) Identity element: a⊕0 = a for all a
(A4) Inverse element: For any a, there exists an element (−a) such that a ⊕

(−a) = 0

Multiplication:
(M1) Associative law: a⊙ (b⊙ c) = (a⊙ b)⊙ c
(M2) Commutative law: a⊙ b = b⊙ a
(M3) Identity element: a⊙ 1 = a for all a
(M4) Inverses: For any a ̸= 0, there exists an element a−1 such that a⊙a−1 = 1

Distributive Law:
(D) Distributive law: a⊙ (b⊕ c) = (a⊙ b)⊕ (a⊙ c)
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Both addition and multiplication operations are commutative and associative.
Furthermore, the multiplication operation is distributive over addition. The truth
tables for addition (⊕) and multiplication (⊙) in GF(4) are given in Tables 6.8
and 6.9.

Table 6.8: Truth table of GF(4) addition operation.

⊕ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Table 6.9: Truth table of GF(4) multiplication operation.

⊙ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

6.2.2 Quaternary Shift Gates

In quaternary systems, there are 4! = 24 possible permutations of the set {0, 1, 2, 3},
each represented by a 4×4 unitary matrix. These quaternary 1-qudit unitary per-
mutative transformations are illustrated in Figure 6.7 [76]. These transformations
can be implemented as quaternary 1-qudit gates using quantum technology [106].

The symbolic representation of quaternary 1-qudit gates is shown in Figure 6.8.
In this representation, the input to the gate is A, and the output P is obtained
by applying a permutation Z-transform to A. The corresponding truth table for
quaternary 1-qudit gates is provided in Table 6.10 [75].

A z P

Figure 6.8: The symbolic representation of quaternary shift gates.
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Figure 6.7: Representation of 1-qudit permutative transforms.

Table 6.10: Truth table of quaternary 1-qudit gates.

Input Z(+0) Z(+1) Z(+2) Z(+3) Z(123) Z(013)

0 0 1 2 3 0 1
1 1 0 3 2 2 3
2 2 3 0 1 3 2
3 3 2 1 0 1 0

Input Z(021) Z(032) Z(132) Z(012) Z(023) Z(031)

0 2 3 0 1 2 3
1 0 1 3 2 1 0
2 1 0 1 0 3 2
3 3 2 2 3 0 1

Input Z(23) Z(01) Z(0213) Z(0312) Z(12) Z(0132)

0 0 1 2 3 0 1
1 1 0 3 2 2 3
2 3 2 1 0 1 0
3 2 3 0 1 3 2

Input Z(0231) Z(03) Z(13) Z(0123) Z(02) Z(0321)

0 2 3 0 1 2 3
1 0 1 3 2 1 0
2 3 2 2 3 0 1
3 1 0 1 0 3 2
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A P

B Z Q

Figure 6.9: The symbolic representation of quaternary Muthukrishnan and Stroud
gate.

Each quaternary 1-qudit gate has a corresponding unitary inverse gate, which
can restore the input signal for reuse in the circuit. If two quaternary 1-qudit
gates, x and y, are cascaded in such a way that the output of gate y restores the
input signal of gate x, then gate y is considered the inverse of gate x. Among the
quaternary 1-qudit gates, the gates Z(+1), Z(+2), Z(+3), Z(23), Z(01), Z(12),
Z(03), Z(13), and Z(02) are self-inverse.

6.2.3 Quaternary Muthukrishnan–Stroud Gate

Muthukrishnan and Stroud proposed a family of 2-qudit multiple-valued gates,
known as Muthukrishnan-Stroud (M-S) gates, which can be realized using quantum
technologies like liquid ion traps [106]. The symbolic representation of quaternary
2-qudit M-S gates is shown in Figure 6.9. In this gate, the inputs are A (control
input) and B (target input). The outputs are P and Q, where P = A and Q is
the result of applying a Z-transform to B if A = 3.

6.2.4 Quaternary Controlled Feynman Gate

The quaternary Controlled Feynman gate is a 3-input, 3-output gate that maps
the inputs (A, B, C) to the outputs (P=A, Q=B, R = B⊕C if A = 3; otherwise
R = C). The inputs are A, B, and C, while the outputs are P, Q, and R [76].

Figure 6.10a shows the graphical representation of the quaternary Controlled
Feynman gate. Figures 6.10b and 6.10c present different implementations of this
gate using M-S gates. This gate has a quantum cost of 6. Based on the second
implementation in Figure 6.10c, the last 2-qutrit M-S gate (+3) can be removed
if the input B is not required at the output Q. In this case, the quantum cost is
reduced to 5, and the output Q becomes equal to B+2 if A=3 [76].
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3A P

B Q

C R

(a) Symbol.

A P

B +2 +3 +1 Q

C +1 +2 +3 R

(b) The first realization using M-S and Shift gates.

A P

B +1 +3 +2 Q

C +3 +2 +1 R

(c) The second realization using M-S and Shift gates.

Figure 6.10: The quaternary reversible Controlled Feynman gate.
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Chapter 7

Novel Qutrit Circuit Design for
Multiplexer, Demultiplexer, and
Decoder

This chapter addresses ternary logic, which reduces circuit width, offering a po-
tential solution to current limitations in quantum technologies. In this chapter,
we propose two approaches for quantum ternary decoder circuits, followed by the
development of quantum ternary multiplexer and demultiplexer circuits that lever-
age the ternary decoder design. The chapter emphasizes techniques for lowering
quantum cost and compares the proposed circuits to existing designs, highlighting
significant improvements. These designs are realizable using macro-level ternary
gates, specifically ion-trap-based ternary 2-qutrit Muthukrishnan–Stroud and 1-
qutrit permutation gates, showcasing their potential in advancing quantum com-
puting.

7.1 Introduction

In the realm of digital logic design, the implementation of combinational logic
circuits is a well-established practice, traditionally achieved using binary systems
with multiplexers and basic logic gates. However, this capability extends to ternary
logic systems as well [65]. Ternary logic, which utilizes three distinct states instead
of two, offers a broader range of operational possibilities and can be effectively
implemented using ternary multiplexers and gates. This chapter delves into the
synthesis and optimization of quantum ternary circuits, focusing specifically on
ternary quantum decoders, multiplexers, and demultiplexers.

The literature provides a comprehensive overview of various quantum ternary
circuit implementations for different computational units within quantum systems.
These include fundamental components such as full adders, half adders, parallel
adders/subtractors, subtractors, multipliers, decoders, encoders, demultiplexers,
and multiplexers [61, 7, 90, 113, 114, 105, 101, 6, 104, 136, 64]. Among these,
decoders, multiplexers, and demultiplexers are particularly crucial as they serve as
core sub-circuits for constructing ternary quantum oracles and other ternary sys-
tem designs, including communication systems, computer memory, and arithmetic
logic units [69].
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Figure 7.1: Block diagram of N × 3N ternary decoder circuit.

Recent studies have addressed the implementation of quantum ternary de-
coders, multiplexers, and demultiplexers, providing valuable insights into their
quantum cost and efficiency. Recall that quantum cost refers to the number of
ternary primitive gates, which are 1-qutrit Shift gates and 2-qutrit Muthukrishnan-
Stroud gates, required to realize the circuit. A quantum ternary decoder with a
quantum cost of 57 is detailed in [78]. Similarly, the work presented in [68] intro-
duces quantum ternary multiplexers and demultiplexers with a quantum cost of
102. Despite these contributions, there remains significant scope for enhancing the
efficiency of these circuits.

This chapter focuses on the development and optimization of more efficient
quantum ternary decoders, multiplexers, and demultiplexers compared to the ex-
isting designs [78, 68]. Our approach emphasizes minimizing critical parameters
such as quantum cost, circuit depth, number of garbage outputs, and number of
constant inputs. By optimizing these parameters, we aim to achieve superior ef-
ficiency in quantum ternary logic design, aligning with the objectives of recent
advancements in the field [112, 9, 99]. The results presented in this chapter were
published in the Quantum Information Processing journal [135].

The structure of this chapter is organized as follows: Section 7.2 details the
realization of our proposed quantum reversible ternary decoder, multiplexer, and
demultiplexer circuits. In Section 7.3, we assess the performance of these circuits
based on the aforementioned parameters. Finally, Section 7.4 offers concluding
remarks and summarizes the contributions of this study.

7.2 The Proposed Quantum Ternary Circuit

In this section, we first propose two quantum ternary decoders. The quantum
ternary multiplexer and demultiplexer circuits are then presented. The following
subsections describe these designs in detail.

7.2.1 Ternary Reversible Decoder

One of the important ternary combinational logic circuits is the ternary decoder,
which converts ternary information from the N inputs to 3N unique outputs. Fig-
ure 7.1 illustrates the block diagram of the N × 3N ternary decoder circuit. Ta-
ble 7.1 shows the truth table of a 2 × 9 ternary decoder with active-2 output. In
this table, A andB are the input variables, whereasD0, D1, D2, D3, D4, D5, D6, D7,
and D8 are the output variables.

For each combination of inputs, only one output line will be activated. In this
case, the circuit is active-2, meaning that if the output line is 2, the line is ON;
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Table 7.1: 2×9 ternary decoder truth table (x denotes the result when the output
line is off)

.

Inputs Outputs
AB D0 D1 D2 D3 D4 D5 D6 D7 D8

00 2 x x x x x x x x
01 x 2 x x x x x x x
02 x x 2 x x x x x x
10 x x x 2 x x x x x
11 x x x x 2 x x x x
12 x x x x x 2 x x x
20 x x x x x x 2 x x
21 x x x x x x x 2 x
22 x x x x x x x x 2

otherwise, it is OFF. According to the truth table, only one of the outputs will be
equal to 2 for any given input combination. The outputs are described as follows:

D0 = A0B0, D1 = A0B1, D2 = A0B2,

D3 = A1B0, D4 = A1B1, D5 = A1B2,

D6 = A2B0, D7 = A2B1, D8 = A2B2.

The outputs x in Table 7.1 can be either 0 or 1. In both cases, the corresponding
output line will remain inactive.

In this chapter, we present two approaches to constructing the proposed quan-
tum ternary decoder.

The Primary Quantum Ternary Decoder Design Approach

In the Primary Quantum Ternary Decoder Design Approach (PQTDA), only one
of the outputs will be equal to 2 for a given input combination, while the remaining
outputs will be equal to 0 (i.e., x = 0). To enhance comprehension, the operation
of the quantum ternary decoder is first demonstrated in three parts, as shown in
Fig. 7.2a, Fig. 7.2b, and Fig. 7.2c, followed by the complete design in Fig. 7.2d.

The realization of the first part is depicted in Fig. 7.2a, consisting of five 1-
qutrit permutation gates and nine 2-qutrit Muthukrishnan–Stroud gates. In this
stage, if the inputs A and B are equal to 00, only output D0 will be equal to 2.
Similarly, when A and B are 01, only output D1 will be 2, and when A and B are
02, output D2 will be 2.

The second part of the decoder is shown in Fig. 7.2b, utilizing five 1-qutrit
permutation gates and nine 2-qutrit Muthukrishnan–Stroud gates. In this stage,
when A and B are equal to 10, only output D3 will be equal to 2. If A and B are
11, only output D4 will be 2, and when A and B are 12, output D5 will be 2.

The realization of the final part is shown in Fig. 7.2c. In this stage, when
inputs A and B are equal to 20, only output D6 will be equal to 2. Similarly, when
A and B are 21, output D7 will be 2, and if A and B are 22, output D8 will be 2.

The complete realization of the proposed quantum ternary decoder is shown
in Fig. 7.2d. The proposed design uses twelve 1-qutrit permutation gates and
twenty-seven 2-qutrit Muthukrishnan–Stroud gates, resulting in a quantum cost
of 39. The outputs for various input combinations are shown in Table 7.2. The

71



depth of the proposed quantum ternary decoder circuit, as shown in Fig. 7.2d, is
30.

(a) The realization of the first part.

(b) The realization of the second part.

(c) The realization of the third part.

(d) Complete realization of PQTDA using 2-qutrit M–S and 1-qutrit permutation gates.

Figure 7.2: The proposed PQTDA design.

Optimized Quantum Ternary Decoder Design Approach

In the Optimized Quantum Ternary Decoder Design Approach (OQTDA), we pro-
pose a ternary decoder with a lower quantum cost. In this optimized design, all
unselected outputs are allowed to take on the value of 1 or 0, while only the se-
lected output is set to 2. To implement this circuit, we use 1-qutrit permutation
gates and 2-qutrit Muthukrishnan–Stroud gates. The realization of the proposed
circuit is illustrated in Fig. 7.3.

As shown in Fig. 7.3, the circuit utilizes nine 1-qutrit permutation gates and
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Table 7.2: PQTDA truth table.

Inputs Outputs
AB D0 D1 D2 D3 D4 D5 D6 D7 D8

00 2 0 0 0 0 0 0 0 0
01 0 2 0 0 0 0 0 0 0
02 0 0 2 0 0 0 0 0 0
10 0 0 0 2 0 0 0 0 0
11 0 0 0 0 2 0 0 0 0
12 0 0 0 0 0 2 0 0 0
20 0 0 0 0 0 0 2 0 0
21 0 0 0 0 0 0 0 2 0
22 0 0 0 0 0 0 0 0 2

Figure 7.3: OQTDA realization

eighteen 2-qutrit Muthukrishnan–Stroud gates. The quantum cost of this opti-
mized design is 27, representing a significant improvement in terms of both im-
plementation cost and circuit depth compared to the PQTDA. The outputs for
different input combinations are provided in Table 7.3. The depth of the proposed
quantum ternary decoder circuit, as shown in Fig. 7.3, is 18.

Table 7.3: OQTDA truth table.

Inputs Outputs
AB D0 D1 D2 D3 D4 D5 D6 D7 D8

00 2 1 1 1 0 0 1 0 0
01 1 2 1 0 1 0 0 1 0
02 1 1 2 0 0 1 0 0 0
10 1 0 0 2 1 1 1 0 0
11 0 1 0 1 2 1 0 1 0
12 0 0 1 1 1 2 0 0 1
20 1 0 0 1 0 0 2 1 1
21 0 1 0 0 1 0 1 2 1
22 0 0 1 0 0 1 1 1 2

It is worth noting that in OQTDA, the first output line is restored to input A.
If restoring this input at the output is not necessary, we can remove the final +1
gate, which is marked by a red dashed line in Fig. 7.3. By doing so, the quantum
cost is further reduced to 26, and the output on the first line becomes A+ 2.
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Figure 7.4: Block diagram of 3N × 1 ternary multiplexer circuit.

7.2.2 Ternary Reversible Multiplexer

A multiplexer circuit has one output, multiple inputs, and selectors. The selectors
specify which inputs are gated to the output. A ternary multiplexer takes N
ternary numbers as selectors and 3N ternary numbers as input, providing the
output as a number. The block diagram of the 3N × 1 ternary multiplexer circuit
is illustrated in Fig. 7.4. Table 7.4 shows the truth table of a 9 × 1 ternary
multiplexer, where A and B are selectors, I0, I1, I2, I3, I4, I5, I6, I7, and I8 are the
inputs, and the output is depicted as O. For a given selector combination, only
the selected input will be gated to the output.

Table 7.4: 9× 1 ternary multiplexer truth table.

Selectors (AB) Output (O)

00 I0
01 I1
02 I2
10 I3
11 I4
12 I5
20 I6
21 I7
22 I8

According to Table 7.4, the output can be expressed as:

O = (A0B0)I0 + (A0B1)I1 + (A0B2)I2 + (A1B0)I3 + (A1B1)I4 + (A1B2)I5

+(A2B0)I6 + (A2B1)I7 + (A2B2)I8.

To construct the ternary multiplexer circuit, we use the proposed quantum
ternary decoder and ternary controlled Feynman gates. The realization of the
proposed multiplexer is shown in Fig. 7.5. In this circuit, input restoration is
required, where PQTDA, nine ternary controlled Feynman gates, and sixty-three 2-
qutrit Muthukrishnan–Stroud gates are used. In this implementation, the outputs
preserve their corresponding inputs by utilizing nine Muthukrishnan–Stroud gates,
highlighted in red in the figure, leading to a total quantum cost of 75.

The quantum cost can be further reduced to 53 if input restoration is not
necessary, which can be achieved by using OQTDA and removing the 1-qutrit
permutation gates shown in red in Fig. 7.5.
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Figure 7.5: Realization of the proposed quantum ternary multiplexer circuit.

7.2.3 Ternary Reversible Demultiplexer

A demultiplexer circuit has one input, multiple outputs, and selectors. The se-
lectors specify how the input is routed to the specified output. A ternary demul-
tiplexer takes N ternary numbers as selectors and one ternary number as input,
producing 3N outputs. The block diagram of a 1 × 3N ternary demultiplexer is
shown in Fig. 7.6. Table 7.5 shows the truth table of a 1×9 ternary demultiplexer.
The input is represented as I, the selectors are A and B, and the outputs are
denoted as O. For a given selector combination, only one output will be equal to
the input I, while the remaining outputs will be 0.

Figure 7.6: Block diagram of 1× 3N ternary demultiplexer circuit.

The proposed decoder and ternary-controlled Feynman gates are utilized to
construct the ternary demultiplexer circuit. The realization of the proposed quan-
tum ternary demultiplexer is shown in Fig. 7.7. In this circuit, input restoration is
required, and the PQTDA, along with nine ternary controlled-Feynman gates, is
employed. By using the red-colored Muthukrishnan–Stroud gates, input restora-
tion can be achieved, resulting in a total quantum cost of 75.
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Table 7.5: 1× 9 ternary demultiplexer truth table.

Selectors Outputs
AB O0 O1 O2 O3 O4 O5 O6 O7 O8

00 I 0 0 0 0 0 0 0 0
01 0 I 0 0 0 0 0 0 0
02 0 0 I 0 0 0 0 0 0
10 0 0 0 I 0 0 0 0 0
11 0 0 0 0 I 0 0 0 0
12 0 0 0 0 0 I 0 0 0
20 0 0 0 0 0 0 I 0 0
21 0 0 0 0 0 0 0 I 0
22 0 0 0 0 0 0 0 0 I

However, if input restoration is not necessary, the OQTDA design can be imple-
mented. In this case, the red-colored gates can be removed, reducing the quantum
cost to 53.

Figure 7.7: Block diagram of 1× 3N ternary demultiplexer circuit.

7.3 Evaluation Results

The proposed quantum ternary decoders, multiplexer, and demultiplexer are ana-
lyzed with respect to their quantum cost, depth, number of garbage outputs, and
constant inputs. A thorough examination of these metrics provides a comprehen-
sive evaluation of the efficiency and performance of the quantum circuits.

Table 7.6 compares our proposed quantum ternary decoder circuit with its
counterpart in [78]. As shown, the proposed decoder (OQTDA) has lower quantum
cost, depth, fewer garbage outputs, and constant inputs than the design in [78],
eliminating 27 M-S gates and four permutation gates, and reducing both constant
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inputs and garbage outputs by one.

Table 7.6: Comparison between ternary reversible decoder designs.

Proposed
design

[78] Improvement percentage

Quantum cost 26 57 54%
Depth 18 54 66%

Constant input number 9 10 10%
Garbage output number 2 3 33%

Input restoration capability No Yes -

According to Table 7.7, the proposed multiplexer significantly improves quan-
tum cost, depth, garbage outputs, and constant inputs when compared to the
similar circuit suggested in [68]. Specifically, the improvements in quantum cost,
depth, garbage outputs, and constant inputs are 48%, 41%, 4%, and 9%, respec-
tively.

Table 7.7: Comparison between ternary reversible multiplexer designs.

Proposed
design

[68] Improvement percentage

Quantum cost 53 102 48%
Depth 44 75 41%

Constant input number 10 11 9%
Garbage output number 20 21 4%

Input restoration capability No Yes -

The comparison in Table 7.8 clearly demonstrates that the proposed design
of the demultiplexer leads to substantial improvements in terms of quantum cost
(48%), depth (41%), garbage outputs (7%), and constant inputs (5%) compared
to its counterpart in [68].

Table 7.8: Comparison between ternary reversible demultiplexer designs.

Proposed
design

[68] Improvement percentage

Quantum cost 53 102 48%
Depth 44 75 41%

Constant input number 18 19 5%
Garbage output number 12 13 7%

Input restoration capability No Yes -

It should be noted that although all the proposed designs outperform the cir-
cuits suggested in [78, 68], the comparison has been made using the best-proposed
designs, which do not restore inputs.
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7.4 Conclusion

In this chapter, we present two advanced realizations of quantum ternary de-
coders, utilizing 1-qutrit permutation gates and 2-qutrit Muthukrishnan–Stroud
gates. These novel decoder designs have been leveraged to develop associated
quantum ternary multiplexers and demultiplexers. Our proposed circuits achieve
significant improvements in several key performance metrics, including reductions
in quantum cost, circuit depth, garbage outputs, and constant inputs. These ad-
vancements result in more efficient quantum ternary circuit designs compared to
existing approaches. The enhanced efficiency of our designs not only advances the
state of quantum ternary circuits but also opens new possibilities for optimizing
the construction of various components in ternary quantum computers and other
complex computational systems. The implications of these improvements extend
to a broader range of applications, potentially fostering more effective and practical
implementations of quantum technology.
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Chapter 8

Quantum Reversible Ternary
Circuit Design for Quantum
Image

This chapter examines the gaps in existing binary quantum image processing cir-
cuits related to the development of a quantum ternary image processing circuit.
The study proposes a novel design that integrates ternary Shift gates and ternary
Muthukrishnan–Stroud gates, building on the qutrit representation of quantum
images. This approach offers significant improvements in quantum cost, reduces
the number of constant inputs, and lowers garbage outputs, which are critical for
optimizing quantum circuit design.

8.1 Introduction

Quantum computing utilizes the unique principles of quantum mechanics, includ-
ing superposition and entanglement, to process information in ways that signif-
icantly surpass the capabilities of classical systems. In recent times, significant
advances have been made in both the theoretical and experimental dimensions of
the research domain. Groundbreaking algorithms, such as Shor’s integer factoring
algorithm [131] and Grover’s search algorithm [57], demonstrate the potential of
quantum computing to revolutionize different domains of computing.

Digital image processing is one of the many fields poised to benefit from quan-
tum computing. With image data sets expanding in size, conventional image pro-
cessing algorithms face increasing difficulties in terms of time and storage efficiency,
prompting the need for more advanced techniques [53]. Quantum image processing,
a developing domain that merges quantum computing with digital imaging, aims
to overcome these challenges by exploiting the computational power of quantum
systems.

A key aspect of quantum image processing is the efficient representation of im-
ages. Although various quantum image representation models have been proposed
[36, 40, 56, 62, 84, 124, 132, 141, 140, 149], many depend on binary logic, which of-
ten results in considerable storage overhead due to the large volume of image data.
This chapter addresses the gaps in binary-based quantum image representation
by examining multi-valued quantum systems, with a focus on qutrit-based repre-
sentations. Multi-valued quantum systems not only reduce the number of qubits
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needed but also improve both security and storage efficiency in image processing
applications [8, 106, 86].

Building on these advantages, this study focuses on the qutrit representation
of quantum images (QTRQ), which has the potential to expand computational
capabilities and optimize resource utilization. In [42], a compression circuit for
quantum images utilizing qutrits was presented. In this chapter, we build upon that
work by developing a more efficient quantum ternary circuit that employs qutrit-
based Muthukrishnan-Stroud gates [49] and Shift gates. Our proposed design
seeks to reduce quantum cost, minimize garbage outputs, and lower the number
of constant inputs—key metrics in optimizing quantum circuits.

This chapter presents two significant contributions: first, we introduce a novel
quantum ternary circuit architecture for QTRQ that achieves significant reductions
in quantum cost, constant inputs, and garbage outputs; second, we demonstrate
the circuit’s effectiveness in quantum image processing. Specifically, our design
results in a 20.56% reduction in quantum cost, an 11% reduction in constant
inputs, and a complete elimination (100%)of garbage outputs compared to the
existing design presented in [42]. The outcomes presented in this chapter were
published in the Quantum Information Processing journal [134].

This chapter is organized as follows: Section 8.2 discusses the qutrit representa-
tion of quantum images. Section 8.3 presents the proposed implementation of the
ternary gate. Section 8.4 provides a detailed overview of the architecture for the
proposed quantum ternary gate and circuit. Section 8.5 assesses the performance
of the circuit and benchmarks it with previous works. Finally, Section 8.6 con-
cludes the chapter by summarizing the findings and discussing their implications
for quantum image processes.

8.2 Qutrit Representation of Quantum Image

This section provides a brief review of existing qutrit image representation to facil-
itate a clear comparison between our proposed circuit and the existing approaches.

8.2.1 Quantum Image Representation

[42] introduced a novel qutrit-based method for representing grayscale images,
where pixel locations and values are encoded using pairs of entangled qutrits. This
technique utilizes six qutrits to represent 256 shades of grey, leading to some energy
levels being redundant. Such redundancy can be advantageous for detecting and
correcting errors during data transmission. The expression representing a 3n × 3n

image is as follows:

|I⟩ = 1

3n

3n−1∑
Y=0

3n−1∑
X=0

|f(X,Y )⟩|Y X⟩ = 1

3n

3n−1∑
Y=0

3n−1∑
X=0

q−1⊗
i=0

|Ci
Y X⟩|Y X⟩ (8.1)

where C0
Y XC

1
Y X . . . Cq−1

Y X and |Y ⟩|X⟩ encode the grayscale information and the
corresponding position in the image, respectively. To construct the quantum image
model for a 3n×3n image with 3q shades of gray, q+2n qutrits are needed. For ex-
ample, a 3×3 dimensional image is considered in Figure 8.1, and its corresponding
quantum image state is represented in Equation 8.2.
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Figure 8.1: Example of a 3 × 3 dimensional image.

|I⟩ = 1

3
(|0⟩ ⊗ |00⟩+ |50⟩ ⊗ |01⟩+ |75⟩ ⊗ |02⟩+ |90⟩ ⊗ |10⟩+ |105⟩ ⊗ |11⟩

+ |125⟩ ⊗ |12⟩+ |150⟩ ⊗ |20⟩+ |225⟩ ⊗ |21⟩+ |255⟩ ⊗ |22⟩)

=
1

3
(|000000⟩ ⊗ |00⟩+ |001212⟩ ⊗ |01⟩+ |002210⟩ ⊗ |02⟩+ |010100⟩ ⊗ |10⟩

+ |010220⟩ ⊗ |11⟩ + |011122⟩ ⊗ |12⟩+ |012120⟩ ⊗ |20⟩+ |022100⟩ ⊗ |21⟩
+ |100110⟩ ⊗ |22⟩)

(8.2)

8.2.2 Quantum Image Preparation

It is necessary to first store the image information in a quantum state before using
quantum mechanics to process it. According to the preparation procedure for the
novel qutrit representation of grayscale image [42], preparation of q+2n qutrits and
setting them all to 0 is the first step. The initial quantum state can be represented
as follows:

|Ψ0⟩ = |0⟩q+2n (8.3)

The quantum circuit for the quantum image preparation process is depicted
in Figure 8.2. In this figure, |C0⟩, |C1⟩, and |Cq−1⟩ represent |C1

Y X⟩, |C2
Y X⟩, and

|Cq−1
Y X ⟩, respectively. There are two steps to the preparation; the position informa-

tion must be prepared as a first step. This is achieved through the utilization of
single-qutrit I and H gates. These gates are applied to transition the initial state
|Ψ0⟩ into the intermediate state |Ψ1⟩, representing a superposition encompassing
all the pixels of an empty image. This process is interpreted by Equation 8.4.

|Ψ1⟩ ≜
1

3n

3n−1∑
Y=0

3n−1∑
X=0

|0⟩⊗q|Y X⟩ (8.4)

In the second step, the transition from the intermediate state |Ψ1⟩ to the final
state |Ψ2⟩ results in the creation of the quantum representation of the QTRQ,
representing the final quantum image. This process is explained by Equation 8.5.

|Ψ2⟩ ≜
1

3n

3n−1∑
Y=0

3n−1∑
X=0

|f(X,Y )⟩|Y X⟩ (8.5)
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Figure 8.2: The quantum image preparation circuit.

X P

Y Q

Z 01 12 01 R

Figure 8.3: The realization of the Toffoli gate in a specific state.

8.3 Proposed Realization of Ternary Toffoli Gate in Spe-
cific State

Section 6.1, in Chapter 6 provides an explanation of the Ternary Toffoli gate. One
of the most usable states for this gate occurs when the input Z is set to 0, and
the transformation for that is equal to +2. Based on the values of control inputs,
the quantum cost of the gate in this scenario can be equal to 5, 7, or 9. Here, we
focus on the state when the transformation is equal to +2, a novel realization of
the Ternary Toffoli gate in this situation is shown in Figure 8.3. In this realization,
when the controlling inputs are equal to 0 and 1 no transformation will be applied
on constant input 0. If both controlling inputs are equal to 2, Z(01), Z(12) and
Z(01) will be applied on constant input 0, respectively. But if only one of the
controlling inputs equals 2, the target output restores the constant input, which is
0. Based on our suggested realization of the ternary Toffoli gate in the mentioned
state, the quantum cost can be 3, 5, or 7, depending on the values of the inputs.
If both inputs are 2, the quantum cost is 3. If one of them is 2, the quantum cost
is 5. If neither of them is 2, the quantum cost is 7. In summary, the quantum cost
can be expressed as 3 + (2× number of controlling values that are not 2).

8.4 Proposed Design for Qutrit Representation of Quan-
tum Image

The truth table of the qutrit representation of the grayscale image (QTRQ) dis-
cussed above is given in table 8.1. In this table, X and Y are the input variables,
while C0, C1, C2, C3, C4, and C5 represent the output variables. These outputs
correspond to the following:
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Table 8.1: Truth table of the novel qutrit representation of the grayscale image
(QTRQ).

X Y C0 C1 C2 C3 C4 C5

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0
0 2 0 1 2 1 2 0
1 0 0 0 1 2 1 2
1 1 0 1 0 2 2 0
1 2 0 2 2 1 0 0
2 0 0 0 2 2 1 0
2 1 0 1 1 1 2 2
2 2 1 0 0 1 1 0

C0 = Z(+1)(Y 2X2) (8.6)

C1 = Z(+1)(Y 1) + Z(+1)(Y 2X0) + Z(+2)(Y 2X1) (8.7)

C2 = Z(+1)(Y 0X1)+Z(+1)(Y 1X2)+Z(+2)(Y 0X2)+Z(+1)(Y 2X2)+Z(+2)(Y 2)
(8.8)

C3 = Z(+2)(Y 1X1)+Z(+1)(Y 1)+Z(+1)(Y 2)+Z(+1)(Y 0X0)+Z(+2)(Y 0)+Z(+2)(Y 1X1)
(8.9)

C4 = Z(+2)(Y 0X0)+Z(+1)(Y 0)+Z(+1)(Y 2X2)+Z(+1)(Y 1X0)+Z(+2)(Y 1)+Z(+2)(Y 2X0)
(8.10)

C5 = Z(+2)(Y 0X1) + Z(+2)(Y 1X2) (8.11)

In order to design our proposed new quantum ternary circuit based on the
qutrit representation of the grayscale image (QTRQ) in [42] and enhance under-
standing, we initially present some operations of the circuit aligned with equations
21 to 26 .Subsequently, the complete design is illustrated in Figure 8.4g. The re-
alization of the first part (C0) is depicted in Figure 8.4a, including three 2-qutrit
Muthukrishnan–Stroud gates. In this part, if inputs X and Y both are equal to 22,
only output C0 equals 1, which aligns with Equation 8.6. It requires 1 constant
input, which is 0.

The realization of the second part (C1) is depicted in Figure 8.4b, employing
six 1-qutrit shift gates and seven 2-qutrit Muthukrishnan–Stroud gates. In this
part, when inputs X and Y correspond to 02 or 12, the output C1 equals 1 or
2, respectively. Moreover, if input Y is 1, output C1 equals 1, consistent with
Equation 8.7. It requires one constant input, denoted as 0. In this part two Z(+1)
gates can be merged into a Z(+2) gate, resulting in a quantum cost of 12.

The third part (C2) is illustrated in Figure 8.4c. As can be seen, we employed
thirteen Muthukrishnan–Stroud gates and eight shift gates, resulting in a quantum
cost of 21. However, by merging two Z(+1) gates into a Z(+2) gate and similarly
merging two Z(+2) gates into a Z(+1) gate , we can reduce the cost to 19.

The fourth part (C3) is shown in Figure 8.4d. As can be observed, we utilized
a total of 28 gates, including twelve Muthukrishnan–Stroud gates and sixteen shift
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gates. It should be noted that in this realization, each pair of double gates within
the blue boxes can be merged into one shift gate, and the gates within the red
boxes can be omitted. Consequently, the overall quantum cost is reduced to 21.

Figure 8.4e shows the realization of the fifth part (C4). We used fourteen
Muthukrishnan–Stroud gates and fourteen shift gates to construct the circuit for
Equation 8.10. The cost of this part is 28, but the gates within the red boxes can
be eliminated altogether. Thus, the total quantum cost is decreased to 22.

The realization of the last part of the circuit (C5), which aligns with Equa-
tion 8.11, is shown in Figure 8.4f. As can be observed, we used six 1-qutrit shift
gates and six 2-qutrit Muthukrishnan–Stroud gates. In this part, when inputs X
and Y correspond to 10 or 21, the output C5 equals 2. The gates enclosed in the
blue boxes can be merged, resulting in a total quantum cost of 11.

The aforementioned parts were integrated to create the complete design of
the proposed quantum ternary circuit for the qutrit representation of grayscale
images (QTRQ), as illustrated in Figure 8.4g. This integration reduced the overall
quantum cost from 88 to 83 by consolidating and eliminating certain gates, as
highlighted in the orange and green boxes, respectively. The first step in the
quantum image preparation involves six ternary Identity gates and two ternary
Hadamard gates, which transform the initial state |Ψ0⟩ into the intermediate state
|Ψ1⟩. This preparation step establishes the foundation for the next step.

The core of the circuit design is found in the second step, where the quantum
image representation is refined to its final state, |Ψ1⟩. In this step, 28 quantum
ternary Shift gates and 55 quantum ternary M-S gates are employed to transform
the intermediate state |Ψ1⟩ into the final state |Ψ2⟩. This two-step conversion
process ensures a gradual and precise development of the final quantum image
representation. Each output state corresponds to specific elements of the final
quantum image.

The circuit produces six distinct quantum states, denoted by |C0⟩ through |C5⟩.
These quantum output states are represented as |C0

Y X⟩, |C1
Y X⟩, |C2

Y X⟩, |C3
Y X⟩,

|C4
Y X⟩, and |C5

Y X⟩. These states collectively form a complete qutrit-based quantum
representation of the grayscale image. This multiplicity of outputs provides a
thorough encoding of the image information.

The quantum cost of the quantum image preparation procedure is determined
by the number of gates used in the circuit. The quantum cost for Shift and M-S
gates is 1 each. Therefore, the second stage of the circuit, which employs 28 Shift
gates and 55 M-S gates, has a quantum cost of 83. Including the two Hadamard
gates from the first stage, the total quantum cost of the circuit amounts to 85.

In addition, this design requires 8 constant inputs and generates 0 garbage out-
puts. This optimization highlights the efficiency and effectiveness of the quantum
circuit design.
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0 02 12 02 C0

Y Y

X X

(a) The realization of C0.

0 +1 02 12 02 01 12 01 C1

Y +1 +2 Y

X +2 +1 +1 +2 X

(b) The realization of C1.

0 02 12 02 02 12 02 01 12 01 02 12 02 +2 C2

Y +2 +1 +1 +2 +2 +1 Y

X +1 +2 X

(c) The realization of C2.

0 01 12 01 +1 +1 02 12 02 +2 01 12 01 C3

Y +1 +2 +1 +2 +2 +1 +2 +1 +1 +2 Y

X +1 +2 +2 +1 +1 +2 X

(d) The realization of C3.

0 01 12 01 +1 02 12 02 02 12 02 +2 01 12 01 C4

Y +2 +1 +2 +1 +1 +2 +1 +2 Y

X +2 +1 +2 +1 +2 +1 X

(e) The realization of C4.

0 01 12 01 01 12 01 C5

Y +2 +1 +1 +2 Y

X +1 +2 X

(f) The realization of C5.

(g) The optimized realization.

Figure 8.4: The realization of the proposed quantum ternary circuit for QTRQ.
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8.5 Evaluation Results

In current literature, Novel-enhanced Quantum Representation of Images (NEQR)
is frequently used to encode grayscale pixel values for binary and grayscale images
[149]. Inspired by NEQR, a qutrit representation for ternary and grayscale images
has been introduced, offering a greater capacity for information storage compared
to NEQR [42]. To the best of our knowledge, this is the only qutrit approach specif-
ically focused on grayscale images. Our objective is to minimize key parameters
in designing a quantum ternary circuit for the qutrit representation of quantum
images. The evaluation of these quantum circuits includes an analysis of their
quantum cost, the number of constant inputs, and garbage outputs. These met-
rics are crucial for assessing circuit efficiency and making significant advancements
in quantum image processing. Table 8.2 compares our newly proposed quantum
ternary circuit for the novel qutrit representation of grayscale images with the
design presented in reference [42]. It is clear that our design demonstrates lower
quantum cost, fewer garbage outputs, and reduced constant inputs compared to
the design from [42]. Specifically, our design eliminates 22 Muthukrishnan and
Stroud gates and reduces constant inputs and garbage outputs by one each, re-
sulting in 8 constant inputs and 0 garbage outputs. This improvement translates
to a 20.56% reduction in quantum cost, an 11% reduction in constant inputs, and
a 100% reduction in garbage outputs.

Table 8.2: Evaluation of quantum ternary circuits for QTRQ

Quantum Cost Constant Input Garbage Output

Design in [42] 107 9 1
Our Proposed Design 85 8 0

Improvement Percentage 20.56% 11% 100%

8.6 Conclusion

Integrating quantum mechanics into conventional image processing offers a promis-
ing strategy to address the demanding real-time computational requirements. How-
ever, in the current era of Noisy Intermediate-Scale Quantum (NISQ) devices, op-
timizing quantum gate counts and circuit depths is crucial to mitigate noise effects.
Efficient quantum image storage is also vital, which can be achieved by employ-
ing multi-valued quantum systems in quantum image processing. These systems
enhance information encryption security while requiring fewer qubits and less stor-
age space. Our research aims to develop a novel quantum ternary circuit for the
novel qutrit representation of grayscale images. The results demonstrate that the
proposed design outperformed existing approaches in terms of quantum cost, the
number of constant inputs, and garbage outputs, which are essential parameters in
quantum circuit design. Minimizing these factors can significantly advance quan-
tum image processing. Quantum image processing is still evolving, and research
on ternary quantum image models is limited. Although the current qutrit repre-
sentation circuit is optimized and compressed, it may not be the most effective.
Future research could benefit from investigating more effective compression and
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optimization strategies.
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Chapter 9

Balanced Ternary Reversible
Comparator for Qutrit Quantum
Circuits

This chapter is dedicated to two key objectives: first, the synthesis of quantum
reversible 1-qutrit comparator circuit through the utilization of balanced ternary
logic, and second, the design of generalized reversible n-qutrit comparator circuit.
The suggested balanced ternary 1-qutrit comparator has demonstrated notable
improvements in terms of quantum cost (65%), the number of constant inputs
(50%) and garbage outputs (33%) compared to existing unbalanced comparator
designs.

9.1 Introduction

Ternary arithmetic functions can be represented in two primary forms: balanced
and unbalanced. In the unbalanced system, a qutrit is represented by the values
0, 1, or 2. On the other hand, balanced ternary representation employs the sym-
bols 1̂, 0, and 1, where 1̂ indicates a negative one. Balanced ternary is generally
more efficient for implementing arithmetic functions compared to its unbalanced
counterpart. This is because balanced ternary simplifies several operations, in-
cluding ternary inversion, and removes the need for an additional sign digit. It
also ensures that operations such as rounding to the nearest integer and truncation
are straightforward, facilitates the generation of partial products, and lowers the
likelihood of carry generation. Furthermore, it features shorter carry ripple paths,
making it advantageous for designing efficient arithmetic circuits [46].

Quantum ternary comparator circuits play a crucial role in quantum com-
puting. These circuits are primarily used to support quantum algorithms and
operations that involve ternary logic or quantum data encoded in ternary states.
This includes applications such as ternary arithmetic, error correction, search al-
gorithms, machine learning, and state discrimination. To date, all existing quan-
tum ternary reversible comparator circuits have been developed using unbalanced
ternary representation [41, 69, 103, 147]. In this chapter, we introduce a novel
approach by employing balanced ternary representation for constructing quantum
ternary comparator circuits. Additionally, we evaluate our proposed circuits based
on several key metrics, including quantum cost, the number of garbage outputs,
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and the number of constant inputs.
The chapter is structured as follows: Section 9.2 presents the realization of

balanced ternary comparator circuits, detailing the proposed approaches. Section
9.3 discusses the evaluation of the proposed circuits, comparing them with existing
solutions and analyzing performance metrics. Section 9.4 concludes the chapter
with a summary of the findings.

9.2 Proposed Design of Balanced Ternary Comparator

In this section, we present a 1-qutrit comparator based on balanced ternary re-
versible logic. We use this comparator design to construct n-qutrit balanced ternary
reversible comparator. The proposed designs in this study utilizes balanced Shift
gates and Muthukrishnan and Stroud gate.

9.2.1 Balanced Ternary 1-qutrit Comparator Circuit

Ternary comparators play a critical role in balanced ternary reversible networks
and are an integral part of complex devices. Table 9.1 presents the truth table
of a 1-qutrit comparator circuit. This table shows that A and B are the input
variables, and F represents the output variable. When the inputs A and B is
equal, the output F is 0. When A is greater than B, the output F is 1. Conversely,
if A is less than B, the output F is equal to 1̂. Generally, the function F is defined
in Equation 9.1:

F =


1̂ if A < B

0 if A = B

1 if A > B

(9.1)

Table 9.1: Truth table of a 1-qutrit comparator circuit.

A B F

1̂ 1̂ 0
1̂ 0 1̂

1̂ 1 1̂

0 1̂ 1
0 0 0
0 1 1̂

1 1̂ 1
1 0 1
1 1 0

In order to construct balanced ternary 1-qutrit comparator, we used ternary
balanced Self Shift gate and ternary balanced Muthukrishnan and Stroud gate.
The proposed balanced ternary comparator can be observed in Figure 9.1. This
circuit takes two single qutrit numbers as inputs, and assigns a value to the output
based on relationship between the inputs value. If the first input is equal to the
second one, the output is set to 0. If the first input is greater than the second one,
the output is set to 1. If the first input is less than the second input, the output
is equal to 1̂. As can be seen in Figure 9.1, in our realization, there are three
inputs A, B and 0. P,Q and F represent the output of the circuit. The output F,
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A 01 01 P

B 01 01 Q

0 +1 1̂0 01 +2 1̂0 F

Input restoration

Figure 9.1: The proposed balanced ternary reversible 1-qutrit comparator circuit.

which is the target output, represent the result of the inputs A and B comparison.
This realization requires one constant input, which is 0, and produces two garbage
outputs, which are P and Q. To design this circuit, we used 5 Muthukrishnan and
Stroud gates and 4 shift gates, resulting in a quantum cost of 9 for the proposed
realization. However, if input restoration is not needed, the last Shift gate can be
removed, and the quantum cost decreases to 8.

9.2.2 Balanced Ternary N-Qutrit Comparator Circuit

In a balanced ternary n-qutrit comparator, two n-qutrit numbers are being com-
pared. At the beginning, each qutrit of these numbers is compared using n sepa-
rated 1-qutrit comparators simultaneously. In the next step, the results from these
1-qutrit comparators are compared, beginning with the least significant qutrits. In
the second step, we use n-1 sub comparator circuit for comparison of the results
from the first step.

The proposed realization of the sub-comparator circuit is illustrated in Fig-
ure 9.2. This circuit has three inputs: F0, F1, and 1̂, where F0 and F1 are the
outputs from the previous step, and 1̂ is a constant input. The outputs of the
circuit are labeled R0, R1, and F . Here, R0 and R1 correspond to F0 and F1,
respectively. The output F , which represents the result of the comparison be-
tween F0 and F1, is the target output of the circuit. This realization requires one
constant input, 1̂, and produces two garbage outputs, R0 and R1. The circuit
consists of 6 Shift gates and 5 Muthukrishnan-Stroud gates, resulting in a total
quantum cost of 11. However, if input restoration is not necessary, the Shift and
Muthukrishnan-Stroud gates in the box can be eliminated, reducing the quantum
cost to 8. Table 9.2 presents the truth table for the sub-comparator circuit.

Table 9.2: Truth table of the sub comparator circuit.

F0 F1 F

1̂ 1̂ 1̂

1̂ 0 1̂

1̂ 1 1
0 1̂ 1̂
0 0 0
0 1 1
1 1̂ 1̂
1 0 1
1 1 1
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F0 01 1̂1 1̂1 01 R0

F1 1̂1 +1 01 R1

1̂ +2 +1 +2 1̂1 F

Input restoration

Figure 9.2: The proposed balanced ternary reversible sub comparator circuit.

As can be seen in this table, when F0 and F1 are equal to 0 (indicating that
the first number is equal to the second), the output is set to 0. When F1 is 1, or
when F0 and F1 are equal to 1 and 0, respectively (indicating that the first number
is greater than the second), the output is set to 1. When F1 is 1̂, or when F0 and
F1 are equal to 1̂ and 0, respectively (indicating that the first number is less than
the second), the output is equal to 1̂.

The realization of our proposed balanced ternary n-qutrit comparator circuit
is shown in Figure 9.3. To construct this circuit, we used N 1-qutrit comparator
circuits and N-1 sub comparator circuits, which denoted by 1-qutrit Comp and Sub
Comp, respectively. The quantum cost, the number of constant inputs, and garbage
outputs can be determined according to Equations 9.2, 9.3 and 9.4, respectively.

Quantum Cost = 8N + 8(N − 1) = 16N − 8 (9.2)

The number of constant inputs = N +N − 1 = 2N − 1 (9.3)

The number of garbage outputs = 2N + 2(N − 1) = 4N − 2 (9.4)

As an example, consider two balanced ternary 2-qutrit numbers, A and B.
For the comparison between A and B, in the first step, A0 and A1 should be
compared using our proposed 1-qutrit comparator with B0 and B1, respectively.
In the next step the results of 1-qutrit comparator circuits should be compared
using the proposed sub comparator circuit. The final result is in accordance with
Table 9.2, Equations 9.5, 9.6 and 9.7:

A1A0 = B1B0 if A1 = B1 and A0 = B0 (9.5)

A1A0 > B1B0 if A1 > B1 or A1 = B1 and A0 > B0 (9.6)

A1A0 < B1B0 if A1 < B1 or A1 = B1 and A0 < B0 (9.7)

According to Equation 9.5, the final result is set to 0 when both results in the
first step are equal to 0. Equation 9.6 shows that the final result is set to 1, if the
result of second comparator is 1 or the result of the first and the second are 1 and
0, respectively. Equation 9.7 also means that the final output is set to 1̂, if the
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A0

1− qutritComp

P0

B0 Q0

0

SubComp

R0

A1

1− qutritComp

P1

B1 Q1

0 R1

1̂

SubComp

F0

A2

1− qutritComp

P2

B2 Q2

0 R2

1̂ F1

...

1̂

SubComp

FN − 1

AN−1

1− qutritComp

PN−1

BN−1 QN−1

0 RN−1

1̂ F

Figure 9.3: The proposed balanced ternary reversible n-qutrit comparator circuit.

result of second comparator is 1̂ or the result of the first and the second are 1̂ and
0, respectively. The realization of balanced ternary 2-qutrit comparator circuit is
illustrated in Figure 9.4. As you can seen the inputs of the first comparator circuit
are A0 and B0, and for the second comparator the inputs are shown by A1 and B1.
The target outputs of these circuits are the inputs of the sub comparator circuit.
This comparison requires 3 constant inputs and produces 6 garbage outputs which
align with the Equations 9.3 and 9.4 respectively. The quantum cost of this circuit
is 24 which is in accordance with Equation 9.2.
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A0 01 P0

B0 01 01 Q0

0 +1 1̂0 01 +2 1̂0 01 1̂1 R0

A1 01 P1

B1 01 01 Q1

0 +1 1̂0 01 +2 1̂0 1̂1 +1 R1

1̂ +2 +1 +2 1̂1 F

The first comparator circuit

The sub comparator circuit
The second comparator circuit

Figure 9.4: The proposed balanced ternary reversible 2-qutrit comparator circuit.

9.3 Evaluation Results

In this work, we introduced the use of balanced representation logic for ternary
comparator circuits for the first time, leading to a substantial improvement in
overall performance. This section involves two separate assessments where we
compare our proposed comparator circuits with the existing unbalanced ternary
counterparts to assess their relative performance and efficiency. Firstly, we examine
the quantum cost of the proposed 1-qutrit comparator alongside the number of
constant inputs and garbage outputs. These factors are thoroughly examined,
analyzed and compared with its unbalanced counterparts [103, 147]. Secondly,
the proposed n-qutrit comparator is evaluated objectively and comprehensively
with other existing ones [41, 69, 103, 147]. It worth noting that in first part of
assessments, we determine the improvement rate concerning the best results in the
literature.

9.3.1 Evaluation of Ternary Reversible 1-Qutrit Comparator
Circuits

In Table 9.3, we provide a comparative analysis for ternary reversible 1-qutrit com-
parator with respect to quantum cost, the number of constant inputs, the number
of garbage outputs. Notably, this comparison demonstrates that the quantum cost
of the our proposed design is 65% lower than the unbalanced version [103]. The
proposed circuit has decreased the number of garbage outputs from 3 to 2, repre-
senting a 33% reduction. The table also shows improved efficiency in terms of the
number of constant inputs which reduced from 2 to 1, resulting to 50% improve-
ment. It can be concluded that, our design is more efficient than its unbalanced
counterparts in the literature [103, 147].
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Table 9.3: Comparison between proposed 1-qutrit comparator and unbalanced
designs.

Proposed
comparator

Improvement
percentage

[103] [147]

Quantum cost 8 65% 23 55
Constant input number 1 50% 2 6
Garbage output number 2 33% 3 7

9.3.2 Evaluation of Ternary Reversible N-Qutrit Comparator
Circuits

Table 9.4 provides a comprehensive comparison between our proposed balanced
ternary n-qutrit comparator circuit and existing alternatives [41, 69, 103, 147].
This comparison clearly illustrates that the proposed comparator, in balanced
representation, surpasses others in [41, 69, 103, 147]. Mainly because it has less
quantum cost and fewer constant input number and garbage output number used
in the design, leading to considerable improvements. It should be noted that,
the number of garbage output in our design is 4N − 2 and in [69, 103, 147] it is
unreported. However, the undeniable fact is that, due to the considerably higher
number of constant inputs in comparison to our design which has 2N − 1 constant
inputs, the number of garbage output is significantly greater. It is also important
to note that, since the lower quantum cost leads to better efficiency in quantum
circuit design, despite having the same number of constant inputs as the proposed
design in [41] with the value of 2N−1, the lower quantum cost in our design which
is 16N − 8 allows us to assert its greater efficiency.

Table 9.4: Comparison between proposed n-qutrit comparator and unbalanced
designs.

Proposed
comparator

[41] [69] [103] [147]

Quantum cost 16N − 8 18N − 8 236N − 169 43N − 20 56N + 6
Constant input number 2N − 1 2N − 1 13N − 7 4N − 2 5N + 3
Garbage output number 4N − 2 Not reported Not reported Not reported Not reported

9.4 Conclusion

In this chapter, we have presented a balanced ternary 1-qutrit comparator cir-
cuit utilizing Shift gates and Muthukrishnan and Stroud gate. Scalability is of
paramount importance in circuit design and is essential when an arbitrary num-
ber of inputs is required. In order to achieve scalability, we have introduced the
balanced ternary reversible sub-comparator circuit. Then, the realization of a bal-
anced ternary n-qutrit comparator has been proposed. While the realization of
balanced ternary comparator circuits is represented for the first time, we have
made efforts to introduce optimal designs, and the final assessments for our pro-
posed balanced ternary comparator circuits compared to the unbalanced version
showed considerable improvements in terms of quantum cost, the number of con-
stant inputs and the number of garbage outputs.
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Chapter 10

Quaternary Reversible Circuit
Optimization for Scalable
Multiplexer and Demultiplexer

This chapter introduces a new approach for designing quaternary reversible mul-
tiplexer and demultiplexer circuits, which are critical components in ALUs and
significantly influence processor performance. We propose scalable realizations of
quaternary reversible 4×1 multiplexers and 1×4 demultiplexers using specialized
quantum gates, and further extend these designs to generalized n×1 and 1×n con-
figurations. Comparative analysis with existing designs shows that our circuits
are more efficient in terms of quantum cost, the number of garbage outputs, and
constant inputs, offering a promising solution for improving system performance.

10.1 Introduction

Recently, multiple-valued logic (MVL) has garnered significant attention as bi-
nary logic faces severe limitations due to thermal and reliability challenges [123].
Reversible multiple-valued logic (RMVL) is particularly well-suited for quantum
applications due to its security advantages in quantum cryptography and its ef-
fectiveness in quantum information processing [10, 133, 30]. As mentioned earlier,
ternary logic, one form of MVL, has shown promise, but it struggles to represent
conventional binary logic functions [93, 6, 7, 5, 114, 52, 61, 64, 90, 105, 35]. By
contrast, quaternary logic offers a more versatile alternative. In quaternary logic,
two binary bits can be grouped into quaternary values to better represent binary
logic functions [77]. In quantum quaternary systems, the basic unit of information
is a qudit, which can exist in four possible states: |0⟩, |1⟩, |2⟩, and |3⟩.

Many essential circuits have been presented based on quaternary reversible
logic, such as comparators, parallel adders, full adders, half adders, subtractors,
and decoders [73, 136, 60, 71, 44, 43, 59, 118, 107]. This chapter focuses on
the design and synthesis of quaternary reversible multiplexer and demultiplexer
circuits, which are essential components for a wide range of systems, including
computers, communication devices, and arithmetic logic units [59]. The goal of
these designs is to enhance efficiency by reducing key metrics such as quantum cost,
garbage outputs, and constant inputs, thus offering improvements over existing
designs in [59, 74, 72]. The results presented in this chapter were published in the
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IEEE Access journal [102].
This chapter is organized as follows: Section 10.2 presents the design and im-

plementation of the proposed quaternary reversible multiplexer and demultiplexer
circuits, detailing the circuit architecture and logic gates employed. Section 10.3
evaluates the performance of the proposed circuits, focusing on quantum cost,
garbage outputs, and constant inputs, and compares these results with those of
existing circuits. Finally, Section 10.4 concludes the chapter by summarizing the
key findings and suggesting directions for future research.

10.2 Proposed Quaternary Reversible Circuits

In this section, we propose a scalable quaternary reversible 4 × 1 multiplexer,
and we use it to design the quaternary reversible 16 × 1 and n × 1 multiplexers.
Moreover, we introduce the new scalable quaternary reversible 1×4 demultiplexer
to design 1 × 16 and 1 × n demultiplexers. We use quaternary 1-qudit Shift and
3-qudit Controlled Feynman gates. The aim is to reduce the overall quantum cost,
the number of constant inputs, and the number of garbage outputs.

10.2.1 Proposed Quaternary Reversible Multiplexer Circuit

Before discussing our proposed quaternary reversible multiplexer circuit, we pro-
vide the basic definitions and properties of the quaternary multiplexer. A quater-
nary multiplexer with 4m inputs has m select lines to select which input should be
sent to the output. Let A be a selector equal to 0, 1, 2, or 3. In a 4×1 multiplexer,
when A is equal to 0, 1, 2, or 3, the output equals I0, I1, I2, or I3, respectively.
Table 10.1 shows the truth table of the quaternary 4× 1 multiplexer.

Table 10.1: The truth table of quaternary 4× 1 multiplexer.

Selector Output
A O
0 I0
1 I1
2 I2
3 I3

The realization of our proposed quaternary reversible 4× 1 multiplexer circuit
is illustrated in Figure 10.1. As shown in the figure, we used four quaternary 1-
qudit Shift gates and four quaternary 3-qudit Controlled Feynman gates. In this
realization, the main inputs are I0 to I3, and one constant input of 0 is required.
The selector is A, and the main output is O. The circuit produces five garbage
outputs that are Q0 to Q3 and P . The output P is equal to the selector A, and the
outputs Q0 to Q3 are equal to the inputs I0 to I3, respectively. In this circuit, when
the selector A is equal to 0, the controlling value of the first Controlled Feynman
gate is 3, and the output O is equal to I0. If A is equal to 1, the second Controlled
Feynman gate is 3, and the output O is I1. Moreover, when the selector is equal
to 2 and 3, the output O is equal to I2 and I3, respectively.

The realization of this circuit using quaternary Shift and Muthukrishnan-
Stroud gates is shown in Figure 10.1b. In this figure, red boxes depict quaternary
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(a) Symbol.

(b) The realization using M-S and Shift gates.

Figure 10.1: The proposed quaternary reversible 4× 1 multiplexer circuit.

Controlled Feynman gates. Generally, four quaternary Shift gates and twenty-four
quaternary Muthukrishnan-Stroud gates were used. Therefore, the quantum cost
of the proposed quaternary reversible 4 × 1 multiplexer circuit is 28. It is worth
mentioning that, in a multiplexer circuit, it is not necessary to restore the input I
at the output Q. So, we can remove the red Muthukrishnan-Stroud gates in this
realization. The quantum cost can be decreased by 24. In both suggested ways,
the number of constant inputs is 1, and the number of garbage outputs is 5.

Our proposed quaternary reversible 4× 1 multiplexer can be used to construct
a 16× 1 multiplexer. For designing this multiplexer, 16 inputs, two selectors, and
one output are necessary. The truth table of this circuit is shown in Table 10.2.
Only the selected input is gated to the output O for a given selector combination
of A and B.

Figure 10.2a shows the logical architecture of the proposed quaternary 16× 1
multiplexer using 4× 1 multiplexers. As shown, five 4× 1 quaternary multiplexers
are required. In this design, the first inputs of the first-row multiplexers are acti-
vated when input B is equal to 0. Activation of the second inputs of multiplexers
occurs when input B is equal to 1. If B is equal to 2 and 3, the third and fourth
inputs of multiplexers are activated, respectively. Moreover, the output of the first
multiplexer is gated on the main output O when the selector A is equal to 0. If A
is equal to 1, the main input is sent to the main output by the second multiplexer.
When A is equal to 2 and 3, the output of the third and the fourth multiplexers
are gated on the output O, respectively.

Figure 10.2b illustrates the realization of the proposed quaternary reversible
16× 1 multiplexer using a 4× 1 multiplexer. The red boxes indicate our proposed
quaternary reversible 4 × 1 multiplexer. In this circuit, there are five constant
inputs, which are 0, and sixteen main inputs, which are shown by I0 to I15. The
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Table 10.2: The truth table of a quaternary 16× 1 multiplexer.

Selectors Output
AB O
00 I0
01 I1
02 I2
03 I3
10 I4
11 I5
12 I6
13 I7
20 I8
21 I9
22 I10
23 I11
30 I12
31 I13
32 I14
33 I15

selectors are A and B. The main output is O, and the garbage outputs are P1, P2,
O0 to O3, and Q0 to Q15. The outputs P1 and P2 are equal to A and B, respec-
tively. Generally, the first realization of quaternary 3-qudit Controlled Feynman
gates is used when inputs need to be restored. In this case, 20 quaternary Shift
gates and 120 quaternary Muthukrishnan-Stroud gates are inserted in the circuit.
Therefore, the quantum cost is 140. However, in multiplexer circuits, the inputs
I0 to I15 are unnecessary as outputs, so it is possible to use the second realiza-
tion of quaternary-controlled Feynman gates. Therefore, the second realization of
quaternary-controlled Feynman gates can be used, and the quantum cost is 120.

We could also combine some gates in designing a quaternary reversible 16 ×
1 multiplexer and present a circuit with a lower quantum cost. As shown in
Figure 10.2, an optimized multiplexer circuit can be realized. Eight quaternary
Shift gates are used along with twenty quaternary Controlled Feynman gates. Due
to the use of the second realization of Feynman gates, eight quaternary Shift gates
and 100 quaternary Muthukrishnan-Stroud gates were used in total. This results
in a quantum cost of 108. This innovative combination provides improvement over
the first realization regarding the quantum cost. Moreover, in both realizations,
the number of constant inputs is five, and the number of garbage outputs is 22.

Based on our proposed quaternary reversible 4 × 1 multiplexer, we propose a
generalized quaternary reversible n × 1 multiplexer circuit, shown in Figure 10.3.
Hence, our design is scalable. A quaternary n × 1 multiplexer circuit consists of
n = 4m inputs, m selectors, and only one output. In this circuit, m rows of 4× 1
multiplexers are needed. The first row requires 4m−1 multiplexers, the second row
requires 4m−2 multiplexers, and the mth row requires one multiplexer. Therefore,
we can determine the number of 4× 1 multiplexers needed to design our proposed
n × 1 multiplexer using geometric series formulas. The number of multiplexers is
shown by P in equation (2):
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(a) The logical architecture.

(b) The primary realization.

(c) The realization using M-S and Shift gates.

Figure 10.2: The proposed quaternary reversible 16× 1 multiplexer circuit.
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P =
m−1∑
i=0

4i =
4m − 1

3
=
n− 1

3
(10.1)

Figure 10.3: The logical architecture of the proposed quaternary reversible n × 1
multiplexer circuit.

The quantum cost of a quaternary reversible n×1 multiplexer is 24
(
n−1
3

)
, and

it requires n−1
3 constant inputs and produces 3m+4n−4

3 garbage outputs. We can
combine the quaternary 1-qudit Shift gates in each row according to the mentioned
optimization approach in the last part. In this way, we have four 1-qudit Shift
gates in each row. We also have 4m−1 and 4m−2 Controlled Feynman gates in the
first and the second rows, respectively. Moreover, in the last row, four Controlled
Feynman gates are needed. Therefore, it can be concluded that in the proposed
quaternary reversible n × 1 multiplexer, 4

(
n−1
3

)
Controlled Feynman gates and

4m 1-qudit Shift gates are required, where n is the number of inputs and m is
the number of selectors. Since we used the second realization of the Controlled
Feynman gate, the total quantum cost of this optimized circuit is 20

(
n−1
3

)
+ 4m.

10.2.2 Proposed Quaternary Reversible Demultiplexer Circuit

A demultiplexer performs the opposite function of a multiplexer. A quaternary
demultiplexer with 4m outputs has m select lines to send the input to the output.
In a 1× 4 demultiplexer, when the selector A is equal to 0, 1, 2, or 3, the output
O0, O1, O2, or O3 is equal to I, respectively. Table 10.3 shows the truth table of
the 1× 4 quaternary demultiplexer.

Table 10.3: The truth table of a quaternary 1× 4 demultiplexer.

Selector Outputs
A O0 O1 O2 O3

0 I 0 0 0
1 0 I 0 0
2 0 0 I 0
3 0 0 0 I

In Figure 10.4, we show the realization of our quaternary reversible demulti-
plexer circuit. Four quaternary 1-qudit Shift gates and four quaternary 3-qudit
Controlled Feynman gates are utilized in this design. The main input is I, which
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requires four constant inputs, all of which are 0. The selector is A. O0 to O3 are
the main outputs, and P and Q are the garbage outputs, which are equal to A
and I, respectively. The first Controlled Feynman gate with a controlling value of
1 is applied when the selector is equal to 0, and the input I is sent to O0. This
circuit applies the controlling value of the second Controlled Feynman gate when
the selector A is equal to 1, and the input I is sent to O1. If the selector is equal
to 2 or 3, the outputs O2 and O3 are equal to the input I, respectively.

Figure 10.4b shows how the proposed circuit is realized using quaternary Shift
and Muthukrishnan-Stroud (M-S) gates. In this design, quaternary Controlled
Feynman gates are shown by red boxes. Four quaternary 1-qudit Shift gates and
twenty-four quaternary 2-qudit Muthukrishnan-Stroud gates are generally used.
As a result, the quantum cost of the proposed quaternary reversible 1×4 demulti-
plexer circuit is 28. Considering that, in the multiplexer circuit, the input I does
not need to be restored at the output Q, the red boxes can be removed, and the
quantum cost is decreased by 24. In both cases, the number of constant inputs is
four, and the number of garbage outputs is two.

(a) Symbol.

(b) The realization using M-S and Shift gates.

Figure 10.4: The proposed quaternary reversible 1× 4 demultiplexer circuit.

We can also use our proposed quaternary 1 × 4 demultiplexer to construct a
1× 16 demultiplexer. In this kind of demultiplexer, one input, two selectors, and
16 outputs are needed. The truth table of this circuit is shown in Table 10.4. The
input is gated to the selected output based on a given combination of selectors A
and B.

The logical architecture of the proposed quaternary reversible 1× 16 demulti-
plexer, using 1 × 4 demultiplexers, is shown in Figure 10.5a. As can be seen, it
requires five quaternary 1×4 demultiplexers. In this design, when the selector A is
equal to 0, the main input is gated to one of the outputs in the first demultiplexer.
One output of the second multiplexer is gated when selector A is equal to 1. In the
third and fourth multiplexers, one output is gated if selector A is equal to 2 and
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Table 10.4: The truth table of a quaternary 1× 16 demultiplexer.

Selectors Outputs
AB O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15

00 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0
02 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0
03 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I

3, respectively. When the input B is equal to 0, the first input of the second row
demultiplexers is activated. If the input B is equal to 1, then the second input of
the demultiplexers is activated. Moreover, when B is equal to 2 and 3, the third
and fourth inputs of the demultiplexers are activated, respectively.

The realization of the proposed quaternary reversible 1 × 16 demultiplexer
using 1 × 4 demultiplexers is shown in Figure 10.5b. In the figure, red boxes
show our proposed quaternary reversible 1 × 4 demultiplexer. The main input is
I, and it requires twenty constant inputs, which are 0. The selectors are A and
B. The main outputs are O0 to O15, and it produces seven garbage outputs that
are P1, P2, I, and R0 to R3. The outputs P1 and P2 are equal to the selectors
A and B, respectively. Generally, since input restoration is not necessary, the
second realization of quaternary Controlled Feynman gates can be used. In this
way, the proposed circuit includes 20 quaternary Shift gates and 100 quaternary
Muthukrishnan-Stroud gates, resulting in a quantum cost of 120.

We could also use a lower number of gates for designing the quaternary re-
versible 1×16 demultiplexer and present a circuit with a lower quantum cost. The
realization of the proposed optimized circuit is shown in Figure 10.5c. As can be
seen, twenty quaternary Controlled Feynman gates and eight 1-qudit Shift gates
are used. Since input restoration is not necessary, the second realization of quater-
nary Controlled Feynman gates is used, resulting in eight quaternary Shift gates
and 100 quaternary Muthukrishnan-Stroud gates in the proposed design. The
quantum cost is 108. Compared to our first proposed quaternary 1 × 16 demul-
tiplexer, we improved the quantum cost using this innovative combination. The
number of constant inputs and garbage outputs for both realizations is 20 and 7,
respectively.

In addition, our proposed quaternary demultiplexer is scalable. A generalized
quaternary reversible 1×n demultiplexer circuit, based on the quaternary reversible
1 × 4 demultiplexer, is suggested. In a quaternary 1 × n demultiplexer circuit,
there is one input, m selectors, and n = 4m outputs. Generally, m rows of 1 × 4
demultiplexers are needed. It is necessary to use one demultiplexer in the first
row, four demultiplexers in the second row, and 4m−1 demultiplexers in the last
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(a) The logical architecture.

(b) The primary realization.

(c) The realization using M-S and Shift gates.

Figure 10.5: The proposed quaternary reversible 1× 16 demultiplexer circuit.
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row. Figure 10.6 shows the logical structure of the proposed 1× n demultiplexer.
We can also use the geometric series formula to determine the number of 1 × 4
demultiplexers needed to design our proposed 1×n demultiplexer. Using equation
(3), we can determine the number of demultiplexers, represented by Q:

Q =
m−1∑
i=0

4i =
4m − 1

3
=
n− 1

3
(10.2)

Figure 10.6: The logical architecture of the proposed quaternary reversible 1 × n
demultiplexer circuit.

The proposed quaternary reversible 1×n demultiplexer circuit requires 4
(
n−1
3

)
constant inputs and produces n+3m−1

3 garbage outputs, with a quantum cost of
24

(
n−1
3

)
. Based on the optimization approach discussed in the previous section,

the quaternary 1-qudit Shift gates in each row can be combined. As a result,
each row contains four 1-qudit Shift gates. There are four and sixteen Controlled
Feynman gates in the first and second rows, respectively, and 4m−1 Controlled
Feynman gates in the last row. Therefore, it can be concluded that there are
4
(
n−1
3

)
Controlled Feynman gates and 4m 1-qudit Shift gates in the proposed

quaternary reversible 1× n demultiplexer, with n outputs and m selectors. Since
we use the second realization of the Controlled Feynman gate, this optimized circuit
has a total quantum cost of 20

(
n−1
3

)
+ 4m.

10.3 Evaluation Results

In this section, we analyze our proposed realizations of quaternary reversible multi-
plexer and demultiplexer circuits and calculate the improvement rate with respect
to the best results in the literature. We also compare the proposed circuits with
the existing designs in [59], [74], and [72] in terms of quantum cost, number of
garbage outputs, and number of constant inputs.

The following parts present the first comparison for our proposed quaternary
reversible multiplexer and the second comparison for our proposed quaternary
reversible demultiplexer.

10.3.1 Evaluation of Quaternary Reversible MultiplexerCircuits

According to Table 10.5, whereas both designs of quaternary reversible 4× 1 mul-
tiplexer circuits have the same number of garbage outputs and constant inputs,
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the proposed circuit outperforms the existing design presented in [74] in terms of
quantum cost due to its lower values for this parameter. Table 10.6 also illustrates
that our proposed quaternary reversible 16×1 multiplexer circuit shows significant
improvement in terms of quantum cost, number of garbage outputs, and number of
constant inputs compared with its counterparts in [59], [74], and [72]. Therefore, it
can be concluded that our proposed design of the 16×1 multiplexer in this chapter
is much more efficient than the previous designs in [59], [74], and [72].

Table 10.5: Comparison between quaternary reversible 4× 1 multiplexer designs.

Proposed 4 × 1
multiplexer

Improvement
percentage

[74]

Quantum cost 24 65% 70
Constant input number 1 0% 1
Garbage output number 5 0% 5

Table 10.6: Comparison between quaternary reversible 16× 1 multiplexer designs.

Proposed 16× 1
multiplexer

Improvement
percentage

[59] [74] [72]

Quantum cost 108 37% 174 368 580
Constant input number 5 37% 17 8 17
Garbage output number 22 12% 33 25 24

10.3.2 Evaluation of Quaternary Reversible Demultiplexer Circuits

Table 10.7 shows the comparison between our proposed quaternary reversible 1×4
demultiplexer and its counterpart in [74]. As can be seen, although both 1 ×
4 demultiplexer circuits require four constant inputs and produce two garbage
outputs, our proposed design has a quantum cost of 24, while the demultiplexer
realization in [74] has a quantum cost of 58. Due to its lower quantum cost,
our proposed quaternary reversible 1 × 4 demultiplexer is more efficient than the
existing design in [74]. The results given in Table 10.8 show that our proposed
quaternary reversible 1 × 16 demultiplexer has 20 constant inputs, even garbage
outputs, and a quantum cost of 108. It is evident from Table 10.8 that our proposed
design has lower quantum cost, garbage outputs, and constant inputs compared
to the previous designs in [59], [74], and [72]. Since reversible circuits are more
efficient when these parameters are minimized, the quaternary reversible 1 × 16
demultiplexer in this study is more efficient than its counterparts in [59], [74], and
[72].

Table 10.7: Comparison between quaternary reversible 1×4 demultiplexer designs.

Proposed 1 × 4
demultiplexer

Improvement
percentage

[74]

Quantum cost 24 58% 58
Constant input number 4 0% 4
Garbage output number 2 0% 2
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Table 10.8: Comparison between quaternary reversible 1 × 16 demultiplexer de-
signs.

Proposed 1 × 16
demultiplexer

Improvement
percentage

[59] [74] [72]

Quantum cost 108 37% 174 308 580
Constant input number 20 13% 33 23 32
Garbage output number 7 30% 20 10 19

10.4 Conclusion

A new quaternary reversible 4×1 multiplexer circuit, based on quaternary 1-qudit
Shift gates, 2-qudit Muthukrishnan–Stroud gates, and 3-qudit Controlled Feynman
gates, has been presented in this chapter. The proposed 4×1 multiplexer has been
utilized to design a quaternary reversible 16× 1 multiplexer circuit. The proposed
design is scalable for n × 1 multiplexers. Moreover, we have introduced a new
scalable realization of a 1 × 4 demultiplexer to design our proposed quaternary
reversible 1 × 16 and 1 × n demultiplexers. The proposed quaternary reversible
circuits in the present study significantly decrease quantum cost, the number of
constant inputs, and the number of garbage outputs. Since designing a reversible
circuit with lower values of these parameters leads to increased efficiency, it can
be concluded that our proposed multiplexer and demultiplexer circuits are more
efficient compared to their existing counterparts.
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Chapter 11

Conclusions

11.1 Concluding Remarks

This thesis provides a detailed examination of quantum circuit optimization using
two interconnected strategies: leveraging functional regularities and decomposition
methods, along with introducing multivalued reversible designs. These approaches
effectively address critical challenges in quantum computing, particularly related
to circuit size, quantum cost, and scalability of quantum architectures. By focusing
on function-based synthesis and multivalued logic systems, this work establishes
a foundation for more efficient, scalable, and practical quantum circuit designs,
creating new opportunities for future advancements in the field.

In Part I: Exploiting Function Regularities and Decomposition for
Quantum Synthesis, the focus is on reducing the cost of quantum circuits by
utilizing inherent regularities in Boolean functions and applying decomposition
techniques. Traditional quantum circuits, often created without fully considering
the underlying structure of Boolean functions, tend to be less compact, resulting in
higher quantum costs. This research focused on dimension-reducible and autosym-
metric functions, showing how exploiting regularities in these functions can lead
to the design of more efficient circuits, reducing both gate count and depth—two
critical factors in quantum circuit performance.

A key innovation presented in this section was the introduction of the Pro-
jected Sum of Product (PSOP) technique, an algebraic approach for decomposing
complex Boolean functions into simpler components. The PSOP decomposition
method provided an effective strategy for simplifying quantum circuits, enhancing
their viability on current quantum hardware. Theoretical models and experimental
validation demonstrated that PSOP-based circuits achieve significant reductions
in gate count and overall quantum cost, highlighting this approach as a valuable
advancement in quantum circuit optimization

Essentially, Part I established the foundation for reducing the cost of quantum
circuits by leveraging the mathematical properties of functions. This approach
enables the development of more efficient and compact designs, which are essential
as quantum systems expand and advance toward more complex applications. The
reduction in quantum resources, particularly concerning gates and circuit depth,
addresses a significant limitation of current quantum circuits and enhances the
prospects for practical quantum computing applications.

Building upon the foundations established in Part I, Part II: Multivalued
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Reversible Designs for Quantum Circuits shifted its focus to the investigation
of multivalued reversible logic systems, particularly ternary (qutrit) and quaternary
(qudit) logic circuits. While classical binary logic has served as the foundation for
both classical and quantum computing, it has certain limitations, especially as
quantum circuits become more complex. By transitioning to multivalued logic
systems, this research illustrated a more efficient utilization of quantum resources,
leading to further reductions in circuit size and complexity.

This section started with an overview of multivalued logic, laying the foun-
dation for advanced circuit designs that take advantage of the additional states
present in ternary and quaternary systems. The thesis presented novel designs for
qutrit-based multiplexers, demultiplexers, and decoders, which achieved significant
reductions in quantum cost, as well as in the number of garbage outputs and con-
stant inputs, when compared to existing alternatives. The capacity of qutrits to
store more information was leveraged in these circuits, resulting in more compact
and efficient designs.

A significant highlight in Part II was the use of ternary logic in quantum image
processing. Existing binary quantum circuits often face challenges with resource-
intensive tasks like image manipulation, where ternary logic offers a considerable
advantage. The integration of ternary Shift gates and Muthukrishnan–Stroud gates
into quantum image circuits resulted in substantial reductions in quantum cost,
constant inputs, and garbage outputs—key factors in enhancing circuit perfor-
mance. This innovation paves the way for new applications of quantum comput-
ing, especially in fields that require complex data manipulation, such as quantum
image processing.

Additional progress in balanced ternary reversible comparator circuits demon-
strated the potential of balanced ternary logic in minimizing quantum costs. Com-
parators are essential elements in computational tasks, and the balanced ternary
design introduced in this thesis accomplished remarkable reductions in key per-
formance metrics, achieving a 65% decrease in quantum cost, 50% fewer constant
inputs, and 33% fewer garbage outputs. These enhancements highlight the ef-
fectiveness of multivalued logic in optimizing crucial operations within quantum
systems.

The final chapter of Part II examined quaternary reversible circuits for multi-
plexers and demultiplexers, further enhancing the advantages of multivalued logic
systems for scalable designs. Quaternary logic, represented by qudits, enables even
greater reductions in circuit complexity compared to ternary logic. The proposed
scalable quaternary multiplexers and demultiplexers showed marked improvements
in quantum cost, as well as in the number of garbage outputs and constant inputs,
relative to existing designs. These findings indicate that as quantum systems in-
crease in size and complexity, quaternary logic will become increasingly essential
for maintaining scalable and efficient circuit designs.

In conclusion, this thesis has significantly advanced the field of quantum circuit
design by integrating two complementary approaches: exploiting function regular-
ities and adopting multivalued logic systems. The implementation of function de-
composition techniques, especially the PSOP method, has demonstrated a notable
reduction in quantum circuit complexity and cost. Meanwhile, the incorporation of
ternary and quaternary logic systems has created new opportunities for developing
more efficient and scalable quantum circuit designs.

These innovations present significant potential for both theoretical progress and
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practical applications as quantum technologies advance. The proposed methods
provide avenues for addressing critical challenges in quantum computing, such as
the substantial resource demands of current circuits and the constraints of classical
binary logic within quantum systems. As the field approaches the development of
viable quantum computers, the insights and designs outlined in this thesis will
form a solid foundation for future innovations in quantum hardware and algorithm
development.

In conclusion, this thesis has established a comprehensive framework for en-
hancing the efficiency and scalability of quantum circuits. It addresses critical
challenges related to quantum cost, circuit complexity, and resource optimization,
equipping researchers and engineers with valuable tools to advance the field of
quantum computing. The novel methods and designs presented here are sure to
play a significant role in the ongoing effort to make quantum computing a practical
and transformative technology for addressing some of the most complex computa-
tional problems faced globally.

11.2 Future Directions

The research presented in this thesis has significantly enhanced our understanding
of quantum circuit optimization through innovative approaches such as PSOP de-
composition, D-reducible and Autosymmetric functions, and multivalued reversible
logic. The findings indicate substantial improvements in circuit efficiency and cost
reduction, paving the way for several promising avenues for future research and
development.

One key avenue for future work involves further refining and expanding de-
composition techniques. While this thesis has established effective methods for
simplifying quantum circuits using PSOP forms, subsequent research could in-
vestigate deriving new decomposed forms from alternative representations, such
as AND-inverter graphs (AIGs) or Reduced Ordered Binary Decision Diagrams
(ROBDDs). This exploration could extend the applicability of PSOP decomposi-
tion and enhance its effectiveness across a broader spectrum of Boolean functions.
Additionally, examining Projected Exclusive Sum of Products (PESOP) forms as
alternatives to traditional Exclusive Sum of Products (ESOP) expressions may
yield new insights and methodologies for reversible logic synthesis. Combining
these decomposition techniques with quantum error correction methods could fur-
ther enhance the fault tolerance and robustness of quantum circuits.

At the same time, the investigation of D-reducible and Autosymmetric func-
tions has highlighted the potential for creating compact reversible circuits by uti-
lizing specific regularities. Future research should aim to identify additional reg-
ularities in Boolean functions that could be harnessed for optimizing quantum
circuits. This entails analyzing other classes of functions and their properties to
uncover new optimization possibilities. Furthermore, assessing alternative decom-
position techniques and their advantages may provide complementary or superior
approaches for deriving compact quantum circuits. Implementing these techniques
across various Boolean function representations, such as multi-level logic networks,
could yield valuable insights into their effectiveness and adaptability.

The advancement of multivalued reversible logic systems, including ternary
(qutrit) and quaternary (qudit) circuits, also offers exciting prospects for future
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research. The theoretical aspects of the novel multivalued circuits developed in this
work are essential for evaluating their real-world performance and scalability. Fu-
ture studies should also concentrate on creating advanced multivalued logic gates,
aiming to further decrease quantum cost and enhance circuit efficiency. Exploring
the application of multivalued logic in specific quantum algorithms, such as quan-
tum image processing and quantum simulations, will help illustrate its practical
significance and potential for addressing complex computational challenges.

As quantum computing technology evolves, the integration of these optimized
techniques into larger and more complex quantum systems will become increasingly
crucial. Research initiatives should focus on overcoming the challenges associated
with scaling quantum circuit designs, such as circuit size, gate count, and computa-
tional resources. Furthermore, creating scalable quantum architectures that effec-
tively leverage multivalued circuits and integrating optimized circuits into hybrid
quantum-classical systems could significantly improve overall system performance
and enhance the efficiency of solving real-world problems.

In summary, the future research directions in quantum circuit optimization
are extensive and promising. By advancing PSOP decomposition techniques, im-
proving quantum compilation through the exploitation of regularities, and inves-
tigating multivalued reversible logic systems, researchers can continue to advance
the field. Collaborative and practical approaches will be essential for unlocking
the full potential of quantum computing and addressing the challenges posed by
future quantum technologies.
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