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Abstract—Metabolism prediction is a crucial step of drug
development, as the biotransformations a drug candidate un-
dergoes inside the human body can affect the clinical outcome.
Computer-aided drug design has been extensively employed to
speed up the process and enhance its efficiency and effectiveness,
but among the investigated areas, metabolism has received less
attention. This project aimed at leveraging machine learning to
analyze large metabolic datasets, make predictions and recognize
patterns, in order to fill this knowledge gap and enhance our
understanding of metabolism and its impact on drug devel-
opment. To achieve this goal, we developed a Deep Learning
model for metabolism prediction using natural language pro-
cessing techniques trained on molecular string representations,
i.e., Simplified Molecular Input Line Entry Systems (SMILES)
strings. To this end, we employ a Molecular Transformer, because
of its ability to capture sequential and contextual information
within strings (in this case, SMILES) enabling the learning
of complex relationships. The transformer was trained using
a high quality dataset, MetaQSAR, from which we derived
approximately 100 000 instances of metabolic reactions. In this
work, we investigate whether the Transformer architecture bears
the potential to learn a mapping between the input molecular
structures and their corresponding metabolites, in order to
expedite drug discovery and improve patient safety.

Index Terms—drug discovery, metabolism, transformers, arti-
ficial intelligence, neural networks

I. INTRODUCTION

Drug development is a time-consuming and resource-
demanding process, consisting of multiple steps and relying
on an iterative trial-and-error approach. [1] This intricate
journey can be divided into three distinct phases – discov-
ery, preclinical, and clinical development – that together can
take over a decade and several million dollars to put just
one medicinal product on the market, even with significant
financial investment, advanced laboratory facilities and skilled
researchers merging various disciplines [1].

The drug discovery pipeline starts with target identification
and validation, already carrying along two significant chal-
lenges. The first is the vastness of the chemical space, the
conceptual territory inhabited by all possible drug-like com-
pounds. It is estimated to be in the order of 1060 molecules,
rendering its exploration and understanding extremely difficult.
[2]. The second challenge is represented by the complexity of
the biological systems [3]: numerous molecules dynamically
interact with each other, engaging in complex signaling path-
ways and regulatory networks, that need to be understood in
order to develop effective therapies able to modulate specific
targets without unintended consequences. The multifactorial
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nature of diseases makes it even more challenging to com-
prehend the intricate crosstalk between these molecules and
promptly grasp the underlying mechanisms for identifying
potential therapeutic goals [4].

Once the target is chosen, molecules that can interact with
it in a specific and effective manner (the so-called “hits”)
have to be selected among a multitude of candidates studied
employing high-throughput screenings, an extremely time-
consuming technique. Additionally, hit compounds should be
optimized to enhance their potency, selectivity, and safety
profiles, as most drug candidates fail during preclinical and
clinical stages due to inadequate efficacy, unexpected toxicity,
or other safety concerns. Complexity and time are additionally
increased by the need to comply with complex regulations and
guidelines.

Metabolism plays a key role in drug development, because it
influences a drug pharmacokinetics (PK), pharmacodynamics
(PD), and overall its safety and efficacy [5]. The investigation
of metabolism is a complex and challenging area of study
[6], due to several reasons including (1) the production of
several metabolites via multistep biotransformation reactions,
(2) the physicochemical and pharmacological properties of
these metabolites, significantly different from those of the
parent drug, (3) the genetic and environmental influence
determining inter-individual variations [7]. Understanding how
these dynamic metabolic processes affect potential drug can-
didates would be of great benefit to medicinal chemistry: it
would help prioritize the most promising compounds based
on their metabolic profile, greatly reducing both the time and
the resources needed for screening molecules, thus increasing
the cost-effectiveness ratio and success rate of the process. [8]

Computational models to simulate and predict metabolic
behavior already exist [9] [10], e.g., to predict the interaction
of molecules with metabolic enzymes [11], predict sites on the
molecule where metabolism occurrs, [12], and generate puta-
tive metabolite structures [13] However, building comprehen-
sive models encompassing the entirety of metabolic pathways
and their regulation is still a challenge, often fed by limited
domain knowledge and poor quality of the available data,
which are both responsible for undermining the accuracy and
reliability of predictions. [14] Unfortunately, acquiring high-
quality data is not always straightforward, as experimental
techniques are often limited by technical constraints, giving
experts only snapshots of the complex dynamics occurring
within the cell. In this context, Artificial Intelligence (AI) is
exceptionally well-suited to address the challenges of drug
discovery and development. [15]



Computer-Aided Drug Design (CADD) consists in the ap-
plication of computational tools, algorithms, and simulations
to aid in various aspects of drug development. Within drug
discovery, CADD has been applied to various domains – such
as target identification, virtual screening, and lead optimization
[16] – while drug metabolism has received less attention.
In this work, we built a Machine Learning model that uses
end-to-end learning-based method, relying on the application
of the molecular transformer architecture [17], used to cast
metabolism as a sequence-to-sequence translation, between
molecules and their metabolites. This is achieved by repre-
senting molecules as strings, via the Simplified Molecule Input
Entry Line Systems (SMILES) representation [18], describing
2D chemical information. Our model does not rely on human-
engineered rules to learn relevant aspects of drug-to-metabolite
mapping. This work is inspired by the usage of language
models to predict organic reactions [19]–[21]. Moreover, our
work expands upon other usages of Molecular Transformers
for metabolism [22], by including high-quality data, and incor-
porating metabolism reaction classes (RC) in the predictions.
Figure 1 provides a schematic representation of the proposed
approach.

Fig. 1. Schematic representation of a transformer model for metabolism
prediction.

This work aims to leverage the power of machine learning
and computational tools to enhance our understanding of how
drugs are processed by the body, a knowledge that can help
in the design and development of safer and more effective
drugs, as well as aid in the identification of potential drug-drug
interactions and the optimization of dosing regimens, therefore
contributing to the advancement of the drug discovery process,
and ultimately benefiting patients in need of new and improved
treatments.

After providing a brief description of metabolic processes,
we delineate the main methods used in this paper, and discuss
the results and opportunities ahead.

II. METABOLISM

Metabolism involves a large and diversified set of chemical
reactions, mainly mediated by specific enzymes, occurring
to endogenous compounds and xenobiotics, serving the dual
purpose of providing energy and essential building blocks to
cells, as well as removing potentially harmful substances [5].

Xenobiotics are chemical substances not naturally produced
or expected to be present within the organism where they
are found. They can be introduced either through diet or
environmental exposure, and they also include drugs. Since
they are recognized as non-self, the body biotransforms them
in order to facilitate their removal, and this takes place in
almost every tissue of the human body, but the liver is of
major significance.

Metabolic reactions occur in two phases: phase I reactions
include oxidation, reduction, or hydrolysis reactions, while
phase II is dedicated to conjugation reactions mediated by
transferases. Inside each of these major classes, metabolic
reactions can be classified into several classes and subclasses.
The final aim of these biotransformations is to deactivate
toxic compounds or increase the polarity to facilitate their
elimination, as hydrophilic compounds have higher excretion
rates from the body. [23]

All these processes are needed to sustain life, but due to the
effects they have on the pharmacokinetics (PK) and pharmaco-
dynamics (PD) of small molecules, they also affect the efficacy
and safety of drugs.

Fig. 2. Scheme of liver metabolism.

The therapeutic effect of a drug is correlated to its bioavail-
ability, which refers to the rate and extent a substance becomes
completely available to its intended biological destinations.
Metabolic reactions highly influence this property: it can occur
that some lead compounds demonstrating strong potency in in



vitro studies exhibit limited effectiveness in in vivo models,
due to the interference of biotransformation. For example,
drug metabolism plays an important role in drug clearance:
drugs characterized by a high elimination rate constant have
a low half-life, meaning that they are metabolized so fast
that systemic concentration does not remain in the therapeutic
window long enough to elicit the desired effect. This is due to
an intrinsic characteristic of the substance, but also enzymes
can be responsible for the alteration of the PK/PD profile of
drugs.

The investigation of drug metabolism is an essential aspect
of the drug development process: its consequences on the
PK/PD profile and safety need to be carefully taken into
consideration when assessing whether a compound is suitable
as a drug or how it can be modified to have a better metabolic
profile.

III. METHODS

In this section, we delineate the state-of-the-art techniques
and methodologies employed to represent molecules and build
a machine learning model able to address the challenges
of metabolism prediction. In order to make the paper self-
contained, we provide also a detailed explanation of the
SMILES encoding.

A. Simplified Molecular Input Line Entry System (SMILES)

The Simplified Molecular Input Line Entry System
(SMILES) serves as a linear notation system tailored for chem-
ical information processing. SMILES sequences encapsulate
identical information as chemical graphs but adopt a character
string format without spaces, occupying 50% to 70% less
space compared to an equivalent connection table, without
sacrificing interpretability. SMILES employs a unique alphabet
with a straightforward vocabulary and few grammar rules.
Non-hydrogen atoms are denoted by their atomic symbols
within square brackets, except for those in the “organic subset”
(B, C, N, O, P, S, F, Cl, Br, I) or with hydrogens inconsistent
with the lowest normal valence. Aromatic ring atoms employ
lowercase letters, with attached hydrogen or formal charges
always specified within brackets.

Single, double, triple, and aromatic bonds are represented
by the symbols −,=,#, and : , respectively. Branches, cyclic
structures, and disconnected compounds are represented by
parentheses, ring-breaking bonds, and periods, respectively.
Isomer specification, configuration around double bonds, iso-
topic specifications, tetrahedral centers, and tautomeric struc-
tures are addressed, too. Figure 3 shows an example of
SMILES representation and the associated molecule.

To preserve the uniqueness of the representation, algorithms
are used to generate “canonical” SMILES, meaning that
each string corresponds to one single molecule, and that the
information it provides is enough to reconstruct the corre-
sponding 2D structure. Relying on the SMILES representation,
molecules can be seen as linguistic constructs, and therefore
be treated as sentences to be translated: among the several
algorithms and applications in the field of deep learning, for

the purpose of this project, we will focus on the sequence-to-
sequence (seq2seq) models and, specifically, on Transformer
models.

B. Transformers

The transformer model [17] is built upon an encoder-
decoder architecture and aims to overcome the limitations of
the RNN framework by incorporating several components and
mechanisms enabling more efficient and effective processing
of sequential data. A Transformer serves as a sequence-to-
sequence model commonly employed in Machine Translation.
It comprises an Encoder, a Decoder, and an Attention layer
typically situated at the Encoder-Decoder interface. The En-
coder consists of a series of identical layers, each comprising a
multi-head self-attention mechanism and a position-wise fully
connected feed-forward network. This network includes two
linear transformations separated by a ReLU activation. The
decoder layer shares similarities with the encoder but intro-
duces a third sub-layer, which performs multi-head attention
on the output of the encoder stack. The output of the decoder
is a vector, which is passed through a Softmax function,
responsible for converting it into a probability distribution:
the predicted token is the most probable choice among the
available options. Self-attention dynamically assigns weights
to different parts of the input data based on their significance.
Specifically, the mechanism here mentioned is:

• Masked: prevents the TransformerDecoder from seeing
the whole sequence at once, to avoid the utilization of
future information during training, which would render
the model unusable at test time.

• Multi-head: allows the model to focus on different aspects
or relationships between words in the sequence, as each
head learns a different relationship.

We show an example of the architecture used in this work in
Figure 4.

Fig. 3. Example of SMILES representation and corresponding molecule.



Fig. 4. General architecture of a Transformer model.

C. Tanimoto Similarity

Notably, compounds with similar molecular structures tend
to exhibit similar biological and physicochemical characteris-
tics, therefore the similarity between the known metabolites
and the ones predicted by our model can be used as a
parameter to evaluate the model performance.

Tanimoto similarity [24] is a metric commonly used in
molecular structure analysis to quantify the similarity between
two sets of data, typically representing chemical compounds:
in this case, the reference metabolites and the structures
predicted by the model. To calculate the Tanimoto similarity,
molecules need to be represented by molecular descriptors,
mathematical representations able to capture various aspects
of molecular structure. They provide a way to encode the
characteristics of molecules in a format that can be analyzed
and used for various purposes in computational chemistry,
including similarity assessment. The descriptors here used are
called Extended Connectivity Fingerprints (ECFPs), circular
fingerprints encoding the presence or absence of substructures
in a molecule. They typically consist of binary strings, with
each bit representing the presence or absence of a specific
substructure. It is computed by taking the intersection of the
two sets and dividing it by the sum of the sizes of the two

sets, as described by the formula:

S =
c

a+ b− c
, (1)

where a and b represent the bits equal to 1 (”on bits”) in
molecules A and B, respectively, while c represents the number
of on bits in both molecules. The similarity score S is hence
a value between 0 and 1, where 0 indicates no similarity and
1 indicates perfect similarity.

D. The MetaQSAR Dataset

The model was trained using the MetaQSAR database [25],
a manually curated resource of published measured data on
xenobiotic metabolism, which includes expert curated sites
of metabolism (SoMs) and reaction annotations for discovery
compounds and drugs. The reactions covered in MetaQSAR
are divided into three main reaction classes: redox reactions
(3858 reactions); hydrolysis and other nonredox reactions (697
reactions); conjugation reactions (1765 reactions). A notable
feature of MetaQSAR lies in the rigorous expert validation
applied to each annotated reaction, preventing mistakes and
inaccuracies typically associated with automated compilation,
as well as avoiding mistakes found in the primary literature.
Despite its strengths, it’s worth noting that MetaQSAR is a rel-
atively small dataset. To address this limitation, we employed
data augmentation techniques [26]: we leveraged the fact that
each molecule can be represented by multiple SMILES strings
depending on the atom chosen as a starting point, allowing us
to utilize each substrate up to 10 times. For the analysis, these
representations will be mapped back to the canonical SMILES,
ensuring a 1:1 match with the corresponding 2D structure.

Using the information from MetaQSAR, we created a
dataset in which each combination “substrate (augmented 10x)
+ reaction class” corresponds to the translated metabolite
(canonical) deriving from the specified reaction class.

This first dataset was then integrated with information
coming from MetaTree [27], another meticulously curated
repository of metabolic data. Specifically, it is a collection
of complete metabolic trees, meaning that the substrates
mentioned are not known to undergo any reaction that’s not
annotated in the dataset itself. We employed this insight to
make the model aware that there are instances where the
substrate remains unchanged, aiming to expand our model’s
comprehension of metabolism.

Then, we tokenised substrates and metabolites atom-wise:
each atom corresponds to a token, and each token is separated
from the adjacent ones by a space. We also added two special
tokens, namely [START] and [END], to the metabolites’
strings.

Differently from chemical reaction prediction, where each
input gives a single output, in metabolite prediction each
parent molecule may yield multiple metabolites. [13] That is,
our dataset includes cases that share the same parent molecule
but can differ with respect to the resulting metabolite, due to
the reaction class involved. We expected that incorporating
this information as input of the model could overcome limits
in generalization and applicability of the method.



The final dataset was divided in training and test sets,
making sure that each combination “molecule + reaction” of
the test set was not present in the training one.

E. The Model

To map the substrate SMILES sequences to the SMILES
sequences of the corresponding metabolites, we started with
the existing implementation of a Transformer [17] commonly
employed in Natural Language Processing, making some ad-
justments to tailor it to the specific task of metabolism predic-
tion. Our sequence-to-sequence model consists of three key
components: a TransformerEncoder, a TransformerDecoder,
and a PositionalEmbedding layer that ensures that the model
is aware of the sequential order of the atoms. We use three in-
stances of the TextVectorization layer to vectorize the SMILES
sequences, one for the substrates, one for the metabolites, and
one for the reaction classes. The vectorized source sequences
are two: the vectorized SMILES for substrate and the vec-
torized RC. Both are passed through the TransformerEncoder,
which will generate two new representations referred to as
“smiles encoder inputs” and “rc encoder inputs”. The latter
passes through a reshape operation and a dense layer to allow
its concatenation with the “smiles encoder inputs”. Next, the
TransformerDecoder receives this concatenation, together with
the “decoder inputs”, which is the vector representing the
current state of the target sequence (“target sequence so-far”)
and tries to predict the next token in the target sentence
(“decoder outputs”). In order to allow our model to predict
multiple metabolites for each couple of ”substrate + reaction”,
we also implemented temperature sampling. It is a technique
introduced to control the randomness of the sampling process,
where low temperature means stagnation, while high temper-
ature makes the model more creative.

F. Software and Code

Experiments were performed in Python, using Tensorflow
version 2.14.0 and Pandas version 2.1.2. For the similarity
evaluation, we employed the RDKit toolkit version 2023.09.1.
The source code of this work is available upon request.

IV. RESULTS

Given the relatively unexplored nature of metabolism pre-
diction with chemical language models in the scientific lit-
erature, our primary goal was to determine the optimal hy-
perparameters, listed in Table I: we wanted to see which
combination would lead to the highest performance of our
model, established by low loss and high accuracy.

During the initial tuning phase, an extensive examination
of various values for each hyperparameter was conducted
to determine the optimal direction to follow. Batch Size is
reported in Figure 5 as an example: the observed loss exhibits
no significant disparity among diverse batch size values, indi-
cating that it likely has minimal impact on model performance.
On the contrary, a learning rate of 0.0001 is a more suitable
choice compared to LR = 0.01, while LR = 0.005 remains a
value of interest for further exploration, as shown in Figure 6.

Fig. 5. Validation loss for different values of batch size, first tuning step

Fig. 6. Validation loss for different values of initial learning rate, first tuning
step

TABLE I
TUNED HYPERPARAMETERS AND RELATIVE VALUES - SECOND TUNING

STEP.

Hyperparameter Value 1 Value 2
Vocabulary size (VS) 50 -
Batch size (BS) 64 -
Embeddings dimension (ED) 64 256
Latent dimension (LS) 256 1024
Number of heads (H) 6 10
Initial learning rate (LR) 0.0001 0.005
Reaction class embeddings dimension (RCED) 32 -
Reaction class dense dimension (RCDD) 32 -

Following the insights gained from the analysis in tuning
step 1, we narrowed down the range of values for each
hyperparameter and executed a comprehensive grid search
encompassing all possible combinations of values listed in
Table I. The values corresponding to the best configuration
are highlighted in bold.

The model predicted 10 metabolites for each couple “sub-
strate + reaction” of the test set, and to determine its perfor-
mance, we analyzed validity, which refers to the number of



valid designs on the total number of generated metabolites,
and recall. For this latter, we used fingerprint similarity based
on the Tanimoto coefficient computed on ECFPs: we captured
how close the model output resembled the correct metabolite,
in terms of substructures and overall connectivity. We chose
a threshold value for the Tanimoto coefficient equal to 0.8,
meaning that all the predicted metabolites exhibiting a fin-
gerprint similarity with the reference metabolite higher than
80% were considered true positives. We obtained 69.60% of
validity and 62.64% of recall.

In Figure 7, we provide a visual example of the predictions
considered as true positives based on fingerprint similarity.
Related SMILES and involved reaction are listed in Table II.

Fig. 7. Visual example of the predictions considered as true positives based
on fingerprint similarity - oxidation.

As we aimed, the information pertaining to the reaction
involved in the metabolism of molecules proves to be valuable.
As illustrated in Figure 7, the predicted metabolite aligns
with the description provided by the input reaction. More-
over, this is not limited solely to phase I reactions, which,
being frequently predominant, tend to be more accurately
recognized. It extends to phase II reactions as well, such
as conjugation with glutathione, as depicted in Figure 8.
Glutathione conjugation is a crucial phase II detoxification
process, essential for protecting cells from the harmful effects
of xenobiotics. Therefore, these results underscore the clinical
relevance that this model can possess in providing insights
into these processes for more effective and tailored medical
treatments. Table III summarizes related SMILES and involved
reaction.

To deeper investigate the significance and contribution pro-
vided by the inclusion of the reaction class, further analysis
were conducted in two steps. We tested:

1) Our model on the test set after removing the reaction
class information.

2) MetaTrans, another computational tool used for pre-
dicting metabolic reactions within biological systems,
that, unlike our model, does not incorporate information
about reaction classes during its training phase.

Fig. 8. Visual example of the predictions considered as true positives based
on fingerprint similarity - conjugation.

The results, summarized in Table IV, suggest a significant
enhancement in model performance with the inclusion of
reaction class information. Our model, when trained with
reaction class data, achieved higher overall accuracy (67%)
compared to the version trained without it (59%). In contrast,
MetaTrans, which does not utilize reaction class information,
exhibited lower performance (38%), indicating the superiority
of our approach in leveraging reaction class data for better
predictive outcomes.

V. CONCLUSION AND FUTURE DEVELOPMENTS

The objective of this project was the development of a deep
learning model able to solve the metabolism prediction task
as a machine translation problem, relying on the SMILES
representation of molecules. This proof-of-concept illustrates
how intricate is to capture metabolic reactions using chemical
language models, yet it also highlights the potential promise
of such an undertaking: even being a first draft, our model was
already able to both learn chemical grammar rules and recog-
nize the reactions molecules undergo. Notably, the inclusion of
reaction class information led to a substantial improvement in
correctly identifying instances, clarifying that that our model
can effectively discern between different metabolic pathways
and predict the outcomes of chemical transformations with
greater accuracy. This will offer valuable insights into potential
metabolites and their impacts on human health: it will aid in
the early identification of potential toxicities or adverse effects
during drug development, thereby enhancing patient safety.
Furthermore, the model will contribute to the identification of
drug-drug interactions and exploration of underlying biological
mechanisms, ultimately advancing scientific knowledge in the
field.

While our model exhibits its strengths, it is important to
acknowledge its limitations, too. Addressing these challenges
is crucial to enhance its flexibility, accuracy, and compre-
hensiveness: broadening the validation of predictions to en-



TABLE II
SMILES STRINGS AND REACTION CLASS ID RELATED TO FIGURE 7

Substrate c1(c(-c2ccccc2)c(ccc1)Cl)Cl
Reaction class 11 - Oxidation of aryl compounds to epoxides, phenols or other metabolites
Known metabolite Clc1cccc(Cl)c1-c1ccc2c(c1)O2
Prediction Clc1ccc(-c2ccc3c(c2)O3)cc1Cl

TABLE III
SMILES STRINGS AND REACTION CLASS ID RELATED TO FIGURE 8

Substrate Oc1ccc(cc1OC)C=CC(CC(C=Cc1cc(c(cc1)O)
Reaction class 103: Nucleophilic additions of glutathione (to a,ß-unsaturated carbonyls, quinones

and analogues, isocyanates and isothiocyanates, epoxides, etc)
Known metabolite COc1cc(C=CC(=O)CC(=O)C=C(SCC(NC(=O)CCC(N)C(=O)O)C(=O)NCC(=O)O)c2ccc(O)c(OC)c2)ccc1O
Prediction COc1cc(CC(O)CC(=O)C=CC(O)C(CCc2cccc(O)c2)SC(NC(=O)CCC(N)C(=O)O)C(=O)NCC(=O)O)cnc1O

TABLE IV
RECALL COMPARED AMONG THE THREE MODELS

Recall
Our model with RC 67%
Our model without RC 59%
MetaTrans 38%

compass a wider and more varied range of molecules, as
well as conducting experimental validation and integrating
supplementary options for ranking predictions is likely to
prove beneficial in further enhancing the model’s performance,
in turn resulting in an increasingly impactful contribution to
the field of drug discovery.
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