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Figure 15. Characterization of IL-6 pathway in symptomatic HET mice. (A-C-F-H) Graphs 

show the level of expression of IL-6 and Stat3 mRNAs in P100 (A, F) and P200/250 (C, H) 
cortex (CTX) and hippocampus (HP) of WT (set at 100%) and HET animals. (E) The graph 

represents the correlation between Stat3 and IL-6 mRNA levels in P200/250 HET mice 

cortices, evaluated by Pearson’s correlation test (p = 0.062). Pearson r value indicates a direct 

correlation between the expression of the two genes (r = 0.47). (B-D-G-I) Histograms show 

the pStat3 and Stat3 protein levels normalized on the total protein content of the samples. 

Representative bands of pStat3, Stat3 and the total protein content visualized by TGX stain-

free technology are shown on the right. All the data in above mentioned graphs are expressed 

as mean ± SEM and statistics is performed with Student’s t-test or Mann-Whitney test 

according to data distribution (*p<0.05).  

 

4.4 Alterations in cholesterol pathway in Mecp2 KO astrocytes affect 
synaptic phenotype 
4.4.1 Cholesterol biosynthesis and transport are impaired in Mecp2 KO 
astrocytes 
As described in preliminary data section, treatment of neurons with KO ACM is 

sufficient to cause a significant decrease in the number of active synapses, indicating 

that other factors strictly related to the astrocyte genotype participate to the onset of 

synaptic defects. Indeed, we believe that the observed defect could be caused both by 

the release of synaptotoxic factors and/or the lack of beneficial cues. To unveil the 

contribution of Mecp2 deficiency in the alterations of ACM composition, we started 

focusing on one of the first described synaptogenic molecules, mainly released by 

astrocytes in adult brain, that is cholesterol (132,172). Interestingly, many data point to 
a defective metabolism of this lipid in RTT models (100,173–176). Therefore, we 

decided to explore whether defects in cholesterol metabolism are present in primary 

cultures of Mecp2 null astrocytes. By qRT-PCR, we found a general downregulation of 

genes coding for proteins involved in cholesterol biosynthesis, namely Nsdhl, Hmgcr, 

Mvk and Sqle, in KO astrocytes. Additionally, we observed a significant decrease in 

the expression of Lcat, Abcg1 and Abca1, which are related to cholesterol transport. 

Conversely, the expression of ApoE, a gene coding for a protein responsible for 

cholesterol trafficking to neurons, shows no difference between the two experimental 

groups (Figure 16A). To gain insight on the putative involvement of cholesterol 
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metabolism in a more comprehensive model, we evaluated the expression of the same 

genes in astrocytes isolated by MACS sorting from P7 mice cortices, highlighting a 

decrease in the level of Hmgcr and Nsdhl in Mecp2 KO cells (Figure 16B). Notably, 

some genes that are significantly downregulated in KO astrocyte mono-cultures, such 

as Mvk, Sqle, Lcat, Abcg1 and Abca1, do not show differential expression in MACS-

sorted astrocytes, confirming that gene expression in astrocytes is influenced by the 

interactions with other cell types. Continuing our investigation, we focused on the Nsdhl 

gene, which we found consistently and significantly decreased in Mecp2 KO 

astrocytes. Nsdhl encodes for a crucial sterol dehydrogenase involved in cholesterol 

biosynthesis and is known to be downregulated both in RTT patients and animal 

models (177,178). By western blot, we observed that the expression of Nsdhl protein 

is almost halved in KO astrocytes with respect to WT (Figure 16C), coherently with the 

significant decrease of Nsdhl mRNA levels recorded in KO mono-cultures (Figure 16A).  

 
Figure 16. Expression of factors involved in cholesterol pathway is altered in Mecp2 KO 
astrocytes. (A-B) Histograms show the expression of genes involved in cholesterol 

biosynthesis and transport in primary cultures of  Mecp2 KO astrocytes (n≥5) (A) or in KO 

astrocytes sorted with MACS technology (n≥5) (B) with respect to WT astrocytes (set at 100% 

and represented by dotted line). (C) Graph represents the protein level of Nsdhl in western blot 
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of WT (set at 100%) and KO astrocytes, normalized on the total protein content of the samples. 

Representative bands of Nsdhl and the total protein content visualized by TGX Stain-Free 

technology are shown on the right. All the data in above mentioned graphs are expressed as 

mean ±SEM and statistics is performed with Student’s t-test or Mann-Whitney test according 

to data distribution (*p<0.05, **p<0.01, ***p<0.001). Analyzed samples come from at least 2 

independent experiments. 

 

4.4.2 Trofinetide treatment of Mecp2 KO astrocytes ameliorates defective 
expression of cholesterol-related genes 
To date, the only approved treatment for RTT is Trofinetide, an analog of the N-terminal 

tripeptide of IGF-1 (GPE) (55,56,179,180). Considering previous evidence reporting 

the effectiveness of GPE and IGF-1 on neurons when co-cultured with Mecp2 mutant 

astrocytes (151), we investigated whether Trofinetide could affect the expression of 

genes associated with cholesterol metabolism in astrocytes. WT and KO astrocytes 

were treated for 72 hours with of Trofinetide (50 ng/mL) or empty medium as control. 

By qRT-PCR, we found that the significant reduction of the expression of Abca1, Mvk 

and Abcg1 genes reported in KO astrocytes is no more present after treatment (Figure 

17C-17E). Conversely, the strong decrease of Nsdhl expression is not rescued by 

Trofinetide (Figure 17A). The data demonstrate that a drug already proven to have 

beneficial effects on RTT patients also modulates the expression of cholesterol-related 

genes, further highlighting other molecular targets and the potential role of cerebral 

cholesterol in the disease.  
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Figure 17.  The expression of some of the deregulated cholesterol-related genes in KO 
astrocytes is recovered after Trofinetide treatment. Histograms show the expression of 

genes involved in cholesterol biosynthesis and transport in mono-cultures of WT and Mecp2 

KO astrocytes, treated with Trofinetide (TROFI) or vehicle (UT) for 72 hours. Mean expression 

of the genes in WT UT astrocytes is set at 100%. Data are expressed as mean ±SEM and 

statistical analysis is performed by two-way ANOVA followed by Sidak’s post hoc test (*p<0.05, 

****p<0.0001). Data are collected from at least 3 independent experiments. 

 

4.4.3 Cholesterol supplementation rescues synaptic defects  
Having observed a general downregulation of genes related to cholesterol pathway in 

KO astrocytes, indicative of an alteration in its metabolism, we proceeded to assess 

whether this defect could contribute to the synaptic impairment induced by KO ACM. 

We supplemented the ACM with exogenous cholesterol during the 24 hours treatment 

on neurons. We exploited a water-soluble cholesterol formulation complexed to 

methyl-b-cyclodextrin that can be easily internalized by cells (172,181,182). The first 

step was to establish a safe dose of cholesterol that could be well tolerated from 

neuronal cultures. Neurons were treated with increasing doses of the drug from DIV13 

to DIV14 and cell viability was evaluated by MTT assay. The analysis revealed a dose-

dependent effect, with cholesterol concentrations at or below 5 µg/mL resulting in less 

than 20% of cell death (Figure 18A). Thus, we treated neurons with WT and KO ACM 

supplemented with water soluble cholesterol to a final concentration of 0.1 µg/mL. WT 
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and KO ACM with no cholesterol addition are used as controls. Immunofluorescence 

staining of pre-synaptic (Synapsin1/2) and post-synaptic (Shank2) markers confirmed 

the already reported defect induced by KO ACM on neurons, and also unveiled that 

the addition of cholesterol is sufficient to rescue synaptic alterations (Figure 18B-18E). 

Encouraging results were also obtained in HET neurons, that are known to show 

severe synaptic alterations, as KO neurons (183). Indeed, we found that defects in the 

density of pre- and post-synaptic proteins puncta and in their colocalization are 

recovered by cholesterol directly supplemented in the culture medium (0.1 µg/ml, from 

DIV13-DIV14) (Figure 18F-18I). These data confirm the synaptogenic properties of 

cholesterol and strengthen the hypothesis of the involvement of its impaired 

metabolism in synaptic defects observed in RTT models. 
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Figure 18.  Water-soluble cholesterol supplementation rescues synaptic defects. (A) 
Graph represent the survival of WT cortical neurons cultured at DIV13 for 24 hours with 
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decreasing concentrations of a water soluble formulation of cholesterol. Data are reported as 

percentages with respect to untreated cells (NT) set at 100% and expressed as mean ±SEM 

(n=4 technical replicates). Statistical analysis is performed by one-way ANOVA test followed 

by Tukey’s post hoc test (**p<0.01, ***p<0.001). (B) Representative images of primary 

dendrites collected from WT neurons after 24 hours WT ACM or KO ACM treatment, with or 

without cholesterol supplementation. Scale bar = 5 µm. Cells are stained for Synapsin1/2 

(green), Shank2 (red) and MAP2 (white in merged images). (C-E) Violin plots indicate the 

median (dashed line) and 25th and 75th percentiles (dotted lines) of the number of Syn1/2 (C) 
and Shank2 (D) puncta and their colocalization (E). Values for puncta number are expressed 

as percentages with respect to untreated WT neurons (+ACM WT set as 100%). (F) 
Representative images of primary dendrites collected from WT and HET neurons after 24 

hours treatment with or without cholesterol supplementation. Scale bar = 5 µm. Cells are 

stained for Syn1/2 (green), Shank2 (red) and MAP2 (white in merged images). (G-I) Violin plots 

indicate the median (dashed line) and 25th and 75th percentiles (dotted lines) of the number of 

Syn1/2 (G) and Shank2 (H) puncta and their colocalization (I). Values for puncta number are 

expressed as percentages with respect to untreated WT neurons (WT UT set as 100%). For 

violin plots, statistical analysis is performed by two-way ANOVA followed by Tukey’s post hoc 

test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). More than 50 neurons are analyzed for 

each experimental group and data are collected from at least 2 independent experiments.  

 

4.4.4 Nsdhl expression is constantly reduced in Mecp2 deficient models  
 
Having observed a strong and constant downregulation of Nsdhl gene in KO astrocytes 

both in mono-culture and after MACS sorting, we investigated its expression in different 

RTT animal models, focusing on the most affected brain areas. This information could 

be instrumental for identifying a novel therapeutic target for RTT. In particular, we 

evaluated Nsdhl protein expression by performing western blot analysis on the cortex 

(CTX), hippocampus (HP) and cerebellum (CB) of both asymptomatic (P20) (Figure 

19A) and symptomatic (P40) Mecp2 KO mice (Figure 19B). We unveiled a consistent 

downregulation of Nsdhl in all brain areas when symptoms are not overt, that is 

maintained during the development of the disease. Interestingly, we found decreased 

Nsdhl protein level also in the CTX of symptomatic (P200) HET female animals (Figure 

19C), whereas no impairment is evident in the hippocampus and cerebellum. 

Interestingly, Nsdhl protein level is halved in all the considered brain areas of the KI 

Mecp2Y120D/y (Y120D KI) mouse model, harboring a phospho-mimetic missense 

mutation and that phenotypically resembles the null mouse (Figure 19D).  
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Figure 19.  Nsdhl protein expression in the cortex, hippocampus and cerebellum of RTT 
mouse models. (A-D) Graphs show the protein expression level of Nsdhl (WT set at 100%) 

measured in the cortex (CTX), hippocampus (HP) and cerebellum (CB) of KO animals at P20 

(A) and P40 (B), of P200 HET females (C) and P40 Mecp2Y120D/y KI male animals (D). The 

experiment was conducted on at least 5 samples for each experimental group. Statistical 

analysis was performed by Student’s t-test  (*p<0.05, **p<0.01, ****p<0.0001). Bars represent 

the mean ± SEM. For each graph, on the right, representative images of Nsdhl protein (42 

KDa) in the selected brain areas are shown. Nsdhl band intensity is normalized on the total 

protein content of the sample measured on TGX Stain-Free gel.     
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5. Discussion 
 

Defects in neuronal morphology, activity and synaptic transmission are an hallmark of 

Rett syndrome and they have been extensively characterized (59,61,62,81,83). First 

evidence of the contribution of astrocytes in determining neuronal defects in RTT came 

out more recently. Indeed, both mouse and human Mecp2 deficient astrocytes not only 

show alterations of process branching, metabolism and calcium waves 

(104,147,149,150), but they are not able to properly support neuronal growth and 

activity (103,151,152). In this context, we investigated the less explored impact of 

Mecp2 KO astrocytes on synaptic phenotype and, as astrocytes elicit many of their 

functions by releasing gliotransmitters, we particularly focused on the study of secreted 

paracrine signals (112,135,137,184). For this purpose, we used two different in vitro 

culture systems: on one hand, to consider the factors secreted by astrocytes only in 

dependence of their genotype, we treated neurons with astrocyte conditioned medium 

(ACM) obtained from mono-cultures of WT or Mecp2 KO astrocytes. On the other 

hand, we exploited a co-culture system between neurons and astrocytes, in which the 

latter are cultured on transwell inserts, which prevent the direct contact with neurons 

while allowing the exchange of secreted cues. By immunofluorescence staining of pre- 

and post-synaptic proteins, we found that the synaptic phenotype is severely 

compromised in both the in vitro systems. This evidence suggests that Mecp2 KO 

astrocytes are influencing synaptogenesis and synaptic maintenance by releasing 

synaptotoxic molecules or by failing to secrete sufficient synaptogenic factors. Most 

likely, a synergic cooperation between these two aspects might contribute to the 

observed defects and, in this work, we describe the involvement of two different 

astrocyte-secreted molecules and their effects on synapses. 

 

5.1 Mecp2 KO astrocytes affect synaptogenesis by Interleukin-6 
dependent mechanisms. 
After the first evidence of the negative impact of Mecp2 deficient astrocytes on 

neuronal phenotypes, many researches focused on the investigation of astrocyte 

secretome to identify detrimental targetable factors and develop new therapeutic 

strategies (150,153,163). However, despite many putative molecules have been 

identified, presented studies only included the investigation of proteins and metabolites 
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released from astrocytes cultured alone. A key strength of our work is the investigation 

of astrocyte-neuron crosstalk with a focus on the molecules secreted by astrocytes in 

presence of neurons. Undeniably, neurons deeply influence astrocyte morphology, 

gene expression and functioning (109,138,139) and the transwell-based system 

enabled us to investigate this aspect in a more physiological and comprehensive 

manner. To investigate the nature of molecules that could influence synaptic function, 

we performed a bulk RNA-sequencing to compare gene expression in WT neurons 

cultured alone or in presence of either WT or Mecp2 KO astrocytes seeded on 

transwells. Our aim was to unveil downstream deregulated pathways affecting 

neuronal health and infer the upstream molecules involved. The choice of this indirect 

approach, instead of a more direct proteomic analyses in the culture medium, was 

essentially due to the challenges related to the presence of serum in the co-culture 

medium: high levels of albumin hinder the detection of low-abundant proteins and favor 

the formation of complexes with other factors, affecting their identification. The 

reliability of the selected transcriptomic methodology has been demonstrated by the 

fact that Gene Ontology (GO) analysis highlights a downregulations of the genes 

related to synaptic assembly and transmission in neurons cultured with Mecp2 KO 

astrocytes, confirming the strong alteration of synaptic phenotype showed by 

immunofluorescence staining in the same experimental condition. Moreover, in line 

with literature, the co-culture condition, regardless of Mecp2 presence in astrocytes, 

promotes the expression of several genes involved in neuronal maturation, confirming 

the ability of astrocyte to promote neuronal growth (164,185) . Notably, our findings 

also revealed that molecules secreted by KO astrocytes induce an abnormal 

inflammatory response in neurons; to this end it is well known that inflammation affects 

synaptic organization and function in the developing brain (186,187). Indeed, mental 

disorders are frequently characterized by neuroinflammatory components and, in the 

context of RTT, extensive data describe a chronic, sub-clinical inflammation in patients 

(96,188–190). Importantly, MeCP2 plays a role in regulating the expression of genes 

related to inflammation across various cell types, as microglia and macrophages, 

resulting in an aberrant NF-κB pathway activation and alteration in cytokines and 

chemokines production (94,191,192). Therefore, we quantified the amount of a specific 

set of cytokines in co-culture medium exploiting Luminex technology, unveiling a 

significant increase of IL-6 concentration when neurons are co-cultured with Mecp2 

KO astrocytes. Of note, while we found a significantly higher IL-6 expression in Mecp2 
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KO astrocytes cultured on transwell, its level remains very low in co-cultured neurons, 

indicating astrocytes as primary source of the cytokine.  

The relevance of IL-6 and its pathway for mental diseases is extensively described in 

literature. This pleiotropic cytokine is involved in the regulation of neuronal 

development and survival. Moreover it regulates synaptic formation and functioning 

(193–195). Interestingly, according to its concentration and brain region, IL-6 can exert 

completely opposing activities, either synaptogenic or synaptotoxic. For instance, the 

elevation of IL-6 level is reported to promote glutamatergic synaptogenesis, while 

significantly decreasing the number of inhibitory synapses in hippocampus, thus 

altering the excitatory/inhibitory balance (196–198). In general, IL-6 overexpression in 

the mouse brain often correlates with neurological abnormalities observed in a plethora 

of brain disorders, including Alzheimer disease (AD), Parkinson disease (PD), multiple 

sclerosis (MS), schizophrenia and autism (199–203). Additionally, it is worth to mention 

that IL-6 increased expression has already been described in the brain, saliva, and 

plasma of patients suffering from RTT (191,204).  

We elucidated the impact of IL-6 overproduction by Mecp2 KO astrocytes on neuronal 

health, and particularly on synapses, by preventing its activity with the administration 

in the co-cultures of a neutralizing antibody able to bind the cytokine with picomolar 

affinity. As previously described, neurons co-cultured with Mecp2 KO astrocytes for 14 

days display significantly reduced dendritic length, in line with literature, and significant 

defects in pre- and post-synaptic protein density. Treatment with neutralizing antibody 

is sufficient to rescue neuronal morphology, pre-synaptic phenotype and significantly 

ameliorates the defect at post-synaptic compartment. However, the persistence of the 

post-synaptic defect suggest that other molecules beside IL-6 could elicit a 

synaptotoxic activity or the lack of beneficial cues is still impacting on synapses. For 

instance, analyzing the expression of a set of genes coding for proteins involved in 

inflammatory response in astrocytes on transwells, we found that Mecp2 KO astrocytes 

show a strong increase also in the level of other cytokines as IL-1β and Cxcl12, that 

may exacerbate the synaptic defect. The treatment with neutralizing antibody also 

underlined the importance of IL-6 pathway in physiological conditions, since blocking 

the activity of the cytokine in neurons cultured with WT astrocytes is detrimental for 

pre-synaptic compartment, demonstrating that the cytokine is required for 

synaptogenesis and synaptic maintenance and that a fine tuning of its concentration is 

necessary to maintain neuronal homeostasis. Further confirming the synaptotoxic 
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action of IL-6, a chronic administration of the cytokine on WT cortical neurons 

negatively affects synaptic phenotype, clearly demonstrating the detrimental effects of 

IL-6 on synapses and highlighting this cytokine as a potential therapeutic target for 

RTT. Notably, IL-6 and its pathway have already been proposed for the development 

of novel therapies. As an example, modulation of IL-6 signaling in brain of BTBR mice, 

used as a reliable model for autism-relevant features, is sufficient to ameliorate animal 

social behaviors (205). Espinal and colleagues found that treatment of neurons with 

ACM deriving from PD astrocytes cause neurodegeneration, that is effectively 

prevented treating astrocytes with a FDA-approved neutralizing antibody for IL-6, 

Tocilizumab (200). For this reason, in the next future, we aim to test the in vivo efficacy 

of a neutralizing antibody in RTT mice in ameliorating molecular and behavioral 

phenotypes. Importantly, the therapy should aim at attenuating IL-6 activity without 

completely abolishing it, considering its aforementioned physiological roles. A 

possibility to maintain IL-6 beneficial effects after treatment stems from the fact that 

the cytokine acts through two different signaling pathways. The “classical” one involves 

the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (mIL-6R) and 

glycoprotein 130 (gp130) signal-transducing subunit. This signaling seems to mainly 

mediate the anti-inflammatory activities of IL-6. However, while gp130 is expressed on 

all cell types, mIL-6R is only present on few cells in the body (hepatocytes and some 

leukocytes), but a soluble form of IL-6R (sIL-6R) can bind IL-6 with a similar affinity as 

the mIL-6R. This complex can bind to gp130 in a process named “trans-signaling”. 

Many antibodies have been developed to block both the pathways, but in the past 

decade, trans-signaling has emerged as the predominant by which IL-6 promotes 

disease pathogenesis. Indeed, trans-signaling mediates the pro-inflammatory activity 

of the cytokine (206,207). Selective inhibitors of IL-6 trans-signaling have shown 

therapeutic potential in various preclinical models of inflammatory-related diseases 

and we are considering to exploit these drugs to achieve a safer and more translational 

treatment in our mouse model.  

A novel and interesting aspect of this works relies on the evidence that the secretome 

of Mecp2 KO astrocytes is influenced by the genotype of the neighboring neurons, 

underlining the importance of non-cell autonomous communication mechanisms in 

RTT. In particular, we first highlighted the increase of IL-6 mRNA level in KO astrocytes 

only when maintained in presence of WT neurons and the secretion of the cytokine 

declines when neurons are removed. Accordingly, IL-6 level is not increased in KO 
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astrocytes cultured alone. These molecular findings underscore the critical role of 

neurons in modulating astrocyte function and gliotransmitter release. Notably, we 

observed that the increased expression of IL-6 occurs specifically in KO astrocytes 

when co-cultured with WT neurons, but not in presence of KO neurons. The 

phenomenon underlying our evidence is called “cell interference hypothesis" and has 

been proposed for other diseases, such as for PCDH19 epilepsy, an X linked disorder 

in which males with a hemizygous mutation in protocadherin-19 gene show less 

disruptive symptoms than the females carrying the mosaic mutations (208). This theory 

states that in certain genetic disorders characterized by mosaicism, the presence of 

both mutant and normal cells within the same organism can lead to abnormal cellular 

interactions that exacerbate the disease phenotype. In our model the molecular 

mechanisms generating this selective regulation remain unknown but it might be due 

to neuronal-derived signals, such as neurotransmitters and neuromodulators, 

potentially associated with neuronal activity.  

One of the mostly relevant aspects of astrocyte-neuron crosstalk that is not embraced 

in our work is the role of physical interactions between these two cell types, particularly 

for the formation and regulation of the tripartite synapse structure (209). Actually, our 

preliminary data show that, even if secreted factors released by Mecp2 KO astrocytes 

are sufficient to reduce pre- and post-synaptic puncta density, the physical contact of 

neurons with Mecp2 deficient astrocytes also significantly impacts on the area of pre-

synaptic protein clusters, worsening the synaptic defect. Indeed, further studies on in 

contact co-culture systems could unveil other molecules expressed by RTT astrocytes 

contributing to the impairment of synapses. As an hypothesis, basing on literature, the 

presence of more pronounced synaptic defects may be determined by the involvement 

of cell adhesion molecules (210,211). Despite the described limitation, we were able 

to observe the deregulation of IL-6 also in more comprehensive and physiological RTT 

models. For this purpose, we characterized IL-6 pathway in the Mecp2+/- (HET) 

females, since they better represent the condition of RTT patients. In fact, since they 

are heterozygous for the mutated allele, they show different grades of mosaicism due 

to skewed X chromosome inactivation, resulting in a huge variability of symptoms 

manifestation. The coexistence of cells expressing a WT copy of Mecp2 (Mecp2+) and 

Mecp2 deficient (Mecp2-) cells in HET brains is particularly relevant for this study. 

Indeed, as before outlined, the fact that astrocyte secretome is influenced by the 

genotype of neighboring cells suggests that the brain of a full Mecp2 KO mouse could 
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differ significantly from the one of a HET female mouse. Interestingly, we reported a 

significant increase of IL-6 gene expression in astrocytes sorted with MACS technology 

from asymptomatic P7 HET mice, corroborating the presence of the defect also in 

astrocytes developed in the context of a mosaic brain and without the presence of 

serum, a condition that could impact astrocytes physiology. Interestingly, we also 

reported an inverse correlation between Mecp2 and IL-6 expression, further reinforcing 

the link between Mecp2 deficiency and induction of inflammatory phenotypes. A strong 

tendency to the upregulation of IL-6 is also observed in the cortex of symptomatic P100 

and P200 HET female mice, demonstrating that the inflammatory trigger persists 

during disease progression. However, our data indicate that the Stat3 phosphorylation, 

the major target of the binding of IL-6 to its receptor, does not change between WT and 

HET cortices. This result might depend on the selective deregulation of IL-6 occurring 

in astrocytes, since the analysis in the whole tissues could dilute the defects. For this 

reason, we aim to directly analyze the protein levels of the cytokine in astrocytes from 

WT and HET mice cortices at P100. Moreover, it could be interesting to improve our 

knowledge on the mechanism underlying IL-6 overexpression by separating Mecp2+ 

and Mecp2- astrocytes populations in HET brains and investigating IL-6 pathway in 

these two experimental groups.  

To conclude, this part of our study unveiled the synaptotoxic effect of excessive release 

of IL-6 by Mecp2 KO astrocytes, providing a promising target for the development of 

novel therapies for RTT and encouraging studies on this pathway in other 

neurodevelopmental disorders. Nevertheless, certainly, IL-6 is not the only molecule 

causing synaptic alterations in RTT. Indeed, as shown in preliminary data, even 24h 

KO ACM treatment is sufficient to induce a synaptic defect. Our findings revealed the 

synaptotoxic nature of certain factors, which may include cytokines, enzymes, or 

hormones. Moreover, notably, we propose the existence of a synergistic interaction 

between the increased release of toxic molecules and the diminished secretion of 

synaptogenic factors.  

 

5.2 Deregulation of cholesterol pathway in Mecp2 KO astrocytes 
contributes to synaptic defects. 
After unveiling the synaptotoxic effect of IL-6 secretion on neurons, literature evidence 

led us to focus on the investigation of one of the first studied synaptogenic molecules, 
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such as cholesterol. All cholesterol in the CNS is produced locally, since blood–brain 

barrier (BBB) prevents the entry of systemic cholesterol-rich lipoproteins. In early 

development, before BBB closure, neurons are able to produce cholesterol to support 

the rapid growth and formation of synapses. In adult brain, whereas oligodendrocytes 

rely on their own cholesterol synthesis to form myelin, neurons, which need large 

amounts of this lipid to maintain their morphology and intense activity, mainly import 

cholesterol from astrocytes (212). Cholesterol released by astrocytes is known to exert 

a crucial role in neuronal maturation and synaptogenesis, as suggested by dendritic 

spines and synapses degeneration resulting from its depletion (213–215). This lipid 

increases the formation of synaptic vesicles at the pre-synaptic terminal and stabilizes 

the level of NMDARs receptors at post-synaptic side, enhancing neuronal activity 

(133,216–218). Several researches report an alteration of brain cholesterol 

metabolism in several neurological disorders, as Fragile X syndrome (FXS), AD, PD 

and Huntington’s diseases (HD) (214,219–221). For what concerns RTT, a reduction 

in the rate of cholesterol biosynthesis has been reported in the brain of Mecp2 KO 

mice. Moreover, researchers found a substantial downregulation in the expression of 

key enzymes for its metabolism and in the concentration of cholesterol and its 

precursors (100,173–175). Furthermore, more recently, a reduction in cholesterol in 

the CSF of RTT patients was detected (176). In this context, the novelty of our study 

relies on the investigation of cholesterol pathway with a focus on astrocytes, that 

constitute the unique source in the adult CNS of this lipid for neurons. We started our 

investigation from the simplest in vitro condition, represented by WT and Mecp2 KO 

astrocytes mono-cultures, looking at the expression level of a panel of genes coding 

for proteins involved in cholesterol metabolism and transport, in order to gain insight 

into different sides of this complex mechanism. We found a consistent downregulation 

of most of these genes in Mecp2 KO astrocytes, suggesting both an altered cholesterol 

production and delivery. Conversely, the level of expression of ApoE, the principal 

carrier of cholesterol to neurons is not affected. To gain insight on the putative 

involvement of cholesterol metabolism in a more comprehensive RTT model, we 

evaluated the expression of the same genes in astrocytes isolated by MACS sorting 

from P7 mice cortices, highlighting a decrease in the level of Hmgcr and Nsdhl in 

Mecp2 KO cells. Actually, some of the genes that are downregulated in Mecp2 KO 

astrocytes in mono-cultures are not differentially expressed in sorted astrocytes, 

confirming how gene expression in astrocytes is deeply influenced by the interactions 
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with other cells. However, importantly, Hmgcr and Nsdhl are really crucial genes for 

brain homeostasis maintenance, as demonstrated by the devastating disorders 

originating from their dysfunction (222,223). Observed downregulation of genes related 

to cholesterol metabolism suggest an impairment in cholesterol production. For this 

reason, we are currently quantifying the amount of cholesterol released by WT and 

Mecp2 KO astrocytes in culture medium, in order to assess the effective functioning of 

the pathway and the amount of cholesterol that could be able to reach neurons after 

secretion.	To achieve a sufficiently sensitive measurement, we started quantifying the 

cholesterol released in ACM with the Amplex Red Cholesterol Assay Kit, but we were 

not able to unveil differences between WT and KO ACM. We hypothesized that this 

result could be influenced from the indirect nature of the biochemical assay, that 

operates through a series of enzymatic reactions ultimately generating a fluorescent 

signal proportional to the cholesterol concentration. Therefore, we attempted to 

quantify cholesterol using a direct assay, such as thin-layer chromatography. However, 

this approach lacked the sensitivity required to detect subtle differences between 

samples. So, currently, we are exploiting gas-chromatography, that is sufficiently 

sensitive to accurately measure cholesterol amount in ACM.  

While characterizing this important aspect, we tested whether cholesterol 

supplementation could ameliorate the occurrence of synaptic defects induced in 

neurons by KO ACM. Encouragingly, cholesterol addition was sufficient to rescue the 

number of both pre- and post-synaptic puncta. Of relevance for RTT, we observed a 

beneficial effect of cholesterol addition also on cortical neurons derived from HET 

embryos, that are known to show severe synaptic alterations, as the ones described 

in Mecp2 KO neurons (224). These experiments represent an additional indication of 

the involvement of cholesterol metabolism alterations in synaptic phenotypes observed 

in RTT and open up the possibility to consider cholesterol administration as a treatment 

strategy. Notably, intraperitoneal injections of cholesterol loaded nanoparticles has 

been already proven to be efficacious in the treatment of motor and cognitive defects 

in an animal model of Huntington’s disease (214). However, high cholesterol levels 

have been detected in the serum of RTT patients (173), indicating a different regulation 

of peripheral and brain cholesterol. Therefore, a specific targeting of brain, that could 

be achieved, for instance, by intranasal administration, would be useful to avoid 

systemic complications (225). Alternatively to cholesterol supplementation, a rescue of 

defective metabolism could be obtain by modulating the complex pathway related to 



 86 

this lipid. For this purpose, we decided to treat RTT astrocytes mono-cultures with 

Trofinetide, the only FDA-approved drug for RTT, that has been reported to affect 

metabolism among many other cellular processes (179,180). We found relevant to test 

if this drug could affect the expression of cholesterol-related genes. Intriguingly, the 

significant reduction of the expression of Abca1, Mvk and Abcg1 genes, involved in 

cholesterol synthesis and transport, reported in Mecp2 KO astrocytes is no more 

present after treatment. This data suggest that part of the beneficial effect elicited by 

Trofinetide on RTT patients may be due to the modulation of cholesterol metabolism. 

Another possible treatment strategy relies in correction of the expression of genes 

associated to cholesterol synthesis and release by gene therapy. To this regard, gene 

therapy for Srebp2 (coding for the transcription factor regulating the expression of most 

of cholesterol genes) demonstrated to be effective in animal models of HD whereas 

expression of Cyp46a1 gene (coding from an enzyme serving as primary strategy to 

eliminate cholesterol in the brain) improve symptoms of HD and Niemann-Pick disease 

(226–228). Very recently, the overexpression of Cyp46a1 in neurons has been also 

tested for the treatment of RTT, with encouraging results obtained in both Mecp2 KO 

male and HET female animals (229). In this work, we identified NSDHL as an 

interesting target gene in RTT. This gene codes for NAD(P)-dependent steroid 

dehydrogenase-like protein, an essential enzyme for cholesterol biosynthesis pathway. 

NSDHL mutations causes CHILD (Congenital Hemidysplasia with Ichthyosiform nevus 

and Limb Defects) syndrome, a X-linked dominant disorder of lipid metabolism with 

disturbed cholesterol biosynthesis and typically lethal in males (230). We observed that 

transcriptional expression of Nsdhl is consistently and significantly downregulated in 

all our RNA-sequencing datasets, spanning from in vitro cultures of Mecp2 KO neurons 

derived from neuronal precursor cells and Mecp2 KO primary cortical neurons, to ex 

vivo cortical and hippocampal tissues of symptomatic Mecp2 KO mice. Moreover, 

Nsdhl downregulation is confirmed in RNA-sequencing data from both humans and 

animal models (101,231–233). Interestingly, NSDHL expression shows an opposite 

trend in MECP2 duplication syndrome, indicating a direct correlation between MECP2 

expression and NSDHL transcription (63,234,235). In support of this association, the 

intravenous delivery of Mecp2 transgene in a Mecp2 KO mouse rescued the 

expression levels of Nsdhl and other crucial enzymes of the same pathway (231) and, 

very recently, CUT and Tag analysis revealed that the expression of NSDHL is 

controlled by the association of MeCP2 with Polymerase II (236). For what regards 
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Nsdhl protein expression, we found it significantly reduced in all brain areas of both 

asymptomatic and symptomatic Mecp2 KO mice, demonstrating that the defect is 

already present when symptoms are not overt and is maintained during disease 

progression. Despite Nsdhl protein level is significantly decreased also in the cortex of 

symptomatic HET females, the reduction is less pronounced, with no differential 

expression in cerebellum and hippocampus, probably due to mosaicism. Conversely, 

there is a consistent downregulation of the protein in all the brain areas of Y120D KI 

mice, which are phenotypically very similar to KO mice, further demonstrating that 

impaired functioning of Mecp2 strongly affects Nsdhl expression. Therefore, this study 

opens up the possibility of testing a gene therapy strategy directed to the re-expression 

of Nsdhl in Mecp2 KO mice, to better understand the involvement of this protein in 

disease pathogenesis.  

 

5.3 Conclusion 
 
This study reveals that the overproduction of IL-6 and the impairment of cholesterol 

metabolism in Mecp2 KO astrocytes have detrimental effects on synaptic health. 

Indeed, these findings support the hypothesis that insufficient release of synaptogenic 

factors by astrocytes, combined with the release of synaptotoxic cues, contributes to 

pre- and post-synaptic impairments characterizing the pathology. It is worth to notice 

that the two pathways we found deregulated in mutant astrocytes are very different, 

since one is associated to inflammatory processes and the other to lipid metabolism. 

These results underscore the complexity of the pathogenesis of RTT, that probably 

derives from the multifunctional nature of MeCP2 and its critical role in regulating 

thousands of genes. Indeed, mutations in MECP2 gene lead to the deregulation of 

several cellular mechanisms posing a challenge in identifying key causative pathways 

in RTT. Our data unveiled two potential molecular targets for testing novel treatment 

strategies, demonstrating that a deep understanding of the dysfunctional processes 

involved in the disease pathogenesis is crucial. Finally, from a translational 

perspective, we propose that testing a combination of drugs targeting different 

pathways could be beneficial for the improvement of the quality of life for RTT patients. 
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Dissemination of the results  
 

Obtained results have been extensively shared with the scientific community. The work 

carried out during this research has culminated in the publication of the following a 

peer-reviewed paper in iScience journal (Cell Press) (237): 

• Mecp2 knock-out astrocytes affect synaptogenesis by interleukin 6 
dependent mechanisms.  Elena Albizzati, Martina Breccia, Elena Florio, 

Cecilia Cabasino, Francesca Maddalena Postogna, Riccardo Grassi, Enrica 

Boda, Cristina Battaglia, Clara De Palma, Concetta De Quattro, Davide Pozzi, 

Nicoletta Landsberger, Angelisa Frasca – iScience - 2024 Mar;27(3):109296. 

https://doi.org/10.1016/j.isci.2024.109296 

In addition to journal publication, the results of this research have been presented at 

various national and international conferences. These presentations provided 

opportunities to engage with peers, gather feedback, and exchange ideas that further 

shaped the research.  

Below, a summary of my research content both in English and Italian for the general 

public: 

• Rett syndrome (RTT) is a rare and severe neurological disorder that primarily 

affects girls and is a leading cause of intellectual disability. Over 95% of RTT 

cases are caused by mutations in the MECP2 gene. Affected girls grow fine up 

to 6 to 18 months of life when they start to lose all the acquired motor and 

cognitive skills. This disorder mainly impacts brain, causing dysfunctions in 

neurons and the cells that support them, called astrocytes. Normally, astrocytes 

help neurons grow and communicate, but in RTT they become dysfunctional, 

failing to properly sustain neurons. This study investigated how astrocytes 

carrying Mecp2 mutations affect neurons. One key discovery was that these 

Mecp2  mutant astrocytes produce too much of a molecule called Interleukin-6 

(IL-6), causing inflammation and damage to synapses (the connections 

between neurons). Blocking IL-6 improved some synaptic issues, but was not 

able to fully eliminate the pathological condition of neurons. The study also 

revealed that astrocytes in RTT produce less cholesterol, which is critical for 

https://doi.org/10.1016/j.isci.2024.109296
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synapse formation. Interestingly, adding cholesterol helped to correct synaptic 

deficits. This research highlights IL-6 overproduction and cholesterol 

dysregulation as possible therapeutic targets for the development of new 

therapies for RTT. 

 

• La sindrome di Rett (RTT) è un raro e grave disturbo neurologico che colpisce 

principalmente le bambine ed è una delle principali cause di disabilità intellettiva 

al mondo. Oltre il 95% dei casi di RTT è causato da mutazioni nel gene MECP2. 

Le bambine affette da questa patologia crescono normalmente fino ai 6-18 mesi 

di vita, quando iniziano a perdere tutte le abilità motorie e cognitive acquisite. 

Questo disturbo colpisce principalmente il cervello, causando disfunzioni nei 

neuroni e nelle cellule che li supportano, chiamate astrociti. Normalmente, gli 

astrociti aiutano i neuroni a crescere e comunicare, ma nella RTT diventano 

disfunzionali, non riuscendo a sostenere adeguatamente i neuroni. Questo 

studio ha indagato come gli astrociti con mutazioni nel gene Mecp2 influenzino 

i neuroni. Una scoperta chiave è stata che questi astrociti producono una 

quantità eccessiva di una molecola chiamata Interleuchina-6 (IL-6), causando 

infiammazione e danni alle sinapsi (le connessioni tra i neuroni). Bloccando IL-

6 si è osservato un miglioramento di alcuni problemi sinaptici, ma non è stato 

possibile eliminare completamente la condizione patologica dei neuroni. Lo 

studio ha inoltre rivelato che gli astrociti nella RTT producono meno colesterolo, 

che è fondamentale per la formazione delle sinapsi. È interessante notare che 

l'aggiunta di colesterolo ha contribuito a correggere i deficit sinaptici. Nel 

complesso, questa ricerca mette in evidenza la sovrapproduzione di IL-6 e la 

disfunzione del metabolismo del colesterolo come possibili bersagli terapeutici 

per lo sviluppo di nuove terapie per la RTT. 

 

 


