
UNIVERSITÀ DEGLI STUDI DI MILANO

CORSO DI DOTTORATO IN INFORMATICA
XXXVII◦ CICLO

DIPARTIMENTO DI INFORMATICA

A Framework for Network Evolution
INF/01

Dottorando:
Alessia GALDEMAN

Relatore:
Prof.ssa Sabrina GAITO
Co-relatore:
Prof. Matteo ZIGNANI
Coordinatore del dottorato:
Prof. Roberto SASSI

A. A. 2023/2024

Contents

1 Introduction . 1
1.1 Unified modeling framework and terminology 11
1.2 Stand-alone evolution rules . 12
1.3 General graph evolution rules . 14
1.4 User Migration . 16
1.5 Conclusion . 17

Part I Background and Related works

2 Temporal and evolving networks . 23
2.1 Triadic closure . 24
2.2 Homophily . 26
2.3 Network evolution through community . 27

3 Framework for temporal networks’ modeling 29
3.1 List of timestamped interactions . 29
3.2 Interval model . 30
3.3 Projections . 30

4 Graph evolution rules . 35
4.1 Introduction . 35
4.2 Preliminaries . 35

4.2.1 Association rules . 35
4.2.2 Subgraph counting approaches . 37
4.2.3 Common concepts and terminology 39

4.3 GERM . 43

Contents ii

4.3.1 Graph representation . 43
4.3.2 Support and confidence measure . 44
4.3.3 Rules extraction . 45

4.4 LFR . 45
4.4.1 Graph representation . 46
4.4.2 Characteristics of LF-Rules . 47
4.4.3 Pipeline of the method . 49
4.4.4 gSpan adapted for LF-rules . 49
4.4.5 Ego-based Support and confidence 50
4.4.6 Finding meaningful rules . 51

4.5 Evomine . 52
4.5.1 Graph representation . 53
4.5.2 Evolutionary constraints . 53
4.5.3 The method and support measures 54

4.6 TP Miner . 56
4.6.1 Algortithm ideas . 56
4.6.2 Graph representation . 56
4.6.3 Frequent time patterns . 56
4.6.4 Representative patterns . 57
4.6.5 From patterns to rules . 58
4.6.6 Graph evolutions DAGs . 58

4.7 DGR Miner . 59
4.7.1 Dynamic graphs representation . 59
4.7.2 How to be a DGR rule . 60
4.7.3 Union graph representation . 62
4.7.4 DGR algorithm . 63
4.7.5 Support and confidence . 64

5 Null models classification . 65
5.1 Microcanonical Randomized Reference Models - MRRMs 65
5.2 Representation of temporal networks . 66
5.3 MRRMs taxonomy . 67

5.3.1 Timeline representation: Timeline and link shuffling . . . 68
5.3.2 Snapshot representation: Sequence and snapshot shuffling 69

6 Case studies . 71
6.1 UC-social . 71
6.2 DBLP datasets: citations and co-authoriship 72
6.3 Enron email dataset . 73
6.4 Stack Overflow . 73

Contents iii

6.5 Bitcoin Alpha . 74
6.6 Sarafu dataset . 75
6.7 NFTs sales dataset . 76
6.8 Steemit . 78

6.8.1 Hive . 81
6.8.2 Datasets . 82

Part II Stand Alone Rules

7 Statistically significant rules . 87
7.1 Introduction . 87
7.2 Background and related works . 88

7.2.1 Graph Evolution Rules - GERs. 88
7.2.2 Microcanonical Randomized Reference Models - MRRMs 89

7.3 Methodology . 91
7.3.1 Timeline shuffled null model . 92
7.3.2 Significative GERs . 93
7.3.3 Mapping of temporal patterns across null model

realizations . 94
7.3.4 Case studies and graph modeling . 97

7.4 Findings . 97
7.4.1 GERM outcomes on real and randomized networks 97
7.4.2 Analysis of z-scores . 99
7.4.3 Frequency of GERs in real and randomized networks . . . 99
7.4.4 Analysis of timespans . 102
7.4.5 Discussion . 103

7.5 Conclusions . 105

8 Profiling Web3 . 107
8.1 Introduction . 107
8.2 Background and related works . 108

8.2.1 Blockchain online social networks . 108
8.2.2 Non-fungible tokens - NFTs . 109

8.3 Methodology . 109
8.3.1 Representation and modeling . 110
8.3.2 GER Profiles . 111

8.4 Findings . 112
8.4.1 Quantitative descriptions of results 113
8.4.2 GER Profiles . 114

Contents iv

8.5 Discussion . 115
8.6 Conclusions . 117

9 Temporal node evolutionary representation 121
9.1 Introduction . 121
9.2 Related work and background . 122
9.3 Methodology . 123

9.3.1 Ego-networks from temporal networks 123
9.3.2 Node Evolutionary Profile . 124
9.3.3 Case study . 124

9.4 Results . 125
9.4.1 Preprocessing and filtering . 125
9.4.2 NEPs . 126
9.4.3 NEPs clustering . 127

9.5 Conclusions . 129

10 Community evolutionary profile . 131
10.1 Introduction . 131
10.2 Background . 132

10.2.1 Community evolution . 132
10.2.2 Vector-based subgraph representation 133

10.3 Methodology . 133
10.3.1 GER profiles . 134
10.3.2 Community GER profiles . 134
10.3.3 Support choice method . 135
10.3.4 Case studies . 136

10.4 Findings . 137
10.4.1 Global evolution . 137
10.4.2 Evolution patterns in communities 142
10.4.3 Evolution of neighboring communities 156

10.5 Conclusions . 162

Part III Graph Evolution rules

11 TULIP . 169
11.1 Introduction . 169
11.2 Methodology . 170

11.2.1 Enumeration of static patterns . 170
11.2.2 Temporal pipeline . 171

Contents v

11.2.3 Canonical classification . 173
11.2.4 Counting and profile . 175
11.2.5 Case Studies . 176

11.3 Results and Discussion . 176
11.3.1 Pre profile . 177
11.3.2 Evolutionary profile . 178
11.3.3 Sensitivity to parameters . 183

11.4 Conclusion . 185

Part IV User Migration

12 Influence of hubs . 193
12.1 Dataset . 194
12.2 Methodology . 194

12.2.1 Graph modeling . 194
12.2.2 Hub definition . 195
12.2.3 Hubs activity . 196
12.2.4 Hubs’ influence . 197

12.3 Results . 198
12.3.1 Hubs activity and migration choice 198
12.3.2 Influence of hubs . 200

12.4 Conclusions . 203

13 Influence of groups discussion . 205
13.1 Research questions . 206
13.2 Methodology . 206

13.2.1 Modeling BOSN and user migration 206
13.2.2 Community structure and user migration 208
13.2.3 Community discussion and user migration 210

13.3 Dataset . 211
13.4 Results . 212

13.4.1 The interplay of community structure and migration . . . 213
13.4.2 The interplay of community discussion and migration . . 217

13.5 Conclusions . 222

14 Migration prediction . 223
14.1 Related work . 224
14.2 Research questions . 226
14.3 Methodology . 226

Contents vi

14.4 Results . 231
14.5 Conclusion . 235

Part V Conclusions and future works

15 Conclusions . 239

16 Future Works . 241

Appendices . 243

References . 245

Chapter 1

Introduction

With the advent of the digital transformation that has led to any organi-
zation being flooded with data, the research field of data science is in high
demand. According to the International Data Corporation (IDC), the global
digital transformation market projected to reach 3.4 trillion by 2026 with a
compound annual growth rate (CAGR) of 16.3% [1], and as a consequence
the research field of data science is in high demand. This exponential growth
reflects the urgent need for organizations to leverage data-driven insights to
remain competitive in an increasingly digital landscape. In fact, according
to Gartner, 91% of companies are currently engaged in some form of digital
initiative and 87% of senior business leaders say digitalization is a priority,
highlighting the widespread recognition of the importance of integrating tech-
nology into business operations [2, 3].
Network science In the life-cycle of a data science project, the core is rep-
resented by the knowledge discovery step where data scientists leverage any
kind of theories, techniques, and algorithms from many different fields to ex-
tract knowledge from data. Among the many approaches, from statistics to
data mining and machine learning, network science or complex network anal-
ysis has gained attention in the last years both from the theoretical and the
application perspective. Network science is a multidisciplinary field examining
complex structures and dynamic interactions within complex systems. The
main focus of network science is to investigate the relationships between in-
terconnected entities, typically represented as nodes (or vertices), connected
by links (or edges) that represent interactions or dependencies. According to
Barabasi [4], one of the pioneers of the field, network science is an attempt
to understand networks emerging in nature, technology, and society using a
unified set of tools and principles. The reason lies behind the great potential

2

of modeling the vast amount of data we can obtain today with a graph-based
data structure, that can capture patterns and structures unrevealed by other
techniques. Modeling through networks — graphs — has been essential for
improving our understanding of the fundamental principles governing inter-
connected systems. Network Science has shown its effectiveness across various
fields, with relevant insights and achievements.
Network science’s application The application of network science to social
science is one of the earliest and most influential uses of network analysis, dat-
ing back to the pioneering work of sociologist Moreno [5, 6], who introduced in
1932 the concept of "sociograms" to map human interpersonal relationships.
Then, social network analysis has flourished, producing a wealth of insightful
studies across various domains of human interaction. Researchers have em-
ployed network science techniques to analyze polarization in climate change
debates [7] and investigate the drivers of social influence in user migration
from Twitter to Mastodon [8]. Other studies have delved into the digital be-
havior of Instagram users [9] and leveraged the network science concept of
homophily to predict friendships [10]. The versatility of network analysis is
further demonstrated by work characterizing gamers on Steam through their
interactions [11]. Additionally, researchers have proposed novel centrality mea-
sures to rank lurkers—users who primarily consume content without actively
participating—on platforms like Twitter and FriendFeed [12]. Other example
of successful application of network science methods is finance, where network
science has been applied to analyze financial stability, particularly in under-
standing interbank relationships and systemic risk. Studies have revealed how
contagion channels can lead to financial crises, thereby emphasizing the in-
terlinked nature of banks and markets [13]. Moreover, network science has
proven to be a powerful tool in the fight against financial fraud. By repre-
senting transactions, user interactions, and product reviews as complex net-
works, researchers have developed sophisticated methods to detect suspicious
patterns and identify fraudulent activities. These approaches leverage graph
analysis techniques, such as identifying dense subgraphs and bicliques, com-
bined with machine learning algorithms to uncover coordinated fraudulent
behavior that may not be apparent when examining individual transactions or
accounts in isolation [14, 15, 16]. In biology and medicine, network science has
been instrumental in mapping protein-protein interactions, which are crucial
for understanding cellular processes and disease mechanisms. This approach
helps identify potential drug targets or combinations and understand disease
pathways [17, 18]. Network models have also been used to study ecological
networks, analyzing interactions among species and their environments, which
helps in understanding biodiversity and the impacts of environmental changes

1 Introduction 3

on ecosystems.

Temporal networks Up to the very last years, research was mainly focused
on static networks - where connections between entities remain unchanged over
time - as they are much more manageable than dynamic networks in terms
of complexity, scalability, and data availability. However, all large systems,
whether financial, biological, social, or technological, are not only complex
but also time-varying. Researchers began to focus their attention on a more
complex type of network, that includes temporal information to catch when
connections form, persist or dissolve, thus introducing the concept of temporal
networks. Temporal networks represent the optimal modeling in domains like
urban mobility, where timing data is essential for understanding traffic pat-
terns and commuter behavior [19]. Brain networks rely heavily on temporal
information to map neural impulses and their propagation [20]. Social networks
leverage time data to model the spread of information and trends [21, 22, 23].
In financial studies, temporal context is vital for correlating transactions with
external events such as exchange rate fluctuations or economic crises [24]. Sim-
ilarly, disease-spreading networks depend significantly on infection timelines to
track and predict outbreak patterns [25].
Network Evolution In this context, the literature is more focused on ap-
proaches that track the change of properties over time, describing how a net-
work behaves snapshot by snapshot from a macroscopic point of view. This al-
lows to highlight properties such as densification and shrinking diameters [26].
Observing different real graphs with regularly spaced snapshots, Leskovec et.
al. [26] notice that most of the observed graphs densify over time, with the
diameter (average distance between nodes) decreasing. While existing research
on temporal networks has largely focused on describing how networks change
over time, there has been less emphasis on understanding the underlying mech-
anisms that drive these evolutionary patterns. This gap in our understanding
is critical, as unraveling the mechanisms behind network evolution is crucial
for comprehending the current structure of temporal networks and predict-
ing how they will grow. The literature on network mechanisms suggests that
a comprehensive understanding of network evolution requires considering the
mesoscopic level, rather than solely focusing on macroscopic properties. As
Granovetter [27] noted, "A fundamental weakness of current sociological the-
ory is that it does not relate micro-level interactions to macro-level patterns in
any convincing way. Large-scale statistical, as well as qualitative, studies offer
a good deal of insight into such macro phenomena as social mobility, com-
munity organization, and political structure. At the micro level, a large and
increasing body of data and theory offers useful and illuminating ideas about

4

what transpires within the confines of the small group. But how interaction in
small groups aggregates to form large-scale patterns eludes us in most cases."
He argued that the most effective micro-macro bridge is offered by the analysis
of processes within interpersonal networks. It is through these networks that
small-scale interactions are translated into large-scale patterns, which then, in
turn, feed back into small group dynamics [27]. Thus, a more efficient approach
to understanding the evolution of a network lies in the mesoscopic layer, where
the interplay between individual nodes and the larger network structure can
be explored.

By extracting the mechanisms, named rules, of evolution from a temporal
graph, we can reveal the general mesoscopic mechanisms governing network
dynamics. This means understanding how microscopical and mesoscopic net-
work structures evolve over time. The main goal of this thesis is to develop a
comprehensive and versatile framework for modeling, mining, analyzing, and
represent the evolutionary rules governing network dynamics. Our aim is to
provide a robust methodology that can generate an evolutionary profile for a
wide range of network types, offering insights into their growth patterns and
structural changes over time. While some research has been conducted on spe-
cific network evolution mechanisms, there remains a need for a more general
approach, without any a-priori assumption. For instance, triadic closure is a
well-known evolutionary process assuming that individuals sharing a common
friend are more likely to become friends themselves in the future [28]. However,
our proposed framework seeks to go beyond individual mechanisms, integrat-
ing multiple factors and processes to create a more complete picture of network
evolution.

Rules of evolution The evolutions in which each starting structure can
change are called graph evolution rules (GER). Graph evolution rules mining is
a frequency-based pattern discovery method used to examine the dynamics of
networks as they evolve over time. GERs are designed to identify recurring lo-
cal changes throughout the network’s evolution [29]. Drawing inspiration from
the notion of association rules in the context of data mining, GERs consist of
two essential components: a precondition and a set of postconditions. These
rules indicate that a subgraph matching (being isomorphic to) the precondition
is likely to evolve into one of the configuration represented by the postcondi-
tions, with the corresponding probability. This approach yields results that
are not only quantifiable but also readily understandable and interpretable to
human observers. Figure 1.1 shows an example of the possible evolutions of an
open triangle (i.e. two nodes connected to the same third node –triangle– that
are not linked with each other –open). The evolution at the center represents

1 Introduction 5

the typical triadic closure process, where the non-connected nodes in the tri-
angle get a link. However, as mentioned before, the open triangle can evolve in
more complex structures, for instance, it can close with a reciprocal connection
like in the first evolution, or it can be connected with another external node at
the same time. Graph evolution rules can capture the complexity of network

3

pi

pj

pk

Figure 1.1: Evolutionary profile generated by the TULIP algorithm.
The profile shows a starting subgraph (on the left) and its three most frequent
evolutions, each associated with probabilities pi, pj, and pk respectively.

evolution by counting all the possible evolutions started from a configuration
(like the open triangle in the example) and building a probability distribution
over the evolutions. In this way, it is possible to have a general overview of
mesoscopic structure evolutions.

Despite its potential, the study of network evolution through its rule of evo-
lution is just at the beginning. This emerging field faces significant challenges
that have limited its progress so far. At the core of these difficulties lies the
complexity of identifying and analyzing Graph Evolution Rules (GERs). This
process essentially constitutes a subgraph mining problem, demanding pre-
cise enumeration and counting of occurrences within the network. The most
challenging aspect of this task is the isomorphism check. An isomorphism in
mathematics is a structure-preserving mapping that enables the reversal of
two structures of the same type. So, two graphs are considered isomorphic if
there exists a bijective function that maps the nodes of the first graph into

6

the nodes of the second one. This isomorphism check is crucial because to
accurately count occurrences of the same pattern within a network, we must
determine whether seemingly different subgraphs are structurally identical.
This is not a straightforward comparison, as two isomorphic graphs may have
entirely different representations in terms of node labeling or edge ordering,
yet still maintain the same underlying structure. The complexity of this check
becomes a significant bottleneck in the analysis process. Furthermore, to en-
sure the comparability of results across different studies and implementations,
a standardized canonical form for these subgraphs is necessary. This canonical
form serves as a common representation that is unique for each isomorphic
graph. By establishing such a form, we can compare results over different runs
of the algorithm without the need for additional isomorphism checks later in
the process. This standardization not only improves efficiency but also facili-
tates reproducibility and cross-study comparisons, which are essential for the
advancement of network evolution research.

Only a few works exist in the domain of Graph Evolution Rules (GER)
mining, with most state-of-the-art methods following a two-step process. Ini-
tially, rules are derived through a frequent subgraph mining (FSM) algorithm,
followed by filtering results using metrics such as support and confidence. Usu-
ally, the FSM algorithm is a modified version of gSpan [30], a leading method
renowned for its efficiency. This algorithm processes a collection of undirected
static graphs and outputs connected frequent subgraphs. The pioneering algo-
rithm in this field is GERM, proposed by Berlingerio et. al. [29]. It focuses
on undirected edge insertion events while considering relative temporal order.
Leung et. al. [31] introduced the concept of Link Formation Rules (LFR) for
directed networks, which was later adopted and extended by Ozaki et. al. [32]
to include undirected networks and rule relationships. Both GERM and LFR
utilize minimum image-based support [33] and gSpan for frequent subgraph
mining. Further advancements came with Vakulík’s DGR miner [34], which in-
corporated edge deletion and relabeling into its evolution rules. Finally, EvoM-
ine, developed by Scharwächter et. al. [35], represents a more comprehensive
approach, dealing with complex evolution patterns beyond simple edge in-
sertions and introducing a novel support measure. While the aforementioned
algorithms have laid the groundwork for GER mining, they predominantly fo-
cus on what we will refer to as stand-alone rules. These rules describe isolated
evolutionary processes by enumerating instances of one subgraph transforming
into another. Unlike more general graph evolution rules (depicted in Figure 1.1)
that show multiple possible evolutions, a stand-alone rule depicts a single evo-
lution from a pre-condition to a post-condition, with an associated frequency.
Figure 1.2 shows the example of a stand-alone rule, that corresponds to one

1 Introduction 7

of the possible evolutions captured by the rule of Figure 1.1. Drawing from
association rule terminology, the pre-condition (or body) represents the ini-
tial subgraph, while the post-condition (or head) represents the evolved state.
The rule’s semantic implication is that a subgraph matching the pre-condition
is likely to evolve into one matching the post-condition, with the probability
conditioned on the occurrence of the pre-condition.

Computer Science Dept. @ UniMI CONNETS Lab 7

Precondition Postconditiont0
t1Body Head

Antecedent Consequent

Evomine e LFR li chiama precondition e postcondition,
GERM e TPminer head e body
DGR antecedent e consequent

Figure 1.2: Stand alone rules example

While this approach offers valuable insights into specific evolutionary oc-
currences, it has some limitations. Firstly, these algorithms often lack a com-
prehensive analytical framework for extracting meaningful insights from the
results. This limitation makes it difficult to interpret and use the mined rules
effectively. Secondly, the absence of a standardized canonical form for rules
requires an additional isomorphism check to compare results across different
studies or implementations. This limitation is a problem for reproducibility
and cross-study analyses. Lastly, these methods typically do not incorporate
a tailored null model, which is crucial for identifying statistically significant
rules and distinguishing them from random occurrences.
Goals and contributions This thesis presents a comprehensive and versa-
tile framework for modeling, mining, analyzing, and representing the evolu-
tion rules that shape network dynamics. Our approach covers both stand-
alone rules and more general ones, offering an unprecedented, complete toolkit
to analyze network evolution. This framework, named GERANIO (GEneral
fRAmework for Network evolutIOn), is available online here. The main con-
tributions of this thesis, provided by GERANIO and depicted in Figure 1.3,
are the following:

• Framework for evolving networks: We propose a universal taxonomy
for modeling evolving networks, applicable across various domains. This
taxonomy addresses the diverse modeling approaches found in existing
stand-alone algorithms and extends to related topics (such as user mi-
gration);

https://github.com/alessiaatunimi/geranio/tree/main

8

Framework for
evolving networks
Universal taxonomy for

modeling evolving networks

Canonical coding
Categorization method for

isomorphic graph

Evolutionary profile
Probability distribution
over rule frequency to

extract insights from the
mining results

Null model
Ad-hoc null model for graph
evolution rules algorithms to

detect significant rules

STAND-ALONE RULES
(GERM, EVOMINE

ALGORITHMS)

GENERAL EVOLUTION
RULES

(TULIP ALGORITHM)
CAN BE APPLIED WITH

Figure 1.3: The main contributions of the geranio framework

• Canonical coding: To facilitate comparison of graph evolution across
different networks, we introduce an efficient categorization method for iso-
morphic subgraphs, ensuring universal applicability of results;

• Null model: We propose ad-hoc null models, designed specifically for
graph evolution rules algorithms, to extract significant rules by evaluat-
ing their statistical significance beyond mere frequency, thus allowing us to
distinguish meaningful patterns from random noise in the network’s evolu-
tion;

• Tulip algorithm: The novel TULIP (Temporal subgraphs for evolutionary
profiling) algorithm mines graph evolution rules from a broader perspective
than stand-alone approaches. It captures all possible subgraph evolutions
along with their probabilities, offering a comprehensive evolutionary foot-
print of a network;

• Evolutionary profile: To extract insights from the mining results, we pro-
pose the evolutionary profile—a probability distribution of rule frequencies.
For general graph evolution rules, this translates into a multidimensional
profile describing the probability of subgraph transformations. These pro-
files can be stacked across different networks, providing immediate visual
feedback on the evolving behavior of graphs (but also nodes, or groups).

These contributions collectively aim to enhance our understanding of net-
work dynamics and provide powerful tools for comparing different networks
or analyzing changes over time. The following part will elaborate on these

1 Introduction 9

contributions, distinguishing between the two types of graph evolution rules:
stand-alone and general.
Stand-alone rules Despite the limitations, stand-alone rules fits perfectly
when the goal of the research is to find the frequency of some known evo-
lutionary processes. For instance to look for cycles in a financial network.
Recognizing both the potential and limitations of stand-alone rules, our re-
search began by addressing the gaps in this area, providing to the GERANIO
framework tools to mine stand-alone rules more effectively and also leverages
them to provide a fuller understanding of graph evolution dynamics. First, this
includes a canonical form, i.e. a unique representation of the graph, allowing
for easy comparison of graphs for isomorphism. In this form, each graph is con-
verted to a standardized, normalized format that remains consistent regardless
of the initial labeling or representation of the graph. We leveraged the bliss
algorithm [36] applied on a multilayer version of each temporal subgraph. The
idea is depicted in Figure 1.4: each of the three nodes of the original temporal
subgraph is duplicated as many times as the maximum timestamp (plus one
because it starts from zero). Gray edges (called pillar edges) connect nodes
that represent the same entity on different layers (for instance (1, 4), (4, 7)
while blue edges represent the actual edges of the original graph, positioned
between nodes of the layer corresponding to their timestamp. For instance the
link from node 1 to node 2 is translated in the edge (4, 5) because its timestamp
is 1 (second layer). In this way, we have a static, non labeled representation of
the temporal graph that can be processed by the bliss algorithm. This returns
a permutation that generates the canonical form for the given graph. Finally,
as unique identifier of each isomorphism class, we use an integer representation
of the canonical form’s adjacency matrix. This unique code for each isomorphic
graph could make results over different networks comparable.

Second, the stand-alone part of the GERANIO framework introduces an
ad-hoc null model to extract statistically significant graph evolution rules from
graph, to distinguish relevant rules from frequent ones. Finally, GERANIO of-
fers an analytical tool to extract insights from algorithms outputs. For instance,
we proposed a profile for the network based on graph evolution rules, called
GER profile. It is a probability distribution over rules frequency that allows
fast comparison of different networks’ evolutionary behavior.
General graph evolution rules While stand-alone rules provide valuable
insights in certain contexts, they often fall short of capturing the complete
evolutionary dynamics of a network. To address this limitation, the GERANIO
framework incorporates tools designed for the general graph evolution rules.
Central to this approach is TULIP, an innovative algorithm that captures all
possible subgraph evolutions along with their associated probabilities, offering

10

4

0
1

2

0

1 2

3

4 5

6

7 8

from temporal
to multilayer

0

1 2

Figure 1.4: From temporal to multilayer. Example of a temporal subgraph
represented as a multilayer graph. The number of layers corresponds to the range
of timestamps (three layers in this case, with timestamps from 0 to 2), and nodes
are replicated in each layer. The graph includes pillar edges (gray), which connect
the replicated nodes, and the actual edges of the temporal subgraph are placed in
the layer corresponding to their timestamp.

a comprehensive evolutionary footprint of a network. Beyond the TULIP algo-
rithm, GERANIO provides the complete tool for categorizing, analyzing, and
visualizing network evolution rules, enabling deeper insights into the underly-
ing dynamics of temporal networks’ evolution. This includes for instance an
extension of the canonical coding method designed for stand-alone rules, to ac-
commodate general evolution rules, ensuring consistent representation across
different network types and sizes. A key feature of this comprehensive approach
is the evolutionary profile, which aggregates probability distributions across all
rules. This profile serves as a powerful comparative tool: networks with similar
profiles likely evolve in similar ways. The flexibility of the evolutionary profile
allows for diverse applications. For instance, it can be used to examine how a
single network evolves differently across various time periods, or to compare
evolution patterns across multiple networks.
Thesis structure This thesis is structured into four main parts, each address-
ing different aspects of network evolution analysis. The first part provides a
comprehensive background, describing the unified framework for temporal net-
works modeling and the theoretical foundation for the subsequent parts of the
thesis. This background section also includes an overview of Graph Evolu-

1 Introduction 11

tion Rules (GER) terminology and introduces the concept of microcanonical
randomized models (null models). The second part delves deeper into the
GERANIO framework with its part dedicated to stand-alone rules, explor-
ing its enhancements and applications. The third part introduces a broader
perspective on graph evolution rules. This section completes the GERANIO
framework with the TULIP algorithm, which aims to capture a more compre-
hensive view of network dynamics. The fourth part addresses an evolution-
ary aspect external to the networks that cannot be fully captured by graph
evolution rules alone, but has become increasingly significant in the wake of
the Twitter-X transition: user migration. This phenomenon involves the mass
movement of users from one platform to another, often in response to changes
in policy, ownership, or functionality. It is particularly relevant in the Web3
context, where hard forks in blockchain networks can trigger structured and
observable user migrations between competing platforms. In this thesis, this
final part explores the unique challenges and implications of user movement
within decentralized networks, complementing the graph-based analyses of the
previous chapters.

1.1 Unified modeling framework and terminology

The first part of this thesis establishes a unified framework with the theo-
retical foundation that will be mentioned in the subsequent parts. It begins
by introducing a comprehensive and unified framework for temporal networks
modeling, providing a common terminology and conceptual grounding that
will be used consistently throughout the work. This is a crucial step, as the
existing literature on network evolution often employs different models and
terminology, even when referring to the same concept. After laying this founda-
tional framework, the background section delves into the theoretical concepts
of graph evolution rules. These rules are the network equivalent of association
rules in the data mining field, so we start by detailing the key concepts of as-
sociation rules. This is followed by an overview of subgraph counting methods:
we cover techniques such as frequent subgraph mining, motifs, and graphlets,
in both their static and temporal variants, highlighting how they differ from
graph evolution rules in their subgraph counting approach. Next, we exam-
ine the common concepts that form the basis of the various works on graph
evolution rules. This includes how a rule is composed, the primary support
measure used (minimum image based), and the property of anti-monotonicity.
We also provide a detailed explanation of the main mining algorithm employed
in existing graph evolution rule studies: gSpan [30]. The background section

1.2 Stand-alone evolution rules 12

then presents a comprehensive review of the key existing works in this domain,
including GERM[29], LFR[31, 32], DGR[34], TPminer, and Evomine[35]. This
ensures that the reader has a thorough understanding of the state-of-the-art
approaches and their respective contributions. Then, a dedicated section is in-
cluded to explain the concept and categorization of null models (microcanon-
ical randomized reference models) in the context of temporal networks, fol-
lowing the work by Gauvin et al.[37]. The final chapter presents case studies
applying our theoretical framework, with several of our research works shar-
ing common datasets and modeling approaches. We focus particularly on the
Steemit platform as a representative of the Web3 ecosystem, demonstrating
how graph evolution rules can uncover insights in complex digital environments
that integrate social and financial interactions.

1.2 Stand-alone evolution rules

The literature on graph evolution rules is relatively limited, with existing works
often presenting algorithms without comprehensive analytical tools. The algo-
rithms that have been proposed typically suffer from various limitations in their
scope and applicability. The second part of this thesis seeks to address these
shortcomings by enhancing the part of the GERANIO framework dedicated to
stand-alone rules, addressing key limitations, and introducing novel analytical
tools. Our work begins with the development of a tailored null model for the
GERM algorithm. Drawing from the categorization proposed by Gauvin et
al. [37], we introduce a timeline-shuffled null model. This model prioritizes
the preservation of network topology over temporal distribution and is ap-
plied to timeline representations of temporal graphs. This approach aligns with
GERM’s graph representation, but also with the scope of the work to analyz-
ing the characteristics of the dynamics of the network, rather than its specific
topology. We apply the null model on three distinct networks with varying
time granularities, two social networks and one citation network. The results
demonstrate the significant impact of this null model on the evaluation and
interpretation of identified rules, revealing the prevalence of under-represented
rules and suggesting that temporal factors and other mechanisms may influ-
ence evolutionary paths in complex networks. Building upon this foundation,
we introduce the GER profile, an analytical tool designed to facilitate easy
comparison of evolutionary behaviors across networks. This probability dis-
tribution over stand-alone rule frequencies allows for the characterization of
network growth in diverse contexts. In the NFT category, we analyze two net-
works representing transactions on popular yet contrasting markets. The first

1 Introduction 13

is CryptoKitties, a game-based NFT platform, while the second is OpenSea,
a marketplace with a broader, more general scope. For the BOSN category,
we focus on two networks derived from the Steemit platform. One network
encodes financial transactions between users, while the other captures follow
operations, thus classified as a social network. Our analysis reveals that while
some rules are consistently frequent across all networks, others are closely tied
to the specific nature of each platform. For instance, we observed that rules
exhibiting strongly reciprocal traits were particularly frequent in the network
with a predominantly social nature (follow relationships in Steemit). We then
extend the application of the GER profile to multiple scales, exploring its util-
ity not only at the graph level (like in the previously described Web3 context)
but also at community and node levels. At the community level, we construct
GER profiles for individual communities and compare them across four diverse
networks, including communication, social, citation, and online discussion net-
works. Our findings indicate that communities evolving in similar ways tend
to be close in the network. Finally, we leverage the GER approach to de-
velop a temporal behavioral node representation, using the GER profile of ego
networks. As a case study, we analyze the Sarafu network, a complementary
currency platform with rich temporal data. These Node Evolutionary Profiles
(NEPs) enable the identification of groups of nodes characterized by similar
evolution rules, revealing common interaction patterns and providing insights
into user behavior within the network. Through these enhancements and ap-
plications, the first part of this thesis advances the stand-alone part of the
GERANIO framework, offering new tools and perspectives for understanding
network evolution at multiple scales.
Part II is partially based on the following publications:

• Alessia Galdeman, Matteo Zignani, Sabrina Gaito. Unfolding temporal net-
works through statistically significant graph evolution rules. 2023 IEEE
10th International Conference on Data Science and Advanced Analytics
(DSAA), (IEEE, 2023).

• Alessia Galdeman, Matteo Zignani, Sabrina Gaito. Disentangling the growth
of blockchain-based networks by graph evolution rule mining. 2022 IEEE
9th International Conference on Data Science and Advanced Analytics
(DSAA), (IEEE, 2022).

• Alessia Galdeman, Matteo Zignani, Sabrina Gaito. Graph evolution rules
meet communities: assessing global and local patterns in the evolution of
dynamic networks. Big Data Mining and Analytics (2024).

1.3 General graph evolution rules 14

• Alessia Galdeman, Matteo Zignani, Christian Quadri, Sabrina Gaito. Graph
evolution rules for node temporal behavior representation. Accepted at the
International Conference on Discovery Science (2024).

1.3 General graph evolution rules

The third part of this thesis focuses on the graph evolution rules from a broader
perspective, completing the GERANIO framework with the TULIP algo-
rithm. We dedicate a different part of the thesis to this topic alone to stress
the difference between stand alone rules and general graph evolution rules of-
fered by the TULIP algorithm. While stand-alone rules are valuable in certain
contexts, they often fall short in capturing the full complexity of network evo-
lution. The TULIP algorithm addresses this limitation that builds upon the
terminology and concepts introduced in the background section. To the best of
our knowledge, this approach is unprecedented in the field. Unlike algorithms
for stand-alone rules, our method can capture all possible ways a subgraph
evolves, along with their corresponding probabilities. The pipeline of the algo-
rithm is shown in Figure 1.5. TULIP begins by examining a set of small, static

Su
b

g
ra

p
h

is

o
m

o
rp

h
is

m

ENUMERATION
OF STATIC
PATTERNS R

eg
u

la
rl

y

si
ze

d
 c

h
u

n
ks TEMPORAL PIPELINE

TEMPORAL PIPELINE

TEMPORAL PIPELINE

TEMPORAL PIPELINE

EVOLUTIONS
COUNTING

static
occurrence

C
an

o
n

ic
al

 fo
rm

cl

as
si

fi
ca

ti
o

n

evolution
edges

respecting
ΔTm a x _ t s m a x _d

temporal
edges

R
el

at
iv

e
ra

n
ki

n
g

m

ap
p

in
g

TEMPORAL PIPELINE

EVOLUTION RULES PROFILE

Starting set
of static
patterns

Growing
Network

Figure 1.5: Pipeline of the Tulip algorithm. The algorithm begins by enu-
merating all occurrences of a given set of static patterns. The results are then
divided into chunks, and through the temporal pipeline, Tulip extracts pairs of
evolutions in the form (pre, post). These evolutions are subsequently counted,
and the evolutionary profile is constructed

1 Introduction 15

subgraphs. This approach is grounded in the well-established principle that
network evolution can be effectively studied through mesoscopic structures,
with even three-node configurations providing significant insights [38, 39, 40].
We then employ the VF2 algorithm [41] to enumerate all instances of these
static subgraphs within the larger network. For example, starting with a two-
node structure with reciprocal edges, VF2 identifies all node pairs in the ini-
tial graph that match (are isomorphic) to this pattern. Once we have the
enumeration of all the static patterns, we divide the occurrences in regularly
sized chunks and apply the temporal part in parallel. The temporal pipeline
takes each occurrence of a static pattern (so for instance the couple of edges
((x, y), (y, z)) respecting the 2-edges path pattern) and first extracts the times-
tamps on the edges obtaining the temporal occurrence (so ((x, y, t1), (y, z, t2))),
this will represent the precondition of our evolution (the starting point). After
that, we need to build the post condition, collecting all the edges of the evolu-
tion: edges starting or ending in one of the node of the precondition, happened
in a timestamp between max_ts+ 1 and max_ts+ 1 +∆t where max_ts is
the maximum timestamp of the precondition (following the previous examples
it would be max(t1, t2)) and ∆t is an interval of time. To mitigate the noise
of hub nodes, we limit the number of edges starting and ending at each node
at max_d. Once the temporal edges and the evolutions are obtained, the cou-
ple of edgelists is processed.We first apply a relative-ranking mapping to the
timestamps, normalizing them to start from 0 (relative) and having the max-
imum value to correspond with the number of distinct timestamps (ranking).
Finally, we extract the canonical code identifier, as explained in the previous
section, to generate comparable codes for both the temporal edges and the evo-
lutions. Finally, the algorithm yields pairs of starting temporal subgraphs and
their evolutions canonical codes with the corresponding counting. From this,
we construct evolution profiles for each starting temporal subgraph, encom-
passing all observed evolutions and their probability distributions. We validate
our method by applying it to five diverse graphs, varying in nature, size, and
temporal coverage. This application demonstrates the method’s capacity to
extract meaningful insights into network evolution across different contexts.
The final section of this part is focused on the added value of graph evolution
rules in evolutionary analysis. We provide a comparative analysis with exist-
ing evolutionary analysis techniques, highlighting the unique contributions and
insights offered by our approach.

1.4 User Migration 16

1.4 User Migration

The fourth part of this thesis explores an evolutionary aspect typical of Web3
networks that cannot be fully captured by graph evolution rules alone: user mi-
gration. This phenomenon is particularly relevant in the context of blockchain-
based online social networks (BOSNs) and presents unique challenges for net-
work analysis.

We use as a case study the hard fork happened on the Blockchain-Online
social network (BOSN) Steemit, that caused the birth of Hive. Our first study
focuses on two key aspects: the propensity of hubs to migrate to a new so-
cial platform following a shock event, and the influence these hubs exert on
their neighbors’ migration decisions. Our findings reveal that different types of
hubs employ varied strategies when choosing to migrate. For instance, finan-
cial hubs (nodes with highest number of financial operations) tend to diversify
their approach by maintaining a presence on both the original and new plat-
forms. Regarding hub influence, we observe that users directly interacting with
hubs are more likely to migrate. These results underscore the critical role of
understanding hub activity and influence in monitoring and managing user
migration processes.

Building on this, we delve into the intricate interplay between groups, dis-
cussions, and migration patterns. Through a network-based analysis centered
on community identification in multilayer networks, combined with text min-
ing techniques, we uncover several key insights:

• The position of a group within the network of social and economic in-
teractions correlates with its likelihood to migrate, with marginal groups
showing a higher propensity to leave.

• The network structure of groups plays a significant role, as users in densely
connected groups with strong financial interactions are more likely to re-
main on the original platform.

• Users who choose to leave exhibit distinct discussion topics compared to
those who stay.

• User groups engaged in monetary transactions show increased interest in
migration-related content if they are considering leaving.

These findings highlight the crucial role of social and economic relation-
ships during user migration triggered by fork events. In the broader context of
online social media, this motivates the need for a network-inspired approach to
investigating user migration, focusing on groups and specific subgraphs while
leveraging user-generated content.

1 Introduction 17

The final section of this part introduces a novel machine learning pipeline
utilizing graph neural networks (GNNs) to predict user migration in BOSNs.
We model the data as a directed temporal multilayer graph, capturing both
social and monetary interactions among users. To address the challenge of class
imbalance in node classification, we propose a data-level balancing technique
based on undersampling. Our evaluation demonstrates that GNNs are a suit-
able machine learning approach for user migration prediction. Moreover, our
proposed undersampling approach significantly enhances predictive power on
severely imbalanced data.

Part IV is based on the following publications:

• Alessia Galdeman, Matteo Zignani, Sabrina Gaito. User migration across
web3 online social networks: behaviors and influence of hubs. ICC 2023-
IEEE International Conference on Communications (IEEE, 2023).

• Cheick Tidiane Ba, Manuel Dileo, Alessia Galdeman, Matteo Zignani, Sab-
rina Gaito. Analyzing user migration in blockchain online social networks
through network structure and discussion topics of communities on mul-
tilayer networks. Distributed Ledger Technologies: Research and Practice
(2024).

• Cheick Tidiane Ba, Alessia Galdeman, Manuel Dileo, Matteo Zignani, Sab-
rina Gaito. User migration prediction in blockchain socioeconomic networks
using graph neural networks. Proceedings of the 2023 ACM Conference on
Information Technology for Social Good, 2023, Lisbon, Portugal.

1.5 Conclusion

In this thesis, we propose a comprehensive and versatile framework for model-
ing, mining, analyzing, and representing the evolutionary rules governing net-
work dynamics, named GERANIO. Our primary aim was to provide a robust
methodology capable of generating an evolutionary profile for a wide range of
network types, offering unprecedented insights into their growth patterns and
structural changes over time. As we conclude this research, we can confidently
assert that the framework we have developed represents a significant advance-
ment in the field of network science. Unlike previous approaches that often
focused on specific aspects or mechanisms of network evolution, our method-
ology offers a holistic and adaptable solution that can be applied across diverse
domains. Our work has yielded several key contributions that collectively ad-
vance the field of network science and provide valuable tools for researchers
and practitioners alike. We begin with the GERANIO framework part ded-
icated to stand-alone rules, introducing a canonical form, a null model, and

1.5 Conclusion 18

an analytical tool in the form of the GER profile. This advancement provides
a more robust foundation for analyzing individual graph evolution rules. A
major contribution of this thesis is the TULIP algorithm, which enables the
counting of all possible evolutions a subgraph can undergo, along with their
corresponding probability distributions. This approach offers a more nuanced
and complete view of network dynamics. The thesis is structured to provide
a thorough exploration of these concepts. It begins with a rich background
section that deepens our understanding of network evolution and presents a
unified GER framework, including models and terminology used throughout
the work. Subsequent parts focus on the GERANIO framework for stand-alone
rules and general graph evolution rules respectively. The final part of the thesis
shifts focus to a dynamic process of particular importance in Web3 environ-
ments: user migration. This section analyzes the influence of hubs and groups
on migration decisions and presents a machine learning pipeline for predict-
ing user migration at the node level. This thesis opens up several promising
paths for future research, both in practical application of the graph evolution
rule approach and in enhancing the rule mining process. One key direction is
the use of evolutionary profiles for detecting shock events or change points in
network evolution, as well as for generating synthetic networks with realistic
evolutionary characteristics. This represents a practical application of graph
evolution rules approach, given thanks to the GERANIO framework. The in-
tegration of artificial intelligence also presents promising possibilities, both
in employing AI to assist the mining of graph evolution rules (for instance
introducing an approximate counting) and in using evolutionary profiles as
features in machine learning tasks. Further exploration of network evolution
from a user-centric perspective, analyzing individual behaviors and their im-
pact on overall network dynamics, could yield valuable insights. Additionally,
investigating the interplay between network structure, user behavior, and ex-
ternal events in shaping the evolution of complex networks, particularly in the
context of emerging Web3 technologies, promises to deepen our understand-
ing of these systems. By addressing these research directions, we can continue
to deepen our understanding of network evolution, enhancing our ability to
model, predict, and interpret the dynamics of complex systems across various
domains.

Part I

Background and Related works

21

The first part of this thesis establishes a unified framework and theoretical
foundation that will be leveraged in the subsequent chapters.

It begins with a comprehensive literature overview of network evolution
studies, providing context for the work that follows.

The chapter then introduces a comprehensive and unified framework for
modeling evolving networks, offering common terminology and conceptual
grounding to be used consistently throughout the work. This is a crucial step,
as existing literature on network evolution often employs varied models and
terminology, even when referring to the same concepts. By establishing this
shared language, we aim to facilitate clearer communication and comparison
of ideas within the field.

Following this foundational framework, the background section delves into
the theoretical concepts of graph evolution rules. These rules are presented
as the network equivalent of association rules in data mining. We begin by
detailing key concepts of association rules, providing readers with a familiar
starting point before transitioning to the more specialized domain of graph evo-
lution. The chapter then provides an overview of subgraph counting methods,
covering techniques such as frequent subgraph mining, motifs, and graphlets
in both their static and temporal versions. We highlight how these methods
differ from graph evolution rules in their approach to subgraph counting, em-
phasizing the unique characteristics and advantages of graph evolution rules.
Next, we examine the common concepts that form the basis of various works
on graph evolution rules. This includes an exploration of rule composition,
the primary support measure used (minimum image based), and the property
of anti-monotonicity. We provide a detailed explanation of the main mining
algorithm employed in existing graph evolution rule studies: gSpan. This thor-
ough examination of the underlying principles and methodologies ensures that
readers have a solid grasp of the technical foundations of the field. The graph
evolution chapter then presents a comprehensive review of key existing works
in this domain. This includes detailed discussions of GERM [29], LFR [31],
DGR [34], TPminer [42], and Evomine [35]. By examining these state-of-the-
art approaches and their respective contributions, we provide readers with a
thorough understanding of the current landscape of graph evolution rule re-
search and set the stage for our own contributions.

Then, we include a dedicated section explaining the concept and categoriza-
tion of null models, specifically microcanonical randomized reference models,
in the context of temporal networks. This discussion follows the work by Gau-
vin et al.[37], providing crucial context for understanding the significance and
interpretation of network patterns and evolution rules. By providing this com-
prehensive theoretical foundation, literature review, and explanation of key

22

concepts, the first part of the thesis equips readers with the necessary back-
ground to fully engage with and appreciate the novel contributions presented in
subsequent chapters. This thorough grounding ensures that the more advanced
concepts and methodologies introduced later in the thesis are built upon a solid
understanding of the field’s current state and fundamental principles.

The final chapter in this part focuses on case studies, providing practi-
cal applications of the theoretical concepts discussed earlier. Several of our
research works presented in this thesis share common datasets and model-
ing approaches, allowing us to present them cohesively. We offer additional
details about the semantic aspects of the graph representations and provide
relevant background information for each case study. A particular emphasis is
placed on the Steemit platform, which serves as a representative example of
the Web3 ecosystem. Steemit’s unique features, including its blockchain-based
infrastructure and integration of social and financial interactions, make it an
especially rich case study for applying graph evolution rules.

Chapter 2

Temporal and evolving networks

The study of network evolution is a dynamic and multifaceted field that seeks
to understand how complex systems of interconnected entities change over
time. While traditional network analysis often focuses on static snapshots, the
temporal aspect of network growth is crucial for capturing the true nature
of evolving systems. Network evolution can be approached through various
lenses, from examining individual processes like triadic closure and homophily
to considering broader, system-wide patterns of growth. A comprehensive un-
derstanding of network evolution requires us to move beyond static analyses
and embrace the temporal dimension of network dynamics. This temporal per-
spective allows us to observe how local interactions and processes aggregate
over time to shape the global structure of the network. For instance, the prin-
ciple of triadic closure—where two nodes connected to a common third node
are likely to form a connection—can be studied not just as a static property,
but as a time-dependent process that unfolds as the network grows. Similarly,
homophily, the tendency of similar nodes to connect, can be examined as a
force that shapes network structure over time, influencing both the formation
of new connections and the strengthening or weakening of existing ones.

By focusing on these temporal aspects, researchers can uncover the un-
derlying mechanisms that drive network growth and evolution. This approach
not only provides insights into how networks reach their current state but
also offers predictive power for understanding future network configurations.
As we delve deeper into the literature on network evolution, we will explore
how various studies have tackled these temporal dynamics, the methodolo-
gies they’ve employed, and the insights they’ve gained into the fundamental
processes shaping network structures across diverse domains.

2.1 Triadic closure 24

2.1 Triadic closure

Numerous models, mechanisms, and measures have been proposed to describe
network growth from a link formation perspective. Triadic closure, in partic-
ular, has emerged as a significant mechanism in this context [43]. The fun-
damental assumption underlying triadic closure is that individuals sharing a
common friend are more likely to become friends themselves in the future [28].
Despite being recognized as a fundamental mechanism in the formation of
dense groups and communities in social networks [44], the properties and laws
governing triadic closure remain underexplored at a large scale, mainly due to
the limited availability of temporal-annotated datasets capturing the growth
of large social networks.

In analyzing triadic closure from a network structure perspective, a com-
mon approach involves investigating subgraph-level features, particularly by
identifying and examining the network at the level of 3-node subgraphs. In
directed networks, the triadic structure becomes more intricate, as more 3-
node directed subgraphs are possible. They are commonly referred to as trian-
gles [45] in undirected networks and triads [45] in directed networks. Existing
methods have the objective of performing a categorization [46], i.e., separat-
ing the triads based on their structure. Bagatelj et al. [47] introduced a sub-
quadratic algorithm suitable for large and sparse networks, classifying triads
into different isomorphism classes based on network structure with complex-
ity of O(m), where m represents the number of links. This algorithm is the
de facto standard, as successive works worked on its optimization. For exam-
ple, Chin et al. [48] worked on distributed versions of this algorithm, focusing
on designing data structures for distributed computing. These improvements
were leveraged by Parimalarangan et al. [49] that combined them with more
recent efficient algorithms designed for undirected networks. Santoso et al. [50]
focused on how to use these previous advancements in a single machine, focus-
ing on methodologies for data compression, preprocessing, and parallelization.
Finally, other works, such as Buriol et al. [51] and Pavan et al. [52], have
focused on a slightly different setting, where the exact and the approximate
counting of triangles is conducted in a streaming fashion.

The structure of a network can be characterized by the distribution of
these subgraphs, as demonstrated by Milo et al. [53], a useful approach even
in the context of online social networks [54]. Alrhmoun et al. [55], for instance,
used the distribution of 3 nodes motifs to analyze the strategies of bots in
a social network. While static structure provides insights into triadic closure
effects, leveraging temporal information is crucial for a more comprehensive
analysis. From a triadic closure perspective, this involves focusing on temporal

2 Temporal and evolving networks 25

triads, or 3-node temporal subgraphs. Identifying these temporal subgraphs is
less straightforward than in the static case. For example, Kovanen et al. [56]
consider a subset of temporal subgraphs where the time difference between
consecutive events is less than an input interval ∆c, and all events are con-
secutive. Paranjape et al. [57] extended this by removing the constraint on
consecutive events, allowing the study of subgraphs occurring in short bursts
and introducing a time window ∆w to bound the time difference between the
last and first events in a subgraph. Overall, different models exist in the lit-
erature [58], emphasizing that the distribution of temporal subgraphs can be
employed for network comparison and generation, similar to the static sce-
nario [59, 60, 61]. For instance, Hulovatyy at el. [58] proposed a vectorial
representation of nodes using dynamic graphlets. This method adopts a com-
mon approach, i.e. decomposing networks into small temporal subgraphs (net-
work motifs or graphlets) [53, 56, 57] to characterize network evolution. In
this context, Faisal and Milenkovic [62] adopt a graphlet-based approach for
representing the different snapshots of a temporal network. The idea of using
graphlets and their orbits has been further improved in Aparicio at el. [63],
where the graphlet-based representation of each snapshot is used to identify the
orbit transitions across two consecutive snapshots to highlight inter-snapshot
correlation. When limited to 3-node subgraphs, the idea of graphlet-orbit tran-
sitions is close to the intuition of computing the probability of moving from an
open temporal triad to a closed one, which is at the basis of our triadic closure
rules and the seminal work in Doroud et al. [64]. However, it is worth pointing
out a fundamental difference between our work and [64, 63]: the latter are
strongly dependent on the window size of the snapshots since transitions are
computed among consecutive snapshots. On the contrary, we adopt a different
perspective oriented towards a continuous-time approach, so we do not im-
pose discretization of the growing network into snapshots and avoid the issue
of selecting a proper window size.

To enrich the information provided by these approaches, previous work in-
troduced some temporal metrics to quantify triadic closure. These metrics can
capture and quantify the presence and dynamics of the triadic closure mech-
anism in a network, and they can also be used to compare different networks.
Among them, we have the concept of triadic closure delay, a temporal metric
to measure the speed of undirected closed triads [65]. In the undirected case, a
subgraph transitions from an open triad (connected with two links) to a closed
triad (triangle) when the last pair connects. The triadic closure delay measures
the difference in time between the opening time (i.e., the time at which the
second link was formed, leading to an open triad) and the closing time (when
the third link is formed). In the directed case, bidirectional links complicate

2.2 Homophily 26

the definition of opening and closing times, as the insertion of a link, does not
imply a triadic closure. therefore, in a successive work [66], different defini-
tions of opening and closing times were proposed, allowing the definition of a
directed triadic closure delay.

2.2 Homophily

The study of homophily in network evolution has provided valuable insights
into how similarity influences the formation and dynamics of connections over
time. For instance, the work by Nguyen et al. [67] examined contact networks
using WiFi log data from a university campus, revealing that gender homophily
increases over the course of a semester, while homophily based on income and
grades remains relatively stable. This temporal perspective on homophily high-
lights the dynamic nature of social preferences and their impact on network
structure. Weber et al. [68] advanced our understanding by investigating the
effects of choice and induced homophily in the formation of learning groups.
Their findings demonstrated that gender homophily is particularly pronounced
among male students, shedding light on the complex interplay between individ-
ual choices and structural factors in shaping network evolution. Expanding on
the temporal aspect, Kovanen et al. [69] introduced the concept of "temporal
homophily" through their analysis of mobile phone record networks. This novel
approach considers not just the existence of homophily at a given moment, but
its persistence over time, providing a more nuanced view of how similarity-
based connections endure in evolving networks. The practical implications of
homophily in network evolution were underscored by Kister et al. [70], who
examined its impact on node2vec embeddings for disease spread prediction.
Their research revealed that homophily serves as a valuable indicator of in-
fection status, suggesting that incorporating homophily-based features could
enhance the accuracy of epidemic forecasts, particularly in scenarios where
only partial information about contacts is available.

These studies collectively demonstrate the multifaceted role of homophily
in network evolution, from its varying influence across different attributes to
its temporal dynamics and potential applications in predictive modeling. By
examining homophily through a temporal lens, researchers have uncovered its
nuanced effects on network growth and structure, offering valuable insights for
understanding and predicting the behavior of complex social systems.

2 Temporal and evolving networks 27

2.3 Network evolution through community

Network evolution can also be studied by a mesoscopic perspective, through
the lens of community dynamics. This approach focuses on the formation,
growth, merging, splitting, and dissolution of communities within networks,
providing insights into the collective behavior of nodes and the emergence of
higher-order structures. A seminal work in this area is by Palla et al. [71],
who introduced a method to track the evolution of overlapping communities
in social networks. Their study of co-authorship and mobile phone call net-
works revealed that larger communities tend to be more stable over time,
while smaller ones are more dynamic, often fragmenting or merging. Build-
ing on this, Mucha et al. [72] developed a framework for studying community
structure in multilayer networks, allowing for the analysis of community evolu-
tion across different timescales. This approach enabled researchers to identify
persistent communities and track how they evolve, merge, or split over time.
Greene et al. [73] proposed a method for detecting "evolutionary events" in
dynamic networks, such as the birth, death, merging, and splitting of commu-
nities. Their work on a large-scale mobile phone network demonstrated how
these events can be used to characterize the overall evolution of the network
structure. Tantipathananandh et al. [74] introduced the concept of "commu-
nity matching" to study the persistence and change of communities over time.
Their framework allowed for the identification of stable cores within evolving
communities, providing insights into the long-term dynamics of social net-
works. More recently, Rossetti et al. [75] developed a framework called TILES
for tracking the evolution of overlapping communities in streaming scenar-
ios. This approach enables real-time analysis of community dynamics, offering
potential applications in areas such as online social network analysis and real-
time event detection. These studies collectively demonstrate that examining
network evolution through community dynamics provides a rich understanding
of how local interactions aggregate to form larger structures, and how these
structures evolve over time. This perspective bridges the gap between micro-
level node interactions and macro-level network properties, offering valuable
insights into the complex processes driving network evolution.

Chapter 3

Framework for temporal networks’ modeling

Here, we propose a general framework to model temporal graphs depending on
the data used. Note that we are going to describe the framework considering
directed temporal interactions without additional labels, but it can also be
adapted to the labeled or undirected case.

3.1 List of timestamped interactions

Any temporal data that can be modeled into a graph usually comes as a
list TL of timestamped transactions/interactions, as shown in the example
of Figure 3.1. The timestamps can have different granularities, starting from
milliseconds to weeks, months, and so on. However, the specificity of the times-
tamp should depend on the case study we are working on. For instance, when
we are dealing with a citation network, a second granularity is too precise
because citations occur slowly in time. On the other hand, if we consider a
bitcoin transaction network, a daily granularity could be too general, because
a lot of transactions happen on the same day (for instance on Ethereum in
the year 2022, the blockchain recorded more than 800k transactions per day).
Since we need different levels of time aggregation, we first define the interval
time windows set I =< [s, e)i, i = 1, 2, . . . T >. So, I is a collection of time
intervals that offers the freedom to aggregate time in different ways. For in-
stance, in Figure 3.1 we choose to aggregate with an hourly granularity, so the
first time window is from 8:00:00 to 9:00:00, the second time window is from
9:00:00 to 10:00:00, and so on. Using a time window of the form [k, k + δ) as
in the example, we can obtain a regular time aggregation.

3.3 Projections 30

3.2 Interval model

Once we have defined the time windows in I, we are able to build the first
step of temporal graph modeling. The interval model shapes the transac-
tions/interactions in TL into a sequence of static graphs G = {G1, G2, . . . GT }.
Each Gk in G is described by the tuple (Vk, Ek) that corresponds to the nodes
and edges sets respectively. Specifically, Ek = {(u, v)|(u, v, t) ∈ TL, t ∈ [s, e)k},
and Vi = {u|(u, v) ∈ Ei ∨ (v, u) ∈ Ei}. So, each Gk includes all edges whose
timestamp is included in the k-th time window. The nodes are the ones that are
incident to the edges in Ek. Figure 3.1 shows the graphic example of the trans-
actions listed in TL modeled as a sequence of static graphs G (the numbers on
the edges do not imply that edges are labeled with the aggregated timestamp,
they are present to highlight the single time window). The interval model alone
can be enough for modeling the temporal information in cases where we want
to isolate the interactions that happened in a single time window. For instance,
in financial networks, we can use the interval model to find anomalous time
windows. However, there are cases where we need an aggregated view of the
temporal evolution.

3.3 Projections

From the sequence of graphs in the initial interval model, we can derive differ-
ent projections, i.e. single graphs that can describe the evolution in a period.
We identify three types of projections -growing, snapshot and evolving- that
can offer a more compact or more informative representation of the temporal
data. For every projection, the set of nodes V P always corresponds to the
nodes adjacent to the edges considered. The distinctive elements of each pro-
jection are the definition of edges set EP and the labeling function fP that
assigns a temporal label to each edge.
Growing Projection
The growing projection (GP) is the most compact representation, because it
flattens all the edges in a specific period of time, eventually selecting just one
edge for each pair of nodes. Formally, the growing projection of G, from times-
tamp l to timestamp m, is defined as EGP

[l,m) = {(u, v)|(u, v) ∈
⋃m−1

k=l Ek}. It is
clear that taking the union of all edges (u, v) in the specific period, we keep
just one edge from a node u to a node v. The labeling function fGP

[l,m) assigns a
timestamp to each edge, basically selecting one of the multiple edges between
that couple. There are different ways to select which one of the edges to keep,
the most common ones use the minimum or maximum timestamp, so to keep

3 Framework for temporal networks’ modeling 31

the most recent or most old link. The choice of the minimum or maximum
timestamp depends on the case study. For instance, in a graph where a link
(u, v) in Gk means that user u followed v in time window k, it could be better
to keep the oldest link. So we keep the first time they made a connection, and
not the time of the eventual re-follow. If we use the first-interaction option,
the labeling function is formally defined as follows:

fGP
[l,m) : E

GP
[l,m) → [1, 2, . . . , T]

(u, v)→ min{k|(u, v) ∈ Ek}

Figure 3.1 shows the graphic representation of GGP
[1,4): an example of multiple

edges is from node b to node c. In the growing projection the timestamp of
the edge (b, c) is 1 because is min({1, 2}). This projection is suitable for cases
where the number of multi-edges is low or it does not influence how the system
evolves. For instance, it is a good choice for modeling social or trust networks.
On the other hand, it could be a lossy representation if we want to study the
transactions between users, since we would lose information about the strength
of exchanges.
Snapshot Projection
Another representation is the snapshot projection (SP), which is the only multi-
edge graph. It maintains the concept of flattening from the growing projection,
but instead of choosing one edge for each couple (u, v), it keeps all of them
with the relative timestamp. So, in this case the edge set ESP

[l,m) is a multiset
that include all edges recorded from El to Em−1 (as formally defined in the
footnote 1). The labeling function fSP

[l,m) here simply assigns to each edge (u, v)
in Gk the timestamp k. The snapshot projection is clearly less compact than
the growing projection, but it could be the right choice in cases where it is
important to keep track of all multiple interactions between the same couple
of nodes, for instance, to model economical transactions.
Evolving Projection
The last representation of our framework is the evolving projection (EP). This
option combines the previous ones because it is not a multi-edge graph but
it contains the most complete information about the entire evolution of each
edge. Formally, the edge set is defined as the one of the growing projection, so
EEP

[l,m) = {(u, v)|(u, v) ∈
⋃m−1

k=l Ek}. The labeling function assigns a string of
characters of length equal to the duration of the period [l,m) -so the length is
m − l. The number (0 or 1) in position i tells if the edge was present in Gi.

1 ESP
[l,m) = ⟨χ, µχ⟩ with χ =

⋃m−1
k=l Ek and µχ : χ → N+, µχ(u, v) = |{k|(u, v) ∈

Ek}|

3.3 Projections 32

Formally
fGP
[l,m)(u, v) = {sn}

where s : [0,m− l)→ {0, 1} with s(n) = I[(u, v) ∈ En]

Let us consider the example of edge (b, c) in Figure 3.1: the label is 110 because
the edge was present in G1 and G2 but not in G3 (there is a 0 in the 3rd
position) of the interval model sequence G. The evolving projection is more
informative with respect to the snapshot projection because it can also include
relabeling (if instead of 1s or 0s the character reflects the labels - eventually
encoded) or edge deletion. This representation (with its adaptations) is used
in several graph evolution rules algorithms because it allows the representation
of the entire evolution in a single labeled graph.

3 Framework for temporal networks’ modeling 33

(a, b, 2023-03-01 08:31:10)

(d, c, 2023-03-01 08:45:43)

(d, e, 2023-03-01 08:20:03)

(b, c, 2023-03-01 08:01:39)

(b, c, 2023-03-01 09:12:19)

TL

I
[2023-03-01 08:00:00, 2023-03-01 09:00:00)1

[2023-03-01 09:00:00, 2023-03-01 10:00:00)2

[2023-03-01 10:00:00, 2023-03-01 11:00:00)3

e

c
b

a

d

3

e

c
b

a

d

1

e

c
b

d

21

1

1

22

2

3

3

G1 G2 G3

Interval model
𝒢 = {G1, G2, …, GT}

Projections

e

c
b

a

d

1 1

1
1
2

2

3

3

3

Growing
projection

Snapshot
projection

Evolving
projection

e

c
b

a

d

1 1

1
1
2

2

3

3

3
2

2
e

c
b

a

d

100 110

110
100
010

010

001

001

001

(c, e, 2023-03-01 09:23:04)

(e, d, 2023-03-01 09:49:56)

(d, c, 2023-03-01 09:57:01)

(c, b, 2023-03-01 10:22:23)

(a, e, 2023-03-01 10:29:46)

(b, d, 2023-03-01 10:41:18)

GGP[1,4)
GSP[1,4)

GEP[1,4)

Figure 3.1: Framework for temporal networks. The schema illustrates the
process of modeling temporal networks to study their evolution. It begins with
two fundamental inputs: a list of interactions (T) and a list of intervals (I).
These inputs are used to construct the interval model, represented as a sequence
of static graphs. The interval model then serves as the starting point for three
distinct temporal network projections, each offering a unique perspective on the
network’s evolution over time.

Chapter 4

Graph evolution rules

4.1 Introduction

This chapter introduces the concept of graph evolution rules (GERs) as a
powerful tool for understanding network evolution. Graph evolution rules are
inspired by association rules in the data mining field, so we start by describing
the latter, providing a familiar context for readers. The chapter then explores
various subgraph counting methods, including frequent subgraph mining, mo-
tifs, and graphlets, contrasting them with GERs to highlight the unique ad-
vantages of the latter. We delve into the fundamental concepts underlying
GERs, such as rule composition, support measures, and anti-monotonicity,
and explain the key mining algorithm: gSpan. The chapter concludes with a
comprehensive review of seminal works in the field, setting the stage for our
novel contributions to the domain of graph evolution analysis.

4.2 Preliminaries

Graph evolution rules are related to two main research topics: association rules
and subgraph counting respectively in data mining and graph mining fields. Let
us first explain the association rules concept and its temporal extension. The
next subsection will provide details on the different approaches to subgraph
counting, and their extension for temporal networks.

4.2.1 Association rules

Association rules are a fundamental concept in data mining that aim to dis-
cover interesting relationships and associations between items in large datasets.

4.2 Preliminaries 36

They were introduced in 1993 by [76] as an organization aid in the supermar-
kets industry field and then quickly extended to other domains. These rules are
typically represented as "if-then" statements, where certain items or itemsets
are found to co-occur together with a certain frequency, also called support.
Initially, they were used in market basket analysis, i.e. a technique that study
customer purchase patterns (through their shopping baskets data) to identify
associations and relationships between items frequently bought together. An
example of an association rule could be

{Bread,Eggs} → {Milk}

The rule suggests that if someone buys bread and eggs, he/she is probably
buying also milk. Note that the association rules express co-occurrence and
not causality. Such associations can be used to drive business strategies like
product placement, cross-selling, targeted promotions, and inventory manage-
ment. From a set of items, one can obtain an exponentially increasing number
of rules due to all the elements’ combinations. However, association rules al-
gorithms return just the most important ones, typically selected through a
support and confidence measure. Given a rule r : X → Y with X being a set
of items (or even a single item), and Y /∈ X, and given a set of transactions D
the support of r id defined as

s(r) = P (X ∩ Y) =

∑
ti∈D[X ∈ ti&Y ∈ ti]

|D|

So, it represents the ratio of the ratio between the number of transactions
containing both X and Y over the total number of transactions. On the other
hand, the confidence of a rule indicates its strength, and it is computed as
the transactions containing both X and Y over the transaction containing X,
formally defined as

c(r) = P (Y |X) =

∑
ti∈D[X ∈ ti&Y ∈ ti]∑

ti∈D[X ∈ ti]

Temporal association rules. A more advanced model in this context
concerns temporal association rules, introduced by Ale et. al. [77], where
timestamps are assigned to transactions. Specifically, given a set of items
R = {A1, . . . An} and a transaction database d composed by subsets of R
called transactions s, each of them having assigned a timestamp ts, the au-
thors defined as V (X, d) the cardinality of the set of transactions s ∈ d where

4 Graph evolution rules 37

the elements of X (with X ⊆ R) are contained. The lifespan [t, t′] of the set X
is defined as the minimum interval of time shared by all items in X, formally

t = maxt1{[t1, t2] = lifespan(Ai),∀Ai ∈ X}

t′ = mint2{[t1, t2] = lifespan(Ai),∀Ai ∈ X}

Consequently, d[t,t′] corresponds to the subset of transactions s ∈ d whose
ts ∈ [t, t′]. Finally, the support is defined as

s(X)[t,t′] =
V (X, d[t,t′])

|d[t,t′]|

So, a temporal association rule X → Y [t1, t2], holds in d if:

• its support s(X ∩ Y)[t,t′] ≥ σ;

• its confidence c(X ∩ Y)[t,t′] =
s(X∩Y)[t,t′]
s(X)[t,t′]

≥ λ;

• it temporal support t2 − t1 ≥ τ .

In other words, the rule holds with support s, temporal support tau and con-
fidence c if, in the time window [t1, t2] with a duration equal or greater than
τ , both X and Y are contained in the s% of transactions of d, while c% of
transactions containing X also contain Y .

4.2.2 Subgraph counting approaches

The subgraph counting problem, i.e. the ability to compute subgraph frequen-
cies [46], is the common factor of several approaches that study a network
from a topological point of view. The most popular ones are network motifs,
graphlets, and frequent subgraphs. The differences between them concern the
mining approach and the criteria to consider them worthy of attention. Let us
consider them separately.
Frequent subgraph mining. Frequent subgraph mining (FSM) is the main
principle of graph mining. Like data mining in general, graph mining aims to
extract statistically significant and useful knowledge from data. The frequent
subgraph mining goal is to extract all frequent subgraphs that occur more
than a specific threshold, called support threshold. According to the survey by
Jiang et al. [78], there are two formulations of the FSM problem based on
input graph modeling. The first one is graph transaction based FSM where the
input graph is a database of graphs, here the support count of a subgraph cor-
responds to the number of graphs in the database where the subgraph occurs.

4.2 Preliminaries 38

In the second case, where the input is a single graph (single graph based FSM)
the support computation requires a more specific definition because the exact
occurrence counting would require too long runtimes. The algorithms of both
formulations are divided into two categories. The first one comprehends all
methods with an Apriori-based approach, where a Breadth First Search (BFS)
strategy is used to explore the subgraph lattice of a database. The second cat-
egory concerns the pattern growth based methods, which consists in adopting a
DFS strategy to recursively extend each subgraph. Frequent subgraph min-
ing in temporal graphs was introduced in 2006 by Borgwardt et al. [79].
The idea is to model the temporal network in a union graph, that involves
all nodes and edges appearing along time. The label on the edge encodes the
evolution by specifying the timestamps when it was present in the graph. For
instance, an edge with the label 0110 indicates the edge appeared in the graph
in the second timestamp (position 2 of the string), it stayed in the graph for
the next two timestamps and then was removed. Another approach [80] to
apply frequent temporal subgraph mining is to apply a static version of FSM
on each snapshot and then combine the results whether in an aggregated or
incremental way.
Motifs. Motifs are mesoscopic structures of a network, larger than single
nodes or links, but smaller than the entire network. One of the earliest works
introducing the concept is Milo et al. [53], which defined motifs as classes of
isomorphic induced subgraphs with cardinality higher in the data than in a
reference null-model. Since most systems are better described using also tem-
poral information, studying their mesoscopic structure requires analyzing both
topology and time. There are several studies concerning temporal motifs, and
each one proposes its own temporal motif model with its own constraints that
make a subgraph valid in some models but not in others. The main difference
concerns the concept of temporal isomorphism: relaxing the constraint that
a pattern should respect to be temporally isomorphic to another makes the
computation easier. For instance, Kovanen et al. [81] consider as valid only
subgraphs that include all consecutive events (temporal edges) that occur one
maximum ∆c timestamps after the previous one. While Paranjape et al. [82]
consider isomorphic two subgraphs with the same topology and whose edges
respect the same temporal ordering while remaining in a time window of ∆t.
Graphlets. Graphlets are equivalence classes of induced connected subgraphs
[46]. With respect to the FSM or the motifs scenarios, here the subgraph defi-
nition is more precise because it requires the subgraphs to be induced by any
set of a predefined number of nodes. A set of k nodes can only form one class
of graphlet because the fact that the subgraph is induced by the set of nodes
implies considering all edges between them. The count of graphlets is made

4 Graph evolution rules 39

by the graphlet-degree distribution, which leverages the concept of orbit. An
orbit is an equivalence class over nodes, i.e. a set of nodes that are topolog-
ically equivalent. In other words, two nodes are in the same orbit if when
switched the subgraph still belongs to the same graphlet. For instance, in a
star-shaped subgraph, all leaves belong to the same orbit. The graphlet-degree
distribution GDDG [83] is a feature matrix that in position (i, j) specifies the
number of nodes that belong j times to orbit i. In the dynamic context, tem-
poral graphlets were first studied by Faisal et al. [84], which studied static
graphlets in each snapshot and then analyze the time series of the resulting
GDDG. A more proper temporal graphlet was defined by Hulovatyy et al. [58]
as an equivalence class of isomorphic ∆t-connected temporal subgraphs. The
∆t parameter controls the maximum time that could pass from a temporal
event (edge) to the next one.

In summary, graphlets, motifs, and frequent subgraph counting are all tech-
niques used in graph analysis to identify patterns within graphs. Figure 4.1
offers a visual explanation of the differences. While frequent subgraphs and
motifs search for all types of patterns (often limited by a maximum number of
edges/nodes) that are actually present in the graph (hence the input graph G
is the only input), graphlet counting starts from a predefined set of patterns
to search for. The prefined set is composed by all k-graphlets, i.e. (connected)
subgraphs induced by a given number of nodes k. The difference between motif
and frequent subgraph is that in the latter case the frequency (or support) s
of the subgraph is the only way to evaluate the importance fo a subgraph. In
the motif case, instead, the algorithms evaluate the statistical significance of
subgraphs with the introduction of a null model. Consequently, the importance
of a subgraph is evaluated through a z-score z.

4.2.3 Common concepts and terminology

In this section, concepts and terminology about graph evolution rules mining
are introduced and they will be used throughout the rest of the thesis.

Graph evolution rule composition A graph evolution rule is a frequent
temporal pattern that helps analyze the evolution of a dynamic network. Fol-
lowing the association rules concept of the data mining context, they are com-
posed of a precondition and a post-condition. Figure 4.2 shows an example
of an open triad that evolves into a closed triangle. Note that the precondi-
tion and post-condition are also called body and head respectively(in [29, 42])
or antecedent and consequent (in [34]). The rules in the different algorithms

4.2 Preliminaries 40

Input graph 𝒢
s = 2

s = 1

s = 6

z = + 2.3

z = − 1.5

z = − 3.2Null model

Subgraph counting
algorithm on null
model realizations

Subgraph
counting
algorithm

Subgraph counting
algorithm on 𝒢

Graphlets

Graphlet
counting
algorithm

s = 6

s = 1

s = 2

s = 1 s = 2

s = 2 s = 0

s = 0

Figure 4.1: Differences between frequent subgraphs, motifs and graphlets.

change shape because of the different constraints they have. However, the com-
mon concept is their interpretation: a subgraph matching the precondition will
probably evolve matching the postcondition.

Computer Science Dept. @ UniMI CONNETS Lab 7

Precondition Postconditiont0
t1Body Head

Antecedent Consequent

Evomine e LFR li chiama precondition e postcondition,
GERM e TPminer head e body
DGR antecedent e consequent

Figure 4.2: Example of graph evolution rule. On the left graph with two links -
grey arrows - created at time t0, while on the right the head of the rule where the
graph on the left evolves by adding the new link - green arrow - at the successive
timestamp t1.

Minimum image based support The graph evolution rules mining al-
gorithms return the set of frequent rules, so it is necessary to define a support
measure that can establish a rule’s frequency. Methods often choose the min-

4 Graph evolution rules 41

Computer Science Dept. @ UniMI CONNETS Lab

MIB graphic

4

a

bc

de

f

g

ϕ1 ϕ2 ϕ3 ϕ4
a c c c

b b e e

e e b g

v1

v2

v3

|Φ(vi) |

2

2

3

(c) Four isomorphisms(b) Subgraph

σMNI(p, Gt+1
t) = 2

(a) Input graph
(columns)

(d) Unique mappings
(rows)

Figure 4.3: MIB support. Example of how the Minimum-Image Based Sup-
port of subgraph in (b) is counted in in the input graph in (a).

imum image based support (MIB). Given a graph G, a subgraph p and the
set Σ(S) = {ϕ1, ϕ2, . . . , ϕm} of all isomorphisms (or embeddings) of p in G,
the MIB support [85] corresponds to the number of unique nodes of the in-
put graph G that each node of the subgraph p = (Vp, Ep) is mapped to. So,
formally the MIB support is defined as follows:

σMIB = minv∈Vp
{|Φ(v)|},

where Φ(v) represent the set of unique mappings for each v ∈ Vp, defined as:

Φ(v) =

|Σ(S)|⋃
i=1

ϕi(v)

Let us consider the toy example of Figure 4.3. Given the input graph in 4.3a,
in order to obtain the MIB support of the subgraph in 4.3b it is necessary to
detect its graph isomorphisms (or embeddings), shown in each column of the
table in Figure 4.3c. The next step is the computation of the cardinality of
Φ(vi) for each vi in p, shown in Figure 4.3d. So, the MIB support of the pattern
p in G is the minimum value of Φ(vi), that is equal to 2. The minimum image
based support is a frequent choice because it respects the anti-monotonicity
property while being not as computationally expensive as other support mea-
sures.
Anti-monotonicity property A support metric σ for a graph G is defined
as anti-monotonic if, for all subgraph S, P , with S being a P ’s subgraph, it
must hold that σ(S) ≤ σ(P). Basically, the support of a pattern’s subgraph
must be higher than the support of the pattern itself.

4.2 Preliminaries 42

gSpan algorithm Every graph evolution rule mining algorithm is based on a
(modified) version of a state-of-the-art frequent pattern mining method, called
gSpan [30]. It is an efficient algorithm to mine frequent subgraphs (patterns),
that takes as input a set (or a database) of undirected static graphs and that
returns connected frequent subgraphs. The idea is to leverage the minimum
DFS code concept to make the graph isomorphism computation easier. Let
us use an example to explain the DFS code’s idea. Given the graph G of
Figure 4.4a, its DFS code is the series of 5-tuple listed in Figure 4.4b. Basically,
it consists in encoding the edges visited with a Depth First Search on the graph
with 5-tuple of the following format (i, j, li, l(i,j), lj) where i, j are the index of
the nodes in visiting order, and li, lj , l(i,j) are the labels of the two nodes and
the edges respectively. There exist multiple DFS codes for each graph/pattern,
however, the codes can be lexicographically ordered so that the first one in the
sorted list will be the minimum DFS code. The essential property of min DFS
codes is that two graphs with the same min DFS code are isomorphic, as
stated in a Theorem in [30]. So, the lexicographical order allows sorting all
DFS codes of the same graph/pattern to find the minimum one, but it also
enables sorting all min DFS codes. If codes of different patterns can be sorted,
it is possible to build a DFS tree. In the DFS tree, every subgraph is a node,
and the children of a node are all subgraphs obtained by a single-edge extension
on the rightmost path. This extension must consist in adding an edge from the
rightmost vertex and it can be a backward edge if the edge point to another
vertex in the subgraph, or a forward edge if it links the rightmost vertex to
a new vertex. Essentially, gSpan algorithm starts with single-edge patterns,
ordered lexicographically, then for each pattern it performs an extension of
the rightmost path recursively, building the DFS tree. At every extension,
gSpan checks if the pattern that is expanding the DFS tree is minimum and
if it is frequent. Specifically, a pattern is not minimum if there exists another
isomorphic pattern whose DFS code is the minimum, and it is not frequent if
its support is not greater than the fixed threshold . When the pattern is either
not frequent or minimum, the tree is pruned on that node, meaning that the
recursive extension stops and the algorithm returns the previous levels. Graph
evolution rules methods typically set a parameter max_edge that indicates the
maximum number of edges that the post-condition of every GER must have.
This constraint reduces the gSpan running time because it does not have to
find all frequent patterns but every recursive extension can stop once the level
of the DFS tree corresponding to the max_edge has been reached.

4 Graph evolution rules 43

y

b

a

b

c

y

x

(a) (b)
(2,3,b, y, a)

(0,1,b, x, c)
(0,2,b, y, b)

Figure 4.4: DFS Code Representation of a Graph. The graph in (a) can
be represented with the DFS code in (b). The DFS code is a series of 5-tuples,
each of one representing an edge (visited in DFS). Each 5-tuple indicates the
nodes indexes, their labels and the label of the edge. Edges in (a) are highlighted
with a colored line that matches the color of the underline of each edge in (b)

4.3 GERM

Graph evolution rule mining (GERM) is the method developed by Berlingerio
et. al. [29] in 2009. The idea is to extract frequent patterns, filter them using
both a support and confidence measure, and finally extract graph evolution
rules from the remaining frequent patterns, eventually rejecting subgraphs that
cannot be transformed. In the following, we are going to provide details about
the input graph format, the support and confidence measure used, and the
rules extraction method from a temporal pattern.

4.3.1 Graph representation

GERM algorithm uses a modified version of gSpan method to extract frequent
temporal patterns, that are filtered and subsequently transformed into graph
evolution rules. GERM algorithm presents both a conceptual and actual graph
representation. Following the taxonomy described in Chapter 3, the conceptual
representation consists in a sequence of growing projections

GGP = {G[1, 2)
GP , G[1, 3)

GP , . . . , G[1, T)
GP }

On the other hand, the compact representation is just the last graph of the
previous sequence, which includes all temporal snapshots. Formally, a time-
evolving graph (conceptual representation) is represented by a sequence of
undirected graphs G1, . . . GT , where Gt = (Vt, Et) and V1 ⊆ V2 ⊆ . . . VT

and E1 ⊆ E2 ⊆ . . . ET . The compact graph of G1, . . . GT , is a single graph

4.3 GERM 44

G = (V,E, t, λ) with V =
⋃T

t=1 Vt, E =
⋃T

t=1 Et, λ a labeling function and t a
function that assigns a timestamp to each edge e in the following way:

t(e) = argminj{Ej |e ∈ Ej}

The FSM algorithm can find all temporal frequent patterns on the compact
graph, however, a key idea is to reduce the number of redundant patterns
to consider. Let us consider the example in Figure 4.5, patterns in (a) and

Computer Science Dept. @ UniMI CONNETS Lab

GERM - Relative time

10

0 1

1

37 8

8

10

(b)(a)

Relative
time pattern

Figure 4.5: Relative-time pattern. Example of the conversion of a temporal
subgraph to a relative-time pattern. Timestamps are adjusted by subtracting the
minimum timestamp value, effectively shifting the first timestamp to zero. For
example, an edge originally timestamped at 10 is now labeled with 3, as the new
reference point is 0 instead of the original minimum of 7. This transformation
preserves the temporal sequence and intervals while providing a standardized
representation

(b) will be considered different, even if the only difference between them is a
time constant ∆ = 7. The idea of GERM is to consider relative-time patterns,
aggregating together in a single equivalence class all subgraphs that share the
same topological structure and whose timestamp differ by the same ∆ over all
the edges. It translates into considering just one pattern per equivalence class,
i.e. the one where the minimum timestamp is zero, so in the example, GERM
would consider just the one in Figure 4.5b. So, GERM method forces the FSM
algorithm (gSpan) to consider just relative-time patterns.

4.3.2 Support and confidence measure

Since GERM is based on a frequent subgraph mining method, it is necessary
to specify how they define a pattern to be frequent. Berlingerio et. al. use

4 Graph evolution rules 45

the minimum image based (MIB) support, because it is a good approxima-
tion with respect to the real occurrence number. Moreover, it respects the
anti-monotonicity property, and it is computationally easier to compute with
respect to considering the occurrence number. While the support measure can
give insights into how frequent is for a pattern to happen, the probability that
the evolutionary steps occur in a specific order is given by the confidence mea-
sure. The confidence is computed as the ratio of the support of the head over
the support of the body. In this way, it returns the portion of times that the
head evolves into a subgraph that matches the body. Using the MIB support
in the confidence computation guarantees that the result is a value between 0
and 1, thanks to the anti-monotonicity property.

4.3.3 Rules extraction

A key property of GERM rules is that for each head there exists a single body,
this is essential to facilitate the computation of support, considering it equal
to the support of its head. The idea behind the transformation from temporal
pattern to graph evolution rules is that the body is equal to the head without
the last evolution. Formally, given a pattern head H = (Vh, Eh), the body is
the subgraph B = (Vb, Eb), where Eb = {e ∈ Eh|t(e) < maxe∗inEh

(t(e∗))}
and Vb = {v ∈ Vh|deg(v,Eb) > 0}. deg(v,Eb) stands for the degree of node v
when considering just the edges in the body (Eb). Essentially, given a head,
the body is obtained by removing the edges with the maximum timestamp and
the nodes that with the latter removal would remain isolated. If the resulting
body is connected, then the temporal pattern can be transformed into a graph
evolution rule. Otherwise, i.e. if the body is not connected, the pattern can-
not be considered as a GER, because the MIB support cannot be computed
for a disconnected subgraph. Figure 4.6 shows an example of a temporal pat-
tern (shown in 4.6a) that is transformed into a GER (shown in 4.6b). While
Figure 4.7 proposes an example of a temporal pattern (4.7a) that cannot be
transformed into a rule, because it would produce a disconnected body (4.7b).

4.4 LFR

Leung et. al. [31] proposed a specific type of graph evolution rule, named Link
Formation Rule (LFR). The focus is on the process that drives single links
formation, for this reason, LF rules are more restrictive with respect to the
others, but at the same time, the mining time is significantly lower. In this

4.4 LFR 46

Computer Science Dept. @ UniMI CONNETS Lab

GERM - Rules extraction

6

0

31 3

(b)(a)
Temporal pattern

0

1

0

31 3

Graph evolution rule

Figure 4.6: Temporal graph into GER. The temporal pattern in (a) is
transformed into a Graph Evolution rule in (b). The post-condition is the entire
temporal graph, while the pre-condition consists in the temporal graph without
the edge(s) with maximum timestamp (3).

Computer Science Dept. @ UniMI CONNETS Lab

GERM - example of not GER

7

0

3

1 3

(a)
Temporal pattern

01

(b)
Disconnected body

Figure 4.7: Example of a temporal pattern (a) that cannot be transformed into
a GER. The reason is that the body (pre-condition) would be the disconnected
graph in (b).

section, we start by describing the temporal graph representation they used.
Then, we are going to explain in detail the format of Link Formation Rules,
as well as the pipeline of the method. A detailed description of the support
measure utilized by the LFR mining algorithm, and the random-graph part of
the pipeline will follow.

4.4.1 Graph representation

LFR method starts from a directed, labeled, time-stamped graph. According
to the taxonomy defined in Chapter 3, they modeled the temporal graph as a
growing projection GGP

[1,T+1), that includes all edges and nodes created through
the whole time span.

4 Graph evolution rules 47

4.4.2 Characteristics of LF-Rules

Link Formation Patterns. In order to explain LF-rules, it is necessary
to first describe the frequent temporal patterns they come from, called LF-
patterns. An LF-pattern is 4-tuple p = (Vp, Ep, L, lp), where Vp, Ep, L and lp
are respectively the set of vertices, the set of edges, the finite set of labels and
the function assigning labels to nodes and edges. Specifically, Vp = {Sp, Ip}
where Sp is a special subset containing only the start node s and the end node
e. While Ip contains the so-called intermediate nodes, i.e. the nodes in the
pattern that are not s or e (Ip may be empty). Moreover, Ep contains the
direct edge (s, e) and all the other edges that eventually involve intermediates
nodes. Given ρ(u, v) being the geodesic distance between u and v (length of
shortest path), edges in Ep must respect one of the following conditions:

1. If Ip = ∅, then ρ(s, e) = ρ(e, s) = 1
2. If Ip ̸= ∅, then ∀u ∈ Sp,∀v ∈ Ip,min(ρ(u, v), ρ(v, u)) = 1

Basically, if the pattern contains only the nodes s and e, then there must be also
an edge between (e, s), as shown in Figure 4.8a. Otherwise, all intermediate
nodes must have a distance equal to one to or from both s and e. Figure 4.8b
depicts an example of a pattern that cannot be considered an LF-pattern,
because intermediate nodes do not respect condition 2. For instance, node u
does not have a minimum distance from or to both s and e of 1.

Computer Science Dept. @ UniMI CONNETS Lab

example of LFR

11

(a) (b)

s e

u v

s e

Figure 4.8: Validity of LF-patterns. The pattern in (a) is a valid LF-
pattern because it contains only s and e nodes and there is the link (e, s). On
the contrary, the graph in (b) is not valid because node u has distance equal to
2 and 3 with respect to nodes e and s respectively.

Isomorphism of LF-patterns Two LF-patterns p and q are isomorphic if
there exist a bijective function f : Vp → Vq, such that:

1. ∀u ∈ Vp, lp(u) = lq(f(u))

4.4 LFR 48

2. ∀(u, v) ∈ Ep, (f(u), f(v)) ∈ Eqwithlp(u, v) = lq(f(u), f(v))
3. f(sp) = f(sq) and f(ep) = f(eq)

with l being a labeling function, and sp, ep being respectively the source and
end node of pattern p. On the other hand, a subgraph isomorphism is a func-
tion sf : Vp → W ⊂ Vq with the same conditions of f . If sf exists, p is a
sub-pattern of q and q is called super-pattern of p.

Temporal Constraint of LF-patterns. An LF-pattern does not enforce a
lot of constraints on the timestamps of the edges included, the only require-
ment is that the edge between the start node s and the end node e must present
the maximum timestamp. The reason lies in the concept of the LF-pattern it-
self, because the focus is on the formation of the link from a start node to an
end node, considering previous connections.

From LF-patterns to LF-rules Given that the only important temporal
information is the timestamp on the edge between s and e, the extraction of
LF-rules from LF-patterns consists simply in considering the cited link as a
post-condition. Formally, a Link Formation Rule r(p) is defined as follow:

r(p) = pa → p

where p is the LF-pattern, and pa is a subgraph that maintains the same vertex
set of p, while Epa = Ep\{(s, e)}. Figure 4.9a shows an example of LF-pattern
and Figure 4.9b depicts its translation into LF-rule. It is evident how the edge
(s, e) acts as a post-condition of the rule.

Computer Science Dept. @ UniMI CONNETS Lab

GERM - Rules extraction

14

(b)(a)
LF - Pattern LF - Rule

s e s e s e

Figure 4.9: From LF-pattern to LF-rule. The LF-Pattern in (a) is trans-
formed into the LF-Rule in (b) using the LF-pattern ad post-condition, and
considering the same pattern without the edge (s, e) as pre-condition.

4 Graph evolution rules 49

4.4.3 Pipeline of the method

The LFR-method follows the pipeline depicted in Figure 4.10. First, the au-
thors adapt the gSpan algorithm to LF-rules requirements. Applying the mod-
ified version of gSpan, they extract LF-patterns that are transformed into LF-
rules and filtered using both a support and confidence threshold. The lower
branch of the schema in Figure 4.10 is needed for supplementary filtering of
the resulting rules, taking into consideration a random graph. In fact, this part
of the method starts with a specific randomization of the input graph, then
they leverage the random graph to compute the expected support of each LF-
rule obtained from the actual graph (upper branch of the method). Using the
actual support of the LF-rules and the expected support, they were able to
compute the surprise value for each rule. This last metric allows obtaining all
meaningful rules, that are the object of a rule evaluation. In the next sections

Computer Science Dept. @ UniMI CONNETS Lab

Pipeline

16

Input graph

Randomized
graph

LF-patternsGSpan
modified

LF-rule
Filtered with
support and
confidence

Expected
support of

LF-rule

Meaningful
LF-rules

Filtered with
surprise value

Figure 4.10: Pipeline of LFR method.

we are going to provide details about the modifications they performed on the
original gSpan algorithm, the support and confidence measures they defined,
the randomization technique they relied on, and finally the expected support
and the surprise value metric they used to obtain the final output.

4.4.4 gSpan adapted for LF-rules

The LF-rule mining algorithm, called LFR-Miner, is developed by extending
the state-of-the-art algorithm for subgraph mining gSpan. The extension of
the algorithm unfolds in two directions based on the difference between the
setting of gSpan and the ones of LFR-Miner: (i) with LFR-Miner the graph is

4.4 LFR 50

directed, and (ii) LF-rules are a subset of all the frequent patterns. The orig-
inal gSpan deals with a database of undirected graphs, while LF-Miner works
with a single directed graph. So, the first extension allows considering edge
directions. The introduction of ego-based frequency is useful for enumerating
the occurrences of patterns. Another important extension concerns the fact
that LFR-Miner output is a subset of what gSpan would return because not
all frequent patterns (from gSpan) are also LF-rules. Therefore, they leverage
gSpan’s pattern growth method to prune patterns that are not compatible
with LF-rules’ constraints.

4.4.5 Ego-based Support and confidence

LFR method proposed a novel support measure for subgraphs that is easier to
compute from a computational point of view, with respect to the number of
occurrences, while respecting the anti-monotonic property. Before providing a
thorough explanation of the support measure, called ego-based support, it is
necessary to give preliminary definitions.
Ego-based Occurrence This definition is needed to quantify the occurrence
of a pattern with respect to a specified focal node. Given a focal node w and
a pattern p in a graph G, an ego-based occurrence of p is a subgraph q that
respects the following conditions:

1. q is isomorphic to p, with the classical definition of graph isomorphism
2. w corresponds to the start node of q, so sq = w
3. the timestamp of the edge from the start to end node in q denoted as

t(sq, eq), satisfies:

t(sq, eq) > max(u,v)∈Eq\(sq,eq)t(u, v)

The set of ego-based occurrences of p with sp = w is denoted as Σp
w, and if

there exists at least one ego-based occurrence (|Σp
w| > 0), then p occurred

with respect to w, and w supports p. Figure 4.11 shows a toy example: the
LF-pattern in 4.11b occurred with respect to node G, but not with respect to
F because the timestamp of the edge (s, e) (that in this case would correspond
to (F,E)) is not the highest.
Ego-based Frequency Given a pattern p, and the set of ego-based occur-
rences Σp

w for all nodes w ∈ V , the ego-based frequency of p in G is defined as
follows:

freq(p,G) =
∑
w∈V

δ(p, w)

with

4 Graph evolution rules 51

δ(p, w) =

{
1 if |Σp

w| > 0

0 otherwise

Basically, freq(p,G) counts the number of nodes that serve as focal nodes of
p in G. Considering the example of Figure 4.11, the pattern in 4.11b has a
frequency equal to 1, because the only node supporting it is node G.

Ego-based Support and Confidence After the definition of ego-based
occurrence and ego-based frequency, the concepts of ego-based support and
confidence are straightforward. The support of an LF-rule r(p) is defined as
supp(r(p)) = freq(p,G)

|V | , while the confidence of the same rule is defined as

conf(r(p)) = freq(p,G)
freq(pa,G) , with pa being the post-condition of the LF-rule. If

we consider the LF-rule in Figure 4.11b, its support is equal to 1
7 while the

confidence is equal to 1
3 , because pa occurs with respect to nodes F,G,D.

Computer Science Dept. @ UniMI CONNETS Lab

example of LFR

15

(a)

5

1

2

4

6

9A B C D

E F G

8

7
3

(b)

Figure 4.11: A Graph in (a) and one of its LFR-Rules in (b). The support of
(b) is 1

7
while the confidence is 1

3
.

4.4.6 Finding meaningful rules

A feature that distinguishes the LFR method from the other graph evolution
rules algorithms is the introduction of a null model. This allows assessing

4.5 Evomine 52

whether the relevance of a rule is due to the particular structure of the graph
or is a typical evolutionary mechanism in dynamic networks.

Random graph Since LF-patterns focus on the ego-based frequency, they
designed a randomization method focused on start and end nodes. Given an in-
put graph G, the random graph G′ is obtained by swapping end nodes. Specif-
ically, for each edge (u, v), the method picks another edge randomly (w, z) and
switches the end nodes, obtaining the edge (u, z), (w, v). The swapping will be
confirmed if the following conditions take place:

• u ̸= z and w ̸= v
• before the swapping, (u, z) /∈ E′ and (w, v) /∈ E′

In other words, the swapping will be discarded and tried again with a
different randomly chosen edge if it would produce self-loops or duplicated
edges. The degree, label, and timestamp distributions of G are preserved in
the randomized G′.

Expected support and surprise value On the randomized graph G′,
they compute the support of each rule extracted from G, and call the measure
expected support, denoted as supp(r(p), G′). The surprise value sur(r(p)) is
defined as

sur(r(p)) =
supp(r(p), G)

supp(r(p), G′)

When the surprise value is higher than one, it reveals that the rule has higher-
than-expected support given G. The higher the value, the more relevant the
rule is.

4.5 Evomine

This section will outline the details of the algorithm proposed by [35] in 2016,
called EvoMine. It shares the same two-phase structure of other algorithms
such as GERM [29] or LFR [31]: first, it performs a frequent subgraph search,
then it processes and filters the resulting frequent pattern according to spe-
cific evolutionary constraints and graph evolution rule format. However, the
trademark of the EvoMine algorithm lies in the evolutionary constraints and
its ability to detect also edge deletion and relabeling in addition to edge in-
sertion. So, in this section, we are going to provide an exhaustive explanation
of evolutionary constraints and graph representation, giving details about the
EvoMine GER format. Then, we are going to give details about the actual rule
mining algorithm, and the support measure proposed.

4 Graph evolution rules 53

4.5.1 Graph representation

EvoMine is based on a special temporal graph representation, that the authors
call union graph. Given a sequence of directed graphs GT

1 = (G1, . . . , GT)
with Gt = (V,Et, lt), a union graph GU (GT

1) is a flattened representation that
encodes all the temporal information in the node and edge labels, that formally
corresponds to the evolving projection GEP

[1,T+1) as defined in Chapter 3. Let
us consider the example depicted in Figure 4.12 to explain the label encoding.
Given the graph sequence of Figure 4.12a, its union graph is illustrated in
4.12a. The number of characters of labels corresponds to the length of the
graph sequence. Each element in position i of the edge label is either ϵ if the
edge in timestamp i is missing, or the value of the edge attribute. For instance,
the edge between the two left nodes is 1ϵ1, stating that the edge belongs to
the edge set of all timestamps except the second one (because the character
in the second position of the encoded label is ϵ). In this case, edges have no
attributes, so the possible values of each character of the edge encoded label are
ϵ or 1. Meanwhile, in the node labels, each element in position i represents the
attribute of the node in timestamp i. For example, the top right node’s label
is 221, indicating that this node changed its attribute in the last timestamp
(from yellow to blue in the toy example).

4.5.2 Evolutionary constraints

One of the most distinctive features of EvoMine rules is that they consider
evolutions that happen in two consecutive timestamps. This implies that
every change highlighted in the postcondition took place in the immediate
next timestamp with respect to the timestamp of the precondition’s edges.
Moreover, Scharwächter et al. state three topological constraints that char-
acterize a graph evolution rule detected by the EvoMine method. For a rule
r : (Gpre, Gpost), where Gpre = (Vpre, Epre) and Gpost = (Vpost, Epost), it is
true that Vpre = Vpost. In other words, the post-condition and pre-condition
must share the node set. The second topological constraints concern the
presence of actual evolution: an EvoMine rule is valid if Epre ̸= Epost or
ℓpre ̸= ℓpost, with ℓpre, ℓpost corresponding to the set of labels of the pre-
condition and post-condition respectively. The last constraint involves the
concept of union graph. Following the definition of union graph in the pre-
vious paragraph, the third topological constraint is easy to define: to ensure
the locality of the process captured by the evolution rule, the union graph of
(Gpre, Gpost) must be connected.

4.5 Evomine 54

Body Head

t0 t1 t2
221

111112

122

1ϵ1
1ϵ1

ϵ1ϵ
ϵ11

(a) (b)

Figure 4.12: Union graph - toy example. (a) shows a three-timestamps
graph sequence, while (b) represents its union graph, where the evolution of edges
and nodes is encoded in edges/nodes labels. In the edge labels, the number of
characters indicates the length of the graph sequence. As for node label, each
element in position i indicates the attribute of the node in timestamp i (in this
case 1 or 2, indicating the node being blue or yellow respectively). Meanwhile,
in the edge labels, ϵ or 1 indicate whether the edge is missing or not in the
timestamp corresponding to the position of the character in the label.

4.5.3 The method and support measures

As previously stated, EvoMine is developed with a two-phase approach: in
the first step they gSpan [30], to extract frequent temporal patterns. The con-
straints about union graph connectivity and equal node sets are guaranteed by
the use of gSpan itself. Then, they filter the temporal pattern, considering just
the patterns where a change in edge or nodes is detected (second topological
constraint). Note that gSpan returns only frequent temporal patterns, so it is
necessary to define a support (frequency) measure that is able to select which
patterns have to be considered. EvoMine method adapts the gSpan algorithm,
using two different support measures: (i) an embedding-based support (the
well-known minimum image-based support), and (ii) an event-based support
(novel definition introduced for the first time in Scharwachter’s EvoMine pa-
per).
Embedding-based support. In the embedding-based scenario, the idea is
to use a support measure that can count the number of embeddings of a rule
in the entire graph sequence. Among the alternatives that respect the anti-
monotonic property, a prominent example is the minimum image based sup-
port σMIB described in section 4.2.3. In the EvoMine case, the MIB support
of a rule σMIB(p|Gi+1

i) corresponds to the support of the rule’s union graph
on each intra-snapshot graph Gi+1

i . To obtain the final support of a rule in the
entire graph sequence D = {G1

0, G
2
1, . . . G

T
T−1}, they defined the aggregated

MIB support as σagg(p|D) = ΣGi+1
i ∈DσMIB(p|Gi)

Event-based support. This novel definition is based on the idea that the

4 Graph evolution rules 55

support of a rule coincides with the number of change events containing the
rule. Let us provide some preliminary concepts, before delineating accurately
the event-based support. They consider event every change that the rules can
capture, so the insertion or deletion of nodes and edges and the relabeling of
nodes and edges. When considering the event-based support, the FSM algo-
rithm accepts as input a set of event graphs. Basically, an event graph is a
subgraph of the union graph GU (Gt+1

t) induced by the event neighborhood.
The event neighborhood has a slightly different definition when considering
edge or node events: (i) the node event neighborhood is a set of nodes that
includes the node that causes the event, and its direct neighbors at timestamp
t and/or timestamp t + 1; (ii) the edge event neighborhood is defined as the
union of the node event neighborhoods of the nodes adjacent the edge. Fig-
ure 4.13 shows an example: given the union graph (4.13b) obtained from the
two-timestamp graph sequence in 4.13a, and the event of adding the edge be-
tween nodes u and v, Figure 4.13c represents the corresponding event graph.
It is clear that the graph in 4.13c is the subgraph of 4.13b induced by u, v
and its neighbors, i.e. the edge event neighborhood of (u, v). In conclusion, the
event-based support of a rule corresponds to the number of event graphs from
the event graph database where the rule union graph is a subgraph.

v

u

t

v

u

t + 1

(a)

11

ϵ11111
11

(c)

v

u

ϵ1

ϵ1

ϵ1

11
11

11 11
11

11

11

11
11

1111

(b)

Figure 4.13: Event graph - toy example. (a) shows two timestamps of a
graph sequence, where the creation of the edge between nodes u and v is high-
lighted, and (b) represents its union graph. (c) is the event graph associated with
the creation of (u, v), that is the subgraph of (b) induced by the neighboring nodes
of u and v.

4.6 TP Miner 56

4.6 TP Miner

This section will describe the algorithm published by Miyoshu et. al. in 2011,
called TP Miner [42]. This method shares some ideas with other graph evolu-
tion rules algorithms while having its own characteristics. So, in this section,
we first are going to outline the algorithm ideas and graph representation.
Afterward, we are going to explain the concepts of frequent time and repre-
sentative patterns, with all the definitions that come along. Then, we are going
to describe how to go from patterns to rules and how the authors analyzed the
results using DAGs.

4.6.1 Algortithm ideas

The method is divided into four different steps. The first one consists in ap-
plying gSpan, a frequent pattern mining algorithm, like in all the others graph
evolution rules methods. In contrast with other algorithms, TP Miner applies
a consequent filter on resulting frequent time patterns. In fact, it keeps only
patterns that are considered as representative, in addition to having a confi-
dence value over a fixed threshold. Graph evolution rules are then extracted
from the set of representative time patterns following the same idea of GERM
or LFR: the body of a rule is created by discarding all edges with the maximum
timestamp, while the head is the representative temporal pattern as it is. The
final step consists in building a graph evolution DAG and an abstract graph
evolution DAG and analyzing results directly on the directed acyclic graphs.
The next sections will provide details about each phase.

4.6.2 Graph representation

TP Miner models the temporal graph as a snapshot projection GSP
[1,T+1)], in-

cluding all edges and nodes and allowing multi edges.

4.6.3 Frequent time patterns

TP Miner’s first phase involves the mining of frequent time patterns, using a
modified version of the state-of-the-art algorithm gSpan. The algorithm is the
same one proposed by Berlingerio et. al. in GERM, obtained by adapting the
support measure and the canonical representation to a single dynamic graph
instead of a sequence of static graphs. As in GERM, the algorithm introduces
a confidence measure. However, in TP Miner the definition is more specific

4 Graph evolution rules 57

with respect to the one in GERM (defined as σ(head)
σ(body)). Formally it is defined

as: confG(Pb → Ph) =
|OPb

(Ph)|
|ΦPb

G |
where ΦPb

G denotes the set of occurrences

of Pb in G, while OPb
(Ph) stands for the occurrences of Pb that grows into

Ph. So the confidence in TP Miner measures the percentage of occurrences of
the body pattern that evolves into the head pattern. Finally, a frequent time
pattern discovered by gSpan is considered valid if confG(Pb → Ph) ≥ τ .

4.6.4 Representative patterns

The next algorithm step is to filter the time patterns that resulted to be fre-
quent and valid, selecting only the representative ones. In order to explain how
the algorithm selects representative patterns, it is necessary to provide some
preliminary definitions.
Structure representability The main concept behind the definition of struc-
ture representability is that a pattern is structure-representable by another
pattern if the nodes of one pattern can be mapped into the other ones, and
they have similar edges. Formally, given two patterns P and P ′, P ′ is structure
representable by P if Rs(P

′, P) ≤ δ, where:

• Rs(P
′, P) = min|VP ′ |=|VP ′′ |,P ′′⊆inducedP diff(P

′, P ′′)

• diff(P ′, P) =

{
minf∈F(P,P′)d(P

′, P, f) if F(P ′, P) ̸= ∅
∞ otherwise

• d(P ′, P, f) =
∑

x,y∈VP ′ |I
P ′
(x, y)− IP (f(x), f(y))|

• IP (x, y) =

{
1 if (x, y) ∈ EP

0 otherwise
• F(P ′, P) = {f |∀x ∈ VP ′ [lP ′(x) = lP (f(x))] and d(P ′, P, f) ≤ δ} So, one

pattern is structure representable by another pattern if there exists a map-
ping function for a minimum number (δ) of edges.

Smoothing support After the definition of structural representability, it is
possible to explain the concept of smoothing support, which essentially extends
the concept of occurrence to structurally similar patterns. Formally, given a
set of frequent patterns TP , the smoothing support of Pi is defined as follows:

ssupG(Pi) = min1≤ileq|VPi
|{o(i)|o ∈ SPi}

where:

• SPi
=

⋃
Pj∈TP,diff(Pi,Pj)≤δ Φ

Pj

G

4.6 TP Miner 58

• o(i) represents an occurrence of pattern Pi

• Phi
Pj

G is the set that contains all occurrences of Pj in G

Preservation of support The concept of smoothing support is used in the
definition of support preservation. The support of a pattern P ′ is said to be
preserved if the following inequality holds:

Ps(P
′, P) =

|ssupg(P)− ssupG(P
′)|

max{ssupg(P), ssupg(′)}
≤ ϵ

Representative patterns Finally, a pattern P is defined as representative
if it structurally represents and preserves the supports of enough patterns.
Formally, a pattern P is representative if the set Cδ,ϵ

TP (P) is large enough,
where:

Cδ,ϵ
TP (P) = {Pj ∈ TP |Rs(Pj , P) ≤ δ, Ps(Pj , P) ≤ ϵ}

4.6.5 From patterns to rules

TP Miners follows the same idea as other algorithms such as GERM for ex-
tracting graph evolution rules from frequent (and in this case representative)
patterns. As shown in Figure 4.6, the head of the rule (post-condition) is the
temporal pattern itself, while the body is obtained by removing all edges with
maxtsi∈P tsi.

4.6.6 Graph evolutions DAGs

The real novelty of this algorithm with respect to the others stands in the way
they analyze the results. In fact, they do not stop at returning the graph evo-
lution rules and the associated statistics such as the number of GER obtained
and the computing time requested. They propose to analyze the GERs from a
global point of view, building graph evolutions DAGs that combine the results.
The DAG will have the evolutions of rules as edges and the bodies or heads as
nodes. Specifically, they propose DAGGER = (V,E) where:

• E = {(pb, ph)|pb → ph ∈ GER}
• V = {p|p→ ph ∈ GER ∨ pb → p ∈ GER}

Afterward, they also propose a more global representation of the DAGGER

that merges together branches that differ only for the timestamps in the pre-
condition.
Figure 4.14a shows an example of two temporal patterns that differ only for

4 Graph evolution rules 59

Computer Science Dept. @ UniMI CONNETS Lab 20

0

3

1 3

(a)
Temporal patterns

3

3

(b)
Abstract time pattern

2

3

0 3

Figure 4.14: Abstract time patterns. The two patterns in (a) are mapped in
the same abstract time pattern in (b), because they differ only for non-maximum
timestamps.

the non-maximum timestamps. Their abstract time version is shown in Fig-
ure 4.14b, where the only labels shown are the ones on edges that would appear
only in the head of the rule.
Analysis of results The authors analyze the resulting patterns with a
network-based approach on the two different DAGGER. Specifically, they rank
the patterns (i.e. nodes of DAGs) by degree and closeness centrality. Then,
they provide observations about the differences between the two orders.

4.7 DGR Miner

This section will describe the details of the algorithm proposed by Vaculik
in 2015, called DGR Miner [34]. It is designed for labeled multigraph, both
directed and undirected. The common point with other GER algorithms is
the use of the gSpan algorithm (even if it is adapted to fit the evolution rules
specifics). On the other hand, DGR Miner distinguishes itself from others
because it proposes its own graph representations and support measures. In
this section, we are going to first describe the dynamic graphs representation
proposed by Vaculik, then we will outline the representation and constraint
that characterize graph evolution rules in DGR. Next, we are going to illustrate
the union graph representation, which is an essential concept that will be used
to explain afterward the DGR method.

4.7.1 Dynamic graphs representation

In their study, the authors considered dynamic graphs allowing labeled multi-
edges but not taking into account self-loops and identical edges (same vertices,
timestamps, and labels). They represent the temporal graph as a sequence of
static graphs where Gi ̸= Gi+1. Each static graph Gi is defined as Gi =
(VGi , EGi , fGi , lGi,V , lGi,E , tGi,V , tGi,E) where:

4.7 DGR Miner 60

• VGi , EGi are respectively the set of vertices and edges;
• fGi

is a function that maps an edge e to a pair of vertices (u, v), where
u ̸= v;

• lGi,V , lGi,E are respectively the labeling function for vertices and edges;
• tGi,V , tGi,E corresponds to the mapping function to assign timestamps to

vertices and edges respectively.

Computer Science Dept. @ UniMI CONNETS Lab

Dynamic graph representation

29

x1

A1 B1

C1 D1

G1

y2 x1

A1 B1

D2 B2

G2 G3

x3

y3

B3 B1

D2 C3

x3

G4

x4

B3 C4

D2 C3

Figure 4.15: DGR representation of a dynamic graph. Each node and
edge is annotated with its label, followed by the timestamp of its most recent
change. The representation maintains information about removed edges until
they are replaced.

The representation of the dynamic graph is shown in Figure 4.15. The key
element is the explicit annotation of edges and nodes. Specifically, each node
or edge is annotated with a label followed by the timestamp of the last snap-
shot where it changed. For instance, the bottom-right node in G1 is annotated
with D1, in G2 it changed the label into B so the new annotation is B2. How-
ever, in G4 the annotation remains C3 because in the current timestamp it
is not changed. Moreover, the representation keeps the information about the
removed edges until a new edge replaces them. According to the taxonomy
described in Chapter 3, the dynamic graph is modeled as a sequence of grow-
ing projections GGP = {GGP

[1,2)], G
GP
[1,3)], , . . . , G

GP
[1,T+1)]}, with a labeling function

that combines the labels with the timestamp, assigning the maximum times-
tamp instead of the more typical configuration that considers the minimum
(like in GERM).

4.7.2 How to be a DGR rule

First of all, rules in DGR are represented in a similar way with respect to
dynamic graphs, with the exception of timestamps. In order to get general

4 Graph evolution rules 61

pattern growth rules, it is necessary to use relative timestamps. Specifically,
they use timestamp 0 to denote the last change that occurred, while −t in-
dicates an evolution developed t snapshots earlier. In addition to the relative
timestamp, a DGR rule must respect some constraints. Specifically, the DGR
method discovers rules that represent either an addition or deletion of a sub-
graph or some specific changes in vertices or edges. Let us describe the three
options separately.
Addition of a subgraph Figure 4.16a shows an example of a rule where

Computer Science Dept. @ UniMI CONNETS Lab

How to be a dgr rule

24

x0

D0

B0 A0

x0 ∅
Computer Science Dept. @ UniMI CONNETS Lab

How to be a dgr rule

25

x0

D0

B0 A0x0

∅ C0

x0

Computer Science Dept. @ UniMI CONNETS Lab

How to be a dgr rule

26

y0

B0 B0

D0

y0

x0

y0

A0 B − 1

C0D − 1

x0

(a)

(c)

(b)

Figure 4.16: Examples of valid DGR rules. The rule in (a) represents
the addition of a subgraph case; while the one in (b) shows the deletetion of a
subgraph case. Finally, in (c) the rule corresponds to a subgraph changes.

the addition of a subgraph occurs. Specifically, Ga → Gc is a rule because
Va = ∅

∧
Vc ̸= ∅. Following the representation indications, every edge and ver-

tice in Gc must have a timestamp equal to 0.
Deletion of a subgraph Opposite to the previous case, the deletion of a sub-
graph occurs when Va ̸= ∅

∧
Vc = ∅, as shown in the example of Figure 4.16b.

Subgraph changes The third case covers situations when changes in nodes
or edges of the antecedent subgraph occur. Let us consider the graph evolution
rule in Figure 4.16c as an example: the first condition the rule must respect
is that the antecedent and the consequent subgraphs must share some nodes,
unlike the two previous cases. Moreover, all the following conditions must hold:

• Either all nodes or all edges in Gc must have timestamp equal to zero,
meaning that either all the nodes or all the edges changed. This can happen
because an edge or a node just appeared (like the edge between the two

4.7 DGR Miner 62

G2 G3G1 G4

(a)

G32 G43G21

(b)

Figure 4.17: Union graph example. The sequence of four graphs in (a) is
transformed into the sequence of union graphs in (b).

upper nodes in Figure 4.16c) or because it changed its label (like the blue
upper-right node in Figure 4.16c);

• The nodes and the edges that appeared in Gc (the nodes belonging to Vc\Va

or the edges in Ec\Ea) must have timestamp equal to zero, respecting the
representation definition. In the example of Figure 4.16c, this condition is
reflected in the pink bottom-left node and in all the edges;

• For all edges and nodes that both Ga and Gc present, if the timestamp
in Gc is the exact precedent of the one in Ga, then the label must be the
same. Otherwise, if the timestamp in Gc is greater or equal the one in Ga,
then the labels must change. The latter situation is represented by the blue
upper-left node in Figure 4.16c. Since the timestamp in Gc is equal to the
one in Ga, the label changed. On the other hand, the green upper-right
node maintains the same label, in fact, it holds that the timestamp in Gc

is the precedent of the one in Ga.

4.7.3 Union graph representation

Starting from the dynamic representation of graphs and rules, it is necessary
to define the union graph representation. The role of the union graph is to
transform the dynamic graph into a sequence of static graphs, allowing the
application of the gSpan algorithm.

Figure 4.17 illustrates an example of a dynamic graph and its union graphs,
one for each couple of consecutive snapshots. Each union graph Gi+1

i is realized
observing the following rules:

4 Graph evolution rules 63

Unchanged edge or node If the node or edge does not undergo a change in
the i+1−th timestamp, then the annotation will record how many timestamps
ago the edge/node changed. Considering the example of Figure 4.17, the upper-
right node in the union graph G3

2 is annotated with B/ − 2 because the last
time when the node changed label was into B, 2 timestamps ago. The same
happens for the edge between the two upper nodes in G4

3: the annotation is
z/− 1 because 1 timestamp ago the edge appeared with label z.
Addition If in the i+1− th snapshot the graph registers a new node or edge
with label l, it will be denoted as +l. An example is the edge between the two
left nodes in G2

1, denoted with +y.
Deletion When a node or an edge with label l is deleted in snapshot i + 1,
then the annotation will be −l/t, with t = 1. An example is the edge between
the 2 left nodes in G3

2, with annotation −y/1. Note that t is −n if the deletion
happened n timestamps ago instead of the current snapshot (i+1), like in the
case of the same edge between the left nodes but in G4

3, denoted with −y/−1.
Relabeling The idea is the same as the deletion case, but instead of −l the
annotation will remark the previous and current label. So, if a node or edge
changes the label from l1 to l2 in the i + 1 − th snapshot, the annotation
will be l1 → l2/1. An example of Figure 4.17 is the upper-left node in G3

2,
denoted with A→ B/1. In the same way as the deletion case, if the relabeling
happened n timestamps ago, the annotation will be A→ B/− n.
Time abstraction The union graph representation can also be extended using
two methods of time abstraction. Basically, instead of considering how many
timestamps ago the change happened, the extension will aggregate all negative
timestamps as −1 and all positive timestamps as 1. The time abstraction can
be applied at two levels:

• only on vertices, useful for graphs where the evolution mainly concerns the
edges and not label vertices;

• on both vertices and edges, particularly suited for graphs with a lot of
different patterns. With the time abstraction, a lot of patterns with different
time delta will be aggregated.

4.7.4 DGR algorithm

DGR Miner algorithm combines the two typical phases of a graph evolution
rule method, which are frequent patterns discovery and graph evolution rules
extraction. Thanks to the peculiar graph representation, the predictive rules
represented as condensed union graphs are already the final result. Basically,
the algorithm discovers the frequent patterns, selecting the ones with support

4.7 DGR Miner 64

and confidence over a fixed threshold (see the next subsection for details about
the support and confidence measure).
Frequent pattern discovery The pattern discovery phase leverage the same
algorithm as many others GER methods, that is gSpan, modifying some details
to make it fit their graph representation. The main feature to update is the
way edges are represented because the 5-tuples used by gSpan (i, j, li, l(i,j), lj)
cannot include the information about the direction of edges and relative times-
tamp. To solve this limitation the authors use a 9-tuple in the following format:

(i, j, li, ti, d(i,j), l(i,j), t(i,j), lj , tj)

where ti, tj , t(i,j) corresponds to the relative timestamp of node i, node j and
the edge (i, j) respectively. Moreover, d(i,j) specifies the direction of the link,
so the possible values are ←,→,− (the last symbol corresponds to undirected
edges). Using the 9-tuples, patterns can be ordered and the minimum DFS
code can be found for each pattern. The modified version of gSpan is then
applied to the set of union graphs obtained from the input dynamic graph.

4.7.5 Support and confidence

The support definition is based on the occurrence concept. A pattern P occurs
in Gi, written as P ⊑ Gi, if there exists a function Φ : VP → VGi

that maps
nodes in P to nodes in Gi. The support of a rule Pa → Pc is the ratio between
the number of snapshots where Pa and Pc occur consecutively over the number
of snapshots. Formally, the support is defined as follows:

σ(Pa → Pc) =
|{i|Pa ⊑ Gi, Pc ⊑ Gi+1, 1 ≤ i ≤ n− 1}|

n− 1

The confidence of a rule is intuitively the support of the rule over the support
of Pa, formally defined as:

conf(Pa → Pc) =
σ(Pa → Pc)

σ(Pa)

where: σ(Pa) =
|{i|Pa⊑Gi,1≤i≤n−1}|

n−1 .

Chapter 5

Null models classification

Randomized Reference Models (RRMs) have emerged as a powerful tool in
the study of complex networks, offering crucial insights into their intricate dy-
namics. These models involve the creation of random networks derived from
empirical data, with the randomization process constrained by specific features
of the input network. The goal is to generate random versions that match the
original network in key characteristics such as diameter, size, or other relevant
metrics. This approach allows researchers to distinguish between properties
that arise from the network’s inherent structure and those that are simply ar-
tifacts of its basic characteristics. A significant subset of RRMs employs uni-
form sampling of networks based on preserved features, drawing parallels with
microcanonical ensembles in statistical physics. Recognizing this connection,
Gauvin et al. [86] introduced the term Microcanonical Randomized Reference
Models (MRRMs) and provided a comprehensive taxonomy of existing works
in this field. In this chapter, we will summarize Gauvin’s survey to establish
the foundational concepts necessary for the discussions in subsequent chap-
ters, highlighting the importance of MRRMs in unraveling the complexities of
network structures and dynamics.

5.1 Microcanonical Randomized Reference Models -
MRRMs

Null models are crucial for understanding both theoretical and practical as-
pects of networked systems, providing a baseline for comparison against which
the observed patterns, features, and dynamics can be evaluated. By generating
randomized or synthetic versions of the original temporal network, null models

5.2 Representation of temporal networks 66

allow us to assess the significance and uniqueness of observed patterns, identify
deviations from randomness, and uncover meaningful structures and processes
in the data. According to [86], given a space G of all possible temporal networks
(states) and the single observation G∗ ∈ G, all models that sample a random
graph G from a conditional probability P (G|G∗) are defined randomized ref-
erence models (RRMs). In this context, the most popular models include con-
figuration models, Erdös-Rènyi (ER) models, and exponential random graph
models [87]. Depending on the application scenario, it could become necessary
to preserve specific features or properties while generating random temporal
graphs. This is where microcanonical randomized reference models (MRRMs)
come into play, providing a framework that allows us to retain specific char-
acteristics of the graph while randomizing the rest. The concept behind this
approach is preserving certain features while maximizing randomness. Relying
on the principle of maximum entropy, the use of such models is theoretically
justified since they offer the least biased approach among all possible degrees
of freedom [86]. Taking the definition from [86], given the observation G∗ in
the state space G, a MRRM is defined as a model that returns G ∈ G with
probability

Px(G|G∗) =
δx(G),x(G∗)

Ωx(G∗)

Here x : G → F is a function that returns a property of a graph G ∈ G and δ is
the Kronecker delta function. Finally, the normalization is given by Ωx(G

∗) =∑
G∈Gδx(G),x(G∗)

. Moreover, features can be combined to form more complex
constraints. In this case, the MRRM constrained on the features x1, ..., xq is
denoted as P [x1, ..., xq].

5.2 Representation of temporal networks

Gauvin et al. [37] categorized MRRMs into 4 categories, based also on the
temporal network representation. So, before delving into the categorization,
this paragraph will detail the two possible macro representation proposed by
[37].

Temporal graphs can be either represented in a timeline representation or
in a snapshot representation. Using the timeline representation, the temporal
graph is defined as G = (G,Θ), where G = (V,E) is the static graph repre-
senting the pair of nodes interacting during the period of observation. While
Θ is the set of timelines, one assigned to each of the links (i, j) ∈ E, with
θ(i,j) = ((t1(i,j), τ

1
(i,j)), ..., (t

n
(i,j), τ

n
(i,j))). Figure 5.1a shows an example of the

5 Null models classification 67

θ(a,b)
θ(c,b)
θ(d,c)
θ(b,d)

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

Γ
Γ2Γ1 Γ3 Γ5Γ4 Γ6

Θ G

(a)

(b)
Snapshot representation

Timeline representation

1 2 3 4 5 6t (
()

)
Figure 5.1: Reprentation of temporal graphs according to Gauvin et
al. [37]. (a) shows the timeline representation, which consists in a static graph G
and a timeline multiset Θ. The snapshot representation depicted in (b) instead
is composed of a sequence of static graphs Γ and a set of timestamps t.

timeline representation of a temporal graph. On the other hand, Figure 5.1b
shows the snapshot representation of the same graph G = (Γ, T). The Figure
shows the sequence of static graphs Γ = (Γ1, Γ2, ..., Γn), while the other ele-
ment of the definition T = (1, 2, ..., n) is the sequence of timestamps observed.
According to the taxonomy proposed in Chapter 3,the timeline representation
corresponds to a version of the evolving projection GEP

[1,T] where the timelines
are defined by the labeling function fEP instead of being the separate set Γ .
On the other hand, the snapshot representation corresponds exactly to the
sequence of static graphs G = {G1, G2, . . . , GT } defined by the interval model.

5.3 MRRMs taxonomy

MRRMs can be classified according to two factors: i) preservation of temporal
distribution or topology, and ii) the representation of temporal networks as
either timelines or snapshots.

5.3 MRRMs taxonomy 68

Graph representation

Timeline
representation

Snapshot
representation

What’s
preserving

Topology Timeline shuffling Sequence shuffling

Temporal
distribution Link shuffling Snapshot shuffling

Graph representation

MRMMs
categories

Timeline
representation

Snapshot
representation

What’s
preserving

Topology Timeline shuffling Sequence shuffling

Temporal
distribution Link shuffling Snapshot shuffling

Figure 5.2: Four primary categories of microcanonical randomized reference
models. Each row represents the characteristic of the temporal network which is
preserved, and each column refers to the representation of the temporal network,
i.e. stream-based or snapshot-based.

When models preserve the temporal distribution they favor capturing the
temporal dependencies and dynamics of the original network. Conversely, other
models might prioritize preserving network topology to gain insights into struc-
tural properties. The second factor revolves around the representation of tem-
poral networks. In the timeline representation, the temporal ordering is crucial,
with the graph capturing the static topology and additional time-series infor-
mation describing the timing and duration of edges/events for each node. On
the other hand, the snapshot model treats each time window as a separate
graph (potentially with the same set of nodes), enabling a focus on individual
time points. The combination of these two factors leads to four primary cate-
gories of MRRMs depicted in Figure 7.2. The following paragraphs will detail
the categories separately.

5.3.1 Timeline representation: Timeline and link shuffling

Models in the timeline shuffling category aim to preserve network topol-
ogy while using a timeline representation. This approach maintains the static
network structure but shuffles timestamps within or between timelines, high-
lighting significant dynamics. The link shuffling category encompasses mod-
els that preserve the temporal distribution on a timeline-represented network.
In this case, static links are shuffled while their associated timelines remain
unchanged. Figure 5.3 illustrates a temporal graph (G,Θ) (left) and its most
random timeline and link shuffling. Timeline shuffling is defined as P [L, E],
where L represents the static graph’s edge set and E the total event count.
This example features 14 events (single-colored blocks representing instanta-

5 Null models classification 69

neous events) shuffled across 4 timelines (one per edge of G), while the static
graph remains unchanged (G∗ = G). Conversely, link shuffling MRR is de-
noted as P [Θ], preserving the timeline set Θ. The bottom-right of Figure 5.3
displays link-shuffled timelines with altered edge assignments, reflected in the
randomized version G.

θ(a,b)
θ(c,b)
θ(d,c)
θ(b,d)

Timeline-shuffled Θ

θ(a,b)
θ(c,b)
θ(d,c)
θ(b,d)

Timelines Θ

Link-shuffled Θ

a b

cd

Ga b

cd

G*

G

θ(a,c)
θ(c,d)
θ(d,b)
θ(a,b)

a b

cd

Figure 5.3: Timeline and Link shuffling MRRM. Two randomization
techniques applied to a dynamic graph that uses the timeline representation. On
the left, we see the original graph G∗ with its corresponding event timelines.
The upper-right shows the timeline-shuffled method, where the static structure
of G∗ remains unchanged in G, but individual events within the timelines are
randomly rearranged. The bottom-right depicts the link-shuffling method, where
edges in G∗ are switched while preserving the original timelines.

5.3.2 Snapshot representation: Sequence and snapshot shuffling

In snapshot representation, MRRMs can be categorized as sequence shuf-
fling when aiming to preserve topology. This method shuffles snapshot order
while maintaining network topology within each snapshot. Conversely, when
preserving temporal distribution on graphs in snapshot representation, the
MRRM falls under the snapshot shuffling category. This approach involves
shuffling edges within individual snapshots, allowing for isolated examination
of time points. Figure 5.4 illustrates a temporal graph (Γ ∗, t) -where Γ ∗ rep-
resents the graph sequence and t the timestamp sequence- along with its most
random sequence and snapshot shuffling. Sequence shuffling MRRM is defined
as P [Γ], preserving snapshot topology. The example uses color-coding for each

5.3 MRRMs taxonomy 70

snapshot in Γ ∗ to highlight that randomization in sequence shuffling involves
reordering unmodified snapshots. Snapshot shuffling, represented by MRRM
P [t], maintains the unmodified sequence t (shown below the graph sequence)
while randomizing each snapshot’s topology, as depicted in Figure 5.4.

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd
Γ*

Snapshot
shuffled Γ

Sequence
shuffled Γ

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

1 2 3 4 5 6

1 2 3 4 5 6t ()

1 23 45 6

Figure 5.4: Sequence and Snapshot shuffling MRRM. Two randomiza-
tion techniques applied to a dynamic graph that uses the snapshot representa-
tion. In the middle, we see the original graph sequence Γ ∗ with its correspond-
ing timestamps list t. The upper graph sequence shows the sequence-shuffled
method, snapshots order is shuffled. The bottom graph sequence instead depicts
the snapshot-shuffling method, where edges in each snapshot are shuffled, but the
temporal distribution is unmodified.

In general, MRRMs represent a valid tool for assessing the significance of
measurements on real-world temporal networks and for extracting meaningful
insights about their dynamics and structure. Indeed, the literature offers vari-
ous applications and fields where MRRMs have been employed, including but
not restricted to contagion processes [88], temporal motifs [89], and random
walks [90].

Chapter 6

Case studies

This chapter introduces the key datasets and case studies that underpin the
analyses throughout this thesis. Each dataset comprises a series of times-
tamped operations, transactions, or relationships, providing a temporal snap-
shot of network evolution. We begin by outlining the semantic content of each
dataset, explaining what the data represents and its real-world context. Fol-
lowing this, we describe the modeling approaches applied to transform these
temporal sequences into structured representations suitable for our analytical
frameworks. This chapter thus lays the groundwork for the in-depth analy-
ses presented in subsequent sections, offering both a clear picture of our data
sources and the methodological foundation for their interpretation.

6.1 UC-social

One of the used dataset is obtained from a directed temporal network publicly
available at http://konect.cc/networks/opsahl-ucsocial/, which collects
59835 message interactions among 1957 students of the University of Califor-
nia (Irvine) in an online community. Each interaction od the dataset (i, j, t)
denotes a message sent from i to j at time t. We modeled the interactions as
a directed temporal graph recording, for each couple of users interacting with
each other, only the first one. According to the taxonomy of Chapter 3, the
graph is a growing projection GGP

[1,T] = (V,E, f), with the edge-labeling func-
tion f that assigns the timestamp of the first interaction for each couple of
nodes (i, j). The obtained graph contains 20296 edges connecting 1957 nodes
(users).

http://konect.cc/networks/opsahl-ucsocial/

6.2 DBLP datasets: citations and co-authoriship 72

6.2 DBLP datasets: citations and co-authoriship

DBLP, short for Digital Bibliography & Library Project, is a computer science
bibliography website and it is the source of two datasets used in this thesis,
recording different type of interactions among researchers: co-authoriships and
citations. This section will detail the two datasets separatly.
DBLP-Citations The first DBLP datasets1 [91, 92] records the citations be-
tween publications from 1975 to 2010, for a total of 49759 interactions. Even
if data collect a period of 35 years, links are not equally distributed as shown
in Figure 6.1. Consequently, we selected the most active period (20 years),
from 1980 to 1999, and removed self-loops. We modeled the filtered list of

1975 1980 1985 1990 1995 2000 2005 2010

Year

0

500

1000

1500

2000

2500

3000

3500

4000

Ed
ge

s

Figure 6.1: DBLP. Number of edges year-by-year. On the x-axis the period
covered by the original dataset, and on the y-axis the number of edges created
in a specific year. After 1999, we observed a drastic drop in the creation of new
edges.

interaction (citations), as the UC-social one, into a graph that, according to
the taxonomy proposed is a growing projection GGP

[1,T] = (V,E, f), with the
edge-labeling function f that assigns the timestamp of the first interaction for
each couple of nodes (i, j). Note that in this case there are no multiple inter-
actions among the same couple of nodes (publication), so the first timestamp
correspond to the only one. The obtained graph presents 47, 654 edges and
11, 971 nodes.
DBLP co-authorship The second DBLP-dataset used in this thesis is pub-
licly available at https://www-kdd.isti.cnr.it/GERM/ and gathers all the co-
authorship interactions from 1992 to 2002 with a yearly granularity. The list of
co-authorsips relations are modeled into a growing projection temporal graph
GGP

[1,T] = (V,E, f), with each couple of co-authors being linked with an edge

1 The dataset is publicly available at http://konect.cc/networks/dblp-cite/.

https://www-kdd.isti.cnr.it/GERM/
http://konect.cc/networks/dblp-cite/

6 Case studies 73

associated with the year of their first collaboration. The obtained network has
129073 nodes and 277081 edges, with 11 possible timestamps.

6.3 Enron email dataset

The Enron dataset 2 consists of 1148072 email communication records among
Enron employees during a critical period (from 1999 to 2003). This dataset
emerged from the investigation into the Enron scandal[93], which revealed
extensive accounting fraud that led to the company’s bankruptcy in December
2001 and significant financial losses for investors and employees. The Federal
Energy Regulatory Commission (FERC) obtained these emails as part of their
inquiry into the company’s practices, and later made them publicly available
for transparency and research purposes. We first aggregate timestamps on with
a weekly granularity (meaning that we aggregated into the same timestamp all
the edges within the same week) and then analyze the distribution of edges over
weeks, shown in Figure 6.2. We selected the period from January 2001 to June
2001. This period lies within the most active one and is also temporally close
to the scandal. The filtered datasets is composed of tuples (x, y, t) denoting
emails sent from employee x to employee y at timestamp t. We modeled this
dataset in a graph GGP

[1,T] = (V,E, f) respecting the growing projection type
(see taxonomy in Chapter 3), with the edge-labeling function f that assigns
the timestamp of the first email for each couple of employees (i, j). In this
way, we obtained a temporal directed graph of 32, 178 nodes and 107, 234
edges. Since the input graph presented several connected components, we only
considered the largest connected component of the graph, including 89.1% of
nodes; finally obtaining a graph of 31, 312 nodes and 106, 642 edges.

6.4 Stack Overflow

The Stack Overflow dataset3 captures 17, 823, 525 interactions from the Stack
Exchange website, specifically focusing on the a2q edge list, which records
answers to questions.

Each edge (u, v, t) denotes user u answering user v’s question at time t. This
extensive dataset is composed of tuples (u, v, t) denoting a user u answering
user v’s question at time t. It involves 2, 464, 606 users and spans from October
14, 2008, to March 6, 2016, totaling 2,774 days. From the distribution of edges
2 The dataset is publicly available at http://konect.cc/networks/enron/
3 Access the dataset at https://snap.stanford.edu/data/sx-stackoverflow.html

http://konect.cc/networks/enron/
https://snap.stanford.edu/data/sx-stackoverflow.html

6.5 Bitcoin Alpha 74

20
00

-0
1-

03

20
00

-0
3-

13

20
00

-0
5-

22

20
00

-0
7-

31

20
00

-1
0-

09

20
00

-1
2-

18

20
01

-0
2-

26

20
01

-0
5-

07

20
01

-0
7-

16

20
01

-0
9-

24

20
01

-1
2-

03

20
02

-0
2-

18

20
02

-0
4-

29

20
02

-0
7-

08

Week

0

5000

10000

15000

20000

25000

30000

35000

Ed
ge

s

Figure 6.2: Enron. Number of edges week-by-week. On the x-axis the period
covered by the original dataset with a weekly granularity, and on the y-axis the
number of edges created in a specific week.

0 500 1000 1500 2000 2500

Day

0
2000
4000
6000
8000

10000
12000
14000

Ed
ge

s

Figure 6.3: Stack Overflow. Daily number of edges. On the x-axis the index
of the days covered by the dataset, and on the y-axis the number of edges created
in a specific day.

per day depicted in Figure 6.3, we decided to filter the dataset considering
edges happened from the 500th to the 2500th day, covering a period of 2, 000
days within the most active one. As for the previous datasets, we modeled
the interactions (answers to questions) with a graph respecting the growing
projection of taxonomy in Chapter 3, obtaining a graph GGP

[1,T] = (V,E, f)
where the labeling function selects the first moment in time where two nodes
interact. This process yields a temporal directed graph with 2, 115, 635 nodes
and 13, 519, 681 edges. In fact, the Stack Overflow temporal network represents
the largest case study used in this thesis.

6.5 Bitcoin Alpha

The Bitcoin system [94] allows anonymous transactions between users. Nu-
merous trading platforms have emerged to enhance usability, many of which
track user reputations to safeguard against fraudulent and high-risk users. The

6 Case studies 75

Bitcoin Alpha dataset [95, 96] includes 24, 186 user ratings exchanged among
3, 683 users. These ratings are unique and predominantly positive (22, 650 out
of 24, 186). The dataset has been integrated into several major graph analysis
and machine learning libraries like SNAP [97], due to its network structure
and the wealth of additional information it provides, such as time and weight
(ratings). According to the taxonomy in Chapter 3, once again we model the
links into a growing projection graph GGP

[1,T] = (V,E, f) with tiemstamps on
the edges, assigned by he labeling function f , recoding the moment of first
(and only) trust expression. Even if the datasets includes trust and distrust
operations (denoted with a positive or negative weight respectively), we only
include trust links to make the network homogeneous. In this way, we obtain
a network of 3, 683 nodes and 22, 650 edges.

6.6 Sarafu dataset

The Sarafu dataset represents the first case study described in this chapter to
be part of the Web3, because of its use of the blockchain technology. Sarafu4

is a digital CC token created by the Grassroots Economics (GE) Foundation
[98], a humanitarian aid foundation.
Complementary currencies. Complementary currencies (CCs) in general
are currencies that originate in various geographic situations to supplement the
official national currency [99]. CCs can also be viewed as a fungible “voucher”
or credit obligation redeemable for products and services, [100]. There are
many instances of CC systems all around the world, with an estimated 3,500
to 4,500 CC initiatives in more than 50 nations since the 1980s [101, 102].
The Sarafu project Sarafu users may perform payments using mobile
phones, transferring Sarafu digital tokens to other registered users. As de-
scribed in Ussher et al. [100] the Kenyan Red Cross relied on Sarafu tokens
to provide humanitarian aid during the COVID-19 pandemic: users registering
were given free Sarafu tokens, backed by donors’ money, to maintain the system
running. The use of blockchain technology is a key component of Sarafu. While
the Sarafu project has not used blockchain technology from its inception, it
has used it to solve several important issues [100]. Among the motivations, we
have enhanced transparency, as transaction data allows contributors to fully
disclose the impact of their donations. Furthermore, data analysis can lead
to more informed decision-making processes regarding, for example, future in-
vestments and project functioning, while it also helps the GE Foundation to
4 Sarafu means “currency" in Kiswahili

6.7 NFTs sales dataset 76

find ways to improve user welfare and minimize potential misuse. The system
first moved to a blockchain maintained privately called POA. The name is
derived from its consensus protocol, Proof of Authority [103], PoA in short.
The project then switched to a public blockchain named xDai blockchain in
2020 to lower transaction costs[100]. Finally, in May 2022, the project tran-
sitioned to a new blockchain built by the GE Foundation to better meet its
objectives. Kitabu (“Ledger" or “Book" in Kiswahili) is the name of the new
blockchain, which is based on the Proof of Authority consensus protocol. The
Sarafu dataset consists in blockchain transactions of the sarafu token, with as-
sociated attributes like timestamp and amount of cryptocurrency exchanged.
The dataset present also attributes on nodes, like business type or geographi-
cal information. In our study, we are focused on transactional data only, and
this datasets includes 412,050 transactions involving 53,277 users, covering the
period between January 2020 to June 2021. Following the growing projection
modeling of the taxonomy described in Chapter 3, we build a temporal graph
GGP

[1,T] = (V,E, f) where we record, for each couple of users that interacts at
least once in the covered period, the timestamp of their first interaction (as-
signed by the function f). In the resulting temporal network, we have 40,343
nodes and 143,239 links.

6.7 NFTs sales dataset

Among Web3 platforms, we focused on NFT marketplaces. An NFT is a
blockchain-based data unit with a double goal: first, it provides a unique cer-
tificate of ownership of a digital object. Second, it attests to the uniqueness
and non-transferability of a digital asset. Thanks to this technology, it is pos-
sible to track down the complete history of ownership of an object and check
its authenticity. In concrete terms, an NFT can represent a variety of digital
items, including photographs, movies, and audio. As a consequence, several
contexts, such as art, gaming, and sports collectibles, utilize NFTs to regulate
and control digital objects. The birth of the NFT market can be traced back
to late 2017 when the blockchain game Cryptokitties gained popularity. How-
ever, the market remained dominated only by Crypokitties until July 2020
when it started to grow and in March 2021 reached a peak of popularity, due
to the selling of an artwork’s NFT for $69.3 million. This purchase allowed the
author, Beeple, to reach one of the highest auction prices for a living artist.
The case studies involved in this thesis are extracted from the NFTs sales col-
lection by Nadini et al. [104], collecting transactions on multiple marketplaces
(APIs): Cryptokitties, Atomic, Opensea, Gods-unchained, and Decentraland.

6 Case studies 77

The data collection is composed of 6.1 million trades of 4.7 million NFTs in
160 cryptocurrencies, primarily Ethereum and WAX, covering the period from
June 23, 2017 to April 27, 2021. Figure 6.4 shows when the different markets
were launched precisely. In this thesis, we focus on two NFT marketplaces:
CryptoKitties and OpenSea. These platforms were selected for their overlap-
ping operational periods and significant market presence.
CryptoKitties, launched in 2017, is one of the earliest NFT projects. It a
game based on the Ethereum blockchain technology, featuring collectible dig-
ital cats that users can breed and trade. It gained widespread attention, at
times congesting the Ethereum network due to its popularity. The subset of
the dataset in [104] related to transactions on Cryptokitties is composed of
725400 transactions involving 99984 wallets (users).
OpenSea, established in late 2017 (our first recorded transactions is dated
February 4,2018), is also based on the Ethereum blockchain. OpenSea has
evolved into the largest NFT marketplace, offering a wide array of digital as-
sets including art, music, domain names, and virtual world items. The dataset
by Nadini et al. [104] includes 1907262 transactions made on the OpenSea
market.

Figure 6.4: Timeline of NFT markets. Markets are shown on a timeline
ordered by the time of their first transactions. The dataset covers the period
from the introduction of Cryptokitties on November 23, 2017, up to almost a
year after the first transaction in the Atomic market.

The modeling approaches for these datasets are diverse and context-
specific. As such, we will present and discuss the specific modeling techniques
in the respective chapters where these datasets are utilized, ensuring a clear
connection between the data, the modeling strategy, and the research questions
being addressed.

6.8 Steemit 78

6.8 Steemit

The last set of dataset explored in this thesis is sourced in the Steemit plat-
form. Steemit5 is one of the pioneering systems of the Web3 ecosystem since it
introduced the concept of a rewarding system in a social network [105, 106] and
employed the Delegated Proof-of-Stake (DPoS) consensus algorithm for block
validation in social network applications. In general, Steemit is a blockchain-
based blogging and social media platform that stands at the intersection of con-
tent creation and cryptocurrency incentives. Steemit’s users publish and share
multimedia content, engaging with it mainly through comments and votes. Due
to its social platform nature, users can follow others, allowing them to receive
notifications whenever new content is posted by those they follow. Steemit is
among the first platforms to adopt a reward mechanism, compensating users
with cryptocurrency tokens for writing or voting on highly successful articles.
The reward system and several other components of the Steemit ecosystem are
realized through blockchain technology, specifically the Steem blockchain. In
this section, we delve into the technical details of Steemit, exploring the inner
workings of its token system, the mechanisms governing reward distribution,
and the processes that define user interactions within this decentralized ecosys-
tem. Moreover, details about the Steem blockchain and the block validation -
witnesses - are provided. Finally, we detail the datasets we extracted from the
Steemit platform.

The basic elements of blockchain-based social platforms Blockchain-
based social platforms introduced a few peculiar aspects w.r.t. the main-
stream online social media, mainly connected to their foundational element:
the blockchain. To this aim, it is crucial to clarify the main terms, essential
to understanding the Steemit ecosystem, and in general blockchain-based so-
cial platforms. Steem represents both the blockchain upon which the system is
built and the native token (cryptocurrency) the rewarding system is based on6.
Concurrently, Steemit denotes not only the platform itself - the software sys-
tem - but also the overseeing company. In the micro-blogging platform Steemit,
users primarily engage in the creation and curation (voting and commenting)
of posts. These actions have an economical return since after a 7-day period
post-publication, the value of the post or comment becomes fixed, leading to
subsequent rewards for both the author (the user who created the post) and
5 https://steemit.com/
6 To differentiate the cryptocurrency from the blockchain, the former is also named

STEEM.

6 Case studies 79

curators (users who vote/comment on the post). As detailed later, the token
system supported by the Steem blockchain plays a fundamental role during the
creation of posts, in voting, and in the distribution of the generated wealth.
Token system In Steemit, the token system provides three different tokens:
(i) STEEM as its native cryptocurrency, (ii) SBD with a value aligned to the
US Dollar - token pegged to USD, and (iii) Steem Power (SP) representing a
distinctive form of investment in the ecosystem. The schema of Figure 6.5 de-
tails the token system and the relationships among tokens: STEEM, the main
platform token, can be exchanged for SP, through an operation called power-
up. This operation is an investment that translates into platform advantages,
such as enhanced voting influence and increased posting/voting capabilities.
Conversely, users can convert SP back into STEEM through the power-down
operation; however, to discourage disinvesting from the platform and getting
more liquidity (STEEM or SBD), the conversation is a long process lasting 4
weeks7. Additionally, STEEM can be (externally) converted into a more uni-
versally recognizable currency, SBD, mirroring the value of the US Dollar. On
the other hand, the conversion from SBD to STEEM can be done internally
on the platform. The shift from SBD to STEEM unfolds over 3.5 days, ac-
companied by a conversion fee equivalent to the average value of STEEM in
US Dollars during this time. Alternatively, for users seeking expedited trans-
actions, an immediate conversion can be executed within the internal market
at the current market price. Finally, users can buy and sell both SBD and
STEEM through external systems. In fact, STEEM and SBD have the highest
level of liquidity in the token system. With the creation of each new block, a

SPSTEEMSBD

Convert
Buy

Sell

External
exchange

Power
up

Power
down

Buy

Sell
gradually
over 4 weeks

3.5 days or
immediately in
internal market

Figure 6.5: Steemit token system. The illustration summarizes the three
tokens making up the Steemit token system and their exchange operations. The
arrows also report the main temporal constraints for exchanging SP into STEEM
and SBD into STEEM.

7 https://steemit.com/faq.html

https://steemit.com/faq.html

6.8 Steemit 80

fresh batch of tokens is generated. Diverging significantly from Bitcoin, in the
Steem ecosystem, the majority of tokens is not allocated to miners, termed
witnesses in this context. Instead, they contribute to the reward pool, a fund
designed for curators and creators. Precisely, the distribution of tokens from
the new block unfolds as follows: 65% to the rewards pool, 15% to vesting au-
thors (users holding STEEM), 10% to the Steem proposal system 8 (a platform
for proposing and accepting developments within Steem), and the remaining
10% allocated to witnesses.
Posts and comments As mentioned earlier, posts constitute a key element
of the Steemit blogging platform. Upon creating a post, authors are prompted
to specify whether they prefer a 100% SP reward - all the reward is invested
in the platform - or a split of 50% SP and the remaining 50% in STEEM - half
of the reward is liquidity. During the 7-day reward-decision period, the value
of a post may increase through additional upvotes, the removal of downvotes,
a rise in STEEM value, or if other posts receive more downvotes. Conversely,
the value may decrease with downvotes, increased upvotes on other posts, re-
moval of upvotes, or a decrease in STEEM value. Platform-wide, post values
are displayed in SBD, reflecting the average value over the last 3.5 days, as
reported by witness users. After the 7 days, the final reward is divided, allocat-
ing 50% to the author (the user who created the post) and the remaining 50%
distributed among curators (users who voted) proportionally to the SP they
hold. The user’s capacity to create posts is proportional to their Steem Power,
with a minimum interval of 5 minutes between posts. Post modifications are
possible within the 7-day reward-decision window, retaining all versions on the
blockchain, while only the latest version is displayed in the front-end. Users can
promote their posts by spending SBD, ensuring visibility in the “promoted”
tab based on the amount spent. Additionally, users have the option to promote
other users’ posts. Comments mirror posts in that they are subject to voting,
with authors and curators receiving rewards after the 7-day period.
Votes As a consequence of the mechanism of the reward distribution, en-
gagement in the Steemit ecosystem revolves not only around posting but also
voting, constituting the main pathway for earning, when executed thought-
fully. To safeguard against potential abuse, a systematic approach is in place.
Firstly, a vote must be cast at least 5 minutes after the publication of a post;
failing to adhere to this timeframe results in a portion of the potential reward
reverting to the reward pool. Secondly, each user possesses a voting mana — a
form of energy bar — that depletes with each vote. Users typically expend 2%

8 https://steemit.com/sps/@flaws/what-is-the-steem-proposal-system-sps-and-
why-is-it-very-important

6 Case studies 81

of their mana when casting a vote with 100% voting power. However, users pos-
sessing 500 SP or more earn the flexibility to customize the intensity of mana
utilized for each vote. The impact of a vote is directly proportional to the
voting mana possessed by the voter (other than the SP level). Mana recharges
by 20% daily, and a distinct voting mana is allocated for downvotes. Crucially,
curation rewards are exclusive to upvote operations, while downvotes serve a
distinct purpose. Primarily administered by influential users known as whales,
downvotes function as a means of moderation, contrasting spam and copyright
violations.
Blockchain system To conclude this comprehensive overview of the Steemit
ecosystem, we delve further into the foundation of the platform: the Steem
blockchain. One notable aspect is that every operation on the blockchain, such
as posting, voting, commenting, and other actions, is inherently free of charge.
However, to mitigate spam, the concept of resource credits (RC) comes into
play. Users are allotted a limited RC per week, proportionate to their SP.
During peak blockchain activity, operations may require more RC.

In terms of consensus algorithm for block validation, the Steem blockchain
operates on the Delegated Proof-of-Stake (DPoS) protocol. This innovative
approach involves delegating the task of mining/validating blocks to trusted
accounts known as witnesses, who are the 21 most voted users for this role.
With blocks mined every 3 seconds, each witness has the opportunity to mine
a block approximately every 63 seconds. If a voted witness fails during their
turn, the next one in the ranking assumes the responsibility in the subsequent
turn. The first 20 witnesses are selected from the current voting rank, while
the 21st is chosen from the remaining ranks with a probability proportional
to their position. Witnesses are elected through votes from regular users, with
each user having the capacity to vote for up to 30 witnesses simultaneously.
This voting system is comparable to placing trust in 30 witnesses simultane-
ously. Should a user wish to vote for a 31st witness, they must remove their
vote from one of the existing 30 witnesses.

6.8.1 Hive

Hive is a platform that shares the main characteristics of Steemit because it is
actually born after an hard fork on the Steemit platform. The events leading to
the Steem-Hive fork began in February 2020 when TRON, a gambling-oriented
blockchain company led by Justin Sun, acquired Steem9. Initially, Steemit’s
9 https://news.bitcoin.com/steemit-for-sale-tron/

https://news.bitcoin.com/steemit-for-sale-tron/

6.8 Steemit 82

founder had allocated a reservoir of tokens intended solely for Steem ecosys-
tem development, meant to be non-voting in governance issues 10. However,
post-acquisition, these guarantees were uncertain, prompting some active users
to attempt freezing TRON’s acquired tokens through a soft fork11. TRON,
with assistance from cryptocurrency exchanges, managed to amass significant
voting power on the platform, ultimately gaining control of over 51% of wit-
nesses. This allowed TRON to elect its chosen witnesses and subsequently
reverse the soft fork’s effects12. In response to this perceived hostile takeover,
Steem’s original witnesses announced a hard fork13, which occurred on March
20, 2020, giving birth to Hive14. As Hive shares the same pre-fork blocks with
Steem, Hive witnesses took preventive measures by freezing or confiscating
funds owned by those involved in the hostile takeover to safeguard the new
platform. Hive also introduced innovations such as a delayed voting influence
mechanism to mitigate potential future 51% attacks, providing the community
with a window to respond proactively. The Hive platform is then considered
in this thesis in the chapter dedicated to user migration.

6.8.2 Datasets

Steemit and Hive’s open nature and comprehensive API access provide a
unique opportunity for extensive data collection and analysis. Through these
APIs, we can potentially retrieve every operation recorded on the blockchains,
including a wide array of user interactions such as follows, comments, votes,
transfers, and various other activities. This data offers a rich landscape for
temporal network analysis, encompassing both social and financial interac-
tions within a single ecosystem. The specific operations we obtained and the
time periods covered will be detailed in the relevant chapters where this data
is utilized. This approach allows us to tailor our data presentation to the
particular research questions and analytical methods employed in each study,
ensuring a clear connection between the data source, the modeling strategy,
and the insights derived.
10 https://steemit.com/steem/@softfork222/soft-fork-222
11 https://www.coindesk.com/tech/2020/02/24/justin-sun-bought-steemit-

steem-moved-to-limit-his-power/
12 https://www.coindesk.com/tech/2020/03/03/steem-community-mobilizes-

popular-vote-in-battle-with-justin-sun/
13 https://www.coindesk.com/tech/2020/03/17/steem-community-plans-

hostile-hard-fork-to-flee-justin-suns-steemit/
14 https://cointelegraph.com/news/hive-hard-fork-is-successful-steem-

crashes-back-to-earth

https://steemit.com/steem/@softfork222/soft-fork-222
https://www.coindesk.com/tech/2020/02/24/justin-sun-bought-steemit-steem-moved-to-limit-his-power/
https://www.coindesk.com/tech/2020/02/24/justin-sun-bought-steemit-steem-moved-to-limit-his-power/
https://www.coindesk.com/tech/2020/03/03/steem-community-mobilizes-popular-vote-in-battle-with-justin-sun/
https://www.coindesk.com/tech/2020/03/03/steem-community-mobilizes-popular-vote-in-battle-with-justin-sun/
https://www.coindesk.com/tech/2020/03/17/steem-community-plans-hostile-hard-fork-to-flee-justin-suns-steemit/
https://www.coindesk.com/tech/2020/03/17/steem-community-plans-hostile-hard-fork-to-flee-justin-suns-steemit/
https://cointelegraph.com/news/hive-hard-fork-is-successful-steem-crashes-back-to-earth
https://cointelegraph.com/news/hive-hard-fork-is-successful-steem-crashes-back-to-earth

Part II

Stand Alone Rules

85

The field of graph evolution rules has seen limited exploration, with ex-
isting research often proposing algorithms without comprehensive analytical
frameworks. These algorithms typically face constraints in their scope and
applicability. This thesis aims to address these limitations by adding to the
GERANIO framework part dedicated to stand-alone graph evolution rules,
and introducing novel analytical tools.

We begin by developing a specialized null model for the GERM algorithm,
inspired by Gauvin et al. [37]’s categorization. This timeline-shuffled null model
prioritizes network topology preservation over temporal distribution, applied
to temporal graph timelines. This approach aligns with GERM’s graph rep-
resentation and our focus on network dynamics rather than specific topology.
The null model is applied to three distinct networks with varying time gran-
ularities: two social networks and one citation network. Results reveal the
model’s significant impact on rule evaluation and interpretation, highlighting
under-represented rules and suggesting the influence of temporal factors and
other mechanisms on network evolution.

Building on this, we introduce the GER profile, an analytical tool facili-
tating comparison of evolutionary behaviors across networks. This probability
distribution of stand-alone rule frequencies characterizes network growth in di-
verse contexts. We analyze two NFT networks (CryptoKitties and OpenSea)
and two BOSN networks from the Steemit platform (financial transactions and
follow operations). Our analysis reveals both consistently frequent rules across
networks and platform-specific rules, such as the prevalence of reciprocal traits
in the only network with a social nature (follow operation on steemit).

After using the GER profile at graph level, we then extend the applica-
tion to other scales: node and community levels. At node level, we develop a
temporal behavioral node representation using GER profiles of ego networks.
Analyzing the Sarafu complementary currency platform, we identify groups of
nodes with similar evolution rules, revealing common interaction patterns and
user behaviors.

Finally, at the community level, we compare GER profiles across four di-
verse networks (communication, social, citation, and online discussion), finding
that similarly evolving communities tend to be proximate in the network.

These enhancements and applications advance the stand-alone GER frame-
work, offering new tools and perspectives for understanding network evolution
at multiple scales.

Chapter 7

Statistically significant rules

7.1 Introduction

Understanding and extracting knowledge from temporal networks is crucial
to understand their dynamic nature and gain insights into their evolutionary
characteristics. Existing approaches to network growth often rely on single-
parameterized mechanisms, neglecting the diverse and heterogeneous behav-
iors observed in contemporary techno-social networks. To overcome this lim-
itation, methods based on graph evolution rules (GER) mining have proven
promising. GERs capture interpretable patterns describing the transformation
of a small subgraph into a new subgraph, providing valuable insights into evolu-
tionary behaviors. However, current approaches primarily focus on estimating
subgraph frequency, neglecting the evaluation of rule significance. To address
this gap, we propose a tailored null model integrated into the GERM algo-
rithm, the first and most stable graph evolution rule mining method. Our null
model preserves the graph’s static structure while shuffling timestamps, main-
taining temporal distribution, and introducing randomness to event sequences.
By employing a z-score test, we identify statistically significant rules deviating
from the null model. We evaluate our methodology on three temporal networks
representing co-authorship and mutual online message exchanges. Our results
demonstrate that the introduction of the null model affects the evaluation and
interpretation of identified rules, revealing the prevalence of under-represented
rules and suggesting that temporal factors and other mechanisms may impede
or facilitate evolutionary paths. These findings provide deeper insights into the
dynamics and mechanisms driving temporal networks, highlighting the impor-
tance of assessing the significance of the evolution patterns in understanding
network evolution.

7.2 Background and related works 88

7.2 Background and related works

7.2.1 Graph Evolution Rules - GERs

Similar to association rules in data mining [107], a graph evolution rule - GER -
consists of a precondition (referred to as the body) and a postcondition (referred
to as the head). These rules can be interpreted as indicating that a subgraph
matching the body is likely to evolve into the head, providing human-readable
and explainable outcomes. For instance, Figure 7.1 depicts a graph evolution
rule that indicates the presence of triadic closure in a directed graph. Graph
evolution rules offer a powerful approach to uncovering complex mechanisms
within temporal networks. In fact, they not only provide insights into the
underlying dynamics but also facilitate the development of more precise models
for predicting how the network will evolve. Furthermore, the collection of graph
evolution rules extracted from a specific network can serve as a differentiating
factor from other graphs [40], which may differently evolve driven by distinct
mechanisms.

Computer Science Dept. @ UniMI CONNETS Lab 7

Precondition Postconditiont0
t1Body Head

Antecedent Consequent

Evomine e LFR li chiama precondition e postcondition,
GERM e TPminer head e body
DGR antecedent e consequent

Figure 7.1: Example of graph evolution rule - GER. On the left, the body of
the rule, i.e. a graph with two links - grey arrows - created at time t0, and on the
right, the head of the rule represents the state of the body on the left side after
evolving, indicated by the addition of a new link (green arrow) at the successive
timestamp t1.

The identification of graph evolution rules has been the subject of different
research works. In general, current state-of-the-art methods for detecting the
topological evolutionary processes in a network follow a two-step methodol-
ogy. Initially, rules are extracted through frequent subgraph mining, followed
by the application of filtering techniques utilizing measures such as support
and confidence, i.e. frequency-based properties. These steps collectively con-
tribute to the identification and characterization of the evolutionary patterns

7 Statistically significant rules 89

of the network. One of the earliest methods introduced in the literature for
extracting graph evolution rules is GERM, developed by Berlingerio et al. [29]
in 2009. Its rules can detect undirected edge insertion events, with relative
time, but the processes of removing edges and relabeling nodes and edges are
not captured. Leung et al. [31], and later Ozaki et al. [32], introduced the
LFR (Link Formation Rule) algorithm, which aims to capture the creation of
directed links between source and destination nodes. Both GERM and LFR
algorithms utilized the minimum image-based support [33] and gSpan-based
techniques for frequent subgraph mining [30]. Ozaki et al. [32] extended LFR
to an undirected version and proposed a method for identifying relationships
between rules. LFR rules from both [31] and [32], similarly to GERM rules,
do not capture edge or node deletion and relabeling. However, LFR rules rep-
resent a subset of the ones obtained with GERM, because it adds constraints
focusing on the insertion of a new link between a given source and destination
node. The targeted approach of LFR rules in reducing the search space for rule
extraction accelerates the process, but it results in a reduction of the obtained
results. Additionally, Vakulík [34] developed the DGR miner, which incorpo-
rates edge deletion and relabeling in the evolution rules. The most recent work
on GER identification is the EvoMine approach, introduced by Scharwächter
[35]. Evomine extracts frequent rules of events (including relabeling and dele-
tion) occurring in subsequent time windows. Other works in the literature focus
more on the evolution of attributes and give less importance to the structural
evolution of networks and the rules governing their growth [108, 109].

7.2.2 Microcanonical Randomized Reference Models - MRRMs

The aforementioned methods for GER extraction primarily emphasize algo-
rithmic aspects, often disregarding the evaluation of rule significance. In this
study, we address these limitations by introducing a method to assess the
significance of the rules, incorporating specific null models. Null models are
crucial for understanding both theoretical and practical aspects of networked
systems, providing a baseline for comparison against which the observed pat-
terns, features, and dynamics can be evaluated. By generating randomized
or synthetic versions of the original temporal network, null models allow us
to assess the significance and uniqueness of observed patterns, identify devi-
ations from randomness, and uncover meaningful structures and processes in
the data. According to [86], given a space G of all possible temporal networks
(states) and the single observation G∗ ∈ G, all models that sample a random
graph G from a conditional probability P (G|G∗) are defined randomized ref-
erence models (RRMs). In this context, the most popular models include con-

7.2 Background and related works 90

figuration models, Erdös-Rènyi (ER) models, and exponential random graph
models [87]. Depending on the application scenario, it could become necessary
to preserve specific features or properties while generating random temporal
graphs. This is where microcanonical randomized reference models (MRRMs)
come into play, providing a framework that allows us to retain specific char-
acteristics of the graph while randomizing the rest. The concept behind this
approach is preserving certain features while maximizing randomness. Relying
on the principle of maximum entropy, the use of such models is theoretically
justified since they offer the least biased approach among all possible degrees
of freedom [86].

Graph representation

Timeline
representation

Snapshot
representation

What’s
preserving

Topology Timeline shuffling Sequence shuffling

Temporal
distribution Link shuffling Snapshot shuffling

Graph representation

MRMMs
categories

Timeline
representation

Snapshot
representation

What’s
preserving

Topology Timeline shuffling Sequence shuffling

Temporal
distribution Link shuffling Snapshot shuffling

Figure 7.2: Four primary categories of microcanonical randomized reference
models. Each row represents the characteristic of the temporal network which is
preserved, and each column refers to the representation of the temporal network,
i.e. stream-based or snapshot-based.

MRRMs can be classified according to two factors: i) preservation of tem-
poral distribution or topology, and ii) the representation of temporal networks
as either timelines or snapshots. When models preserve the temporal distri-
bution they favor capturing the temporal dependencies and dynamics of the
original network. Conversely, other models might prioritize preserving network
topology to gain insights into structural properties. The second factor revolves
around the representation of temporal networks. In the timeline representa-
tion, the temporal ordering is crucial, with the graph capturing the static
topology and additional time-series information describing the timing and du-
ration of edges/events for each node. On the other hand, the snapshot model
treats each time window as a separate graph (potentially with the same set of
nodes), enabling a focus on individual time points. The combination of these
two factors leads to four primary categories of MRRMs depicted in Figure 7.2.
Models in the first category, namely timeline shuffling, focus on preserving
topology while utilizing a timeline representation. It involves maintaining the
static network structure while shuffling timestamps within or between time-
lines and allows highlighting significative dynamics. In contrast, the category
of sequence shuffling aims to preserve topology but uses a snapshot repre-

7 Statistically significant rules 91

sentation. It shuffles the order of snapshots while keeping the same network
topology in each snapshot. When a model preserves the temporal distribu-
tion on a network modeled through a timeline representation, it falls under
the link shuffling category. Here, the static links are shuffled, while their as-
sociated timelines remain unmodified. Lastly, snapshot shuffling, the fourth
category, preserves the temporal distribution on graphs represented as tem-
poral snapshots. It involves shuffling the edges within each snapshot, enabling
the examination of individual time points in isolation.

In general, MRRMs represent a valid tool for assessing the significance of
measurements on real-world temporal networks and for extracting meaningful
insights about their dynamics and structure. Indeed, the literature offers vari-
ous applications and fields where MRRMs have been employed, including but
not restricted to contagion processes [88], temporal motifs [89], and random
walks [90]. However, to the best of our knowledge, the application of a null
model on a graph evolution rule algorithm has not been explored, specifically
for rules tracking the relative timestamp of edges without temporal window
constraints. Although the LFR algorithm [31] introduces a null model, the
rules in that context are highly constrained.

7.3 Methodology

In this section, we present the methodology employed in our study to assess
the significance of the evolution of patterns in temporal networks and analyze
their main properties and roles. First, we describe the original graph evolution
rule mining algorithm (GERM), which serves as the foundation for our anal-
ysis. Subsequently, we outline the process of constructing the null model, a
critical component in assessing the significance of observed patterns. Then, we
explain the process of extracting over and under-represented rules, enabling us
to identify statistically significant patterns. Finally, we compute the general
mapping of patterns, which aids in understanding the overall trends within
the graph. Through this methodology, we provide a robust framework for ana-
lyzing evolution patterns and uncovering their underlying significance. Among
the different alternatives for GER extraction presented in Chapter 4, we opt
for the GERM algorithm since it provides a more robust implementation and
is able to identify GERs spanning many consecutive snapshots, see Section I.

7.3 Methodology 92

7.3.1 Timeline shuffled null model

Inspired by the taxonomy of MRRMs for temporal networks proposed by Gau-
vin et al. [86], we implemented a microcanonical randomized reference model
that falls in the timeline shuffling category. We based our selection of the
proper null model on two guiding principles. Firstly, our focus is on analyz-
ing the characteristics of the dynamics of the network, rather than its specific
topology. Therefore, we specifically consider models that preserve the original
topology. Secondly, we aim to maximize entropy, striving for highly random-
ized models that are as less biased and conservative as possible. Moreover, the
graph representation adopted by GERM corresponds to a simplified version of
the timeline representation described in [86]. In fact, GERM requires a unified
topology merging all the temporal windows and then it adds a single times-
tamp to each edge - not a time series - corresponding to the first appearance of
the interaction. For these reasons, the null model choice falls into the timeline
shuffling category.

Computer Science Dept. @ UniMI CONNETS Lab 5

0 1

1

3 7 8

8

10

(b)(a)

Figure 7.3: Example of relative-time patterns. (a) and (b) are equal except
for a time constant Delta = 7 for the link timestamps. The rightmost graph is
representative of the class equivalence the graphs belong to.

Formally, given an input temporal network G∗ = (V ∗, E∗, f∗) ∈ G, our null
model SM returns a G = (V ∗, E∗, f) ∈ G with probability Px(G|G∗) where:

• V ∗, E∗ are respectively the node and edge set of the static input network;
• f∗ : E∗ → T ∗ is a function that maps the edges of G∗ into a timestamp

t ∈ T ∗;
• f : E∗ → T ∗ is a function that maps the edges of G into a timestamp

t ∈ T ∗;
• G is the state space, i.e. a predefined finite set of temporal networks among

which the MRRM selects G;
• Px(G|G∗) =

δ(x(G),x(G∗))

Ωx(G∗) ;
• Ωx(G∗) =

∑
G′∈G δ(x(G′),x(G∗);

7 Statistically significant rules 93

and δ being the Kronecker delta function, with the feature x being the inter-
section of two features, namely the edge feature (E) and the timestamp feature
(T). Specifically, δ is defined as follows:

δ(x(G),x(G∗)) =

{
1 if E(G) = E∗ and T (G) = T ∗

0 otherwise

According to the notation proposed in [86], we will refer to our model as
P [E , T], addressing the features that it has to maintain in sampling the ran-
domized graphs. In other words, among all networks in the state space G hav-
ing the same nodes set V ∗ and the same timespan (links can be assigned to a
timestamp from 0 to max(T ∗)), the null model SM samples a temporal net-
work G having the same edge set as the input network G∗, i.e. E(G) = E(G∗),
and having the same set of timestamps - T (G) = T (G∗)) - but with a differ-
ent mapping function f . The pseudo-code of the shuffle model is depicted in
Algorithm 1.

Algorithm 1 Timeline shuffling model P [E , T]
Input: G∗ = (V ∗, E∗, f∗), T ∗ Output: G
1: G = (V,E)
2: V = V ∗, E = E∗

3: T = shuffle(T ∗)
4: n = 0
5: for (i, j) ∈ E do
6: f(i, j)← Tn

7: n← n+ 1
8: end for

7.3.2 Significative GERs

According to the Bonferroni’s Principle [107], frequent patterns can be dis-
covered even in random data. As the dataset size increases, the occurrences of
these patterns also tend to increase. Such frequent patterns or events are con-
sidered false positives in the search for patterns that characterize the data we
are analyzing. By applying the Bonferroni correction, the significance level of
each test is adjusted to ensure that the probability of false positives is appropri-
ately controlled. This correction helps avoid spurious findings and strengthens
the reliability of the results. The zeta score test, also known as the standard

7.3 Methodology 94

score or z-score test, is commonly used to assess the significance of an observa-
tion compared to a reference distribution. In the case of identifying significant
patterns using random models, the zeta score test allows us to quantify how
deviant or exceptional a pattern is compared to what would be expected by
chance alone.

In this work, we apply the GERM algorithm to an input graph G∗ to get the
real support sp of each frequent pattern p. Then, we run the GERM algorithm
on fifty different realizations through the MRRM described in the methodol-
ogy section to extract the expected support µp and its standard deviation σp

for each pattern p ∈
⋂50

i=1 SMi, where
⋂50

i=1 SMi is the set of patterns that
are frequent in all the realizations of the null model. Note that the z-scores
are computed over the mentioned set of rules (

⋂50
i=1 SMi) since the support

measure (µp) for each run is required; this aspect will be further discussed in
the results section. The expected support corresponds to the average support
of the pattern over all the 50 realizations of the model SM . Formally, it is
defined as follows:

µp = (

50∑
i=1

sip)/50

where sip is the support of p in the i−th realization of the null model. Similarly,
the standard deviation σp of each pattern p ∈

⋂50
i=1 SMi is computed on the

supports of p over the realizations of SM . Finally, the z-score of the pattern p
is computed as follows:

zp =
sp − µp

σp

After computing the z-score for each pattern p ∈
⋂50

i=1 SMi, a pattern is
deemed significant or overrepresented when its z-score exceeds the critical
value of 1.96. This critical value corresponds to a significance level of 0.05,
assuming a normal distribution. On the contrary, patterns with z < −1.96 are
significantly more frequent in the randomized model’s realizations, thus being
under-represented or uncommon in the observed data. Analyzing such patterns
can provide insights into the absence or suppressed occurrence of certain dy-
namics or relationships within the dataset. It is important to investigate both
positive and negative z-scores to gain a comprehensive understanding of the
patterns’ significance and potential implications in the context of the analysis.

7.3.3 Mapping of temporal patterns across null model realizations

One challenge encountered during the computation of the z-score of patterns
p was the lack of a canonical form for identifying the same pattern across

7 Statistically significant rules 95

the different outcomes of the GERM algorithm on the realizations of the null
model. Indeed, the application of GERM on each realization generates pat-
terns with their respective edge lists and supports, identified by independent
incremental IDs. To overcome this issue and facilitate the comparison of results
across multiple models, it is necessary to extract equivalence classes for each
pattern, incorporate timestamp information, and assign a global ID to each
temporal pattern. This process ensures consistency and allows for meaningful
comparisons of patterns and their properties, even across different datasets.
A preliminary observation that significantly contributes to reducing computa-
tional time is the frequent occurrence of patterns composed of the same set of
edges within the realizations of the null model. Leveraging this observation, an
initial step in the mapping procedure involves extracting the unique set of edge
lists while preserving their respective occurrences. The pseudo-code of the pro-
cedure is reported in Algorithm 2. It requires as input the variable germ, which
refers to the results of GERM on each realization of the MRRM (frequent pat-
terns and their support). The algorithm returns a dictionary edge_set whose
keys are the set of edges found in all the realizations, and the values are the list
of occurrences of the key edge list in the form (p,m) with p being the original
ID of the pattern and m ∈ [1, 50] the ID of the realization it appears in.

Algorithm 2 General mapping: set of edges
Input: results of GERM on each realization of the null model germ
Output: edges_set

1: edges_set = dict()
2: m = 0
3: for model ∈ germ do
4: for p, pattern ∈ model do
5: push(edges_set[patternedges], (p,m))
6: end for
7: m← m+ 1
8: end for

However, there is still a chance that the edge lists in the dictionary keys
include isomorphic subgraphs. To avoid redundancy we check the absence of
isomorphic patterns, before assigning a global identifier to each pattern/edge
list. Algorithm 3 describes the procedure: it initializes the i variable to the
maximum existing key in the mapping dictionary. The reason for that is to
create a global mapping for each dataset, so when processing the results we
may have some patterns that have been already enumerated. We iterate on

7.3 Methodology 96

the edge lists and their occurrences collected by Algorithm 2. After initializing
the temporary id to zero, we search in mapping if there is already a pattern
isomorphic to the one associated with the edge list we are considering. If
so, we assign p to id. Afterward, if after the search id is still zero (there
is no isomorphic pattern in mapping), then the enumeration variable i gets
increased, and assigned to id. At this point, mapping is updated with the new
temporal isomorphism class i, with the subgraph G(edges) obtained by the so
far unseen edge list. At the end of each iteration of the outer loop on edge_set,
the new data dictionary new_shuffle_germ is updated with the new global
id and the same information as the original one.

Algorithm 3 General mapping: isomorphism check
Input: edges_set
Output: new_shuffle_germ

1: mapping = dict()
2: new_shuffle_germ = dict() ▷ Inspired by Python, dict() creates an

associative map
3: i = max(mapping.keys)
4: for edges, occurrences ∈ edges_set do
5: id← 0
6: for p, pattern ∈ mapping do
7: if G(edges) is_isomorphic G(pattern) then
8: id← p
9: continue

10: end if
11: end for
12: if id = 0 then
13: i← i+ 1
14: id← i
15: mapping[i] = G(edges)
16: end if
17: for p,m ∈ occurrences do
18: new_shuffle_germ[m][id] = germ[m][p]
19: end for
20: end for

7 Statistically significant rules 97

7.3.4 Case studies and graph modeling

We applied our methodology (see Methodology section) to two different
human-centered temporal datasets, described in Section I. The first one is
DBLP, the bibliographic network representing co-authorship relationships,
while the second one is UC-social, that encodes information about students of
an American university that exchange messages on an internal platform. We
used the modeling of DBLP network described in Section I, obtaining an undi-
rected graph of 129073 nodes and 277081 edges, with 11 possible timestamps
(year of publication). The second dataset, UC-Social, is modeled through a
directed temporal graph, however, the GERM algorithm only handles undi-
rected graphs. So, we processed the directed graph Gd to create a mutual
undirected graph Gm: each edge (u, v, t1) ∈ Gd is inserted into Gm if and only
if (v, u, t2) ∈ Gd. In this case, the timestamp of (u, v) ∈ Gm is min(t1, t2).
In this way, we obtain an undirected graph with 1280 nodes and 12916 edges,
that reflects reciprocal relationships. To make the analysis more tractable, we
aggregated the original timestamps of edges by weekly and monthly granulari-
ties. This allows us to track the mesoscopic evolution of the network over time
without being overwhelmed by a large number of possible timestamps. With
the aggregation, we obtain two different graphs UC-monthly and UC-weekly,
having the same size and order, but with the former having a coarser time
granularity. Precisely, the UC-monthly graph has only 7 possible timestamps,
while UC-weekly has 28 possible timestamps.

It is worth noting that the two datasets offer different advantages: the
first one provides a large temporal network, while the second one allows for
arbitrarily tuning the time granularity.

7.4 Findings

In this section we analyze the main results, starting from a quantitative de-
scription of the rules found in both the real graphs and their corresponding
null models. Then, we discuss the distribution of z-scores, and evaluate the
impact of the patterns that were not included in the z-score computation.
Finally, we also group the patterns by the time they take to form to gain a
deeper understanding of the graph evolution.

7.4.1 GERM outcomes on real and randomized networks

GERM algorithm was applied to the three networks as well as to their time-
line shuffled counterparts, setting a maximum of 4 edges (patterns involve at

7.4 Findings 98

0 50 100 150 200 250

common patterns

400

200

0

200

400

600

z-
sc

or
es

DBLP

(a)

0 50 100 150 200 250

common patterns

60
50
40
30
20
10

0

z-
sc

or
es

UC-monthly

(b)

0 200 400 600 800

common patterns

3
2
1
0
1
2
3

z-
sc

or
es

UC-weekly

(c)

Figure 7.4: Distribution of the z-scores of GERs extracted from (a) DBLP, (b)
UC-monthly, and (c) UC-weekly. The thresholds above and below which patterns
attain statistical significance are depicted by green and red horizontal lines, re-
spectively.

most four links) and generating 50 realizations of the null models. The mini-
mum support values were selected starting from a value of 5000, which is the
original choice of GERM’s authors for the DBLP dataset. As concerns the
UC networks, the support values were selected based on the minimum value
needed to obtain non-empty outputs, starting from 5000. Table 7.1 reports the
selected support thresholds and the corresponding number of rules identified.
Specifically, the GERM column reports the number of rules found running the
GERM algorithm with the aforementioned parameters on the original/real
graphs, while the “mean shuffle” and “union shuffle” columns refer to the ap-
plication of the algorithm on the timeline shuffled graphs (null model). The
former indicates the average number of patterns found by executing the GERM
algorithm on 50 randomized graphs. The latter (union shuffle) indicates the
different rules/patterns found in the union of the 50 runs. The union is com-
puted utilizing the general mapping algorithm described in the Methodology
section.

dataset support GERM mean shuffle union shuffle
DBLP 5000 296 3795 3871

UC-monthly 150 266 1269 1378
UC-weekly 600 999 1039 1235

Table 7.1: Overview of GERM outcomes on the three temporal networks.
“GERM” column displays the number of rules identified in the real graphs. The
"mean shuffle" column reports the average number of patterns over 50 time-
line shuffled graphs. The "union shuffle" column presents the number of distinct
rules discovered through the union of 50 realizations.

7 Statistically significant rules 99

Upon examining the results in Table 7.1, we observe that on average in
null models there are more patterns than in the original graphs. Further, this
difference is consistent across all 50 realizations of the randomized graphs, as
we can note from the small difference between the average number of patterns
(fourth column) and the union of the rules (fifth column). This observation
indicates that in timeline shuffled realizations there are a consistently higher
number of patterns having negligible support in the real temporal networks,
i.e. timestamps and the ordering they induce in the real graphs impact the
frequency of the evolution rules.

7.4.2 Analysis of z-scores

The application of a null model on the graph evolution rules enables the identi-
fication of significant rules specific to the temporal graph under consideration,
extending beyond frequency-based measures. As described in the methodology
section we compute the z-score for the patterns existing in all the realizations
of the null model and in the real graph. Figure 7.4 shows the distribution
of the z-score for the three temporal networks, where horizontal lines specify
the noteworthy thresholds: the grey line stands for the zero level (patterns
with identical support in both real and null graphs), while the green and red
horizontal lines indicate the over and under-representation thresholds (±1.96).
While the under-representation of patterns is a consistent trend across all three
datasets, there are notable differences in the distribution of z-scores across the
three temporal networks. First, the UC-weekly case (see Figure 7.4c) is a spe-
cial case because the majority of patterns (93.1%) are concentrated within the
±1.96 region, meaning that their supports in the null or real graphs do not dif-
fer so much, i.e. they are not significative. In the other networks, almost every
pattern is under-represented; for instance, in the DBLP case (see Figure 7.4a),
the over-represented rules are only 16 against 264 under-represented. Second,
in the DBLP case, z-scores present a very wide range of values, meaning that
the supports of patterns in the real graph are extremely lower or higher than
the ones in the null models. Third, in the UC-monthly network, all patterns are
under-represented over the null model (see Figure 7.4b). We will investigate
the underlying reasons in subsequent sections.

7.4.3 Frequency of GERs in real and randomized networks

While the common set of patterns obtained from GERM on the original graph
and its randomized versions provides valuable insights into over and under-
represented graph evolution rules, the patterns that are not in the intersection

7.4 Findings 100

WHERE IS FREQUENT In G Not in GG* G*

Frequent in G*

Frequent in S M1 Frequent in S M2

Frequent in S M3

In all realizations of SM

In some realizations of SM

In any realizations of SM

Figure 7.5: Tabular and visual representation of possible cases a rule/pattern
may be involved in. Here, we depict 3 realizations of the null model (SM). A
pattern in the green set is a GER in the real network G∗ and a GER in all the
realizations, while if it is present in some realizations but not all, it is purple. If
the pattern is not a GER in the real network - its support is below the threshold
- it may belong to the red set, i.e. it is a GER in all the realizations, or it
is in the blue set, i.e. it is a GER in some realizations but not all. Finally,
patterns belonging to the pink case are GERs in the real network, but in all the
realizations their support is below the threshold.

Frequent in GERM

DBLP Frequent Not frequent

 TOT

Frequent in how
many realizations
of the null model

Frequent in all 284 3431 3715

Frequent in some 3 153 156

Not frequent 9

TOT 3871 296

(a)

Frequent in GERM

UC-monthly Frequent Not frequent

 TOT

Frequent in how
many realizations
of the null model

Frequent in all 266 871 1137

Frequent in some 0 241 241

Not frequent 0

TOT 1378 266

(b)

Frequent in GERM

UC-weekly Frequent Not frequent

 TOT

Frequent in how
many realization
of the null model

Frequent in all 904 0 904

Frequent in some 95 236 331

Not frequent 0

TOT 1235 999

(c)

Figure 7.6: Tabular representation of the different cases depicted in Figure 7.5,
for the different temporal networks (a) DBLP, (b) UC-monthly, and (C) UC-
weekly. Columns in each table indicate whether a GER extracted by GERM
is frequent or not in the real graph. Rows indicate how frequently a GER has
been extracted by GERM over the 50 realizations of the null model. Each record
reports how many GERs belong to the specific case.

of all runs of GERM over the realizations may be worth attention too. In fact,
when running GERM algorithm on the real graph and on the 50 realizations of
the null model, we obtain a set of frequent rules from each of the 51 runs, gen-
erating different scenarios depending on the frequency of a pattern in the real
and randomized realizations. In Figure 7.5 we summarize all the possible sce-
narios combining a tabular representation and a set representation. According

7 Statistically significant rules 101

to the above representation, up to now, we have analyzed the patterns belong-
ing to the green set, i.e. the set containing patterns appeared to be frequent in
all realizations of the null models (SMi) and even in the real graph (G∗). On
the opposite side, we have the pink and red sets: the first one contains all pat-
terns that were frequent only in the real graph (returned by GERM) but not in
any randomized network: these are reasonably considered as over-represented
patterns since the support in the null model is always lower than the real one.
On the other hand, the patterns in the red set (frequent in all realizations of
the null model but not on the real graph) are reasonably under-represented for
the complementary reason, and so equally worthy of attention. Finally, since
we generated many realizations of the null model, it is likely that some pat-
terns are not always frequent (blue and purple sets). Still, if they are frequent
in most of the 50 realizations, they may be worthy of analysis. In essence, by
relaxing the initial conditional requirement, as required in the definition of the
z-score, that restricts the evaluation of statistical significance solely to GERs
extracted in all realizations of the null model (p ∈

⋂50
i=1 SMi), we can broaden

the analysis of significance to encompass a wider range of evolution rules.
We evaluate the extent to which patterns can be reintegrated into our anal-

ysis by examining the tables presented in Figure 7.6, which provide a compre-
hensive overview of the pattern distribution across various scenarios for the
three temporal networks. The analysis reveals that the red and green sets are
generally larger than the blue and purple sets, indicating that we can consis-
tently enlarge the set of under-represented GERs in DBLP and UC-monthly.
On the other hand, the pink set was nearly non-existent in all datasets, so
the extension of over-represented patterns is very marginal. Furthermore, the
size of the purple set is found to be smaller than the blue set, suggesting that
patterns that are not frequent in all the realization of the null model, are
probably uncommon in the real graph as well. In general, the expansion of
assessable GERs aligns with the trend observed in the analysis of the z-scores,
wherein a majority of the evolutionary rules demonstrate under-representation,
particularly within the DBLP and UC-monthly datasets. The notable preva-
lence of under-represented GERs underscores how temporal constraints and/or
evolutionary mechanisms within the three temporal networks may hinder the
manifestation of certain evolution rules. These factors are loosened in the re-
alizations of the null model.

Finally, we look at the support of the patterns in each set and investigate
any similarities or differences that may emerge. Figure 7.7 depicts the support
distributions of each set for all three networks. While not all datasets contain
all five sets, it is evident that the supports for the purple and blue sets are
rather low, particularly when compared to the green and/or red sets. This last

7.4 Findings 102

finding suggests that patterns that are not frequent in all the realizations of the
null model may not be worthy of attention, given that they only marginally
exceed the minimum support threshold. Therefore, we do not consider the
purple and blue sets in further analysis. On the other hand, the pink set,
which is exclusive to real networks, represents a small but significant set of
patterns that cannot be detected in the realizations of the null models.

104 105

Support

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GERM - original
GERM - null model
GERM - original
GERM - null model

(a)

103

Support

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GERM - original
GERM - null model

(b)

1036 × 102 7 × 102 8 × 102 9 × 102

Support

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GERM - original
GERM - null model
GERM - original
GERM - null model

(c)

Figure 7.7: Distribution of the support of rules/patterns grouped by different
cases described in the Figure 7.5. As for the support of the GERs in the real-
izations of the null model, we report the distribution of the mean support. The
x-axis has a logarithmic scale.

1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8
Timespan

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

u
en

cy

(a)

1 2 3 4 5 6 0 1 2 3 4
Timespan

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Fr
eq

u
en

cy

(b)

0 1 2 3 4 5 6 7 8 9
Timespan

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Fr
eq

ue
nc

y

(c)

Figure 7.8: Distribution (frequency) of the timespans of the evolutions rules in
the three temporal networks (a) DBLP, (b) UC-monthly, and (c)UC-weekly. We
grouped timestamps according to the class their pattern belongs to. The palettes
of histograms recall the colors assigned to each class in Figure 7.5.

7.4.4 Analysis of timespans

A further advantage of GERM is that the returned GERs are provided with the
time the body takes to form, i.e. its timespan tspan. Indeed, the timespan of a

7 Statistically significant rules 103

GER corresponds to the maximum timestamp in the body of the rule. We focus
on the maximum timestamp because we consider relative-temporal patterns,
with the minimum timestamp always set to zero. In the context of statistically
significant GERs this information is important since we can discover signals
that certain constraints or evolution mechanisms may favor or contrast slow
or fast formation of specific subgraphs. Figure 7.8 shows the frequency distri-
bution of the timespans of the rules in the three datasets, grouped according
to the set a pattern belongs to, namely the red and green sets. We observe
that GERs within the green sets exhibit relatively lower timespans, typically
around 3, indicating their prevalence within shorter temporal intervals and
a relatively fast formation process. On the other hand, the red sets include
patterns characterized by higher timespans, suggesting their persistence and
prevalence over longer durations, and a slower formation process. This dispar-
ity in timespan distribution between the green and red sets provides valuable
insights into the temporal dynamics within the analyzed datasets, suggesting
that in the real graphs the frequent patterns are the ones that happen in a
shorter time interval. In fact, the higher timespan patterns are more common
in the null model but not in the real graph. The distinction in terms of times-
pan between the green and red sets is particularly evident when considering
the support of these patterns. For instance, a significant majority (around
89%) of the over-represented patterns in the DBLP graph exhibit a tspan < 3,
while the 65% of most frequent patterns in the red sets present a tspan ≥ 4.
This observation provides additional support for the hypothesis that various
factors and mechanisms influence the rapid formation of specific subgraphs,
while other factors act against the formation of certain subgraphs, thereby
slowing down the overall formation process.

7.4.5 Discussion

Finally, we illustrate a few examples showing the enhanced value provided by
the null model extension on the graph evolution rule algorithm. By analyzing
these patterns, we aim to show how the assessment of the significance can
offer valuable insights beyond the outcomes traditional frequency-based mining
algorithms provide.

In the case of the DBLP temporal network, the introduction of the null
model reveals patterns with more intricate structures than usual chains or tri-
angles. For instance, the GER in Figure 7.9a is resulted to be significative,
meaning that its support in the real graph is significantly more frequent than
in the null model. However, in terms of support rank, it falls beyond the 100th

position. Without the null model, such a pattern might have been overlooked

7.4 Findings 104

0 1 1

1

0 1

0

0

6

0 1 1

1

0 1

0

0

6

0 1 1

1

0 1

0

0

6
(a) (b) (c)

Figure 7.9: Example of GERs extracted from the DBLP temporal network.
Edges in green belong to the post-condition only.

in a semantic analysis, yet it holds important information about the graph’s
evolution. Indeed, this GER represents two authors who start their collab-
oration at a specific time (t0) and subsequently collaborate with a common
co-author the following year, the target of a further collaboration with another
author external to the initial pair.

On the other hand, the GER in Figure 7.9b exemplifies a pattern with
high support (14th position) but a remarkably low z-score (−216). This means
that its having a high support may not mean that is actually a pattern worth
attention in explaining the dynamics of the graph, as its support becomes
substantially higher when the network timestamps are shuffled. Without the
null model extension, we might have considered the dynamic where a triangle
between three authors does not close in the subsequent year as important,
while in reality, it may not hold such significance.

Another observation could be drawn by looking at the lower tail of the z-
score distribution: Figure 7.9c depicts a rule that has one of the lowest z-scores
(−257.7) that also has a large timespan (6 years). This is telling us that this
kind of pattern presents a really higher support in the models, suggesting that
an author that starts a collaboration at a certain t0, may start another one
in 6 years. However, this occurrence is not as common as in a random graph
where temporal dependencies are loosened. Therefore, it represents a common
behavior that could be even more frequent whereas temporal constraints or
other mechanisms would not come into play.

By presenting these diverse examples, we aim to underscore the added value
of the null model extension in capturing nuanced dynamics during the evolu-
tion of temporal networks. These examples showcase how the introduction of
the null model framework enables us to uncover patterns that possess distinc-
tive characteristics, highlighting their significance in understanding network
evolution.

7 Statistically significant rules 105

7.5 Conclusions

In this study, we disentangle the evolution of different temporal networks by
the identification of statistically significant graph evolution rules The assess-
ment of the statistical significance results from the introduction of a proper
null model applied to the GERM algorithm, the first and most stable method
for mining graph evolution rules. The null model preserves the static structure
of the graph while shuffling timestamps, ensuring the temporal distribution is
maintained and introducing randomness to the sequence of events. By employ-
ing a z-score test, statistically significant rules that deviate significantly from
the null model are identified. Although the significance of the identified GER
has been almost neglected, our findings show that the introduction of a null
model impacts the evaluation and interpretation of rules. First, a few highly
frequent rules are not significant at all, only a few are over-represented, while
the majority of the GERs are under-represented. So, by shuffling timestamps,
we weaken or remove specific temporal factors or mechanisms that may in-
hibit or favor evolution paths. Furthermore, we also extended this observation
to the speed of the formation process of subgraphs, where rules expressing
fast formations are over-represented. As a future extension of this work, we
plan to identify the mechanisms and the factors acting on the over and under-
representation of the GERs and assess their role in the dynamics of subgraph
formation.

Chapter 8

Profiling Web3

8.1 Introduction

Web3, one of the novel paradigms which may drive the evolution of the fu-
ture Web, is offering an invaluable volume of data stored in the supporting
blockchains. Researchers from different fields such as network science, compu-
tational social science and data mining, might benefit from these large col-
lections of temporal and heterogeneous data capturing different kinds of in-
teraction among people and between people and the platforms. In this study
we focus on a specific issue related to these modern techno-social systems, i.e.
the understanding of the rules driving their growth. To reach this goal, we
performed an analysis based on graph evolution rules - GERs - on different
networks gathered from Web3 platforms such as Steemit or OpenSea. Graph
evolution rules mining is a frequency-based method for evaluating network
evolution which does not require any prior growth process for disentangling
how networks evolve. By comparing the evolution rules of social network plat-
forms and asset trading services through GER profiles, we observe that some
evolution rules are common to all Web3 platforms, regardless of the system
specificity. On the other hand, in specific cases, the frequency of graph evo-
lution rules is influenced by the nature of the platform: whereas social and
token-transfer networks are characterized by rules which increase network tran-
sitivity and reciprocity, NFT trading networks, especially those specialized in
a specific type of digital asset, are driven by rules which form trading chains.
These findings suggest that the GER approach and the GER profiles are a
good starting point to get insights into the evolutionary behavior of a network
and to define a classification of graph evolution rules.

8.2 Background and related works 108

8.2 Background and related works

The Web3 paradigm is quite a new framework in the Web landscape, especially
as far as regards the aspects directly related to the blockchain technology
supporting platforms and services. To introduce this paradigm, we provide
the reader a brief overview of the Web3 platforms we treated in our analysis:
blockchain online social networks and NTF trades.

8.2.1 Blockchain online social networks

Blockchain technology has enabled the development of blockchain online so-
cial networks (BOSNs), providing data storage and validation for these plat-
forms. In their core BOSNs replicate the main user experience of the main
micro-blogging and social media platforms such as Twitter, Reddit or Medium,
but they introduce token-economy aspects, such as a reward system based on
cryptocurrencies that promote high-quality content. In fact, in these systems
cryptocurrencies can be created, exchanged, and used for validating both so-
cial operations (follow, vote, comment) and economical transactions (transfer,
borrow tokens).

In this context, one of the most attractive and spread platforms is Steemit
[110]. Steemit is a blockchain social network launched in March 2016, hosted
on the Steem blockchain. Steemit users can exchange goods and services using
the dedicated cryptocurrency, called STEEM. Furthermore, the cryptocur-
rency powers a reward system that encourages network growth by compen-
sating users for their participation on the platform. Web3 platforms such as
Steemit offer a rich data source for understanding the system’s dynamics and
the networked structure of its components, so much so that the literature about
BOSNs analysis is growing. Some works leverage user content for bot detection
[111] or text mining tasks [112]. Other works focus on the relationship between
blockchain technology and social networks [113, 114, 115]. For example, Cho-
nan [116] and Kim et al. [105] have analyzed the social network structure of
the Steemit platform, while Guidi et al. [117] have studied the graph of fol-
low operations, and then focus on other operation types [118]. When studying
dynamic systems BOSNs, temporal information plays an essential role, so it
is important to model the data as dynamic graphs and study its temporal as-
pects. For example, Ba et al. [119] have studied how cryptocurrency and graph
evolution are related to each other. The same authors have also conducted an
analysis on the network burstiness [120], focusing on the link creation process
and the claiming of rewards. Finally, the interplay between social and econom-

8 Profiling Web3 109

ical network layers has been investigated in [121] to cope with user migration
across Web3 platforms.

8.2.2 Non-fungible tokens - NFTs

An NFT is a blockchain-based data unit with a double goal: first, it provides
a unique certificate of ownership of a digital object. Second, it attests to the
uniqueness and non-transferability of a digital asset. Thanks to this technology,
it is possible to track down the complete history of ownership of an object and
check its authenticity. In concrete terms, an NFT can represent a variety of
digital items, including photographs, movies, and audio. As a consequence,
several contexts, such as art, gaming, and sports collectibles, utilize NFTs to
regulate and control digital objects. The birth of the NFT market can be traced
back to late 2017 when the blockchain game Cryptokitties gained popularity.
However, the market remained dominated only by Crypokitties until July 2020
when it started to grow and in March 2021 reached a peak of popularity, due
to the selling of an artwork’s NFT for $69.3 million. This purchase allowed the
author, Beeple, to reach one of the highest auction prices for a living artist.

The peculiar growth history of the NFTs market can explain why the liter-
ature on them is currently in rapid growth. Nadini et al. [104] conducted the
first comprehensive quantitative overview of the NFTs market, including the
overall statistical properties, its evolution over time, a network-based analy-
sis, and a study about the predictability of NFT sales. Other works present a
more focalized analysis, for example, Vasan et al. [122] analyzed the cryptoart
ecosystem, while Franceschet [123] focused on the creators-collectors network.
Other research studied the role of social media attention on NFT trends [124],
and the financial advantage that experienced users gain in the NFT trading
context [125].

8.3 Methodology

To analyze the evolution of the Web3 networks, we applied a graph evolu-
tion rules algorithm called EvoMine [35]. In the next sections, we are going to
define how we model transactions and social operations into a graph represen-
tation. Then, we detail the method to extract and compare the evolutionary
profiles. Details about the EvoMine algorithm can be found in Chapter 4 while
a brief overview of graph evolution rules literature can be found in the previous
chapter (Chapter 7).

8.3 Methodology 110

(a) (b)

(c) (d)

Figure 8.1: Number of daily new nodes and edges. Plots on the same
column represent the same dataset (NFTs - first column, Steemit - second col-
umn), while plots on the same row represent either new edges or new nodes.
In (a) and (b) the plots show how the number of new edges on a daily basis,
respectively in the NFTs and Steemit datasets. On the other hand, (c) and (d)
depict the number of new nodes per day, respectively in the NFTs and Steemit
datasets.

8.3.1 Representation and modeling

We model the transactional data gathered from Web3 platforms into directed,
temporal graphs. All the four different datasets share the same operation struc-
ture: every transaction is a tuple (s, d, t), composed of a source s that performs
an operation (follow, money transfer, or NFT exchange) towards a destination
d at timestamp t. Following the taxonomy proposed in Chapter 3, we modeled
the data into G[(1, T)]

GP = (V,E, f), where f is an edge-labeling function
assigning to each edge (i, j) the first time user i had an interaction with user
j.
Case Studies We conducted our analysis on datasets that represent the two
main trends in Web3 platforms. On one side we deal with the blockchain on-
line social network Steemit, an example of converting the online services of
the current social media into applications for the Web3 world. On the other
side, we analyzed an example of platforms and assets which are peculiar to

8 Profiling Web3 111

the Web3 paradigm, since they required characteristics of the blockchain tech-
nology: NFTs. Both datasets are described in Chapter 6. Here, we detail the
specific subsets of the datasets we used in this work. As for the Steemit plat-
form, we fix the period from December, 1 2016 to March, 1 2017, focusing
on two specific types of operations: follow and transfer, which represent re-
spectively the most common type of social and financial operations. Applying
the modeling described above, we obtain a follow graph with 11004 nodes and
92803 edges, and a transfer one with 2815 nodes and 42452 edges. For the
NFT dataset, we focused on two key markets: CryptoKitties and OpenSea.
We chose CryptoKitties as it was the first major NFT project, and OpenSea
because it is the largest NFT marketplace. Our analysis concentrated on the
initial transaction periods for each platform: December 1, 2017 to January 19,
2018 for CryptoKitties, and February 4, 2018 to March 26, 2018 for OpenSea.
With the modeling cited above, the cryptokitties graph presents 58906 nodes
and 255947 edges while the OpenSea one has 4870 nodes and 23251 edges.

As a first step to understanding the evolution of these networks, we observe
the number of daily new nodes and edges, depicted in the plots of Figure 8.1.
Specifically, Figure 8.1a and Figure 8.1b show how the number of new edges
changes over time; while Figure 8.1c and Figure 8.1d depict the growth of
emerging nodes. The plot related to the NFT sales datasets (8.1a) highlights a
change in popularity of the two markets: Cryptokitties has an initial peak, but
then the number of new edges rapidly decreases, on the other hand, OpenSea
presents the opposite behavior: a fast increase of the activities after the mid-
dle of December 2017. The same observations stand for the trend of daily
new nodes, depicted in Figure 8.1c. As regards the Steemit follow (social) and
transfer graphs, they share a common trait: even if values are lower in the case
of the transfer graph, the two networks show a similar trend in the number of
new nodes, which reaches a certain degree of stability after initial oscillations.
A difference between the evolution of the graphs emerges when observing Fig-
ure 8.1b, approximately after one month, the number of new transfer edges
starts a decreasing trend, while the trend of the follow graph is characterized
by a higher volume of operations while keeping wide fluctuations.

8.3.2 GER Profiles

The goal of this study is to give a thorough analysis of the evolution rules
obtained, rather than just focusing on numerical observations (like the num-
ber of rules found). To do so, we define a vector-based representation of the
graph evolution rules by which we can summarize the evolutionary behavior of

8.4 Findings 112

a network. The vector representation is called GER profile. This vector indi-
cates the distribution of each kind of rule, so we first identify all the temporal
subgraph isomorphism classes. Note that we worked on the union graphs of the
resulting rules, so the isomorphism classes consider the topological structure
but also the temporal information. After the identification of all the subgraph
isomorphism classes, the vector v(a) is computed for each application a of the
EvoMine algorithm. Specifically, each element of the GER profile is defined as
follows:

vi =
σevent(ri)∑n
j=1 σevent(rj)

(8.1)

where σevent(ri) is the event-based support of the rule ri and n is the number
of distinct GERs identified by EvoMine. Given a temporal network, its GER
profile represents a footprint of its evolution as well as a compact representation
of its growth.
Distance. As an application of the GER profiles, we can exploit them to
assess how the growths of two different networks follow similar evolution rules.
It is possible since the GER profile is essentially a probability distribution over
the space of the graph evolution rules. In this case, to measure how dissimilar
the distributions are, we compute a pairwise distance for all the applications,
i.e. for all the temporal networks gathered from Web3 platforms. We use the
Wasserstein distance [126], also known as Kantorovich–Rubinstein metric or
Earth mover’s distance. The last name is related to the analogy that sees each
distribution as a unit amount of earth and the metric as the minimum cost
of turning one pile into the other (amount of earth that needs to be moved
multiplied by the mean distance). Formally, the Wasserstein distance Wp of
two distributions u, v is defined as follows:

Wp(u, v) =

(
inf

π∈Γ (u,v)

∫
Rd×Rd

∥x− y∥pdπ
) 1

p

where Γ (u, v) is the set of all joint probability measures on Rd × Rd whose
marginals are u, v.

8.4 Findings

We apply the EvoMine algorithm described in Chapter 4 to the datasets de-
scribed in the previous Section. In this section we analyze the results, giving
a quantitative description of the graph evolution rules found, studying the re-
sults on the single datasets, and then comparing their GER profiles to highlight
common aspects and differences.

8 Profiling Web3 113

8.4.1 Quantitative descriptions of results

EvoMine was applied to the four datasets specifying the directed nature of the
graphs, a maximum number of 3 edges per evolution rule, and the absence of
edge/node colors/labels. As regards the minimum support of patterns, we tried
different steps of support, starting by s = 150000 and then decreasing until
reaching a non-empty output. The chosen support values are shown in Table
8.1, that report also the number of rules returned by the algorithm. Note that
the output has been filtered in order to obtain just meaningful rules, namely,
rules whose union graphs present edges with two distinct timestamps, so that
they really describe an evolution or a growth process.

Table 8.1: Support and number of rules obtained for each network.

Graph Support Number of GERs
Steemit Follow 50000 23
Steemit Transfer 30000 22
NFT Cryptokitties 150000 12
NFT OpenSea 10000 21

From this pure numerical observation of the number of rules obtained,
we can observe that the dataset about Cryptokitties NFT market stands out
with respect to the others with a lower value of rules. In general, given the
thresholds chosen for the support, the number of rules describing the evolution
of the Web3 networks is relatively low.

We investigate more about the difference in the different outputs by an-
alyzing the intersections of the four sets of rules. Figure 8.2 shows a graphic
representation of the four sets of results, divided into two Venn diagrams to
give a more intuitive idea. From the diagram on the left, we deduct that
Cryptokitties results set is a subset of OpenSea one, that recursively is a
subset of the Steemit Follow network. However, Steemit Transfer - a trans-
fer network - shares almost the entire output with OpenSea - a trading net-
work, except for one pattern that is not present in Steemit Follow either.
Figure 8.2 also illustrates the patterns in the difference sets between Steemit
Follow and Steemit Transfer, i.e. (steemit_follow \ steemit_transfer), and
(steemit_transfer \ steemit_follow). Note that in this work, we represent
graph evolution rules as a unique temporal pattern, discerning the timestamps
of edges with a gray (for timestamp t0) or green (for timestamp t1) color. From
the figure, we can observe that the rules present only in the Steemit Follow

8.4 Findings 114

t0
t1

Figure 8.2: Venn diagrams that show how the sets of graph evolution rules
found in the four different graphs intersect with each other. From the left, the
diagram shows how Cryptokitties results are a subset of OpenSea ones that in
turn are completely covered by Steemit follow output. The graphic in the middle
shows the two evolution rules that are present only in the Steemit follow set.
The following diagram depicts the relation between OpenSea, Steemit transfer
and Steemit follow. Finally, the rule on the right represents the one present only
in the Steemit transfer set.

graph (GERs in the orange rounded rectangle) suggest an instant reciprocal
behavior, while the pattern in the Steemit Transfer graph (GER in the right-
most green circle) can represent an expansion-oriented pattern. For a more
detailed explanation of the rule interpretation see the Discussion Section.

8.4.2 GER Profiles

We apply the method described in the Methodology Section to get values that
can measure the differences between evolutionary behaviors in the four differ-
ent datasets. We apply the Wasserstein distance between pairs of GER profiles,
obtaining the values shown in the distance matrix depicted in Figure 8.3. First,
the values are generally low, meaning that the distribution over the different
kinds of rules is rather homogeneous. This suggests a first finding about the
overall trait of the evolution processes characterizing Web3 networks: the types
and the frequency of the evolution rules are quite uniform across the platforms.
That indicates that in our set of Web3 platforms, there is not a manifest outlier
that is driven by special evolution rules. Second, a more specific analysis of the
distance matrix shows that Cryptokitties network is the one that differs the
most from the other ones, a further insight that has deserved a more detailed
discussion in the next Section.

8 Profiling Web3 115

OpenSea CryptoKitties Steemit Follow Steemit Transfer

Op
en

Se
a

Cr
yp

to
Ki

tti
es

St
ee

m
it

Fo
llo

w
St

ee
m

it
Tr

an
sf

er

0.0000 0.0275 0.0083 0.0077

0.0275 0.0000 0.0351 0.0348

0.0083 0.0351 0.0000 0.0030

0.0077 0.0348 0.0030 0.0000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Figure 8.3: Wasserstein distance matrix between GER profiles of each graph.
The distance matrix has been depicted as a heatmap, where the green intensity
is proportional to the distance.

8.5 Discussion

In this section, we are going to propose semantic interpretations of some rules,
starting from the distribution given by GER profiles described in the Method-
ology Section. Our discussion mainly relies on Figure 8.4, which represents a
graphical representation of the GER profiles of the four temporal networks.
The first evident feature concerns the distance from Cryptokitties GER profile
with respect to others, which confirms the results highlighted by the com-
putation of the Wasserstein distance. The other three vectors, especially the
Steemit ones, are very similar, with a few exceptions. In the following para-
graph, we deepen these differences and we propose a graphical representation
of the patterns that correspond to the indexes where the distributions present
noticeable differences.

A first evident difference concerns the first rule. In fact, rule 0 is not present
in the Cryptokitties results set, and it corresponds to the closed triangle de-
picted in Figure 8.5c and in Figure 7.1. This rule expresses the classical triadic
closure process typical of social networks where in the body we have an open
directed triad and in the head the formation of link between the extremes of
the open triad closes the triad, forming a directed triangle. Its absence can be
explained by the nature of the network, i.e a trade network, and by the fact
that only a single type of NFT can be exchanged on this market, i.e. cats. In
fact, if there is only one type of object to sell/buy, it is very uncommon to

8.5 Discussion 116

create a closed directed triangle of sales. On the contrary, it is more likely to
create chains of sell operations or to have expansion-oriented behaviors, i.e.
an account buys more digital assets of the same type from different sellers.
This intuition is confirmed by the higher values associated with rules from
8 to 13, they all embed an expansion mechanism of the source node (node
with zero in-degree). Figure 8.5f shows an example of this kind of expansion,
where the most left node, first creates a link towards the bottom node, and
in the next timestamp (green arrow), it expands to a third node, that in turn
expands to a fourth node. In this case, the rule indicates that a new chain is
creating in a new direction starting from the source node. As for the triadic
closure rule (Figure 8.5c), it is worth noting that, while in a social network as
Steemit Follow it is a quite expected rule, in trade and transfer networks such
as Steemit Transfer and NFT OpenSea is an unexpected trait which, especially
in a transfer network, may deserve further investigations as it might be linked
to malicious actions.

Even rules 6, 7, corresponding to Figure 8.5d-e, present support equal to
zero in the Cryptokitties scenario. Here, the head of the rule is chain of trans-
fers between wallets or users which originates from a single link (gray arrow)
making the resulting chain. The absence of this type of chains might be related
to a problem in the time granularity. Note that the graphs are built aggregating
all transactions performed on the same day, and EvoMine algorithm can only
catch evolution rules between consecutive timestamps. So, the evolution rules
discovered highlight the evolution that happens on consecutive days. These
chains may happen and be frequent in the graph but within the same day or
on non-consecutive days. In fact, rules 6 and 7 generate chains of sell actions,
which are likely in trade networks but they may actualize in more than a day,
especially when there is only a type of object to be sold.

Finally, rule 15 marks a checkpoint from which the distribution of all graphs
but Cryptokitties lose their common trend, up to rule 20. For example, rules
17 and 20 (respectively Figure 8.5a-b) reflect an instant reciprocal behavior,
because in both cases there is an initial link between two nodes (gray edge),
and one of them creates a link with another node, that reciprocates it in the
same timestamp (two green arrows). The cited rules are not frequent in the
three economical/trading networks (NFTs sales and Steemit Transfer), but
are present in the most common rules for the only social network considered
(Steemit Follow). This suggests that reciprocal behavior is less common in
transfer and economical networks with respect to social networks, especially
considering the daily granularity of the outcomes.

8 Profiling Web3 117

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Rules' indexes

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
Re

la
ti

ve
 fr

eq
ue

nc
y

of
 r

ul
es

Subgraph profile vectors

OpenSea
CryptoKitties
Steemit Follow
Steemit Transfer

Figure 8.4: GER profiles for each Web3 network. The plot shows, for
each graph, the relative frequency of each kind of rule identified. Specifically, the
x-axis specifies the rules indexes (from 0 to 23), while on the y-axis the relative
frequency of each rule over the entire graph is specified. In the Discussion Section
we comment on rules with indexes 0, 6, 7, from 8 to 13, 17, and 20.

8.6 Conclusions

Blockchain-based platforms and online services are the backbone of the Web3
paradigm, one of the candidates for guiding the evolution of the future Web.
Given the important role Web3 platforms might have in the future, it is crucial
to understand which are their specific properties, how people behave within
these platforms, and how design principles inspired by decentralization and
token-based economy may influence how people interact with each other and
with the platform functionalities. In the case of Web3 paradigm, researchers
may be facilitated in coping with these issues, since the underlying blockchains
publicly offer a large volume of temporal and heterogeneous data capturing
interactions that occur in these techno-social systems. In this work we have
dealt with a few types of the temporal networks generated by Web3 platforms
by disentangling their rapid growth. Our methodology is based on methods
rooted in frequent subgraph mining. Specifically, by the state-of-art algorithm
EvoMine, we identify the most frequent graph evolution rules which capture
the essential paths of growth of different blockchain-based platforms. In fact,
methods based on subgraph counting are mechanism-agnostic, i.e. they do not
make any assumption on the process generating the links, and return human-

8.6 Conclusions 118

(a) (b) (c)

(d) (e) (f)
t0
t1

Figure 8.5: Examples of graph evolution rules found. Each graph is a condensed
representation of a graph evolution rule, where the gray edges belong to the body
of the rule (precondition) and the green edges belong to the head (postcondition).

readable and explainable description of the network evolution, w.r.t. methods
for dynamic graph representation learning. By comparing the evolution rules
of social network platforms and asset trading services, we observe that GER
profiles - a vector-based representation of the network evolution - are able
to identify evolution mechanisms strictly related to the nature of every single
platform: whereas social and token-transfer networks are characterized by rules
which increase network transitivity and reciprocity, NFT trading networks, es-
pecially those specialized on a specific type of digital asset, are driven by rules
which form trading chains or expand node neighborhood. From this perspec-
tive, an approach based on GER profiles may be adopted to characterize the
nature of new Web3 networks, so to identify which kind of network we are
observing.

The findings and the methodology presented in this work open up a few
research directions which might be explored in future works. From a method-
ological viewpoint, the graph evolution rules returned by EvoMine are con-
strained to the choice of the cut-point timestamp, making the tuning of this

8 Profiling Web3 119

parameter an important element for correctly identifying significant evolution
rules when the link formation process is not stationary. Moreover, most of the
methods for extraction of evolution rules do not provide a statistical signifi-
cance of the outcomes. So, in this context, a definition of a proper null model
is mandatory to evaluate the significance of the rules. On the other hand, as
for the characterization of the growth of Web3 platforms, future research di-
rections may regard the creation of an extensive dataset repository collecting
temporal and heterogeneous networks from blockchain-based platforms, or a
special focus on the stationarity of the evolution rules along with the entire
growth of the networks.

Moreover, results suggest that the methodology explained can be lever-
aged in models that aim at studying the evolutionary behaviors of dynamic
networks. For instance, graph evolution rules can be embedded to predict how
a network will evolve or can be adopted to inform data-driven models for
network evolution. Another possible employment of GERs could concern the
identification of change points in the temporal version of the GER profile so
as to identify whether changes in the growth dynamics and in the mechanisms
leading it are occurring.

Chapter 9

Temporal node evolutionary representation

9.1 Introduction

Studying real-world dynamic networks and their evolution is crucial for un-
derstanding the complex systems that govern various domains, from social
interactions to financial transactions. The evolution of these networks pro-
vides insights into the underlying mechanisms driving their changes, which
can be pivotal for applications such as node segmentation, prediction of fu-
ture states, and role discovery. Among the various approaches to studying
network evolution, graph evolution rules (GERs) stand out since they pro-
duce human-readable outcomes without requiring any pre-assumptions about
the underlying evolutionary mechanisms. In this work, we leverage GER to
derive evolutionary node profiles (NEPs), capturing the distinct patterns of
how nodes change over time within the network. These profiles allow us to
identify groups of accounts characterized by similar evolution rules, reveal-
ing common interaction patterns. As a case study, we apply our approach to
Sarafu, a complementary currency platform with rich temporal data, repre-
senting a contemporary human complex system that integrates humanitarian
aid, collaboration, and financial aspects. By analyzing Sarafu’s network using
our GER-based method, we identify two distinct evolutionary traits, uncov-
ering significant behaviors that contribute to the platform’s operation. Our
findings suggest the effectiveness of using graph evolution rules in real-world
dynamic networks, showcasing their potential to enhance our understanding
of the node-level dynamics of complex systems.

9.2 Related work and background 122

9.2 Related work and background

In this section we summarize the related works on networks and node represen-
tation based on (temporal) subgraphs as well as works about our case study:
Sarafu, the complementary and humanitarian aid crypto-currency. For details
on the frequent graph mining approach we use to characterize the dynamics of
ego-networks (Evomine) and the broader literature please refer to Chapter 4
(a shorter version can also be found in Chapter 7).

Node representation based on (temporal) subgraphs. Recent advance-
ments in node vectorial representation have leveraged frequent subgraphs, mo-
tifs, and graphlets to enhance the richness of temporal graph embeddings.
One notable approach is the Neural Temporal Walks (NeurTWs) [127], which
leverages structural and tree traversal properties along with time constraints
to capture dynamic patterns in temporal graphs. This method allows for an
effective characterization of temporal nodes through representative motifs. An-
other prominent study embeds nodes based on their structural roles within the
network, providing versatile representations for dynamic and evolving graphs
[128]. On the other side, among the not-neural approaches, Hulovatyy et al. [58]
proposed a vectorial representation of nodes using dynamic graphlets. This
method adopts a common approach in this context which is to decompose
networks into smaller segments [129, 130, 82] to characterize node behavior
over time. Along this line, a strategy proposed by Longa et al. [60, 131], sug-
gests adopting an egocentric perspective. This method tracks the evolution
of node neighborhoods across temporal layers, collecting egocentric temporal
subgraphs at each time step and condensing them into egocentric temporal
motifs (ETMs), facilitating efficient identification of recurring interaction pat-
terns in dynamics contexts through comparison against a null model.

Complementary currency. Complementary currencies (CCs) are alterna-
tive currencies that supplement national currencies in various geographic con-
texts. Viewed as fungible vouchers redeemable for goods and services, there
have been 3,500 to 4,500 CC projects in over 50 countries since the 1980s.
Among these projects, Sarafu is a complementary currency on a blockchain
created by the Grassroots Economics (GE) Foundation. Users make payments
via mobile phones, transferring Sarafu tokens to other registered users. Dur-
ing the COVID-19 pandemic, the Kenyan Red Cross used Sarafu to distribute
humanitarian aid, with new users receiving free tokens backed by donor funds.
Sarafu has been the subject of several studies since the GE Foundation pro-
vided an anonymized dataset of user transactions spanning a year and a half.

9 Temporal node evolutionary representation 123

For instance, a dataset paper offering context and background of the platform
has been provided by Mattsson et al. [132], while Ussher et al. [100] analyzed
the dataset and the Sarafu project’s history. Mqamelo [133] studied the impact
on local economic engagement, and Mattsson et al. [134] modeled money cir-
culation within Sarafu’s network. Finally, Ba et al. [135, 136] analyzed cooper-
ation behaviors within the Sarafu network, highlighting cooperation patterns,
the significance of group accounts, and the role of the geographical positions
of accounts.

9.3 Methodology

From a node-centric perspective, our main aim is to represent nodes based on
the mechanisms that characterize the evolution of the interactions surrounding
them. The methodology to get this kind of representation is based on two main
tasks: a) the extraction of the ego-networks from the overall temporal network
describing the system, i.e. interactions surrounding every single node; and b)
the identification of the mechanisms/rules driving the evolution of each ego-
network through the computation of the graph evolution rules. In this section,
we detail these two main tasks and propose a vector-based representation for
nodes, rooted in graph evolution rules, namely the node evolutionary profile -
NEP. See Section 4 for details about EvoMine, the GER algorithm selected
for this work.

9.3.1 Ego-networks from temporal networks

In this work, we model the set of interactions or transactions among the
members of a networked system following the definition of temporal network
G = (V,E) proposed in [137, 21], where:

• V is the set of users in the system; and
• E = {(u, v, t) | t ∈ [1, T], (u, v) ∈ V × V } is a set of timestamped directed

links (u, v, t). Each link corresponds to an interaction/transaction from
node u to user v that occurs at time t.

To accomplish the first task, we extract the temporal ego-network from
the temporal graph G. For each node u, its ego-network S(u) = (Vu, Eu)
corresponds to the temporal subgraph induced by u’s neighborhood, in-
cluding u itself. Formally, the set of nodes is defined as Vu = u ∪ N(u)
where N(u) is the neighborhood of node u. The set of edges is defined as
Eu = {(v, w, t) | (v, w, t) ∈ E, v ∈ Vu, w ∈ Vu}, i.e. all temporal links whose
endpoints are in Vu.

9.3 Methodology 124

9.3.2 Node Evolutionary Profile

In static and temporal networks the distribution of measures based on static
and/or temporal subgraphs of different order and size has been used for encap-
sulating the static and dynamical signature from both a network- and node-
level perspectives. In this sense, the graphlet-degree vector in [138] and its
extension to the temporal setting given by the dynamic graphlet degree vector
[58] represent some of the extents to derive a network or node representation
including the (temporal) subgraphs a node is involved in. Here we proposed
a similar representation for nodes which relies on the graph evolution rules
characterizing the evolution of nodes’ ego-network.

We denote the vector representation as Node Evolutionary Profile - NEP
and it represents the distribution of the graph evolution rules for the ego-
network S(u) of the node u. The construction of the node evolutionary profile
is based on the graph evolution rules and their supports computed by EvoMine
on each ego-network S(u); while a vector representation common to all nodes is
supported by the unique and common identifiers for rules based on canonical
form. Specifically, each element of the Node Evolutionary Profile nep(u) is
defined as follows:

nep(u)i =
σevent(ri)∑n
j=1 σevent(rj)

(9.1)

where σevent(ri) is the event-based support of the rule ri in the u’s ego-network
and n is the number of distinct GERs identified by EvoMine on the whole set
of nodes. In short, given an ego-network of a node u, its NEP represents a
signature of its evolution as well as a compact representation based on the
dynamics of the interactions among the neighbors of u and with the neighbors
and u.

9.3.3 Case study

As a case study, we leverage Sarafu, described in Section 6, that encom-
passes a total of 412,050 economic transactions (link) involving 40,343 users
(nodes).The rich temporal data contained within the Sarafu dataset makes
it an ideal case study for applying our dynamic graph evolution rules ap-
proach. The dataset represents a contemporary human complex system that
integrates humanitarian aid, collaboration, and financial aspects. By analyz-
ing this dataset, we aim to capture and characterize the temporal behavioral
patterns of nodes within this transaction network, providing insights into the
dynamics of digital currency exchanges in a humanitarian context.

9 Temporal node evolutionary representation 125

9.4 Results

We applied the described methodology to the Sarafu transaction network.
Through Node Evolutionary Profiles (NEPs) we point out interesting insights
into the dynamics of ego-networks. By identifying distinct interaction patterns
and traits, we showcase the efficacy of NEPs in capturing temporal behav-
iors. The results highlight two primary evolutionary traits within the network
that can be extracted by clustering NEPs. This analysis of Sarafu serves as a
showcase of the potential applications of NEPs, demonstrating their capability
to uncover the dynamics of ego-networks in complex transactional networks,
which can be extended to various other domains and contexts.

9.4.1 Preprocessing and filtering

The extraction of the ego-networks from the original transaction network of
Sarafu has returned 40343 ego-networks, which were reduced to 16030 after
applying the filter on consecutive snapshots. This important reduction in the
number of valid ego-networks indicates that more than half of the accounts do
not show interactions with and among their neighbors in consecutive times-
tamps1. First, we investigate, for each ego-network, the number of included
interactions to assess if, even in this case, this quantity has a heavy-tail trait
as most of the phenomena concerning real-world networks and human dynam-
ics [139]. To this aim, in Figure 9.1 we report the cumulative distribution of
the number of interactions (ego-network size) in each ego-network. The distri-
bution of the ego-network size is skewed, with the majority of nodes having
very few interactions within their ego-networks. This observation may impact
the outcomes of our analysis since if the temporal subgraph from which we
identify the evolutionary profile is too small, it does not have enough data to
actually describe the temporal behavior of a node. For this reason, based on
the distribution, we only consider nodes whose ego-network presents at least
116 interactions, corresponding to the 80th percentile of the ego-network size
distribution, shown in Figure 9.1 by the blue dotted line. Thus, we obtain
3207 ego-networks, whose size distribution is depicted in Figure 9.1 with a
green line. In short, the analysis of ego-network sizes allowed us to identify
the most significant accounts in the Sarafu networks in terms of transaction
activity; and at the same time highlighted that most economic activities are
handled by a small portion of the accounts in the system.
1 We are aware that the reduction of ego-network is quite important but not apply-

ing the filter on consecutive timestamps would have altered the dynamics within
ego-networks.

9.4 Results 126

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

Ego-networks size

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

ego-networks size
filtered ego-networks size
80th percentile

Figure 9.1: Ego-network size distribution. In red the CDF of ego-network
size from the 16030 ego-networks after applying the filter on consecutive snap-
shots. The vertical blue dotted line indicates the 80th percentile (116 transac-
tions) of the red distribution. In green the distribution of ego-network size for
the most active ego-networks (3207 elements).

9.4.2 NEPs

After the preprocessing and filtering phase, we apply the EvoMine algorithm
on the 3207 ego-networks. In particular, we fixed 1 as the minimum support σ
- the algorithm returns all the graph evolution rules in the graph - and a max-
imum number of three edges per pattern, using the event-based support. As
a result, after applying the general mapping procedure, we obtained 40 differ-
ent graph evolution patterns, which correspond to the dimensions of the node
evolutionary profiles. We collect all the NEPs by stacking them into a matrix,
and we visualize it through a heatmap, where rows represent ego-networks and
columns indicate the IDs of the graph evolution rules. The matrix of all the
NEPs is displayed in Figure 9.2. From a column-wise inspection, we observe
that in general, only a limited set of graph evolution rules characterizes the
dynamics of the transactions in ego-networks. Indeed, there is concentration
of frequency in rules 0, 1, 2, 3, 4, 10 and 15, with the first rule (0) being the
most frequent for many ego-networks. We report these frequent GERs on the
right side of Figure 9.2. We note that six out of seven rules describe star- or
chain-like expansions starting from an empty precondition, while rule 10 ex-
presses transactions that become reciprocal in just one day. Moreover, from a
data perspective, the skewed distribution of rules points out it is very likely
that if we reduce the dimensionality of NEPs most of the information in the
data will be maintained. On the other side, from a row-wise inspection, we

9 Temporal node evolutionary representation 127

3 4

10

15

0 1 2

t0
t1

Figure 9.2: NEPs. Visualization as a heatmap of the matrix obtained by stack-
ing all the NEPs. Each row corresponds to an ego-network while the dimensions
of NEPs (rules) have been ordered by multiple criteria which capture the increas-
ing complexity of the pattern: the first criterium is the order - number of nodes
- of the rule, then we consider the size and finally the number of timestamps
(1 or 2). The intensity of the green color is proportional to the frequency of the
GER. On the right the most common GERs represented through the compact
visualization described in Figure 7.1.

observe a certain level of variability in NEPs, so there is not a common trait
characterizing the dynamics of the interactions in ego-networks; even if a few
representative traits are identifiable.

9.4.3 NEPs clustering

The analysis of NEPs has pointed out two principal observations that are fun-
damental for showcasing how NEPs can be exploited for data discovery tasks:
i) only a few GERs are frequent in NEPs; and ii) NEPs are varied but with a
limited level of variability. Based on these observations, we focus on identify-
ing a few classes that may represent dynamic traits of ego-networks evolution
in Sarafu. We apply a clustering pipeline on the NEP matrix to identify the
different traits. Taking advantage of the first observation on NEP dimensions,
we first performed dimensionality reduction by Principal Component Analysis
(PCA) to reduce NEP dimensions while preserving most of the information
in the NEP matrix; then we ran a hierarchical clustering algorithm on the
transformed NEPs to identify groups of ego-network showing the same evolu-
tionary trait. As for the PCA algorithm, we choose the number of components

9.4 Results 128

using the explained variance ratio. Fixing a cumulative percentage of explained
variance to 0.99, we still halve the dimensions from 40 to 24.

(a) (c)(b)

t0 t1

Figure 9.3: In a) The Calinski-Harabasz score as a function of the number
of clusters k returned by the agglomerative clustering algorithm. In b) the NEP
centroids of the two clusters along with the most frequent, on average, GERs.
In c) NEPs are visualized in 2 dimensions with points and colored according to
the membership of one of the two clusters.

The transformed NEPs feed an agglomerative clustering algorithm using
Ward as the linkage strategy since it is less sensible to noise and should return
more even clusters in terms of size. When using agglomerative clustering, one
has to select the best value for the number of clusters k, a fundamental param-
eter not known as apriori that must be fixed before running the algorithm. In
this case, we select k as the value that maximizes the Calinski-Harabasz (CH)
score of the agglomerative clustering by varying k from 2 to 14 with step 2. Ac-
cording to the trend of the CH scores reported in Figure 9.3a, we choose k = 2.
Thus, there are two main traits characterizing the dynamics of the transac-
tions occurring within ego-networks, and consequently two groups of accounts.
In Figure 9.3c we display these two groups of accounts in a 2D representation
returned by applying PCA, while in Figure 9.3b we report the centroids of the
two clusters to highlight the difference between the two prototypal behaviors.
In particular, we note that the average behavior characterizing the dynamics
of the interactions in ego-networks of accounts belonging to the cluster 0 is
dominated by the rule 0 - the creation of a single link at time t+ 1 when the
precondition is empty - which on average accounts for the 20% of the rules in-
volved in the dynamics of ego-network. The remaining rules also characterize
the cluster 1, but on average they are spread more uniformly than in cluster 0.
In short, the dynamics of transactions in the ego-networks of the accounts in
the first clusters are mainly driven by star- and chain-like expansion rules that

9 Temporal node evolutionary representation 129

appear in a successive timestamp without a precondition, where the appear-
ance of a single link is dominant; on the contrary, the dynamics in the second
cluster are more homogeneous even if they lead to the same kind of expansion
rules. The most important graph evolution rules are the same, while it is the
rule frequency that differentiates the two dynamics traits.

Given these two traits and the networked nature of our dataset, we finally
wonder if accounts that usually interact by exchanging transactions are char-
acterized by the same rules describing the dynamics of their ego-networks. To
cope with this question, we first proceed by computing a static projection of
the graph sequence describing the Sarafu temporal network, then we compute
the assortativity of the network using the clusters returned by the clustering al-
gorithm as categorical attribute. In detail, in the static projection two accounts
are connected if they interact at least once during the observation period, and
the directed links are weighted according to the number of transactions sent
by the source node toward the target node. Moreover, the construction of this
graph is limited to the 3027 accounts in the analysis. In this setting, the at-
tribute assortativity is 0.590 and indicates a tendency for accounts to interact
with other accounts that have a similar ego-network dynamic. In general, we
stress the fact that by utilizing node evolutionary profiles, it is possible to de-
velop applications that highlight properties and relationships between accounts
based on the dynamics of the extracted ego-networks.

9.5 Conclusions

In this study, we introduced a method for representing ego-network dynamics
through subgraph-based evolution rules, enabling a nuanced analysis of tem-
poral behaviors within networks. Applying Node Evolutionary Profiles (NEPs)
to the Sarafu transaction network revealed significant insights, identifying two
main interaction traits: one dominated by the single-link expansion over other
star- and chain-like expansions, and another with a more homogeneous distri-
bution among the same expansion rules.

These findings underscore the potential of NEP-based representations to
reveal underlying behavioral patterns in complex networks. Analyzing ego-
network dynamics with graph evolution rules supports various applications,
such as distinguishing user behaviors in financial transaction networks like
Sarafu, crucial for operational improvements and strategic decision-making.
Beyond identifying behavioral traits, the NEP-based approach enhances the
understanding of interaction dynamics, aiding in the development of applica-
tions that highlight the properties and relationships between accounts.

Chapter 10

Community evolutionary profile

10.1 Introduction

The study of dynamic networks in computer science has become crucial, given
their ever-evolving nature within digital ecosystems. These networks serve as
fundamental models for various networked systems, usually characterized by
modular structures. Understanding these structures, also known as commu-
nities, and the mechanisms driving their evolution is vital, as changes in one
module can impact the entire network. Traditional static network analysis
falls short of capturing the full complexity of dynamic networks, prompting
a shift toward understanding the underlying mechanisms driving their evolu-
tion. Graph evolution rules (GERs) have emerged as a promising approach,
explaining how subgraphs transform into new configurations. In this paper, we
comprehensively explore GERs in dynamic networks from diverse systems with
a focus on the rules characterizing the formation and evolution of their modu-
lar structures, using EvoMine for GER extraction and the Leiden algorithm for
community detection. We characterize network and module evolution through
GER profiles, enabling cross-system comparisons. By combining GERs and
network communities, we decompose network evolution into regions to un-
cover insights into global and mesoscopic network evolution patterns. From a
mesoscopic standpoint, the evolution patterns characterizing communities em-
phasize a non-homogeneous nature, with each community, or groups of them,
displaying specific evolution patterns, while other networks’ communities fol-
low more uniform evolution patterns. Additionally, closely interconnected sets
of communities tend to evolve similarly. Our findings offer valuable insights
into the intricate mechanisms governing the growth and development of dy-

10.2 Background 132

namic networks and their communities, shedding light on the interplay between
modular structures and evolving network dynamics.

10.2 Background

This section provides a summary of the main results on the evolution of com-
munities as well as vector-based representation of evolution patterns. For de-
tails about the graph evolution rules algorithm please refer to Chapter 4.

10.2.1 Community evolution

In recent years, the study of community evolution within dynamic networks
has emerged as a focal point in the field of network science. As complex sys-
tems evolve and adapt over time, understanding how communities within these
systems change and reconfigure is of paramount importance. Many studies
delve into identifying events that define the life cycle of communities, such as
splitting and merging [71, 140, 73, 141]. For instance, Takaffoli et. al. [142]
considered five events that a community can undergo (split, survive, dissolve,
merge, and form), and proposed a community matching algorithm to efficiently
identify and track similar communities over time. Another direction in the con-
text of dynamic community detection involves event prediction: many studies
characterize the evolution of communities within an event prediction frame-
work [143, 144, 145, 146]. In this context, an experimental platform called
EPredictor [147] has been developed to enable testing, verifying, and vali-
dating models related to community evolution prediction in dynamic social
networks. Moreover, Ilhan et. al. [148] enhanced community event prediction
with a framework, called FIEP, that identifies the network’s most representa-
tive features before the community evolution process. In this paper, we deal
with community evolution from a different perspective, since we are interested
in decomposing the evolution of communities in local dynamics rules - GERs -
strictly related to the mechanisms driving the growth, rather than identifying
and predicting events communities may undergo. Specifically, we will employ
community detection algorithms as tools for the identification of target com-
munities asking which are the microscopical evolution patterns leading to the
actual structure of the groups. From this perspective, we do not apply algo-
rithms for tracking the life cycle of communities since they are mainly focused
on the identification of large events involving groups as a whole, i.e. splitting,
merging, and appearance; rather we rely on an approach based on temporal

10 Community evolutionary profile 133

subgraph mining since it is more suitable for extract localized temporal be-
haviors within the network and communities. In this sense, our approach is
also complementary to works aiming to predict the evolution of communities,
since it may provide a set of features based on temporal subgraphs that are
not model-dependent or hand-crafted for a specific context, but, at the same,
keep a good level of readability since they are not the outcome of neural ar-
chitectures applied on graphs.

10.2.2 Vector-based subgraph representation

In existing literature, some studies have suggested adopting a vector represen-
tation method to assess and categorize networks based on the frequency of sub-
graphs. For instance, in the seminal work by Milo et. al. [53] the so-called signif-
icance profile records the z-scores of subgraphs and it is used for network com-
parison and analysis. In some works, the vector-base subgraph representation is
used as network embedding for machine learning tasks [149, 150, 151, 152, 153].
For instance, Yu et. al. [152] proposed a node-level embedding by only consid-
ering undirected statistically significative subgraphs, i.e. network motifs; while
Tu et. al. [154, 155] have incorporated direction and time to build their graph-
level embedding, called subgraph ratio profile. Along this line, a strategy pro-
posed by Longa et. al. [60] builds a temporal subgraph-based representation of
nodes’ neighborhood by collecting egocentric temporal subgraphs at each time
step and condensing them into egocentric temporal motifs (ETMs). Finally,
the approach of Xu et. al. [153] accomplish both graph-level and node-level
embedding. Integrating the subgraphs distribution with important features,
they proposed a multi-view motif network representation framework (MMNR)
that allows good performance in machine learning tasks.

10.3 Methodology

The comprehension of the main patterns driving the evolution of large dynam-
ics networks and how these phenomena are related to the modular structure
of the networks passes through a methodology that combines methods for
the extraction of evolution patterns, namely graph evolution rules, and algo-
rithms for the identification of modular components in a network, i.e. com-
munity detection algorithms. In this section we provide a description of the
overall methodology, and the representation of evolution patterns in the en-
tire networks and within communities. The details about the algorithms for

10.3 Methodology 134

the identification of graph evolution rules and communities can be found at
Chapter 4.

10.3.1 GER profiles

Through the application of the EvoMine algorithm, we obtain the number of
discovered rules and the identification of the most frequent ones. However,
our aim is to create a tool that simplifies the process of extracting insights
from these results. To this aim, we introduce a vector-based representation of
the graph evolution rules, called GER profile, that allows us to concisely and
visually summarize the network’s evolutionary behavior. The GER profile is a
vector that reflects the distribution of support for each rule type. Therefore,
our initial step involves establishing a canonical form to consistently identify
the same pattern across the various applications (graphs) of the EvoMine
algorithm. After the identification of all the subgraph isomorphism classes and
the consequent assignment of a general id to each of them, the GER profile
v(G, s) of graph G can be computed from the rules’ support list obtained
running EvoMine on G with support threshold s. Specifically, each element of
the vector v(G, s) is characterized as:

v(G, s)i =
σevent(ri)∑n
j=1 σevent(rj)

(10.1)

where σevent(ri) is the event-based support of the rule ri and n is the number
of distinct GERs identified by EvoMine. The distinct GERs we are referring
to can be only the ones identified by the run of EvoMine on a specific graph
G, but they can also be the union of all rules found on different graphs. In
the second case, if a rule rx is not present in the output of G - it is either not
present at all or it has support lower than the threshold s - then v(G, s)x = 0.
The purpose of considering the union of the rules found on different networks
is to have a common outcome set to allow the comparison of GER profiles
inferred from different graphs.

10.3.2 Community GER profiles

The methodology discussed so far mainly focuses on the entire evolving graph
and provides a global characterization of the evolution patterns of the graphs.
However, such a general overview neglects how dynamic networks are organized
into interconnected modules or communities. So we shift our attention from
a comprehensive analysis of the entire graph to a more mesoscopic viewpoint.

10 Community evolutionary profile 135

Specifically, we apply the EvoMine algorithm and compute the GER profiles
changing the input graphs: the communities obtained through a community
detection algorithm based on modularity optimization [156]. Specifically, we
employ the Leiden algorithm [157] to identify communities within the input
graph, as it represents the state-of-the-art and most used algorithm for com-
munity detection based on modularity optimization. Subsequently, we focus on
the top communities, i.e. those with the highest number of nodes and whose
union covers the 80% of nodes. For each selected community, we generate a
node-induced subgraph and apply the EvoMine algorithm to analyze its evo-
lution. In the end, we obtain a matrix of GER profiles M(G, comms, s) of
cardinality n × c, where c is the number of communities and n is the total
number of rules, i.e. the union over all the communities. By computing the
GER profile for each community, we are now able to observe and compare the
distinct evolutionary patterns exhibited by different modules in the network.

10.3.3 Support choice method

A critical aspect of extracting graph evolution rules through the EvoMine al-
gorithm is choosing the support threshold s: if the threshold is set too low, it
may lead to slower computations and the inclusion of excessively infrequent
rules. Conversely, a threshold set too high may result in the omission of po-
tentially important rules with support just below the threshold. Hence, we
introduce a heuristic to determine an appropriate support threshold for each
specific graph. Our starting point is the rules derived from setting the absolute
minimal support threshold (set at 1), enabling the identification of all existing
evolution rules within the graph. Computing the GER profile, we obtained the
distribution of supports over all the rules. In the process of threshold selection,
the central criterion is the coverage of the rule distribution that we can obtain
while increasing the support value w.r.t. the initial one with minimal support.
Formally, given the GER profile of the graph G built from the minimal sup-
port evolution rules v(G, 1) defined in Equation 10.1, the coverage cov(G, s)
relative to the support threshold s is defined as

cov(G, s) =
∑

i∈gers

v(G, 1)i

where gers = {g|σevent(g) ≥ s}. In other words, the coverage relative to sup-
port s is the sum of the support of all graph evolution rules (g ∈ gers) whose
absolute support is greater than the current threshold s. The method can
be applied to both the community GER profiles and the overall graph GER

10.3 Methodology 136

profile. When focusing on the community GER profiles, we take into account
the mean and standard deviation of coverage across various communities and
aim to establish an individualized threshold for each community. In this case,
it is crucial to set individual thresholds for each community due to varia-
tions in the size of their node-induced subgraphs, making a single threshold
impractical. Setting the steps for evaluating the coverage variation while the
support increases is a challenging task. To address this, we considered the
maximum support, a concept also discussed in Coscia et al. [158]. In the con-
text of event-based support, which counts the number of event graphs where
a rule occurs, the maximum support equates to the total number of events
in the graph. In our specific case, where the input is a directed graph and
we exclusively consider edge insertions and omit edge deletions, the maxi-
mum support corresponds to the number of edges of the considered graph.
The maximum support allows us to evaluate the coverage for specific steps
S = { i

20 ·max_sup|i ∈ [1 . . . 10]}. In particular, we calculated the mean and
standard deviation of coverage across all communities for each step, and subse-
quently, we selected a support threshold that guarantees a high average cover-
age and limits the coverage dispersion at the same time. On the other hand, as
for the GER profile of the total graph, we compare the coverage with the num-
ber of rules that are excluded if we increment the support threshold. Specifi-
cally, given the minimum support GER profile v(G, 1) and the support thresh-
old s, we compute the number of lost rules lost(G, s) = |v(G, 1)| − |v(G, s)|,
i.e. the difference between the minimal support profile and the one with sup-
port s. Finally, observing the variation of cov(G,λ) (distribution coverage)
and lost(G,λ) (number of rule lost), ∀λ ∈ S, we determine the threshold that
provides a trade-off between these two quantities.

10.3.4 Case studies

We applied our methodology to four diverse datasets: Sarafu, DBLP-cite, En-
ron, and Stack Overflow. These datasets were selected for their modular struc-
tures and to represent a range of network types, varying in both dynamics
and scale. Detailed information about the nature of these datasets and our
modeling approach can be found in Chapter 6, while Table 10.1 reports the
size of the obtained graphs.

10 Community evolutionary profile 137

Network Nodes Edges
Sarafu 40323 143239
DBLP 11971 47654
Enron 32128 107234
Stack Overflow 2115635 13519681

Table 10.1: Number of nodes and edges for each graph.

10.4 Findings

In this section we first discuss the GER profiles characterizing the evolution
of the entire graphs, providing both quantitative and qualitative descriptions.
Then, we focus on mesoscopic aspects, analyzing the GER profiles of the dif-
ferent modules/communities within the dynamic networks described in the
previous section to characterize how each specific community has evolved and
which are its leading evolving mechanisms. While delving into both the global
and community profiles, we concurrently address the issue of selecting the
proper support parameter by applying the heuristic described in the method-
ology Section. Moreover, it is worth noting that the EvoMine algorithm re-
quires two main parameters: the minimum support for a rule to be considered
frequent - s - and the maximum number of edges in the postcondition graph
(that considerably helps to reduce the computational effort of the algorithm).
While for the choice of the support threshold we dedicated a specific method,
as far as concerns the maximum number of edges we always set it to 3 as
in previous works [40]. Finally, we conduct a comprehensive discussion of the
intricate mechanisms governing community dynamics aiming to shed light on
the similarities, distinctions, and deeper implications of these dynamics within
diverse networks. Specifically, we delve into the discussion regarding the com-
munity GER profiles - evolution rules within communities - and subsequently,
we proceed to compare and discuss the results concerning the evolution of
neighboring communities.

10.4.1 Global evolution

Support choice

In the process of determining the support parameter for our analysis, we looked
for a balance between computational efficiency and the identification of valu-
able rules. As described in the Methodology Section, we initially set a support

10.4 Findings 138

threshold of 1, allowing us to capture an extensive array of potential rules
and patterns within the dataset. Subsequently, we systematically increased
this threshold and monitored its impact on the number of rules retained and
the distribution of the coverage. In the case of the entire dynamic network,
we identified the inflection point where the distribution of the coverage and
the reduction in the number of rules (lost) are balanced. The trend of these
two quantities as a function of the support threshold1 has been reported in
Figure 10.1. By definition, the distribution of the coverage shows an increasing
trend, while the number of rules missing decreases as the support threshold
approaches the minimal threshold. This corresponds to 1

n · max_sup, with
n = 20 for the first three datasets with medium sizes, while for Stack Over-
flow, where the graph dimensions are significantly larger, n = 2, 000. In the
case of Sarafu network (see Figure 10.1a), the selected support parameter is
6
20 · max_sup = 8530, since max_sup = 142177. The rationale driving this
choice is that we get a good level of coverage (more than 70%) and we limit
the number of lost rules to ten, as highlighted by the yellow box in the figure.
In the other two networks (DBLP and Enron, respectively in Figure 10.1b
and 10.1c), we selected the highest value following a stable series of observa-
tions. Specifically, we opted for 8

20 · max_sup for both datasets, which cor-
responds to a support threshold set to 3790 and 8174 for DBLP and Enron
networks, respectively. Concerning the Stack Overflow network, the threshold
is 45

2000 ·max_sup = 304107 since it represents a pivotal point in both coverage
and lost trends. More precisely, the 45

2000 ·max_sup threshold marks the high-
est value before a peak in the number of rules lost, coinciding with a decline
in the coverage percentage.

Quantitative results

By applying EvoMine with the set of parameters previously defined we ob-
tained the number of rules reported in Table 10.2. By observing the table it
is worth noting that not only Sarafu and Enron networks do present the same
number of rules, but they also correspond in terms of type. This observation
does not imply that they have similar evolutionary behavior (frequencies of the
rules may differ), but only that the evolution patterns that can be observed
are the same. Another key insight is that for larger networks (DBLP and Stack
Overflow), the number of frequent rules is lower. From the perspective of evo-
lutionary mechanisms as graph evolution rules, this observation suggests that
1 For each dynamic network the support threshold is expressed as a percentage of

the maximum support.

10 Community evolutionary profile 139

(b)

(c)

(a)

(d)

Figure 10.1: Coverage and lost rules. In (a), (b), (c) and (d) the coverage
and the number of lost rules by varying the support threshold. On the x-axis, label
ticks indicate the fraction in the formula i

n
·max_sup. For the first three datasets

(Sarafu, DBLP, and Enron) n = 20 while for Stack Overflow n = 2000, due to
its different magnitude. In the yellow boxes, we highlight the support threshold
representing a trade-off between coverage and lost rules.

10.4 Findings 140

rules driving the formation and evolution of these networks are quantitatively
limited so we can describe the entire growth of networks with few of them.

From a computational viewpoint, it is worth noting that for the Stack
Overflow dataset, given its substantial size, we adopted a parallel strategy for
the EvoMine algorithm to analyze its temporal dynamics efficiently. For the
timespan covered by the dataset {t1, t2, . . . tn}, we apply EvoMine on each
pair of consecutive timestamps instead of the whole temporal directed graph.
This replicates the internal behavior of EvoMine with the event-base sup-
port, which computes the support for each rule across consecutive timestamps
(event graphs) and aggregates the results. Our approach however enables par-
allel computation on different timestamps, thus saving time and computational
resources w.r.t. the original implementation of the algorithm. Despite the ex-
ternal parallel execution, the results remain comparable in the aggregation
phase due to an isomorphism check integrated into the algorithm. This check,
as implemented in [159], assigns a unique identifier to classes of isomorphic
rules, ensuring consistency in the analysis across different timestamps.

Network Support threshold Number of GERs
Sarafu 8530 (6

20
) 40

DBLP 3790 (8
20

) 15
Enron 8174 (8

20
) 40

Stack Overflow 304107 (9
400

) 18

Table 10.2: Support threshold and number of rules obtained by EvoMine for
each network.

GER profiles

The graph evolution rules returned by applying EvoMine determine the GER
profiles depicted in Figure 10.2. As described above, a GER profile is a distri-
bution over rules; specifically, the GER profiles displayed are built of the union
of the evolution rules extracted from the four networks. If a rule falls below the
chosen support threshold, the corresponding frequency in the GER profile is
set to zero. This situation only occurs in the DBLP and Stack Overflow cases
(blue and orange line) because they have 25 and 22 rules fewer than the other
two networks. From the plot in Figure 10.2, it becomes evident that Sarafu
and Enron globally exhibit similar evolutionary behaviors. On the contrary,
comparing the GER profiles of DBLP and Stack Overflow with the others is

10 Community evolutionary profile 141

more challenging due to differences in scale. The DBLP and Stack Overflow
profiles differ significantly from Sarafu and Enron and highlight a different
evolutionary profile within each other. However, they share a common char-
acteristic: they are less homogeneous in terms of rule types, often presenting
remarkable peaks in their profiles. A more detailed analysis based on all the
rules reported in the Appendix highlights that the main difference between
Enron/Sarafu and DBLP/Stack Overflow is due to evolution rules involving
reciprocal links in the precondition or postcondition. Indeed, in DBLP and
Stack Overflow networks, these rules are almost completely missing or spo-
radic. In the case of DBLP, this observation means that reciprocal citations
are not expected to occur, while in Stack Overflow this phenomenon can be
reasonably ascribed to the different roles of the accounts, i.e. beginners who
pose questions and experts who mainly comment to answers or other posts.
This latter aspect is further supported by observing that in Stack Overflow the
most frequent rules describe neighborhood expansion mechanisms originating
from a single source node, i.e. an expert who replies to different accounts. On
the other side, in DBLP the most frequent evolutionary patterns result in the
creation of chain-like postcondition graphs, where A cites B who cites C who
cites D. As for this latter aspect, it is to note that these chain-like citations
actualize in only one year.

0 1 2 3 4 5 1213141517181920212223242526272829303132333435363738394041424344454647484950

Rules' indexes

0.00

0.05

0.10

0.15

0.20

Re
la

ti
ve

 fr
eq

ue
nc

y
of

 r
ul

es

Sarafu
DBLP
Enron
Stack Overflow

Figure 10.2: GER Profiles. Visualization of the GER profiles associated with
the four networks. On the x-axis the IDs of the evolution rules in ascending
order, and on the y-axis the relative frequency of each rule.

10.4 Findings 142

Moreover, the approach we adopted for computing the GER profiles in
Stack Overflow, i.e. merging the graph evolution rules extracted from each
snapshot and properly aggregating the different frequencies, allows us to an-
alyze the consistency and stability of the different evolution rules during the
network evolution. Specifically, for each snapshot of the Stack Overflow net-
work, we extract its GER profile and stack them over time. The resulting
trend of the GER profiles over time is depicted in Figure 10.3. In the figure,
we can observe two main traits characterizing the growing patterns of Stack
Overflow: i) all the most frequent rules (except for rule 0 - discussed later) are
stable and consistent over time, since their frequencies are almost equal over
the observation period; and ii) the frequency of rule 0 has slightly increased
over time. The first observation indicates that the contribution of the main
evolution mechanisms is stable along the evolution of the network, i.e. there
are growing rules that constantly act on the formation of specific future sub-
graphs. Second, since rule 0 captures the formation of a new link among two
not-connected nodes, we reasonably assess that during the last period of Stack
Overflow unconnected accounts are more likely to form relationships than in
the first period.

In general, the GER profile trend is a further tool to describe a network’s
evolution patterns and evaluate the stability of the evolution rules.

10.4.2 Evolution patterns in communities

The above findings have highlighted that from a global perspective, the evolu-
tion patterns characterizing the growth of the four networks are very similar
when the size of the network is comparable, while they differ as the size grows.
Consequently, from a mesoscopic viewpoint, we wonder whether these similar-
ities among networks still hold when we shift our focus to the community level.
To this aim, we conduct a comprehensive examination of the modular struc-
ture of the four networks by selecting those communities suitable for further
analysis. Subsequently, we delve into the presentation of the community GER
profiles, addressing the central research question concerning the consistency of
evolution patterns across modular networks.

Leiden communities

Here, we comment on the outcomes of the Leiden algorithm applied to four
selected networks by discussing each case separately.

10 Community evolutionary profile 143

14-days periods

R
el

at
iv

e
su

pp
or

t

R
ul

es
’ i

nd
ex

es

Figure 10.3: GER profile trend. Visualization of the GER profiles stacked
over time for the Stack Overflow network. Each column represents the GER
profile for a given 14-day snapshot, and the rows indicate the evolution rules.
The color profiles are proportional to their frequencies.

We start by delving into the communities characterizing the Sarafu net-
work, where the application of the Leiden algorithm yields a total of 684 com-
munities. In particular, the first 20 largest communities, whose nodes and edges
count are depicted in Figure 10.4a and 10.4b, exceed the 80% of node cover-
age (80.43%). In the following analysis, we will focus on this representative
set. Figure 10.4b illustrates the count of edges within individual node-induced
subgraphs obtained from the respective community’s set of nodes. It is to note
the peculiarity of community 11: while all other communities ordered by num-
ber of nodes almost follow the same ranking for number of edges, community
11 shows the maximum size even if it does not have the highest number of
nodes, meaning it is the densest among the 20 largest communities.

10.4 Findings 144

(a)

(b)

(a)

(b)

Figure 10.4: Sarafu communities. In (a) the percentage of nodes in each
of the 20 largest communities. On top of each bar is the number of nodes in
the community. In (b) the percentage of edges in the node-induced subgraph for
each community. On top of each bar is the number of edges in the node-induced
subgraph.

Moving on to the second dataset in our analysis, we delve into the DBLP
citation network. The Leiden algorithm applied on the DBLP graph results
in 47 communities. In Figure 10.5a we display the 11 largest communities in
terms of node set size, along with the percentage and the absolute number
of nodes they include. The first eleven communities include 84.37% of all the
nodes of the graph, and each one of them includes at least 5% of nodes. For
the subsequent analysis related to the DBLP network, we focused on these
top 11 communities. Figure 10.5b shows the number of edges included in each
node-induced subgraph obtained by the set of nodes in each community. As
expected, the number of edges closely aligned with the number of nodes, as
communities with more nodes, also tended to have more edges.

Continuing our exploration of communities, we turn our attention to the
Enron email dataset. In this case, the Leiden algorithm identifies a total of
114 communities, where the 17 largest ones cover almost 70% of nodes, and
each of them includes at least the 1.5% of nodes. As in the previous cases,

10 Community evolutionary profile 145

(a)

(b)

(a)

(b)

Figure 10.5: DBLP communities. In (a) the percentage of nodes in each
of the 11 largest communities. On top of each bar is the number of nodes in
the community. In (b) the percentage of edges in the node-induced subgraph for
each community. On top of each bar is the number of edges in the node-induced
subgraph.

we consider only this set of communities for further analysis. In the Enron
network, communities ordered by the number of nodes (see Figure 10.6a) are
not aligned with the rank induced by the number of edges (see Figure 10.6b). In
fact, there are some communities, for instance, numbers 4, 9 and 14, that have
a significantly lower number of edges w.r.t. communities with a comparable
number of nodes, indicating them being less dense than the others.

Finally, the Leiden algorithm applied to the Stack Overflow network returns
8217 communities, with nodes predominantly concentrated in the first ones.
We narrow our focus to the first 10 communities for further analysis, as they
cover over 97% of all nodes. The distribution of nodes within these selected
communities is illustrated in Figure 10.7. The ranking based on the number of
nodes (Figure 10.7a) closely mirrors that of the number of edges (Figure 10.7b),
except for the second community (indexed as 1), which exhibits lower density
compared to the subsequent one (indexed as 2).

10.4 Findings 146

(a)

(b)

(a)

(b)

Figure 10.6: Enron communities. In (a) the percentage of nodes in each
of the 17 largest communities. On top of each bar is the number of nodes in
the community. In (b) the percentage of edges in the node-induced subgraph for
each community. On top of each bar is the number of edges in the node-induced
subgraph.

In short, three networks exhibit a good modular structure, confirmed by
their high modularity score, i.e. Sarafu modularity is 0.89, in DBLP the mod-
ularity is 0.64 and Enron got 0.72 as modularity score; while Stack Overflow is
characterized by a less pronounced modular structure (its modularity is 0.5).
Moreover, in all the networks the top 10-20 largest communities include most
of the nodes of the network, while the rank induced by the node set size is not
always aligned with the rank induced by the number of edges.

Support choice for each community

Before delving into the discussion about the GER profile of each community,
we have to deal with the choice of the support threshold for each community,
as we did for the global perspective. As detailed in the Methodology Section,
it became evident that choosing a single parameter for each community within

10 Community evolutionary profile 147

(a)

(b)

(a)

(b)

Figure 10.7: Stack Overflow communities. In (a) the percentage of nodes
in each of the 10 largest communities. On top of each bar is the number of nodes
in the community. In (b) the percentage of edges in the node-induced subgraph
for each community. On top of each bar is the number of edges in the node-
induced subgraph.

the same total graph is not ideal, as communities exhibit varying orders2 and
sizes. To return a support threshold valid for all the communities, for each
step of the support values in S, we compute the distribution of the coverage
on the set of communities and extract its average and standard deviation. In
Figure 10.8 we report the average coverage (darker line) and its standard devi-
ation (lighter-colored area) as a function of the support threshold, for the four
networks. For instance, the point aligned with the support value 5

20 ·max_sup
represents the mean of all the coverage values for all the communities, by
applying the EvoMine algorithm with support equal to 5

20 ·max_sup. By in-
specting the above plots, we selected the support threshold corresponding to a
good trade-off between a high average coverage and a minimal dispersion of the
coverage. For Sarafu and DBLP datasets, the critical value is 4

20 ·max_sup,

2 Number of nodes.

10.4 Findings 148

because after that the standard deviation becomes wider and the mean value
quickly decreases. In the Enron case it is less evident, but in 5

20 ·max_sup the
standard deviation of the coverage starts slightly increasing, while the average
coverage is still 95%. Finally, in the case of the Stack Overflow dataset, the
threshold is 4

20 ·max_sup: the plot in Figure 10.8d shows a more homogeneous
standard deviation for all thresholds (the colored area behind the red line),
however, the choice of threshold is 4

20 · max_sup since from that point the
standard deviation increases while the coverage starts decreasing.

Community GER profiles

Once we properly defined the support threshold for each network, we can
analyze how graph evolution rules are distributed within the modules or com-
munities; and establish whether communities evolve homogenously or not; and
if nearby communities evolve similarly.

In the case of the Sarafu graph, by applying the EvoMine algorithm with
support equal to 4

20 ·max_sup on each node-induced community subgraph, we
obtain the same set of evolution rules for each community, whose cardinality
is 40. After applying a generalized mapping for rule types to facilitate easy
comparison, we compute the GER profiles for each community and visualize
them using the heatmap depicted in Figure 10.9. In the heatmap, each column
corresponds to the GER profile of a community, and each row represents an
evolution rule. The darker the cell is, the more frequent the specific rule in the
corresponding community is. The Sarafu heatmap of community GER profiles
reveals two distinct regions (set of rules) where more frequent rules characterize
certain groups of communities. In fact, since the colormap is general for all the
GER profiles across each community, the communities with more uniformly
distributed rule frequencies are easily identifiable - for instance, communities 1,
5, 13, etc... On the contrary, we can immediately distinguish the communities
where the frequency is more concentrated on a few rules because cells are
nearly white. In fact, in communities 2, 3, 4, 6, 7 and 8 the rules with identifiers
greater than 41 are very infrequent. Even if the number of rules is limited, it
is not immediate to summarize the evolution mechanisms characterizing these
communities. According to the list of GERs depicted in Figure 10.21 in the
Appendix, the rules characterizing this group of communities are composed
by a precondition of two edges and only a new link in the postcondition, i.e.
they have an insertion rate lower than rules from 41 to 50. In short, the overall
mechanisms driving their evolution in these communities are more conservative
than those of the remaining communities in the Sarafu network. In the Sarafu

10 Community evolutionary profile 149

(a)

(b)

(c)

(d)

Figure 10.8: Support threshold selection. In (a), (b), (c) and (d) the av-
erage and standard deviation of the coverage distribution derived by the GERs
of each community as a function of the support threshold utilized by EvoMine,
for Sarafu, DBLP, Enron, and Stack Overflow respectively. The dark line rep-
resents the trait of the average coverage, and the lighter-colored area indicates
the standard deviation. The yellow boxes indicate the selected support thresholds
according to the criteria described in the text.

10.4 Findings 150

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Communities

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Ru
le

s'
 in

de
xe

s
Sarafu

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Re
la

ti
ve

 s
up

po
rt

Figure 10.9: Communities GER profiles: Visualization of the GER profiles
of the communities in the Sarafu network. Rows correspond to evolution rules,
and columns correspond to the communities.

context, it may indicate accounts that are less inclined to establish new trading
relationships.

As for the second dataset - DBLP - we employ the EvoMine algorithm to
each node-induced community subgraph, setting a support threshold equal to
4
20 ·max_sup. This yields a consistent set of rules in each community, even if
with some oscillations. In fact, the number of rules fluctuates between 12 and
15. Figure 10.10 shows the GER profiles of the communities through a heatmap
which is interpreted in a way similar to the Sarafu dataset (seeFigure 10.9).
White cells indicate that the associated rules are not frequent (according to the
support threshold) in those community subgraphs. Since the number and the
set of evolution rules are not consistent across communities, in Figure 10.11
we report the number of evolution rules for each community. As two commu-
nities having the same number of rules may be characterized by different GER

10 Community evolutionary profile 151

0 1 2 3 4 5 6 7 8 9 10

Communities

0
1
2
3
4
6
7
8
9

10
11
12
13
14
15
24
25
29
31
35
38
39
41
46
49

Ru
le

s'
 in

de
xe

s
DBLP

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Re
la

ti
ve

 s
up

po
rt

Figure 10.10: Communities GER profiles. Visualization of the GER pro-
files of the communities in the DBLP citation network. Rows correspond to
evolution rules, and columns correspond to the communities.

profiles, we observe cases as, for instance, community 2 which has the same
number of rules as communities 3 and 4 (12 rules), but the distribution in the
first is less uniform. Despite a few subtle differences, in the DBLP network,
the community GER profiles exhibit a more remarkable consistency across
different communities w.r.t. the Safaru case.

As discussed in the previous subsection, the most frequent GERs in DBLP
are related to the creation of chains of citations involving two to four DBLP
contributions. The uniformity of the community GER profiles across the com-
munity indicates that there are evolutionary mechanisms leading to the forma-
tion of communities that are common to different computer science topics.

When we focus on the Enron network, where we apply the EvoMine algo-
rithm with a support threshold set to 5

20 ·max_sup, we observe a very specific
and evident trait depicted in Figure 10.12. Indeed, it is clear that the evolu-

10.4 Findings 152

0 1 2 3 4 5 6 7 8 9 10

Communities

N
um

be
r

of
 r

ul
es

11

13

11 11 11
12 12

11 11

14
15

DBLP

Figure 10.11: Number of evolution rules for each community extracted from
the DBLP citation network.

tion of the communities follows two distinct traits: one characterized by very
few rules, as in the case of community 4 or 9, and one denoted by a more
homogenous evolutionary profile. Specifically, the number of rules for each
community is depicted in the barplot of Figure 10.13. Note that some com-
munities ({4, 9, 13, 15, 16}) have a limited number of rules, and remarkably,
these few rules (rules 0, 25, 39) are consistently frequent across all of these
communities. Specifically, these rules capture neighborhood expansions of a
single source which occur in a week only. In short, nodes belonging to these
communities tend to expand their contact list in a week, i.e. they are intensive
senders. It is worth noting that this kind of specific behavior characterizing
only a few communities has not emerged from a global analysis of the GER
profiles. Still, it has been made possible by the extraction of the community
GER profiles.

In analyzing the Stack Overflow dataset, we apply the EvoMine algo-
rithm to individual node-induced community subgraphs, utilizing a support
threshold set at 4

20 ·max_sup. This methodology produces consistent rule sets
within each community, although slight fluctuations occur, with the number
of rules varying between 9 and 4. The GER profiles of these communities are
reported in Figure 10.14 with the same visualization of the previous datasets,

10 Community evolutionary profile 153

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Communities

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Ru
le

s'
 in

de
xe

s

Enron

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
la

ti
ve

 s
up

po
rt

Figure 10.12: Communities GER profiles. Visualization of the GER pro-
files of the communities in the Enron network. Rows correspond to evolution
rules, and columns correspond to the communities.

where lighter cells indicate less frequent rules within community subgraphs.
Additionally, in Figure 10.15, we observe variations in the number of evolution
rules across communities. Notably, communities sharing the same number of
rules may exhibit distinct GER profiles. For instance, while communities 1 and
2 showcase a homogeneous distribution across the initial rules, community 7
demonstrates concentration on the first and third rules, with less uniformity
among others. Overall, despite nuanced differences, the GER profiles of Stack
Overflow network communities exhibit a consistency similar to the DBLP case,
contrasting with the Sarafu and Enron datasets. Indeed, in all the communi-
ties is prevalent an evolutionary mechanism related to the nature of the service,
i.e. the evolution is mainly driven by accounts that reply to other accounts who
sporadically reply back (reciprocal links).

10.4 Findings 154

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Communities

N
um

be
r

of
 r

ul
es

39 39 39 39

6

40
38

31
29

6

40
38 39

7

39

6
3

Enron

Figure 10.13: Number of evolution rules for each community extracted from
the Enron network.

To sum up, in Sarafu and Enron networks the identification of evolution
patterns characterizing communities through graph evolution rules and their
vector-based representation by GER profiles clearly indicate that the evolution
process is far from being homogeneous over the entire network, rather each com-
munity or small group of communities has its specific evolution patterns. On
the contrary, in the DBLP and Stack Overflow networks, communities follow
similar evolution patterns. In general, these observations further emphasize the
importance of a mesoscopic perspective in the analysis of complex networks
and stress the importance of unfolding the evolution of mesoscopic structures
such as communities, groups, or modules to get a deeper comprehension of the
mechanisms leading the growth of dynamic networks.

Since the community graph of the Enron network has shown a peculiar
core-periphery configuration, we focus on the Enron case showing how GERs
and GER profiles can characterize the dynamics of the network periphery.
In fact, we have already observed that there are five communities (4,9,13,15
and 16) with a significantly low number of rules - less than 7 - and these few
rules are common to all these communities. Specifically, the most frequent in
all the five communities are GERs 0, 25 and 39, depicted in the first row of

10 Community evolutionary profile 155

R
el

at
iv

e
su

pp
or

t

R
ul

es
’ i

nd
ex

es

Figure 10.14: Communities GER profiles. Visualization of the GER pro-
files of the communities in the Stack Overflow network. Rows correspond to
evolution rules, and columns correspond to the communities.

Figure 10.16 (from (a) to (c)). In the figure, we also report a set of rules that
are less frequent but present in almost all five communities, i.e. GERs 5, 20
and 33 (second row in Figure 10.16 - from (d) to (e)). Note that the rules in
Figure 10.16 represent the postcondition of the rule, while the edge(s) added
to the precondition is (are) the one(s) highlighted in green. If all edges in a rule
are green (with a timestamp equal to t1), then the rule describes the formation
of 3 edges in the same timestamp, which are not present in the previous one.
All these rules exhibit an expanding behavior: all edges start from a single
node. The difference between the first row (most frequent) and the second one
is given by the time: while those in the first row record edges created in the
second timestamp, i.e. they capture a faster formation of the postcondition,
the second row includes rules where the evolution is slower and it happens
in two consecutive moments - in this case two weeks. In general, the GER

10.4 Findings 156

0 1 2 3 4 5 6 7 8

Communities

N
um

be
r

of
 r

ul
es

9
8 8

6
7

6 6

8

4

Stack Overflow

Figure 10.15: Number of evolution rules for each community extracted from
the Stack Overflow network.

analysis indicates an expansive behavior of the periphery dominated by fast
expansive rules.

10.4.3 Evolution of neighboring communities

After showing the heterogeneity of the evolution of the four dynamic net-
works, we turn our attention to addressing the third research question: do
interconnected modules, specifically closely-knit communities, exhibit similar
evolution patterns or do they evolve independently? To address this question,
we examine the community graph alongside the total graph, and subsequently,
we compare them with the community profiles shown in the previous section.

In the case of the Sarafu network, in Figure 10.17a we display the relation-
ships among the communities of the graph through a more compact represen-
tation given by the community graph. In a community graph, each node is a
community ci, and there is an edge (c1, c2, w) between communities c1 and c2 if
there is at least an edge that connects a node in c1 to a node in c2. The weight
w represents the fractions of existing links across c1 and c2 over all the possible
links across communities c1 and c2, i.e. w = |{(u,v)∈G|(u∈c1∧v∈c2)∨(u∈c2∧v∈c1)}|

|c1|·|c2| ,

10 Community evolutionary profile 157Enron examples

t0
t1

rule 5 rule 20 rule 33

(d) (e) (f)

rule 0 rule 25 rule 39

(a) (b) (c)

Figure 10.16: Six GERs characterizing the communities in the Enron net-
works. Edges belonging to the precondition graph are grey and edges inserted in
the postcondition graph are green.

with G being the general graph, and |c| denotes the number of nodes in a com-
munity c. In the graph visualization, edges are colored based on their weights
(percentage of cross-community links), nodes are sized based on the weighted
degree and they are colored based on the community they represent. Observing
the community plot in Figure 10.17a, we can discern three groups of commu-
nity: two closed within themselves and the third one composed of communities
more isolated. In Figure 10.17a these sets are highlighted with shapes of differ-
ent colors: the pink and blue shapes include two groups of communities that
are more connected within each other, except for community 19 which stands
in the middle. The orange group includes the most isolated communities, less
connected to all the remaining communities (weak connections are indicated by
the lighter green color of the edges). Specifically, the first group (pink shape)
is composed of {12, 14, 5, 16, 10, 0, 3, 2, 6, 19}, the second (blue shape) is made

10.4 Findings 158

by {15, 13, 11, 17, 9, 1, 19} and the remaining communities {4, 7, 8, 18} (orange
shape) are less interconnected and act as connections between the two previous
main groups. Moreover, in Figure 10.17b, c and d we report the community
GER profiles of the communities included in the pink, blue and orange sets,
respectively, and we fixed the range of values of the colormap to have a uniform
association between level of darkness of the cell and magnitude of support. By
observing the profiles we notice that the partition of communities is reflected
in their community GER profiles. In fact, while the blue group includes only
profiles uniformly distributed over rules, the pink one contains GER profiles
with peaks of support concentrated in a small set of rules (the upper seg-
ment). Finally, the isolated set of communities does not present GER profiles
with a clear common trait. In the case of Sarafu, close and tight-knit sets of
communities follow similar evolution dynamics, as captured by GER profiles.

Moving on to the DBLP network, Figure 10.18 shows how nodes are spread
among communities and the relationships among them as expressed by the
community graph. In DBLP, communities are generally more connected to one
another, as we can see from the almost uniform size of nodes in Figure 10.18b.
This is also reflected in the community GER profiles depicted in Figure 10.10.
The frequencies of the rules are less homogeneous (even in the number of rules)
but among communities the GER profiles are similar. However, we can still
see an interplay between the closeness of a community to the other ones and
the similarity of their GER profiles. For instance, community 8 has one of the
GER profiles that differs the most from the other ones, and, indeed, it is one
of the communities on the edge of the graph, with weak connections with the
other ones. On the contrary community 4, whose GER profile represents the
median behavior, is one of the central communities (see Figure 10.18a), with
one of the highest weighted degrees.

Then, in Figure 10.19 we depict the community information of the En-
ron network adopting the community graph representation. In the case of the
Enron network, the community GER profiles (see Figure 10.12) have high-
lighted the presence of a typical behavior - more homogeneous among all the
rules - and a peculiar trait, with a concentration of fewer rules. This is also
reflected in the core-periphery-like configuration as highlighted by the shapes
drawn in Figure 10.19a. The orange shape includes the central communities,
which are more connected to each other, while the grey shape captures the
peripherical communities. This trait is strictly linked to the community GER
profiles displayed in Figure 10.19b and c. In fact, the GER profiles of the cen-
tral communities (Figure 10.19c) are the ones with a standard behavior, with
a uniform distribution over the evolution rules. On the other hand, the profiles
of the peripherical group, i.e. communities 15, 16, 13, 9, are composed of GER

10 Community evolutionary profile 159

(b) (c)

(a)

Sarafu

(d)
Figure 10.17: Rappresentation of the community graph of the Sarafu network
(a) where communities are groups in three sets (orange, blue and pink shapes).
For each set, we report the concatenation of the GER profiles of the communities
belonging to ((b), (c) and (d)).

10.4 Findings 160

DBLP

(a) (b)
Figure 10.18: In (a) visualization of the DBLP network where nodes are col-
ored according to the community they belong to. In (b) the community graph of
the DBLP network, restricted to the most representative communities.

profiles where only a small fraction of rules are frequent, i.e. the set depicted
in Figure 10.16b. Even in the case of Enron, it is quite evident the relation
between how close and connected communities are and the evolution dynamics
they follow.

Finally, the community plot of the Stack Overflow networks shows a com-
munity graph with a big group of nodes highly connected. As in the DBLP
graph, it is reflected by the homogeneous GER profiles. However, an inter-
esting interplay emerges between a community’s proximity to others and the
similarity of their GER profiles. For example, community 7, distinguished by
its distinct GER profile, appears as the most isolated within the community
graph. Conversely, communities 0 and 2, characterized by highly similar GER
profiles, are also closely connected within the network of communities. This
observation suggests a relationship between a community’s structural connec-
tivity and the coherence of its GER profile.

To summarize, the answer to the third research question is not as sharp as
for the previous questions, however, it is quite evident that close or tight-knit
sets of communities evolve following similar evolution patterns. This common
trend also impacts the DBLP and Stack Overflow cases, where community
GER profiles are more similar because of the compact structure of their mod-
ules.

10 Community evolutionary profile 161

(b) (c)

(a)

Figure 10.19: Rappresentation of the community graph of the Enron network
(a) where communities are groups in two sets. For each set, we report the con-
catenation of the GER profiles of the communities belonging to ((b) and (c)).

10.5 Conclusions 162

5

7

4
6

8

0

3
2

1

Stack overflow

Figure 10.20: Rappresentation of the community graph of the Stack Overflow
network

10.5 Conclusions

In conclusion, our study examined different dynamic networks through the lens
of graph evolution rules (GERs), shedding light on their intricate dynamics.
Our work highlights the significance of GERs as a valuable analytical tool for
unraveling the complex evolution of dynamic networks and underscores the im-
portance of considering modular structures in network analysis. In particular,
we show the effectiveness of an approach based on temporal subgraph mining
in discovering evolving subgraph patterns and localizing interesting evolution-
ary patterns in modular networks. Through this tool, we delved into diverse
networked systems, revealing both global and mesoscopic patterns of network
evolution. From a global perspective, we observed remarkable similarities in the
growth patterns of Enron and Sarafu, as reflected in GER profiles, while larger
networks, such as DBLP and Stack Overflow, behaved and evolved differently.
These observations stress the effectiveness of GER profiles, as a tool to rep-
resent and easily compare the evolution of temporal networks. Moreover, our
mesoscopic analysis unveiled novel and interesting evolutionary patterns lead-
ing to the formation of current communities. In fact, through the community
GER profiles, we assess the non-homogeneous nature of community evolution,
with each community or small group exhibiting specific evolutionary patterns.

10 Community evolutionary profile 163

Furthermore, GER profiles not only allow us to disentangle the different evo-
lutionary patterns that led to the formation of the different communities, but
they even support the assessment of similarity among communities close in
the network, regarding their evolutionary patterns. This has made evident the
influence of interconnected sets of communities on similar evolution trends, i.e.
close communities evolve similarly.

This insight into the interplay between modular structures and evolving
network dynamics is crucial for a deeper understanding of these complex sys-
tems. As we move forward, future research in this domain may explore ad-
vanced GER mining techniques to uncover even subtler patterns and mech-
anisms underlying network evolution. Additionally, investigating the applica-
tion of our approach to a broader spectrum of dynamic networks across various
domains could provide valuable insights into their shared and distinctive char-
acteristics. Indeed, our methodological pipeline can be applied to any temporal
network that grows over time and is characterized by a current modular struc-
ture. We also showed that the method can reasonably scale to large temporal
networks, however, since the framework is modular, there is space for improv-
ing the computational complexity by adopting more efficient approaches for
extracting graph evolution rules or different algorithms for community detec-
tion. Furthermore, the development of novel visualization tools and methods
for GER-based analysis could enhance our ability to comprehend the intricate
dynamics of networks. By uncovering the principles that govern the evolution
of such networks, researchers and practitioners can make informed decisions
for network management, optimization, and adaptation.

10.5 Conclusions 164All rules found

t0 t1
Figure 10.21: Graph evolution rules. Set of all the graph evolution rules
associated with their unique identifier (on top of each graph). Blue links cor-
respond to the precondition, while green links indicate new links added to the
postcondition.

Part III

Graph Evolution rules

167

The third part of this thesis expands the scope of graph evolution rules,
enriching the GERANIO framework through the introduction of the TULIP
algorithm. We dedicate a different part of the thesis to this topic alone to
stress the difference between stand alone rules and general graph evolution
rules offered by the TULIP algorithm. While stand-alone rules offer valuable
insights in specific scenarios, they often struggle to catch the intricate dynam-
ics of network evolution in their entirety. The TULIP algorithm addresses this
limitation by building upon the foundational terminology and concepts out-
lined in the background section (Chapter 4). This novel approach, to the best
of our knowledge, represents a significant advancement in the field. Unlike con-
ventional algorithms that focus on individual, stand-alone rules, our method,
TULIP, can capture and quantify all possible evolutions of a subgraph, along
with their associated probabilities. This comprehensive approach allows for a
more nuanced and accurate representation of complex network dynamics, pro-
viding researchers with a powerful tool to analyze and predict the behavior of
evolving graph structures across various domains. By considering the full spec-
trum of potential changes and their likelihoods, TULIP offers a more holistic
view of graph evolution, potentially uncovering patterns and relationships that
might be overlooked by more restrictive methodologies.

Chapter 11

TULIP

11.1 Introduction

This chapter presents TULIP (Temporal subgraphs for evolutionary profiling),
a novel algorithm that represents a significant advancement in the field of tem-
poral network analysis. TULIP builds upon our previously proposed framework
for stand-alone rules, which addressed critical limitations such as the absence
of a null model and a canonical form. However, TULIP goes beyond these im-
provements, offering a more comprehensive approach to understanding network
dynamics. The key innovation of TULIP lies in its ability to capture all possible
evolution patterns of subgraphs within a temporal network, along with their
corresponding probabilities. This holistic approach provides a nuanced and
complete picture of network behavior over time. The algorithm operates in two
main phases: static pattern enumeration and temporal evolution mining. In the
first phase, TULIP identifies and enumerates occurrences of predefined static
patterns within the network. The second phase incorporates temporal informa-
tion to mine the various ways these subgraphs evolve, revealing the dynamic
nature of the network’s structure. The outcome of this process is the construc-
tion of evolution profiles for each starting temporal subgraph. These profiles
encapsulate all observed evolutions and their associated probability distribu-
tions, offering a multi-dimensional view of the network’s temporal behavior.
This comprehensive analysis enables researchers to gain deeper insights into
the underlying mechanisms driving network evolution across various domains.
To demonstrate the effectiveness and versatility of TULIP, we applied the
algorithm to five diverse datasets, encompassing both Web2 and Web3 scenar-
ios. These datasets include communication networks, financial networks, and
trust networks. Notably, our results revealed intriguing patterns in evolution-

11.2 Methodology 170

ary behavior across these different network types. Interestingly, we observed
similar evolutionary behaviors in the Steemit and CryptoKitties datasets, both
Web3-based networks, despite one being financial and the other representing
social interactions. In contrast, the Sarafu dataset, another financial network
from a Web3 platform, exhibited behavior more closely aligned with UC-Social
and Bitcoin-Alpha, two traditional social networks. These findings highlight
the potential of TULIP to uncover unexpected similarities and differences in
network evolution across diverse domains and technological paradigms. In the
following sections, we will delve into the technical details of the TULIP al-
gorithm, discuss its implementation, and provide an in-depth analysis of the
results obtained from these varied datasets. Through this exploration, we aim
to demonstrate how TULIP opens new avenues for understanding complex
systems, from social networks to financial interactions, in both traditional and
emerging digital landscapes.

11.2 Methodology

In this work, we propose a novel algorithm to mine graph evolution rules
that follows the pipeline depicted in Figure 11.1. The inputs are the temporal
network (modeled as a growing projection, as described in the taxonomy of
Chapter 3) and a starting set of static patterns. Using a subgraph isomorphism
algorithm, the static occurrences of the patterns are enumerated. These occur-
rences are divided into regular-sized chunks and fed into the temporal pipeline.
For each static occurrence, the temporal pipeline extracts the temporal edges
and the evolutions. After the mining part, the temporal patterns are mapped
into relative temporal patterns and classified using a canonical form algorithm.
The categorized patterns with the associated frequency are used to create an
vector-based profile that serves as evolutionary footprint of a network. The
following sections will provide details on each part of the TULIP algorithm
pipeline.

11.2.1 Enumeration of static patterns

The algorithm begins with a set of predefined starting subgraphs. This initial
set can be defined in various ways, such as including all subgraphs with a max-
imum of three edges or selecting a smaller subset with specific significance in
the field of application. For example, in a financial network analysis, one might
focus on potential cycles by starting with open structures to evaluate how fre-
quently they close. The selected static structures are then enumerated within

11 TULIP 171

Su
b

g
ra

p
h

is

o
m

o
rp

h
is

m

ENUMERATION
OF STATIC
PATTERNS R

eg
u

la
rl

y

si
ze

d
 c

h
u

n
ks TEMPORAL PIPELINE

TEMPORAL PIPELINE

TEMPORAL PIPELINE

TEMPORAL PIPELINE

EVOLUTIONS
COUNTING

static
occurrence

C
an

o
n

ic
al

 fo
rm

cl

as
si

fi
ca

ti
o

n

evolution
edges

respecting
ΔTm a x _ t s m a x _d

temporal
edges

R
el

at
iv

e
ra

n
ki

n
g

m

ap
p

in
g

TEMPORAL PIPELINE

EVOLUTION RULES PROFILE

Starting set
of static
patterns

Growing
Network

Figure 11.1: Pipeline of the Tulip algorithm. The algorithm begins by
enumerating all occurrences of a given set of static patterns. The results are
then divided into chunks, and through the temporal pipeline, Tulip extracts pairs
of evolutions in the form (pre, post). These evolutions are subsequently counted,
and the evolutionary profile is constructed

the growing network using the VF2 subgraph isomorphism algorithm [41]. This
algorithm, in its igraph [160] implementation, efficiently identifies all instances
of the predefined subgraphs within the larger network structure. This part of
the algorithm was parallelized on the starting subgraph, as it provided the
highest potential for parallelization within the process.

11.2.2 Temporal pipeline

Once we obtain the list of edges forming the starting static patterns, we begin
with the temporal part (Algorithm 4). This process is executed in parallel for
each enumeration, regardless of the originating subgraph. The parallelization
is applied to bunches of occurrences, striking a balance between time sav-
ings from parallelization and resource efficiency. While processing individual
occurrences is quick, the sheer volume—millions of occurrences—necessitates
this approach. Algorithm 4 is applied to each chunk of occurrences. For every
static occurrence, we first extract the timestamps associated with the static
edges (line 3 of Algorithm 4). We then reconstruct the temporal subgraph’s
evolution, this happens only if the starting temporal subgraph is not at the
temporal span’s end, which would preclude further evolution. Edges surround-
ing the starting subgraph are included in the evolution (post condition) if

11.2 Methodology 172

they satisfy three parameters constraints: maxts, ∆t, and maxd. The maxd

parameter limits the influence of hubs in evolution counting, representing the
maximum number of incoming and outgoing neighbors each node of the ini-
tial subgraph can have. If the number of incoming or outgoing edges from
a node u in the subgraph exceeds maxd, only the first maxd are considered
(lines 6 : 8 and 16 : 18 of Algorithm 5 for outgoing and ongoing edges re-
spectively). Additionally, edges are included in the evolutions if they occur
within the interval [maxts,maxts +∆t]. The algorithm concludes by obtain-
ing the canonical representation for both the precondition (starting subgraph)
and the post-condition (starting subgraph with evolutions), based on the Bliss
algorithm [36].

Algorithm 4 Temporal pipeline.
Input: G, chunk,max_d,∆t, T
Output: rules
1: rules = ()
2: for edges ∈ chunk do
3: edges_temporal = {(u, v,G[u][v][ts])∀(u, v) ∈ edges}
4: max_ts = max({x2∀x ∈ edges_temporal})
5: if max_ts < T −∆tx then ▷ Avoid occurrences at the end of the temporal

span
6: edges_temporal = relative_ranking(edges_temporal) ▷ Classify edges

of pre-condition
7: label_pre = get_canonical(to_layered(edges_temporal))
8: evolutions = get_evolutions(edges_temporal,max_ts,max_d,∆t)
9: if len(evolutions) > 0 then ▷ Classify edges of post-condition, if any

10: evolutions = relative_ranking(edges_temporal + evolutions)
11: label_post = get_canonical(to_layered(evolutions))
12: rules.append((label_pre, label_post))
13: else
14: rules.append(label_pre)
15: end if
16: end if
17: end for
18: return rules

11 TULIP 173

Algorithm 5 Evolutions.
Input: G, edges_temporal,max_d,max_ts,∆t

Output: evolutions
1: nodes = {u∀(u, v, t) ∈ edges_temporal} ∪ {v∀(u, v, t) ∈ edges_temporal}
2: evolutions = list()
3: for n ∈ nodes do
4: out_neighs = G.successors(n) ▷ get outgoing evolutions
5: out_edges = {(n, v,G[n][v][ts])∀v ∈ out_neighs}
6: if len(out_edges) > max_d then
7: out_edges = sorted(out_edges)[: max_d]
8: end if
9: for (u, v, ts) ∈ out_edges do

10: if max_ts < ts <= max_ts+∆t then
11: evolutions.append((u, v, ts))
12: end if
13: end for
14: in_neighs = G.predecessor(n) ▷ get ingoing evolutions
15: in_edges = {(v, n,G[v][n][ts])∀v ∈ in_neighs}
16: if len(in_edges) > max_d then
17: in_edges = sorted(in_edges)[: max_d]
18: end if
19: for (u, v, ts) ∈ in_edges do
20: if max_ts < ts <= max_ts+∆t then
21: evolutions.append((u, v, ts))
22: end if
23: end for
24: end for
25: return evolutions

11.2.3 Canonical classification

The canonical classification process, which assigns a unique identifier to each
isomorphic subgraph for universal applicability, involves several steps. First, we
perform a relative-ranking mapping where UNIX timestamps are transformed
into incremental integers starting from zero. This mapping is "relative" because
timestamps always begin at zero and "ranking" because the temporal order,
not the absolute time differences, is significant. Figure 11.2 shows an example
of three different temporal subgraphs mapped into the same relative-ranking
mapped subgraph because they all present the same temporal order.

We transform the temporal relative-ranking mapped subgraph into a mul-
tilayer graph without edge attributes to meet bliss algorithm requirements.

11.2 Methodology 174

0
1

2 5
6

7 5
7

19

0
1

2

relative
ranking
mapping

Figure 11.2: Example of three temporal patterns that are mapped into the same
relative-ranking mapped pattern.

From temporal
to multilayer

From isomorphism
to code

{0:5,
1:7,
2:2,
3:8,
4:4,
5:6,
6:0,
7:3,
8:1}

{0:7,
1: 5,
2:2,
3:4,
4:8,
5: 6,
6:3,
7:0,
8:1}

Temporal
Subgraph

Multilayer
Representation

Canonical
isomorphism

Canonical
graph

2417851715792651205751044

2417851715792651205751044

Canonical
code

(a) (b) (c) (d) (e)

G1

G2

Gm1

Gm2 Gc

Gc

Figure 11.3: Example of the canonical coding process. Temporal sub-
graphs in (a) are first transformed into their multilayer representations in (b).
Then, the bliss algorithm is applied, obtaining the canonical isomorphism in (c)
that is used to obtain the canonical graph in (d). From the canonical graphs we
obtain the canonical code in (e).

Each layer represents a timestamp, with nodes duplicated across layers and
edges placed in their corresponding timestamp layer. Layers are connected
by pillar edges linking nodes of the same entity. This process preserves tem-

11 TULIP 175

poral information while creating a bliss-compatible structure. The following
paragraph will offer a detailed examples based on Figure 11.3. The temporal
subgraphs in Figure 11.3a are transformed into a multilayer representation in
Figure 11.3b. Nodes are duplicated maxts + 1 times, creating maxts + 1 lay-
ers. At each layer l = 0, 1, . . . ,maxts, a node’s id becomes n+ (n_nodes ∗ l).
For example, in Figure 11.3b, graph Gm

1 has 3 layers (maxts = 2), and node
2 becomes node 8 in the third layer. Two types of edges exist in this repre-
sentation: pillar edges (shown in gray) connect the same node across multiple
layers, while actual temporal subgraph edges are assigned to layers correspond-
ing to their timestamps. For instance, the temporal edge (1, 2, ts = 2) of G1

becomes edge (7, 8) on the third layer in Gm
1 . This multilayer representation

is then processed by the bliss algorithm, producing the canonical isomorphism
shown in Figure 11.3c. From this, we reconstruct the canonical graph Gc in
Figure 11.3d. It’s important to note that Figure 11.3 illustrates the example of
G1 and G2 that are two isomorphic temporal subgraphs, however, the canoni-
cal isomorphism itself is not the same for the two isomorphic subgraphs. What
corresponds is the canonical graph. Finally, we decode the obtained canonical
graph. We take the adjacency matrix, concatenate the rows with a 1 as the
prefix, and decode the resulting binary string into an integer. This method en-
sures we obtain the same integer code (which is more compact than storing the
binary string) for every isomorphic temporal graph, as shown in Figure 11.3e.

11.2.4 Counting and profile

The temporal pipeline generates a list EV of tuples (pre, post), representing
the preconditions and their subsequent evolutions. To analyze the frequency
of these evolutions, we employ two counting mechanisms. First, we count the
occurrences of preconditions alone, establishing a function counterp : P → N
that maps the set of preconditions P to their respective frequencies across
the entire network evolution. This provides a baseline for understanding the
temporal structure of the network. Second, we count the occurrences of com-
plete evolutions using a function countere : C → N , which maps couples
(prei, postj) ∈ C to their frequency of occurrence. These counting functions en-
able the construction of profiles for both preconditions and evolutions. The pre-
condition profile vp is a vector where each element vpi = counterp(prei)/|EV |,
representing the normalized frequency of each precondition. For evolutions,
we create a collection of profiles, one for each precondition. Each evolu-
tion profile ve(prei) corresponds to a specific precondition prei, with ele-
ments ve(prei)j = countere(prei, postj)/|EV |, representing the normalized

11.3 Results and Discussion 176

frequency of each possible evolution from that precondition. This comprehen-
sive profiling approach allows for a detailed analysis of both the temporal
network structure and its dynamic evolution patterns.

11.2.5 Case Studies

We applied our methodology to five diverse datasets modeling different types
of interactions, ranging from communication networks to financial networks
on Web3 platforms. The first three datasets—UC-social, Bitcoin Alpha, and
Sarafu—are described and modeled in detail in Chapter 6. While the Steemit
and Cryptokitties datasets are also mentioned in Chapter 6, their modeling
requires further elaboration, which we provide here. The Steemit dataset en-
compasses a subset of follow operations on the Steemit platform, specifically
those occurring between December 6th, 2016, and March 6th, 2017, total-
ing 302,669 follow operations. We modeled this data as a growing projection
G[(1, T)]

GP = (V,E, f), where f is an edge-labeling function assigning to each
edge (i, j) the first time user i followed user j. This modeling resulted in a
growing network comprising 23,493 nodes and 290,801 edges. The Cryptokit-
ties dataset, derived from Nadini et al. [104], represents a subset of transac-
tions within the Cryptokitties market/game. For our analysis, we considered
all transactions recorded in this subset and modeled them into a growing pro-
jection G[(1, T)]

GP = (V,E, f), following the same definition as the other
networks. The resulting network consists of 99,984 nodes and 481,540 edges.
Table 11.1 presents the number of edges and nodes for each dataset in its ini-
tial columns. It’s important to note that for the mining phase of our analysis,
we initially considered timestamps in Unix time format, which measures time
as the number of non-leap seconds elapsed since 00:00:00 UTC on January 1,
1970 (the Unix epoch). However, during the canonical representation phase, we
transformed these Unix timestamps into relative-ranking timestamps, thereby
losing the original Unix time information. This diverse set of datasets allows
us to test our methodology across various network types and interaction pat-
terns, providing a comprehensive view of its applicability and effectiveness in
different contexts.

11.3 Results and Discussion

In this section, we showcase the results of the algorithm described in 11.2
applied to the five different networks, first highlighting the insights we can
get from the pre-condition profiles and then from the evolutions too. In Table

11 TULIP 177

11.1, we show the computation time of the algorithm — including the running
time for the enumeration of static patterns as well as the temporal pipeline.
The experiments were conducted on a Dell PowerEdge T620 server with dual
Intel Xeon CPUs (2.10GHz, 16 cores, 32 threads) and 376GB RAM1.

Dataset |N | |E| maxd ∆t PartI PartII
UC-social 1,899 20,211 10 9h19m16s 17s 15m

Bitcoin Alpha 3683 22,650 6 5days 20s 14m30
Sarafu 40,343 143,239 3 1day, 5h25m42s 1m30 30m
Steemit 23,493 290,801 12 9s 1h37 45h

Cryptokitties 99,984 481,540 4 17m6s 30m 7h30

Table 11.1: Overview of the parameters setted for the five datasets, with com-
putation times and networks’ size. maxd is chosen as an approximation of the
graph degree, while ∆t corresponds to the median of inter-link time. PartI col-
umn corresponds to the computation time of the static enumeration phase, while
PartII stands for the temporal pipeline.

11.3.1 Pre profile

The first outcome of this study is the generation of pre-condition profiles for
each analyzed network, as detailed in Chapter 11.2. These profiles reveal a max-
imum of 325 pre-conditions, corresponding to all possible temporal subgraphs
with 2 or 3 nodes. While larger networks exhibit all 325 pre-conditions, the
Bitcoin network shows 323, and UC-social datasets display 287. Despite this
wide range of identified pre-conditions, their frequency distribution is heav-
ily skewed towards simpler structures. Figure 11.4 illustrates the profiles of
the top 20 pre-conditions, ranked by their frequency in the UC-social pro-
file. A striking observation is the distinct profiles of Cryptokitties and Steemit
compared to other networks. This distinction is intriguing as both are Web3
platforms, setting them apart from traditional networks. Interestingly, Sarafu,
despite also being a Web3 platform, shows similarities to conventional net-
works, possibly due to its humanitarian/social nature. The dominant patterns
reveal further insights into network structures. Cryptokitties and Steemit are
highly concentrated on pre-condition id = 0, suggesting network growth pri-
marily through node expansion without reciprocation. In contrast, Sarafu is
1 The algorithm has been implemented in Python.

11.3 Results and Discussion 178

dominated by pre-condition id = 13321, indicating frequent user interactions
reflecting money exchanges. UC Social and Bitcoin exhibit similar profiles,
with a higher concentration on the first 4 patterns (no reciprocal edges) and
significant presence in the next 8 patterns (open triads with one reciprocal
edge) The analysis applies normalization to the entire set of pre-conditions, as
explained in Chapter 11.2. The visualization of Figure 11.4 is limited to the
top 20 patterns (depicted in Figure 11.5) due to negligible percentages beyond
this point. This initial analysis of pre-conditions provides insights into the
structural differences between various network types, particularly highlighting
the unique characteristics of Web3 platforms and traditional social networks.
Moreover, by examining the preconditions alone, we can gain a glimpse into
the temporal structure of each network, allowing us to characterize its dynamic
behavior.

0

49
25

49
27

13
32

1

49
30 1

43
33

13
32

2

43
29

49
33

43
44

43
32

43
38

43
74

43
26

43
21 37

54
53

52
18

13
38

9

uc

bitcoin

sarafu

cryptokitties

steemit

0.19 0.14 0.11 0.11 0.06 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00

0.12 0.11 0.11 0.11 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00

0.09 0.11 0.13 0.20 0.04 0.02 0.05 0.06 0.05 0.03 0.02 0.03 0.03 0.01 0.01 0.01 0.01 0.00 0.01 0.01

0.66 0.06 0.10 0.10 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.67 0.09 0.04 0.03 0.01 0.04 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

Pre-conditions profiles

0.0

0.1

0.2

0.3

0.4

0.5

Figure 11.4: Heatmap showing the profile of pre-conditions for the 5 datasets.
The visualization is limited at the 20 most frequent patterns due to negligible
percentages beyond this point. Each line represents a profile for a dataset, i.e. a
probability distribution over the frequency of pre-conditions.

11.3.2 Evolutionary profile

Our analysis now shifts to examining the actual evolution of the networks.
We begin by considering some quantitative results presented in Table 11.2.
This table displays, for each dataset, the number of preconditions, the num-
ber of rules (defined as couples of (prei, postj)), and the median number of
post-conditions for each precondition. The latter metric refers to the main
feature of the TULIP algorithm’s that offers an evolutionary profile, offering

11 TULIP 179

1

0

0(0)

0

1

4925(1)

0

1

4927(2)

1

0

13321(3)

0

2

1

4930(4)

1

0

2

1(5)

1

2

0

4333(6)

2

1

0

13322(7)

0

1
2

4329(8)

0

1
2

4933(9)

0

2

1

4344(10)

1

0

2

4332(11)

1

3

0

2

4338(12)

1

2

0

3

4374(13)

0

2

1

3

4326(14)

0

3

1

2

4321(15)

1

0

2

37(16)

2

1

0

5453(17)

0

2

1

5218(18)

1

2
0

13389(19)

Figure 11.5: Representation of the 20 most frequent pre-conditions

an unprecedented perspective in the field of network evolution. It provides
a profile of network evolution starting from each initial subgraph (precondi-
tion), as defined in Chapter 11.2. The datasets in Table 11.2 are ordered by
the number of edges, revealing interesting insights. Notably, while Steemit is
not the largest graph, it presents more than double the number of rules com-
pared to Cryptokitties. This non-linear correlation between size and number
of patterns is also evident in the first two datasets: despite comparable sizes of
the Bitcoin and UC-social graphs, Bitcoin exhibits almost twice the number of
rules. Figure 11.6 illustrates the relative size of these intersections, providing
stronger confirmation that the Cryptokitties and Steemit graphs differ signif-
icantly from the other three, as evidenced by the distinct blocks in the figure.
The precondition that most clearly demonstrates this two-cluster division is
4927 (shown in the first row of Figure 11.5), representing a path. For this
precondition, Steemit and Cryptokitties present a high percentage of common

11.3 Results and Discussion 180

Dataset pre n. rules median post
UC-social 287 2,885,731 5

Bitcoin Alpha 323 4,827,543 6
Sarafu 325 27,108,973 7
Steemit 325 484,574,431 6

Cryptokitties 325 231,124,737 1

Table 11.2: Overview of tulip results. pre column counts the number of precon-
dition found in each dataset. n. rules and median post columns refers to the
evolution part, respectively counting the number of rules found and the median
number of post condition for each pre condition.

post-conditions, while the set of common post-conditions in the other three
datasets remains considerable. Interestingly, for precondition 0, Steemit and
Cryptokitties present a lower percentage of intersection, despite this precondi-
tion being very frequent in both graphs (as seen in Figure 11.5). This suggests
that although both networks frequently exhibit this initial state, they evolve
in different ways. This divergence makes sense given the different nature of
Steemit compared to Cryptokitties, despite both being part of the Web3 land-
scape. Cryptokitties primarily represents financial transactions, while Steemit
has a distinct social media focus (follow operations).

We can now delve deeper into the actual evolutionary profile, visualizing it
for each precondition similarly to how we examined the precondition profiles
in Figure 11.4. This involves first observing the distribution and then selecting
noteworthy postconditions. Figures 11.7 and 11.9 present results for precondi-
tions 0 and 4927 (discussed earlier), focusing on the first 20 postconditions to
appear across all datasets out of 302 total postconditions. We denote with the
symbol ∄ the absence of evolution, meaning that the starting subgraph do not
evolve in any way respecting the consraints given by the parameters maxts,
∆t, and maxd. A key observation is that precondition 0, highly present in both
CryptoKitties and Steemit datasets, exhibits different common postconditions
(only 14% overlap). Figure 11.7 provides more details, with subfigure (a) in-
cluding postcondition ∄ (representing absence of evolution edges within maxd

and ∆t parameters) and subfigure (b) excluding it for better visualization of
other frequent evolutions. The 0→ 0 rule (corresponding to ∄ postcondition)
frequency approaches 1 in Steemit, while in CryptoKitties there is space to
observe other postconditions because postconditions 275 and 272 have minor
but noticeable frequency shares (shown in Figures 11.8a and b). The other
three datasets exhibit distinct profiles: Bitcoin predominantly features post-
condition 136 (Figure 11.8c), UC-social focuses on 275, and Sarafu shows a

11 TULIP 181

UC BI SA CR ST

UC
BI

SA
CR

ST

100 21.77 20.42 2.65 0.88

21.77 100 30.87 4.55 1.52

20.42 30.87 100 9.52 3.17

2.65 4.55 9.52 100 14.29

0.88 1.52 3.17 14.29 100

0 (0)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 27.85 16.94 3.42 4.24

27.85 100 23.27 5.44 4.61

16.94 23.27 100 14 7.02

3.42 5.44 14 100 33.33

4.24 4.61 7.02 33.33 100

13321 (1)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 24.28 14.62 2.85 4.45

24.28 100 23.42 4.9 4.73

14.62 23.42 100 11.32 6.67

2.85 4.9 11.32 100 35.71

4.45 4.73 6.67 35.71 100

4925 (2)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 26.89 21.8 4.52 3.52

26.89 100 27.63 5.84 4.38

21.8 27.63 100 11.67 10.17

4.52 5.84 11.67 100 60

3.52 4.38 10.17 60 100

4927 (3)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 26.82 16.56 2.04 3.29

26.82 100 28.24 3.75 5.88

16.56 28.24 100 10.34 8.33

2.04 3.75 10.34 100 30

3.29 5.88 8.33 30 100

1 (4)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 23.95 17.86 0.76 3.05

23.95 100 26.44 1.32 5.26

17.86 26.44 100 2.94 8.57

0.76 1.32 2.94 100 25

3.05 5.26 8.57 25 100

4930 (5)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 26.1 21.63 2.11 1.05

26.1 100 33.57 3.23 1.61

21.63 33.57 100 6.35 3.17

2.11 3.23 6.35 100 50

1.05 1.61 3.17 50 100

4344 (6)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 21.99 16.05 1.31 5.16

21.99 100 26.37 2.5 7.14

16.05 26.37 100 5.71 15.38

1.31 2.5 5.71 100 20

5.16 7.14 15.38 20 100

13322 (7)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 28.94 16.06 2.39 4.74

28.94 100 20.65 3.5 5.44

16.06 20.65 100 8.89 9.8

2.39 3.5 8.89 100 41.67

4.74 5.44 9.8 41.67 100

4329 (8)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 27.38 18.13 2.3 3.45

27.38 100 19.75 2.72 3.38

18.13 19.75 100 9.76 9.3

2.3 2.72 9.76 100 42.86

3.45 3.38 9.3 42.86 100

4333 (9)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 23.32 13.48 2.86 2.78

23.32 100 22.12 5 4.76

13.48 22.12 100 18.52 8.82

2.86 5 18.52 100 25

2.78 4.76 8.82 25 100

37 (10)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 26.28 16.32 2.15 4.26

26.28 100 26.39 3.65 4.93

16.32 26.39 100 8.7 7.55

2.15 3.65 8.7 100 41.67

4.26 4.93 7.55 41.67 100

4332 (11)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 25.25 14.79 1.79 2.91

25.25 100 27.71 3.75 5.95

14.79 27.71 100 11.54 9.38

1.79 3.75 11.54 100 33.33

2.91 5.95 9.38 33.33 100

4933 (12)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 27.78 22.68 3.33 4.35

27.78 100 15.75 2.14 3.55

22.68 15.75 100 10.34 6.06

3.33 2.14 10.34 100 12.5

4.35 3.55 6.06 12.5 100

5453 (13)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 22.62 16.54 0.79 4.72

22.62 100 21.59 1.27 6.25

16.54 21.59 100 3.57 13.33

0.79 1.27 3.57 100 16.67

4.72 6.25 13.33 16.67 100

4338 (14)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 25.41 16.05 1.92 3.12

25.41 100 30.12 3.95 6.25

16.05 30.12 100 9.38 7.89

1.92 3.95 9.38 100 33.33

3.12 6.25 7.89 33.33 100

4326 (15)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 15.73 6.36 2.58 2.13

15.73 100 22.03 7.14 5.17

6.36 22.03 100 26.32 19.05

2.58 7.14 26.32 100 44.44

2.13 5.17 19.05 44.44 100

32 (16)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 28.07 14.6 2.26 3.57

28.07 100 22.22 3.49 6.52

14.6 22.22 100 12.5 12.5

2.26 3.49 12.5 100 25

3.57 6.52 12.5 25 100

4374 (17)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 17.04 8.7 1.46 1.46

17.04 100 25.42 5.45 3.57

8.7 25.42 100 15.79 10

1.46 5.45 15.79 100 20

1.46 3.57 10 20 100

5000 (18)

UC BI SA CR ST

UC
BI

SA
CR

ST

100 14.63 6.07 1.09 2.17

14.63 100 21.74 4.84 7.81

6.07 21.74 100 13.64 11.54

1.09 4.84 13.64 100 25

2.17 7.81 11.54 25 100

5318 (19)

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

Figure 11.6: Relative size of the intersections of post condition, for each of the
most frequent pre-conditions.

mix of both 136 and 272. Interestingly on the Web3 platforms, postcondition
136, representing reciprocal behavior, is absent in Steemit and CryptoKitties
networks due to their lack of classical social behavior. Conversely, it features
prominently in Sarafu, reflecting its strong humanitarian/collaborative com-
ponent. Postcondition 136 exhibits its most significant presence in the Bitcoin
network, this prevalence of reciprocal behavior aligns well with Bitcoin’s un-
derlying trust-based dynamics.

Figure 11.9 details the evolutions of precondition 4927, with subfigure (a)
including and (b) excluding the absence of evolutions (postcondition ∄). These
profiles resemble those in Figure 11.7, despite the different intersection between
postconditions shown in Figure 11.6. This similarity stems from the skewed
distribution of profiles across few rules. The first three postconditions for pre-
condition 4927 correspond to those of precondition 0, representing the same
evolution but starting from a different subgraph. For instance postconditions
136 and 5822 (in Figure 11.8c and f, respectively) represent the reciprocal
evolution of the most recently created edge (ts = 1). This distribution is re-
flected in the frequent occurrence of the reciprocal evolution (id=5822) in the

11.3 Results and Discussion 182

Bitcoin graph (a trust network), while being entirely absent in Steemit and
CryptoKitties networks.

(a)

(b)

01

Precondition
0

Evolutionary profiles

post-conditions

Figure 11.7: Profile of post-condition for pre-condition id = 0, both including
in (a) or excluding in (b) the ∄ postcondition.

012

272

012

275

012

136

(a) (b) (c)

012

4940

012

4936

012

5822

(d) (e) (f)

01

2

117773

(g)

Figure 11.8: Representation of the post-conditions of the pre-condition id = 0
(from (a) to (c)) and of the pre-condition id = 4927 (from (d) to (g)) cited in
the discussion.

11 TULIP 183

(a)

(b)

Evolutionary profiles

post-conditions01

Precondition
4927 /∃

Figure 11.9: Profile of post-condition for pre-condition id = 4927, both includ-
ing in (a) or excluding in (b) the ∄ postcondition.

11.3.3 Sensitivity to parameters

To assess the robustness of our algorithm, we conducted a sensitivity analysis
focusing on two key parameters: max_d and ∆T . This analysis was performed
on the smallest graph in our dataset, UC social, to ensure computational feasi-
bility while still providing meaningful insights. The max_d parameter controls
the influence of hubs by limiting the number of outgoing and incoming edges
for each node in the subgraph. We examined the algorithm’s behavior across a
range of max_d values: 5, 10, 20, and 42. The value 10 represents the average
degree and was used as the default in our previous results. The upper bound
of 42 corresponds to the 99th percentile of the degree distribution, capturing
the behavior of highly connected nodes. The ∆T parameter defines the time
window for evolution events, effectively controlling the counting of evolutions
that are temporally distant and thus potentially less causally related. In our
results we based the choice on the inter-time distribution of events, choosing
the 50th percentile of this distribution as default. To test sensitivity, we also
examined the effects of setting ∆T to the 25th and 75th percentiles of this
distribution. To isolate the effects of each parameter, we employed a one-at-
a-time approach. For the ∆T analysis, we fixed max_d at its default value
of 10 and varied ∆T across the 25th, 50th (default), and 75th percentiles of
the inter-time distribution. For the max_d analysis, we fixed ∆T at the 50th

percentile and varied max_d across the values 5, 10, 20, and 42. In our analy-
sis of parameter sensitivity, we first examined the computational time required

11.3 Results and Discussion 184

(a) (b)

(c) (d)

Computation time

Evolutions

Figure 11.10: Sensitivity to parameters. The computation time is evaluated
when varying parameters max_d, in (a), and ∆t, in (b). As for the evolution
part,the plots show the mean number of post conditions (blue line with area
indicating the standard deviation interval) and the percentage of frequency of
the ∄ post-condition (red line) when varying max_d, in (c), and ∆t, in (d).

when varying max_d and ∆T . As illustrated in Figure 11.10a-b, the processing
time remains relatively low and stable across most parameter configurations.
However, there is a notable exception when max_d reaches 42, which results
in a significant increase in computational time compared to other values. This
spike in processing time is likely due to the substantially larger number of
connections being considered in the subgraph, leading to more complex calcu-
lations, especially for what concerns the canonical form. Turning our attention
to the evolution results, we focused on two key metrics: the percentage of ∄
postconditions (indicating the absence of evolution meeting the given param-
eters) and the number of post-conditions. We observed that the percentage
of ∄ postconditions decreases gradually as the parameters increase. Interest-
ingly, changes in ∆T appear to have less impact on this decrease compared
to changes in max_d. The most dramatic effect is seen when max_d reaches
42, at which point the mean percentage of ∄ post-conditions drops to 0. This
suggests that at this high max_d value, the algorithm captures all potential
evolutions within the network, leaving no subgraph without an identified evo-
lutionary path. Regarding the mean number of post-conditions, we noted an

11 TULIP 185

increasing trend as both parameters increase. This indicates that allowing for
more connections (higher max_d) and longer time windows (higher ∆T) en-
ables the algorithm to identify more complex and varied evolutionary patterns.
However, it’s important to note that this increase in post-conditions is accom-
panied by a high degree of variance, as evidenced by the wide colored area
surrounding the mean line in our visualizations. This variance suggests that
while the algorithm generally identifies more post-conditions with higher pa-
rameter values, there is considerable variation in the complexity of evolutions
detected across different parts of the network.

11.4 Conclusion

In conclusion, this chapter has presented TULIP, a novel algorithm that sig-
nificantly advances the field of temporal network analysis. TULIP’s key inno-
vation lies in its ability to capture all possible evolution patterns of subgraphs
within a temporal network, along with their corresponding probabilities, pro-
viding a comprehensive view of network dynamics over time. Furthermore,
TULIP offers an evolutionary profile of the network, allowing researchers to
track and analyze how the network’s structure evolve, while also comparing the
evolutionary behavior of different networks. We demonstrated TULIP’s effec-
tiveness and versatility by applying it to five diverse datasets: UC-Social (so-
cial network), Bitcoin Alpha (trust network), Sarafu (complementary currency
financial network), CryptoKitties (NFT sales network), and Steemit Follow
(Web3 platform follow operations). This diverse selection allowed us to explore
TULIP’s performance across various network types, including both Web2 and
Web3 scenarios. Our analysis of these datasets yielded valuable insights from
both pre-condition profiles and evolutionary patterns. The pre-condition pro-
files revealed similarities and unique feature for each network, highlighting the
structural properties that serve as starting points for temporal evolution. The
evolution analysis then uncovered fascinating commonalities and differences
in post-conditions across the datasets, providing a nuanced understanding of
how different network types evolve over time. Notably, we observed unexpected
similarities in evolutionary behaviors between seemingly disparate networks,
such as Steemit and CryptoKitties, both Web3-based but representing differ-
ent interaction types. Conversely, we found that Sarafu, despite being a Web3
financial network, exhibited behavior more closely aligned with traditional
social networks like UCSocial and Bitcoin Alpha. These findings underscore
TULIP’s potential to uncover non-obvious patterns and relationships in net-
work evolution across diverse domains. Furthermore, our sensitivity analysis

11.4 Conclusion 186

shows how TULIP’s results change with respect to different parameters. By
examining how computational time and other results changed with variations
in key parameters, we provided insights into the algorithm’s scalability and
applicability to different network sizes and complexities. In summary, TULIP
represents a significant step forward in our ability to analyze and understand
temporal networks. Its comprehensive approach to capturing evolution pat-
terns, combined with its demonstrated effectiveness across diverse datasets,
opens new avenues for research in complex systems analysis.

Part IV

User Migration

189

User migration represents an evolutionary aspect of social networks that
cannot be fully captured by graph evolution rules alone. This phenomenon
is particularly relevant in the Web3 context, especially on blockchain-based
online social networks (BOSNs), and presents unique challenges for network
analysis.
Hard fork in Web3 online social networks. Web3 mainly relies on
blockchain technologies to support a wide ecosystem of services. In the case of
Web3 online social networks - Web3 OSNs - the underlying blockchain provides
data storage and data validation for all the social operations. The validation
process enables the production and exchange of cryptocurrencies, used in fi-
nancial operations in the Web3 platform [119]. Among the proposed Web3
OSNs, Steemit [161], and the underlying blockchain Steem, has been the pi-
oneer of the paradigm. Like other Web3 OSNs, it relies on a cryptocurrency,
called STEEM, that can be exchanged for goods or services. Moreover, the
cryptocurrency fuels a reward mechanism, which supports network growth
by repaying users for their activity on the platform (more details about the
Steemit platform can be found in Chapter 6). Web3 social platforms may of-
fer data about a phenomenon that is peculiar to blockchain-based systems: a
hard fork, i.e. an event that occur when miners do not consider as valid the
blocks validated with a newly proposed consensus protocol so that two differ-
ent branches are created if validators do not reach a consensus on the protocol
to use. In this situation, the members of the original branch may decide to
migrate to the platform based on the new branch, leading to a user migration.
Such a split has happened on Steemit as well. After a dispute inside the net-
work, a group of users on the 20th of March 2020 copied the blockchain data
into a new blockchain called Hive. In this case, users are provided with the
same username on both platforms, which means that they can still be active
on both platforms.
User migration in OSNs. User migration is a “universal” process spanning
online social media and networks but is not fully understood yet, especially in
the Web3 world. Most of the studies are based on the most spread social plat-
forms. For instance, by matching user accounts through external data, Kumar
et al. [162] have analyzed user migration patterns. Newell et al. have conducted
an analysis of user activity during a cross-platform migration with the goal of
understanding the motivations behind migration. Other works have focused on
users migrating across groups on the same platform, showing non-random mi-
gration patterns in Facebook groups [163]. A more in-depth analysis has been
conducted by Davies et al. [164] in the case of user migration across COVID-19
subreddits. All previous studies are based on data collected from centralized
social platforms and none of them has looked at user migration across Web3

190

platforms, especially as a consequence of a hard fork. Only recently Ba et al.
[121] have focused on user migration in Web3 social platforms by evaluating
the effects of user migration on the graph structure of the interactions and
assessing the predictability of migrating. Finally, Ba et. al. [165] studied the
Steemit user migration from a mesoscopic point of view, observing how com-
munities are characterized by different migration behaviors. With respect to
these latter works, here we focus on the behavior and role of hub nodes in
leading the user migration process, and on the evaluation of the influence hubs
may exert on their closest connections.
Evolutionary aspects of user migration In this thesis, we explore the
unique challenges and implications of user migrations within the Steemit palt-
form, complementing the graph-based analyses of the previous chapters. Our
first study examines two key aspects: the likelihood of hubs migrating to a
new social platform after a shock event, and their influence on their neighbors’
migration decisions. We find that different hub types employ varied migration
strategies. For example, financial hubs tend to maintain a presence on both
the original and new platforms. We also observe that users directly interacting
with hubs are more likely to migrate. These findings highlight the importance
of understanding hub activity and influence in managing user migration pro-
cesses.

We then investigate the complex relationships between groups, discussions,
and migration patterns. Using network-based analysis focused on community
detection in multilayer networks, combined with text mining, we uncover sev-
eral key insights:

• A group’s network position correlates with its migration likelihood, with
marginal groups more prone to leaving;

• Group network structure is significant: users in densely connected groups
with strong financial interactions are more likely to stay;

• Users who migrate discuss different topics compared to those who remain;
• User groups involved in monetary transactions show increased interest in

migration-related content if considering leaving

These results emphasize the crucial role of social and economic relation-
ships during user migration triggered by fork events. In the broader context
of online social media, this motivates a network-inspired approach to study-
ing user migration, focusing on groups and specific subgraphs while leveraging
user-generated content.

Finally, we introduce a novel machine learning pipeline using graph neural
networks (GNNs) to predict user migration in BOSNs. We model the data as a
directed temporal multilayer graph, capturing both social and monetary user

191

interactions. To address class imbalance in node classification, we propose a
data-level balancing technique based on undersampling. Our evaluation shows
that GNNs are suitable for user migration prediction, and our undersampling
approach significantly improves predictive power on severely imbalanced data.

Chapter 12

Influence of hubs

The current online social network landscape is characterized by competition to
get larger audiences leading to massive user migrations which will determine
the shape of the future Web. However, user migration phenomena have not
been fully understood and their driving mechanisms are still not well identi-
fied; in particular, the behaviors of hubs and the influence they exert on their
followers are unclear. In this work, we focus on these aspects by analyzing
the propensity of hubs to migrate towards a new social platform as a conse-
quence of a shocking event; and the influence they exert on the decision of
their neighbors of migrating to a new platform or staying on the native one.
We conducted analysis on the data about Steemit and Hive described in Chap-
ter 6, due to the blockchain nature of these Web3 platforms, we got detailed
data about social and financial interactions among the users, along with infor-
mation that allowed a precise reconstruction of the context surrounding the
migration. The main findings suggest that different types of hubs apply dif-
ferent strategies when choosing to migrate, e.g. financial hubs diversify their
strategy by staying and migrating at the same time. As for hub influence,
results suggest that users directly interacting with hubs tend to migrate. In
general, findings on influence indicate that understanding the activity and the
influence of hubs is crucial in monitoring and controlling the user migration
process. In particular, our research questions are:

1. How do the hubs behave when faced with the choice to migrate to a new
platform? Are they more likely to migrate or stay, so keeping their role
and status?

2. Since in modern Web3 OSNs, accounts may gain importance or popular-
ity through different types of interactions and strategies, even involving

12.2 Methodology 194

financial transactions, do different definitions/types of hubs lead to differ-
ent behaviors when faced with the choice of migrating or not?

3. Does the decision made by hubs whether to migrate or not influence their
neighboring nodes? Do they exert of sort of social/financial pressure on
their neighborhood?

12.1 Dataset

In this work, we consider all the users’ financial and social operations of the
Steemit platform (described in Chapter 6), from June 3, 2016, up to Jan-
uary 21, 2021. Specifically, for the Steem blockchain, the obtained data col-
lection consists of 993, 641, 075 social operations and 72, 370, 926 financial op-
erations; while Hive registers a total number of 206, 224, 132 social operations
and 4, 041, 060 financial actions. The cited number of operations concerns more
than 1.4 million users on the social layer and around 1.3 million on the financial
layer.

12.2 Methodology

Despite the variety of operation types, the operation schema is unique, so we
can model each transaction collected by APIs as a tuple I = (u, v, t, r), which
describes an interaction between users u and v of type r at time t. As mentioned
before, we leveraged the transactions’ classification introduced in [110] and
focus only on operations between users such that r ∈ {social, financial}.

12.2.1 Graph modeling

Based on the set of tuple interactions Is, we built different network-based rep-
resentations of the interactions among users, according to the time period we
dealt with. Specifically, we adopt an incremental graph-based representation
for data up to the hard fork moment, denoted by Tfork, and a snapshot-based
graph representation for interactions that happened after the hard fork:

• Growing projection graph: Concerning operations that happened be-
fore Tfork, we build two different graphs - layers - that isolate the different
types of operations. So, we obtain two directed weighted graphs Gs and
Gf , that include edges with r equal to social s or financial f , respectively.
Both Gs and Gf adopt the growing projection described in Chapter 3’s

12 Influence of hubs 195

taxonomy, building a graph G[1, Tfork]
GP (r) = (V,E, f) in which the edge

(u, v, w) indicates that nodes u and v had f(u, v) = w interactions of type
r. In this modeling, the edge-labeling function indicates the number of
interactions among the specific couple of nodes instead of the timestamp.

• Sequence of graphs The transactions occurring after the hard fork can
happen on two different layers (social or financial), but they also involve
one of the two blockchains (Hive or Steem). For these reasons, after the
hard fork, we adopt the interval model (defined in the taxonomy de-
scribed in Chapter 3) to get four different graphs that isolate the dif-
ferent kinds of operations and blockchains. Formally, we deal with four
directed weighted temporal graph sequences GH

s [1 . . . 9], GH
f [1 . . . 9] and

GS
s [1 . . . 9], G

S
f [1 . . . 9], where s and f stand for social or financial, respec-

tively; while H and S indicate on which blockchain the operations have
been recorded, so Hive or Steem, respectively. Each graph GP

r , representing
transactions of type r happened on platform P , is defined as the sequence
< GP

r1, .., G
P
r9 >, where each GP

ri, i = 1, . . . 9 represents a 1-month window
aligned to the day of the hard fork. Specifically, each graph (snapshot) GP

ri

covers transactions with a timestamp from the 21st of the i−1-th month to
the 20th of the i-th month, starting from March 2020. This interval model
allows us to observe the activity of nodes in each period, and consequently
to study the migration choices with a monthly granularity.

12.2.2 Hub definition

We decided to investigate the role of two very different kinds of hubs based on
(a) the degree and (b) their involvement in platform management. Concerning
the degree, we select two sets of hubs: (i) social in-degree hubs are the 21
nodes with the highest in-degree on the social layer, and (ii) financial degree
hubs are the 21 nodes with the highest degree on the financial layer. We choose
to use the undirected version of degree in the financial layer in order to get
the nodes that economically interact the most with other nodes, considering
the in-degree or out-degree too restrictive in this case. The set of financial and
social degree hubs only includes nodes that performed at least an operation in
the last month before the fork, thus being active. This filter is needed to be
sure to select hubs that could actually influence other nodes with their action
at the hard fork time.

The other kind of hubs concerns a type of user that plays an essential role
on Steem, called witness [166]. Basically, they are the set of people that can
actually create and validate blocks on the blockchain, and they are voted by
users of the platform according to a consensus mechanism called Delegated

12.2 Methodology 196

Proof of Stake (DPoS). The witness role is assigned at every election round to
the 21 most-voted users. In this work, we select as central witness nodes, the 21
accounts that performed the highest number of feed publish operations. This
operation can only be performed by the top 21 witness nodes at each round.
So, the ranking based on the number of feed publish operations performed is
a good estimator for selecting the nodes that played more times the witness
role. Based on this ranking, we obtain two sets of witness hubs: (i) social
witness hubs are the top 21 nodes active in the last month before the fork
on the social layer; (ii) financial witness hubs are the top 21 nodes active
in the last month before the fork on the financial layer. Note that we filter
on the active nodes in the last month before the fork and not those active
in a longer period (3 months or one year before) because rumors about the
hard fork began only one month before it happened. Therefore, we are only
interested in hubs that are active in the actual period when they could have
influenced their neighborhoods. After obtaining the four sets of hubs, we were
able to study their role in the user migration process. The methodology is
divided into two parts: in the first one we study the level of activity of hubs
on the two platforms and their final decisions; then, we observe how the 1-hop
neighbors of each hub behave with respect to the rest of the network.

12.2.3 Hubs activity

We first cope with the hubs and the dynamic of their activity. Specifically, we
leverage the snapshot representation (interval model) to collect the number
of operations on each platform for each hub. Formally, for each hub h, we
compute the activity level separately on both platforms P = {S,H}, for each
month i. The activity level of each hub is defined as follows:

pi(h, P, r) = ci(h, P, r)/ci(h, r)

where:
ci(h, P, r) =

∑
{(u,v)∈E

GP
ri

|u=h}

w(u, v)

and:
ci(h, r) =

∑
{(u,v)∈E

GS
ri

⋃
E

GH
ri

|u=h}

w(u, v)

In short, the activity level pi for a hub h indicates the fraction of social or
financial operations done on a specific blockchain.

12 Influence of hubs 197

Activity visualization. In order to get a direct view of the preferred
platform for each hub, we process its activity on both platforms, for each
period and operation type. We define max_pi(h, r) as follows:

max_pi(h, r) =

{
+pi(h,H, r) if pi(h,H, r) > pi(h, S, r)

−pi(h, S, r) otherwise

Through this indicator, we are able to summarise through a heatmap the
preferred platform for each hub, monthly, and by type of operation. The more
each cell of the heatmap is red, the more max_pi(h, r) is close to 1, meaning
that the hub performed almost every operation on Hive. On the contrary, the
more the cell is blue (-1), the more the hub remained on Steem. Softer colors
correspond to a more balanced activity level on both platforms.

Migration decision. After observing the preferred platform for each hub,
we assign a migration decision to each hub. Note that max_pi(h, r) admits val-
ues in the interval [−1,−0.5] or [0.5, 1], so we define inactive the periods where
max_pi(h, r) = 0. Moreover, the migration decision depends on the value of
max_pi(h, r) in the most recent active month, (noted as max_lastive(h, r))
and it is defined as follows:

decision =

migrant if max_lastive(h, r) ≥ 0.75

resident if max_lastive(h, r) ≤ −0.75
inactive if max_lastive(h, r) = 0

diversifier otherwise

12.2.4 Hubs’ influence

Our main goal is to discover whether and to what extent hubs influence mi-
gration choices. Specifically, we investigate whether direct neighbors of hubs
tend to make different decisions with respect to the other nodes in the net-
work. To this aim, first, we compute the migration decision of all nodes in
the neighborhoods of hubs through the same criteria described in the previous
section. Then, we compare the distribution of decisions of all the nodes in the
graph against the nodes that belong to the neighborhood of at least one hub.
Note that, we consider as neighbors of a hub all nodes with an outgoing edge
towards the hub from the beginning of the data collection (June 3, 2016)
up to the fork date (March 20, 2020). Moreover, when we mention all nodes,
we actually mean all the nodes in the layer we are considering (social or fi-
nancial) that were active in the last month before the fork, i.e. all nodes that

12.3 Results 198

could make a migration choice. Finally, for each hub h we define the tuple
(m(h), r(h), d(h), i(h)) that reports the percentage of its neighbors, computed
in the incremental graph Glayer

Tfork
, that are classified as migrant (m), resident

(r), diversifier (d) or inactive (i), respectively.

12.3 Results

In this section, we introduce the main insights following the methodology de-
scribed in Section 13.2. Indeed, we first analyze the activity of hubs, then we
investigate the influence they exert on their neighborhood as for the decision
of migrating or remaining.

12.3.1 Hubs activity and migration choice

As previously mentioned, we identify hubs based on centrality criteria and the
network layer. First, we focus on social and financial witness hubs. The two
sets share the majority of nodes (16 common hubs over 21). However, their
activity is significantly different in the two layers, so it is worth analyzing
them separately. In the same way, we can distinguish two sets of degree hubs:
the in-degree hubs in the social layer and the undirected-degree hubs in the
financial layer. Due to the different definitions of central nodes, the sets of the
two different layers share fewer nodes with respect to the witness case (12 over
21 hubs).

Social witness hubs. Figure 12.1a describes the social witness hubs’ ac-
tivity from three different points of view: Figure 12.1a-A shows the activity
level max_pi(h, r) for each hub h and period i for r = social; Figure 12.1a-
B concerns the migration choice level of hubs (max_lastive(h, social)); and
Figure 12.1a-C reports the distribution of the migration decision. In this case,
it highlights that hubs tend to migrate, but the decision is not immediate, as
indicated by the heatmap. In fact, we can observe that the typical behavior of
migrant hubs (7 over 11 migrants) is to be active on both platforms for some
months and then prefer the new platform Hive. On the other hand, the resident
hubs do not manifest a period of dual activeness. In general, both resident and
migrant decisions are strong, meaning that one dedicates the entire activity to
one platform only. In fact, as displayed in Figure 12.1a-B, most of the resident
and migrant hubs are on the +1 or -1 lines, i.e. a full-time activity on a single
platform.

Financial witness hubs. Figure 12.1b reports the three viewpoints about
witness hubs’ financial activity, as in the previous case. It is clear that, even if

12 Influence of hubs 199

Social activity of witness hubs

A C

B

(a)

Financial activity of witness hubs

A C

B

(b)
Social activity of in-degree hubs

A C

B

(c)

A C

B

(d)

Figure 12.1: From a) to d), properties of the activity level of social witness
hubs (a), financial witness hubs (b), social in-degree hubs (c), and financial
degree hubs (d). For each type of hub, we report the heatmap - A - displaying the
monthly trend of max_pi(h, r) for the 21 hubs; B) the hubs increasingly ordered
by max_lastive(h, r) and colored according to their final decision; and C) the
distribution of the decision (migrant, resident, diversifier and inactive) of the
hubs.

the set of financial witness hubs shares the 76% of users with the social witness
one, the activity is really different. The more evident difference concerns the
increase of inactivity (grey cells). Another difference concerns the lapse of time
between the hard fork and the hubs’ decision: there is a group of hubs that
decide in the very first period (2 months); on the other hand another group
is more hesitant in making a strong decision but tends to have a preferred
platform instead of staying active on both ones. In fact, two hubs only stay
active on both platforms at the end. Concerning the strength of the migrant
or resident decision, in the financial case, we observe that when the decision is
migrant the totality of operations are done on the new platform Hive, while a
few resident hubs still perform some operations on Hive, resulting into a not
completely symmetric scenario.

12.3 Results 200

Social in-degree hubs. Figure 12.1c reports the study on the activity
levels and migration choices of in-degree hubs in the social layer. The main
feature that distinguishes this set of hubs from the other ones is the absence
of inactivity. Note that only hubs with no activity for the entire post-fork pe-
riod are considered as inactive, otherwise we consider the most recent activity
for assigning a label/choice. Looking at the distribution of decisions in Fig-
ure 12.1c-C, it is clear that the prevalent decision is to stay active on both
platforms. The indecision is still in the behavior of some hubs that decided to
migrate since the migration choice is often preceded by an indecision period.
Finally, as in the previous cases, once the hubs make a decision, they are fully
committed to the preferred platform, as shown in Figure 12.1c-B.

Financial degree hubs. Figure 12.1d depicts the activity data about
the financial degree hubs. It confirms the lower tendency for degree hubs to
become inactive after the fork - only 1 over 21. In general, the financial degree
hubs seem to be undecided about their choice because, even if in the last
active period they perform operation only in one platform, it took them some
months to decide. For instance, “hub 2” started by exploring Hive more, after
two months he moved back to Steem, then it returned to Hive, and so on. An
interesting feature of the final decisions can be observed in Figure 12.1d-B:
when the decision is diversifier, it corresponds to an activity that is almost
perfectly balanced on the two platforms. The diversifier decision that is more
imbalanced is related to a percentage of 0.54 in favor of Steem. In general,
financial degree hubs have played an expected diversification strategy where
initially they started to explore the economical value of the new platform, then
they diversified their actions between the two blockchains.

12.3.2 Influence of hubs

A further important element that may drive a user migration process is the
influence hubs may exert on their direct neighborhood. Here we report the
findings on this aspect from two viewpoints: (a) a comparison among the
distribution of hubs’ choices, that of all nodes in the graph and that of nodes
that are neighbors of at least one hub; and (b) a comparison between the
distribution of choices within each hub neighborhood and the distribution of
nodes’ decisions in the graph. Specifically, we only report the trends that are
worthy of analyzing from a single-hub perspective.

Social in-degree hubs influence. Figure 12.2a reports the outcomes of
our analysis on the influence of social in-degree hubs. The first row (from A to
C in Figure 12.2a) visualizes the distributions of the decisions grouped by the
three different cohorts detailed above. Here, we can observe that the choices

12 Influence of hubs 201

of hubs follow a different distribution with respect to all the nodes active at
Tfork: while the majority of hubs stay active on both platforms or migrate,
in the entire network it is more common to be resident. Further, the key
element to discovering whether hubs influence their neighbors is to compare
the distributions of every node decision w.r.t neighbors’ decisions (B and C
in Figure 12.2a). Even if the ranking of labels is the same, the percentage of
nodes in each class is different: in fact, in the neighborhood’s distribution the
migrant label gains 7.3%. This difference is confirmed by the distribution of
m(h) for the 21 social in-degree hubs shown in Figure 12.2a-D: for every hub,
their neighborhood is characterized by a higher percentage of migrants with
respect to the expected fraction of migrants. Moreover, the neighbors of hubs
tend to be less inactive (shown in Figure 12.2a-E), maybe as a consequence
of the absence of inactive in-degree social hubs. So, social in-degree hubs are
never completely inactive and tend to prefer Hive, either in an exclusive way or
in addiction to Steem. This tendency is reflected in their neighbors, where the
percentage of users moving to Hive always increases together with a decrease
in the inactive decision.

Social witness hubs influence. Figure 12.2b is structured in the same
way as for the social in-degree hubs. From a global point of view, the distri-
bution of hubs’ migration choices differs completely from the one concerning
all active nodes that could be influenced: the trend is the opposite because
52.4% of hubs are migrants, while 54.8% of active nodes are residents. In this
case, the gain of the migrant decision in the hubs neighborhoods is 11.7%. In
Figure 12.2b-D it is more evident because in some hub’s neighborhoods the
migrant fraction (red) is even higher than the resident one (blue). Moreover,
the percentage of inactive is always lower than the one relative to diversifier
decision, as shown in Figure 12.2b-E. So, the key feature of social witness hubs
is their strong preference for migrating to Hive. This is reflected in the neigh-
bor nodes, and it is particularly evident when looking at the neighborhood of
every hub separately.

Financial witness hubs influence. Figure 12.2c reports findings on the
financial witness hubs’ influence. The first observation about this result con-
cerns the distribution of migration choices of active nodes: in contrast with
the previous ones, the distribution of labels here is almost homogeneous. As
for the distribution of labels among hubs’ neighborhoods (see Figure 12.2c-
C), it is more similar to the distribution of hubs’ choice (see Figure 12.2c-A)
w.r.t. the active nodes one (see Figure 12.2c-B). As detailed in Figure 12.2c-
D, hubs neighbors tend to migrate more and become inactive less, since the
labels with the highest variations are migrant and inactive. In short, financial
witness hubs play an influential role on their neighbors because the decision

12.3 Results 202

Social
in-degree hubs

Active
nodes

Hubs aggregated
neighbourhood

A B C

Hubs neighbourhood

D E

(a)

Active
nodes

Hubs aggregated
neighbourhood

A B C

Hubs neighbourhood

D E

Social
witness hubs

(b)
Financial

witness hubs
Active
nodes

Hubs aggregated
neighbourhood

A B C

Hubs neighbourhood

D

(c)

Financial
degree hubs

Active
nodes

Hubs aggregated
neighbourhood

A B C

Hubs neighbourhood

D

(d)

Figure 12.2: From a) to d), properties of the influence exerted by social in-
degree hubs (a), social witness hubs (b), financial witness hubs (c), and financial
degree hubs (d). For each type of hub, we report A) the distribution of the deci-
sions (migrant, resident, diversifier and inactive) of the hubs, B) the distribution
of the decisions of all the active users, and C) the distribution of the decisions of
the hubs’ neighbors. Plots displayed in D) and E) report m(h), r(h), d(h), and
i(h) values for the hubs. In these plots, horizontal lines represent the “expected”
decision taking the distribution in B as “average” behavior.

distribution differs a lot from the expected one. The difference is mainly driven
by the strong increase in the decision of migrating towards Hive, in contrast
with the decision of being inactive.

Financial degree hubs influence. Finally, Figure 12.2d shows how fi-
nancial degree hubs influence their neighbors. In contrast with the previously
described case of financial witness hubs, here the distribution of migration
choice of hubs neighbors, shown in Figure 12.2d-C, is more similar to the gen-
eral one, reported in Figure 12.2d-B. However, when observing the single m(h)
values plotted in Figure 12.2d-D, we can see an actual difference, similar to
the one shown in the financial degree hubs case: the migrant choice fraction
always (except 1) exceeds the percentage of expected migrants provided by the

12 Influence of hubs 203

overall fraction of active nodes, while the percentage of inactive nodes always
decreases. So, financial degree hubs present a dominant tendency to choose to
migrate to Hive. Concerning the hubs’ neighbors, despite the similar homoge-
neous distribution, the gain in the percentage of migrant decisions is evident.

After observing the influence of every type of hub, we can now highlight
the main characteristics regarding the influence hubs have exerted on their
neighbors when it came to deciding to migrate or remain. First, it is clear that
hubs’ neighborhood tends to migrate more frequently than “average” active
users. Moreover, being a neighbor of a hub correlates with a lower probability of
being inactive after the fork, i.e. neighbors of hubs are more likely to keep their
activities in one of the two blockchains. In general, the influence that hubs exert
on their neighborhood does not reflect in a complete change in the ranking of
most frequent decisions. In fact, the most frequent decision in the overall graph
is the same as the one of the hubs’ neighbors, but the distribution change.
Moreover, on the financial layer, in each hub’s neighborhood, the fraction of
migrant nodes particularly increases in contrast to the fraction of nodes that
become inactive. This suggests that being close to financial hubs makes a node
more motivated to be active even after a strong event like the hard fork. The
same observation holds for the social layer, where there is also a tendency for
hub neighbors to be active on both platforms - diversifiers - with a higher
probability with respect to the “average” decision.

12.4 Conclusions

In conclusion, this work aims to observe the decisions of central nodes and
the influence on their neighbors, in the context of a blockchain-based social
network’s split event. We focused on the fork event involving Steemit, leading
to the birth of a new social network, Hive. Since the latter has maintained the
same usernames as Steemit, we were able to track the user migration. We mod-
eled the transactions [167] before the hard fork using an incremental weighted
graph. On the other hand, we adopt a snapshot approach to model operations
after the fork on both platforms, building a sequence of edge-labeled multi-
graphs, divided into two layers: social and financial ones. On this data source,
we observe the variety of decisions of four types of hubs defined by degree and
involvement in management operations, on both social and financial layers,
highlighting that the most common decision for hubs is to migrate. Then, we
focus on the decisions of hubs’ neighbors, studying if they are influenced by the

12.4 Conclusions 204

choice of their hub. Results suggest that when a node is a direct neighbor of a
hub, it tends to migrate and not be inactive. Moreover, the influence behavior
is more similar when observing hubs on the same layer instead of the same
type of hubs. Future works in this context may concern the centrality trans-
ferability, i.e. the analysis of how the centrality of nodes is correlated across
different layers. Another direction could be related to the influence of central
nodes within a mesoscopic level.

Chapter 13

Influence of groups discussion

User migration, the large-scale movement of users between online social plat-
forms, is a significant phenomenon in modern social networks, including
blockchain-based social networks (BOSNs). In BOSNs, migration often occurs
through hard forks, where the original blockchain splits, creating an alter-
native chain that users may choose to join. However, our understanding of
user migration mechanisms remains limited, particularly regarding the role of
tightly-knit user communities during these events. This study investigates the
differences between users who stay and those who leave in terms of network
structure and discussion topics. Through network-based analysis focusing on
community identification in multilayer networks and text mining, we found
that:

A group’s position within the network of social and economic interactions
correlates with its likelihood to migrate, with marginal groups more prone
to leaving. Group network structure plays a crucial role, as users in densely
connected groups with monetary interactions are more likely to remain. Users
who migrate tend to discuss different topics compared to those who stay. User
groups engaged in monetary transactions show increased interest in migration-
related content if they intend to leave.

These findings emphasize the importance of social and economic relation-
ships during user migration caused by fork events. In the broader context of
online social media, this study underscores the need to examine user migra-
tion through a network-based approach that focuses on groups and specific
subgraphs while also considering user-generated content.

13.2 Methodology 206

13.1 Research questions

Network structure has been shown to play a crucial role in user migration
processes. However, the specific impact of tightly connected user groups, or
communities, during migration and fork events remains unclear. From a net-
work perspective, we aim to explore the relationship between group network
structure and migration patterns. Additionally, a unique aspect of migration
in social networks is that users can discuss and coordinate their decisions on
the same platform they may eventually leave. These discussions between those
intending to stay and those planning to leave could indicate future intentions
or influence decision-making. We seek to analyze user-generated content to
better understand how pre-fork discussions within communities relate to their
subsequent migration choices. These considerations lead us to two main re-
search questions:
Research question RQ1: How does the network structure differ between
user groups who remain on the original platform and those who migrate to a
new one?
Research question RQ2: Is there a relationship between the topics commu-
nities discuss before a fork event and their ultimate migration decision?

13.2 Methodology

In this section, we present our proposed methodology. We begin by describing
how to model the dataset for the task at hand, how to extract the network
structure, and how to construct user migration-related labels before identifying
communities. Finally, we provide the approach we intend to use to answer our
research questions.

13.2.1 Modeling BOSN and user migration

Graph-based modeling

In BOSNs we have many different actions supported, with the traditional “so-
cial” interactions coexisting with economical or financial operations tied to the
transfer of cryptocurrency tokens. Furthermore, each activity is timestamped.
Each action in this scenario can be represented as a tuple (u, v, t, r), where u
and v are users who interact through an action of type r at time t. We can
create a multi-layer network [168] using the sequence of all the users’ actions.
We denote this network as GTfork

= (V,E,R), where:

13 Influence of groups discussion 207

• V is the set of users u who have participated in at least one interaction
action in the set I = {(u, v, t, r)} which has occurred before or at the
timestamp Tfork;

• E is the set of triple (u, v, r) with u, v ∈ V and r ∈ R, representing a
specific type of action among the ones in the set R of actions supported by
the blockchain.

The resulting multi-layer network encodes the structure of the interactions
among users prior to Tfork, i.e. the hard fork date; where the layers correspond
to different types of actions available to support user interaction. In particular,
here, we separate social and economic/financial interactions into two separate
groups, thus decreasing the number of layers in GTfork

to two, the “social”
layer and the “monetary” layer.

Given this setting, we are able to model a fork event, and the subse-
quent cross-platform migration, where users might migrate to another plat-
form. Specifically, given two platforms, S and H, and a fork event at time
Tfork, we consider a) Migrant: a user who performs at least one action on
the new platform H after time Tfork; b) Resident: user staying on the original
platform S, without performing any actions on the new platform H after time
Tfork; and c) Inactive: users who are inactive or abandoned both platforms.

Community detection

In our research, we delve into the critical role of groups during user migra-
tion processes. To uncover these group structures within complex networks,
we employ community detection techniques. After evaluating various state-of-
the-art methods suitable for multilayer network analysis [169], we selected the
Infomap algorithm [170], which utilizes random walks to identify communities.
This choice was primarily motivated by Infomap’s exceptional scalability [169].
Infomap’s approach begins by assigning unique codewords to each node using
prefix-free coding, such as Huffman coding. This allows random walks on the
network to be represented as concatenations of these codes. The algorithm’s
core premise is that a random walker, upon entering a densely connected re-
gion of the graph (indicative of a community), will likely remain there for an
extended period. This occurs because nodes within a community have stronger
connections to each other than to distant nodes. To optimize this behavior,
Infomap assigns distinct codebooks to different regions, termed modules, effec-
tively shortening codewords for nodes within the same region. Consequently,
community detection becomes an optimization problem of finding the partition
that minimizes the overall code length. Given our multilayer network model,

13.2 Methodology 208

we employ the multilayer version of Infomap [171]. This version maintains
the main ideas of the single-layer version while introducing inter-layer edges.
These edges connect representations of the same user across different layers,
allowing the random walker to transition between layers during its journey.
It’s important to note that this approach allows a user to belong to multiple
communities depending on the layer, while still considering information from
all layers during community assignments. In our work, which incorporates two
layers representing social and economic interactions, we define two types of
communities: social communities, derived from the social layer, and monetary
communities, emerging from the economic layer. This nuanced approach en-
ables us to capture the multifaceted nature of user interactions and group
formations within the complex landscape of user migration.

13.2.2 Community structure and user migration

To address our research question concerning the interplay between group net-
work structure and user migration (RQ1), we must first define the role of
groups in the migration process. Our approach begins with the modeling of a
community graph GC = (V C , EC), an attributed network that encapsulates
the relationships among communities. In this graph, nodes represent individ-
ual communities, while edges denote edges between users belonging to different
communities. Specifically, we establish a link between communities c1 and c2
if there exists a connection between a user in c1 and a user in c2, with the edge
weight corresponding to the total number of links between nodes in c1 and
nodes in c2. This community graph modeling can be applied to both social
and monetary communities, yielding a social community graph and a mone-
tary community graph respectively. These community graphs serve as powerful
analytical tools, enabling various types of analyses. For each community ci, we
can derive attributes such as the number of inactive members, residents, and
migrants. These attributes, in conjunction with the network structure, provide
a rich source for extracting insights. The process of constructing community
graphs and their utility in our analysis is visually summarized in Figure 13.1.
This representation offers a clear overview of how we transform individual user
interactions into a higher-level community structure, setting the stage for our
investigation into the dynamics of user migration within and between these
community structures. Figure 13.1.

13 Influence of groups discussion 209

Figure 13.1: An example of community graphs from a multilayer network.
The initial network depicts nodes color-coded based on their migration status,
interconnected via social (green) and monetary (orange) links. Following com-
munity detection, which identifies communities such as C1 and C2, we derive
the corresponding community graph. In this graph, each node represents a dis-
tinct community, with inter-community edges reflecting the connections present
in the original multilayer network. The color of each community node is de-
termined by the predominant migration decision of its members: communities
with a majority of residents trend towards sky blue, those with more migrants
appear red, and those with a balanced composition are represented in white. The
width of edges between community nodes is proportional to the strength of inter-
community connections in the original network.

Visualizing the interplay

To address RQ1, we begin by examining the community graphs, focusing on
the inter-community connectivity as it relates to the migration status of com-
munity members. We then characterize the degree to which a community leans
towards a particular user category (migrants or residents) by calculating the
community entropy H(ci). This is defined as: H(ci) =

∑m
q=1 pq(ci) log2 pq(ci)

where pq(ci) represents the proportion of users in community ci with label
q ∈ resident,migrant. Furthermore, we analyze the subgraph induced by the
nodes within a community ci by computing its density D(Ci), expressed as:
D(Ci) = |E|

|V |∗(|V |−1) Here, |E| denotes the number of edges in the subgraph,
and |V | the number of nodes. Subsequently, we investigate how both the den-
sity and entropy of communities correlate with the migration labels, providing
insights into the relationship between community structure and migration pat-
terns.

Measuring the interplay

To validate our visual observations, we perform an additional quantitative
analysis. This involves examining several key metrics for each community: the

13.2 Methodology 210

count of inactive users, residents, and migrants, as well as the community’s
density and entropy. We assess the correlations between these community fea-
tures, with a particular emphasis on how density and entropy relate to other
characteristics. It’s important to note that due to the nature of multilayer
InfoMap, some communities may have an unusually small number of nodes
or lack internal connections entirely. This can occur when nodes are grouped
into the same community based on information from another layer, despite
not having direct links within their current layer. Additionally, we encounter
communities composed solely or predominantly of inactive nodes. For the pur-
poses of our analysis, we exclude these atypical communities to ensure the
robustness of our findings. This rigorous quantitative approach complements
our visual examination, providing a more nuanced understanding of the rela-
tionship between community structure and migration patterns.

13.2.3 Community discussion and user migration

To address RQ2, we integrate user-generated content analysis with network
structure examination. Our focus is on detecting and analyzing migration-
related discussions in social networks, where users communicate through posts
and comments. We concentrate on two key components derived from user
posts: hashtags and content topics. Hashtags, words preceded by a hash
mark (#), serve as user-defined content categorizations and facilitate content
searches. By identifying migration-related hashtags, we can effectively pinpoint
and analyze migration discussions. For a more direct analysis of text content
and its relationship to migration, we propose an approach centered on content
topics, which are extracted using topic modeling methods. Below, we outline
our methodology for analyzing hashtags and text content topics:

Hashtags and communities

For hashtag analysis, we represent each user u with a user hashtag vector
vu = [v1, v2, . . . , vK], where vu[k] denotes the count of the k-th hashtag. To
compare multiple communities, we define the community hashtag vector of a
community C as the average of its users’ vectors: vC = 1

|C|
∑

u ∈ Cvu. The
community hashtag distribution DC is obtained by normalizing this vector:
DC[k] = vC[k]∑|K|

i=1 vC [i]
∀k ∈ 1 . . .K. In our analysis, we focus on a subset of hash-

tags, including both migration-related and unrelated ones. We then compare
multiple communities using a heatmap visualization of these selected hashtags.

13 Influence of groups discussion 211

Topics and communities

For text analysis, we employ a topic-centered methodology. We first extract
topics using Latent Dirichlet Allocation (LDA) [172]. Given a number of topics
k, LDA groups articles into topics based on their content, allowing us to iden-
tify the most relevant topics. We apply this topic model to our entire collection
of text documents (posts and comments) to visualize the discussion topics and
their key words. Once an LDA model θ is trained on the document collection, it
can provide a document topic distribution θ(d) for each document d. For each
user u, we consider their set of posts Du and compute a user topic vector as
the average of their document topic distributions: vu = 1

|Du|
∑

d ∈ |Du|θ(d).
This vector represents the user’s interest in each topic. To compare different
user communities, we compute a community topic vector for a community C
as vC = 1

|C|
∑

u ∈ Cvu. We then visually compare these community topic vec-
tors using a heatmap plot. This methodology allows us to analyze both hashtag
usage and content topics across different communities, providing insights into
how migration-related discussions vary among different user groups.

13.3 Dataset

In the following, we describe the data from the Steemit and Hive platform
(described in Chapter 6) used for the analysis.

Interaction data

In this work, we focus on actions that represent an interaction between two
users, either explicit or implicit. Specifically, we consider two main groups:
i) financial and ii) social operations. Financial operations are those opera-
tions designated for the management of tokens, rewards, and asset transfer. In
contrast, social operations are those that users are able to do on traditional
social network platforms, like posting, rating, voting, sharing, and following.
For the construction of the graph, we gathered operations from the very first
block on the Steem blockchain, produced on 24th March 2016, up to the fork
event, i.e. to block 41818752, with timestamp 2020-03-20T14:00:00. While for
migration status, we examine data after that timestamp, and up to January
2021. We recall that data between the two blockchains are identical up to
the fork event, i.e. to block 41818752, with timestamp 2020-03-20T14:00:00.
From there, Hive and Steem have different data, as they have become two dif-
ferent blockchains. Overall, from the Steem blockchain, we extract 993, 641, 075

13.4 Results 212

operations describing social interactions and 72, 370, 926 operations describing
economic interactions; from the Hive blockchain, we get a total of 206, 224, 132
social operations, and 4, 041, 060 financial actions.

Text data

As we are interested in the discussion, we leverage the textual content produced
by users before the fork. In Steem and Hive, users’ posts and comments, are
stored as comment operations on the underlying blockchains. The content of
the post can be accessed as the body, and metadata information is also acces-
sible including the hashtags. Please note that in Steemit, hashtags are called
tags 1. As a starting point, we consider the operations from [173], a total
of 93, 832, 667 comment operations that include both posts and comments.
For this analysis, we are interested in fork-related discussion. Since everything
started after the acquisition, we can focus on a limited period: for this work we
focus on the period February 20, 2020 - March 20, 2020. Comment operations
(both posts and comments) are in total 831, 403. We selected only i) posts not
comments going down to 234, 396 posts, and ii) among them we consider only
posts written in English, for a total of 140, 638 (the language is detected by
the python library lang-detect). For the corpus of posts, pre-processing and
cleaning are applied to the data to delete noisy, inconsistent, or incomplete
items from the collection. Specifically, we applied the following operations:
removal of HTML tags, URLs, punctuation, multiple whitespaces, numbers,
stopwords, words shorter than 3 characters, and stemming. For this subset of
documents, we find 284, 932 unique terms, while the average token length of
posts is 104.5. Then, we consider the associated metadata information of the
corpus of published posts, to derive the collection of hashtags. We perform
some preprocessing on hashtag data as well: we filtered out the hashtag with
less than 2 characters; then, we merged some hashtags of interest that share the
same semantics. Specifically, we grouped all the hashtags that contain “hive”
(e.g. hive-160196, hive-119845), “fork” (e.g. softfork, hardfork), “Justin”, and
“tron”. We obtain 396, 26 unique hashtags, and on average, we observe 5.19
hashtags per post.

13.4 Results

We apply the methodology described in Section 13.2, on the Steem/Hive
dataset, by first creating a multi-layer network with two layers: social and
1 https://steemit.com/faq.html#What_are_tags

https://steemit.com/faq.html#What_are_tags

13 Influence of groups discussion 213

monetary, where nodes are labeled based on their activity after the fork. A
summary of network statistics and labels is presented in Table 13.1.

Table 13.1: Statistics for the multi-layer network GTfork , grouped by social and
monetary layers.

Social layer Monetary layer
Nodes 1352114 1247587
Edges 217926899 5056317

Inactive 1287321 1218535
Resident 43339 12757
Migrant 21454 16295

An analysis of our multilayer network reveals distinct characteristics be-
tween the social and monetary layers. The social layer exhibits a higher number
of active users and connections, which aligns with the prevalence of social op-
erations compared to financial transactions in online platforms. Interestingly,
despite the monetary layer having fewer links, it involves a comparable num-
ber of users to the social layer. This suggests that while financial interactions
may be less frequent, they engage a similar user base. A notable divergence
emerges when examining the proportion of resident and migrant users across
these layers. In the social layer, residents form the majority, with approxi-
mately two-thirds of active users remaining on the original platform and only
one-third migrating to Hive. Conversely, the monetary layer displays an in-
verse trend, where the migration to Hive has had a more profound impact.
Here, the majority of users have chosen to transfer their financial activities to
the Hive blockchain. This disparity in migration patterns between social and
financial interactions provides valuable insights into user behavior and prefer-
ences in the context of blockchain platform transitions. It suggests that users
may have different motivations and considerations when deciding whether to
migrate their social connections versus their financial transactions.

13.4.1 The interplay of community structure and migration

In this section, we answer RQ1 on the interplay between group network struc-
ture and user migration. We created the monetary community graph and social
community graph using the methodology described in Section 13.2. The mon-
etary layer’s community graph has 76 communities and 252 inter-community
edges, while the social layer’s community graph has 105 communities and 205
inter-community edges. We visualize the obtained community graphs, with

13.4 Results 214

nodes - communities - colored according to the proportion of migrants and
residents among their members in Figure 13.2.

MigrantBothResident

b) Density in monetary community grapha)Density in social community graph

MigrantBothResident

d) Entropy in monetary community graphc) Entropy in social community graph

Figure 13.2: Community graphs, for social layer - left - (105 communities,
205 inter-community edges) and monetary layer - right - (76 communities, 252
inter-community edges). In a) and b) community node size is proportional to
its density. In c) and d) node size is proportional to its community entropy.
We use colors to represent the majority between migrant and resident nodes:
communities with more residents will go towards sky blue, while more migrants
will lead to red nodes, and white is for nodes with a balanced mix of both. Edge
width is proportional to the weight of the inter-community edge. The position
of the nodes is determined by the visualization library Gephi [174] by leveraging
connectivity in a force-based layout.

13 Influence of groups discussion 215

Visualizing the interplay

Taking into account only node coloring and their connectivity, we see that
migrant communities tend to be on the periphery of the community graph,
with few or no inter-community links. This characteristic can be found in both
monetary and social layers. We can also see that the community graphs have
a more central part, which is made up of very connected communities with
the majority of members being residents. In contrast, only a few communities
with a majority of migrants are linked to the central core of the community
graphs. The isolation of migrant nodes and communities is a first important
indication of the significance of network structure: for a community, being
marginal may be a trait that leads to the majority of its members migrating.
We proceed in our analysis of group structure by taking density and entropy
into account as community features. For the evaluation of the impact of com-
munity density on migration, we focus on the size of the community nodes, for
the social community graph in Figure 13.2a and for the monetary community
graph in Figure 13.2b. A visual examination of the network representation
of the social community graph reveals that there is no clear distinction in
terms of density among resident and migrant communities: we find both mi-
grant and resident communities among the densest communities. On the other
hand, in the monetary layer, we can see that the resident communities —more
specifically, those in the network’s central region— have the highest density
values. For visual analysis of entropy values, we vary the size of communities of
the social community graph in Figure 13.2c and at the monetary community
graph in Figure 13.2d, according to their entropy. We observe that entropy
values are pretty similar in the social layer. Entropy values are high across all
communities in the social layer, and we are unable to distinguish any specific
differences. On the other hand, we see a more varied situation on the monetary
layer. In this layer, we can observe that the communities in the central part are
characterized by low entropy values. Moreover, they tend to be composed of a
majority of resident users and are more likely to connect with other resident
communities. In addition, we observe high entropy values in isolated communi-
ties, but there is no distinction between resident and migrant communities. So
while there are some differences in network structure between the considered
layers, overall, entropy does not help characterize the two groups.

Measuring the interplay

We then move on to the quantitative analysis of the interplay between the
network structure (density and entropy) and the migration decision (inactive,

13.4 Results 216

resident, migrant). We computed correlation statistics between the selected
community features, taking into account the communities on the social and
monetary layers. In Table 13.2, on the left side, we report correlation measures
for the social communities.

Table 13.2: Correlations on community properties in the social layer on the
left and on the monetary layer on the right. p-values are reported in parenthesis.

density entropy
inactive -0.187 (0.057) 0.176 (0.073)
resident -0.123 (0.211) 0.025 (0.797)
migrant -0.075 (0.448) 0.357 (0.005)

density entropy
inactive -0.296 (0.009) 0.164 (0.157)
resident 0.583 (0.0) -0.209 (0.07)
migrant -0.275 (0.016) -0.060 (0.608)

We can observe that for the social communities, density has a slightly neg-
ative correlation with the number of resident and inactive users, while there
is no correlation with the number of migrant users, which is consistent with
the earlier network-based visual inspection. In terms of entropy, we observe a
significant positive correlation (p-value ≤ 0.005) with the volume of migrants.
On the right side of Table 13.2 we show the measurements computed with the
communities in the monetary layer. Density has a moderately positive correla-
tion with the number of residents, but a negative correlation with the presence
of migrant nodes. These observations are in line with the network-based vi-
sual analysis, which revealed that density characterized monetary communities
made up of residents, while migrants tend to be more loosely connected. Sim-
ilarly, entropy shows a slight negative correlation with the number of resident
nodes. So even at the quantitative level, we can confirm that group density
can characterize users at a mesoscopic level. On the contrary, entropy does not
seem to be helpful in the characterization of the groups.

Therefore, regarding the interplay of group network structure and user mi-
gration (RQ1), we can conclude that i) the “position” of a group within the
network of social and economic interactions is related to the likelihood of a
group to migrate, i.e. marginal groups are more likely to leave; ii) users in
densely connected groups interacting through monetary transactions are more
likely to stay, and iii) user migration differently affects on the network built
on social interactions and the network based on monetary transactions.

13 Influence of groups discussion 217

13.4.2 The interplay of community discussion and migration

In this section, we answer our research question on the interplay of group
discussions and user migration (RQ2). We first present the results obtained
by the analysis of hashtags, followed by the analysis of topics.

Hashtags and communities

To study the interplay with community structure, we compare hashtag usage
across communities. We rely on communities obtained considering either social
interactions or financial interactions to compute the community hashtags dis-
tributions and compare them through a heatmap plot, as described in Section
13.2. For easier comparison, we group communities into those with a major-
ity of resident users and the ones with a majority of migrant users. We first
consider the communities on the social layer in Figure 13.3, where each row
represents a community on the social layer and its community hashtag distri-
bution. Overall, there is a difference in hashtag distribution between migrant
and resident users, but there is not clear distinctive trait. Moreover, migration-
related hashtags are not limited to migrant communities, discussion involves
resident users as well: on the social migrants’ side (13.3a), we can see how
some of the communities barely use the selected migration-related tags. We
can observe a community discussing using hive hashtag much more than other
ones, while other communities seem to be focused on other hashtags as often.
Moreover, the usage of migration-related hashtags is not limited to migrants:
when we consider communities with a majority of residents (13.3b), we can
observe a few communities using migration-related hashtags a lot, especially
hive and Tron.

We then analyze hashtag distribution, focusing on communities on the mon-
etary layer. We report the hashtag distributions in Figure 13.4. Overall, here
we find more differences between migrant and resident users, as we see higher
usage of migration-related hashtags on the migrant side. In fact, when we con-
sider the migrant communities (13.4a), we observe quite a few communities
using migration-related hashtags especially hive and tron often. On the other
hand, resident monetary communities (13.4b), tend to use migration-related
hashtags rarely, except for one community. Overall the communities exhibit
very different hashtag distributions, but there is not a clear trend distinguish-
ing migrant communities from resident ones.

13.4 Results 218

hiv
e

for
k

tro
n

ph
ot

og
ra

ph
y

life

sp
or

tst
alk

Tags

m
ig

ra
nt

 c
om

m
un

it
ie

s

0.0

0.2

0.4

0.6

0.8

1.0

(a) Migrant communities

hiv
e

for
k

tro
n

ph
ot

og
ra

ph
y

life

sp
or

tst
alk

Tags
re

si
de

nt
 c

om
m

un
it

ie
s

0.0

0.2

0.4

0.6

0.8

1.0

(b) Resident communities

Figure 13.3: Social community hashtag distribution. Heatmaps represent com-
munities on the social layer and their most used hashtags. On the X-axis a
selection of hashtags and on the Y-axis the communities, in figure a) migrant
communities and in b) resident communities. Values in each cell correspond
to the frequency (count) of a hashtag in a community, min-max normalized by
hashtag.

Topics and communities

In this section, we present the results obtained by applying the methodology
proposed in Section 13.2 for the analysis revolving on content topics. We first
observe the obtained topics and their most important words in Table 13.3.

We can see how topics are varied, from topics of general interest such as
food, nature, and so on, while other topics are more focused on the economi-
cal and technical aspects of the platform and the blockchain world. For easier
comprehension, for each topic, we assigned a label based on its most important
words. Most labels are self-explanatory, but we briefly go over each label for
a better understanding of the following analyses. Topic Platform is character-
ized by terms related to the platform and others related to migration. Topic
Monetary is characterized by cryptocurrency-related terms; similarly, the In-
vestments topic is characterized by keywords related to finance (price, forecast,
open). Topics like Food, Nature, and Positive tend to have terms of general
interest. DApps stands for Decentralized APPlications, i.e. applications that
run on top of the hosting blockchain and the corresponding DApps topic re-

13 Influence of groups discussion 219

hiv
e

for
k

tro
n

ph
ot

og
ra

ph
y

life

sp
or

tst
alk

Tags

m
ig

ra
nt

 c
om

m
un

it
ie

s

0.0

0.2

0.4

0.6

0.8

1.0

(a) Migrant communities

hiv
e

for
k

tro
n

ph
ot

og
ra

ph
y

life

sp
or

tst
alk

Tags

re
si

de
nt

 c
om

m
un

it
ie

s

0.0

0.2

0.4

0.6

0.8

1.0

(b) Resident communities

Figure 13.4: Monetary community hashtag distribution. Heatmaps represent
communities on the social layer and their most used hashtags. On the X-axis a
selection of hashtags and on the Y-axis the communities, in figure a) migrant
communities and in b) resident communities. Values in each cell correspond
to the frequency (count) of a hashtag in a community, min-max normalized by
hashtag.

unites discussion over some of them. For instance, Dtube 2is a video-sharing
platform with a cryptocurrency-based reward system; while Actifit is another
Dapp for fitness enthusiasts 3. Appics is another DApp, similar to Steemit, 4

that relies on the Steem blockchain. Some gaming content is reunited in the
Games topic. Finally, it seems that while non-English posts are removed, there
is a significant community discussing china-related topics. Overall, the choice
of 10 topics produced coherent topics. Hence we can proceed with the analysis
of the interplay between topics and user migration.

We now consider the topic distributions that characterize the communities.
We apply the methodology to compute community topic vectors (see section
13.2). We first start with communities on the social layer: the obtained social
community topic vectors are shown in Figure 13.5. As a general observation,
we can see that the migrant social communities detected tend to have lower
values overall, while on the resident side, we find more communities and we
can observe more interest peaks in the values. When we focus on topics, we
2 https://d.tube/
3 https://actifit.io/
4 https://www.appics.com/

https://d.tube/
https://actifit.io/
https://www.appics.com/

13.4 Results 220

Table 13.3: Top 10 stemmed keywords for each topic detected with LDA topic
model.

Label Top 10 Keywords (stemmed)
Platform ’steem’, ’commun’, ’steemit’, ’vote’, ’power’, ’post’, ’blockchain’,

’tron’, ’hive’, ’justin’
Monetary ’token’, ’crypto’, ’blockchain’, ’user’, ’invest’, ’bitcoin’, ’platform’,

’coin’, ’account’, ’cryptocurr’
Food ’jpeg’, ’food’, ’coffe’, ’cook’, ’restaur’, ’fresh’, ’tast’, ’fruit’, ’weight’,

’rice’
Nature ’walk’, ’beauti’, ’time’, ’flower’, ’like’, ’todai’, ’activ’, ’home’, ’natur’,

’place’
Appics ’appic’, ’amazonaw’, ’content’, ’east’, ’categori’, ’author’, ’hashtag’,

’caption’, ’permlink’, ’profileimageurl’
Positive ’like’, ’peopl’, ’time’, ’know’, ’thing’, ’want’, ’life’, ’think’, ’love’, ’feel’
Investments’open’, ’deal’, ’forecast’, ’market’, ’rate’, ’price’, ’expect’, ’coronaviru’,

’post’, ’year’
Games ’game’, ’video’, ’plai’, ’imag’, ’link’, ’steemhunt’, ’post’, ’view’,

’youtub’, ’screenshot’
Dapps ’post’, ’upvot’, ’photo’, ’themarkymark’, ’actifit’, ’dtube’, ’steem’,

’contest’, ’vote’, ’follow’
Chinese ’chines’, ’center’, ’mandarin’, ’btdx’, ’ccenter’, ’dtube’, ’http’, ’jesu’,

’class’, ’muslim’

can see that on both sides, we do not find communities mainly interested in
the platform and migration-related topics. Among the topics of interest for the
resident groups, the Monetary topic emerges, as it seems the focus in many
communities. Also, we can see that other topics tend to be of interest across
multiple communities such as Nature, Positive, Investments, Games, while in-
terest in the remaining topics seem to be limited to only a few communities.

Finally, we consider the monetary community topics vectors in Figure 13.6.
The first observation is that overall, there is a difference in topics of interest
between migrant and resident users: on the migrant side, we can observe more
often peaks in the values, while on the resident side, values are generally more
distributed across all topics. When we focus on topics, we can see that there is
a strong difference concerning the Platform topic: communities on the migrant
side often have high values in this topic. There is a greater interest by migrant
users on the platform and migration-related discussions. On the contrary, we
can see how Monetary topic peaks are actually more frequent on the migrants’
side as well; a similar observation can be made for Nature. When it comes down

13 Influence of groups discussion 221

pl
at

fo
rm

m
on

et
ar

y

fo
od

na
tu

re

ap
pi

cs

po
si

ti
ve

in
ve

st
m

en
ts

ga
m

es

da
pp

s

ch
in

es
e

topics

m
ig

ra
nt

 c
om

m
un

it
ie

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Migrant communities

pl
at

fo
rm

m
on

et
ar

y

fo
od

na
tu

re

ap
pi

cs

po
si

ti
ve

in
ve

st
m

en
ts

ga
m

es

da
pp

s

ch
in

es
e

topics

re
si

de
nt

 c
om

m
un

it
ie

s

0.0

0.2

0.4

0.6

0.8

(b) Resident communities

Figure 13.5: Social community topics vectors. Heatmaps represent communi-
ties on the social layer and their topics of interest. On the X-axis topics and on
the Y-axis the communities, in figure a) migrant communities and b) resident
communities. Values represent the interest in each topic.

pl
at

fo
rm

m
on

et
ar

y

fo
od

na
tu

re

ap
pi

cs

po
si

ti
ve

in
ve

st
m

en
ts

ga
m

es

da
pp

s

ch
in

es
e

topics

m
ig

ra
nt

 c
om

m
un

it
ie

s

0.0

0.2

0.4

0.6

0.8

(a) Migrant communities

pl
at

fo
rm

m
on

et
ar

y

fo
od

na
tu

re

ap
pi

cs

po
si

ti
ve

in
ve

st
m

en
ts

ga
m

es

da
pp

s

ch
in

es
e

topics

re
si

de
nt

 c
om

m
un

it
ie

s

0.0

0.2

0.4

0.6

0.8

(b) Resident communities

Figure 13.6: Monetary community topics vectors Heatmaps represent commu-
nities on the social layer and their topics of interest. On the X-axis topics and
on the Y-axis the communities, in figure a) migrant communities and b) resident
communities. Values represent the interest in each topic.

13.5 Conclusions 222

to other topics the difference is less evident: on both sides, we can see that
Food, Dapps, Chinese, Appics are actually limited to only a few communities.
While Positive, Investments, Games tend to be more spread out and of interest
to more communities, on both sides.

Therefore, regarding the interplay of group discussions and user migration
(RQ2), we can conclude the following: i) between migrant and resident users
there is a difference in hashtag distributions as well as topics of interest; ii)
social communities migration-related hashtags and migration-related topics in-
volve both migrant and resident users; and iii) vice-versa on the monetary
layer, we see a clearer interest by migrant users in migration-related hashtags
and topics.

13.5 Conclusions

In this work, we addressed the open problem of user migration due to hard fork
events occurring in BOSN. Specifically, we investigate user decision-making to
stay (resident) or leave (migrant) the platform by leveraging network struc-
ture and user-generated text content. Our findings on the impact of network
structure, such as the crucial of density, show that structural information, de-
rived from user interactions, should be considered for analysis and prediction
tasks. Our findings on differences related to text content and user discussion
show how the groups could be also characterized by the content they post
and share, something that can be useful not just for predicting user migration
but also for the analysis and understanding of causes and dynamics during
conflict or turning-point events in a social platform. In general, understanding
user migration is of high importance for both traditional social platforms and
blockchain online social network platforms that are trying to retain their users
as they grow, but also for new alternative platforms trying to emerge. These
findings could be useful to other blockchains, as they show the importance of
designing proper consensus protocols to handle turning-point events. Besides
user migration, the representation for the blockchain data modeling might be
applied to a few phenomena characterizing the Web3, for instance, the trading
networks generated by NFT (not-fungible token) exchanges or other kinds of
social and financial interaction mediated or fueled by DApps, such as games
or thematic social networks.

Chapter 14

Migration prediction

Recent studies [162, 175, 163, 164, 121] highlight user migration in online so-
cial media (BOSM) platforms as an understudied research area with significant
methodological gaps. The primary challenge lies in predicting user migration
accurately, especially when limited user information is available. While inter-
action graph-based approaches show potential, graph neural networks (GNNs)
remain unexplored in this domain, despite their proven effectiveness in other
machine learning tasks. Graph neural networks offer unique advantages such
as eliminating the need for feature engineering and demonstrating predictive
power without extensive contextual user information. They can effectively han-
dle complex interaction graph structures and provide nuanced insights into user
migration patterns. A critical issue in user migration prediction is class im-
balance, where dataset class sizes vary substantially [176]. Current techniques
primarily focus on data-level modifications through sampling strategies, par-
ticularly oversampling. However, these methods can introduce bias, especially
when sufficient class samples exist. Existing research notably lacks comprehen-
sive undersampling approaches. This research gap leads to two key research
questions:
RQ1: Are graph neural networks a suitable method for user migration predic-
tion?
RQ2: Can we improve performance in cases of severe class imbalance with a
balancing method following an undersampling approach?

To address the identified research gaps, we developed a comprehensive ma-
chine learning pipeline specifically designed to investigate user migration in
Blockchain Online Social Media (BOSM) platforms. Our approach models user
interactions as a directed temporal multilayer graph, capturing both social and
monetary interactions to predict user behavior through a sophisticated classifi-

14.1 Related work 224

cation task. We employed graph neural networks to verify their effectiveness in
user migration prediction, leveraging data from Steemit and Hive platforms as
detailed in Chapter 6. Simultaneously, we introduced an innovative data-level
balancing technique following an undersampling approach, which we integrated
and compared within the same predictive pipeline. Our approach for the selec-
tion of the best model and the proposed balancing approach have highlighted
some interesting insights. Graph neural networks are an effective method to
predict user migration in blockchain-based online social networks: the GNN
model is able to use graph structure on the graph of monetary interactions,
even with moderate data unbalance; however, the GNN model struggles on
the graph of social interactions that is characterized by severe data imbalance
(RQ1). However, after applying our proposed data-level balancing approach
that produces a more balanced training set, graph neural networks show good
predictive power even on severely imbalanced data (RQ2).

14.1 Related work

Machine learning on graphs

Over the past decade, machine learning techniques for graph-based tasks have
undergone significant evolution. Initially, researchers relied on manual fea-
ture generation, creating statistical vectors for each node that could be input
into traditional learning models. These early approaches were characterized
by their time-consuming nature and lack of adaptability to the learning pro-
cess. The emergence of graph representation learning marked a pivotal shift in
this field. This approach focuses on encoding structural graph information into
low-dimensional latent spaces, allowing for more dynamic and flexible analy-
sis. Graph neural networks (GNNs) have rapidly become the state-of-the-art
methodology, demonstrating exceptional performance across various complex
tasks, such as node classification [177], link prediction [178], community de-
tection [179] and graph classification [180]. GNNs were designed to perform
predictions by leveraging both topology and graph attributes by redefining ba-
sic deep learning operations, such as convolution, for graph-structured data.
The concept has been formalized as the message passing framework [181]: the
convolution on graphs can be performed by aggregating the values of each
node’s features along with its neighboring nodes’ features. One of the ear-
liest examples is the Graph Convolutional Network (GCN) model proposed
by [182]. Given a graph G = (V,A,X) such that V is the set of vertexes, X

14 Migration prediction 225

is the node feature matrix, and A the adjacency matrix, at each layer k the
embedding h of a node i is updated with the following computation:

h
(k+1)
i = σ

 ∑
j∈N(i)

1√
D̃iiD̃jj

h
(k)
j W (k+1)

 (14.1)

where D̃ii =
∑

j Ãij corresponds to the degree of i, computed on Aij the
adjacency matrix with self-loops added. The aggregation is order-invariant,
(examples of such functions are average or summation). The number of layers of
a GNN defines the number of hops up to which a node will receive information.
Starting from these, we have seen the proposal of many architectures such as
GAT [183], graph autoencoders [184], GraphSAGE [177], and many more, to
cover different tasks and types of graph data.

Class imbalanced learning on graphs

Class imbalance represents a significant challenge in machine learning, oc-
curring when target class sizes in a dataset differ substantially [176]. This
phenomenon affects critical domains such as fraud detection, disease diag-
nosis, anomaly detection, and sentiment analysis. Imbalanced data samples
can severely compromise model performance, particularly for minority classes.
Models struggle to learn minority class characteristics, leading to poor gen-
eralization and a tendency to predict majority class instances. While class
imbalance remains a complex problem, researchers have developed mitigation
strategies categorized into data-level and algorithm-level methods [185]. Data-
level methods, which modify training data distribution, offer greater flexibility
by allowing use of existing models. These approaches typically employ sam-
pling techniques like under-sampling majority classes, over-sampling minority
classes, or hybrid approaches. However, traditional sampling methods face sig-
nificant limitations when applied to graph-based data [186]. Graph learning
introduces unique complexities: removing nodes or edges fundamentally al-
ters graph structure, potentially disrupting message-passing processes in graph
neural networks. Similarly, adding nodes requires careful management of both
attributes and connectivity. Current research predominantly focuses on over-
sampling approaches for generating synthetic minority data instances [185].
However, generating artificial data when sufficient samples exists risks in-
troducing dataset bias. Critically, existing works notably lack comprehensive
undersampling methodologies for addressing class imbalance in graph-based
learning environments.

14.3 Methodology 226

14.2 Research questions

This chapter addresses the underexplored challenge of user migration predic-
tion in Web3 platforms, developing a machine learning pipeline to forecast
user behavior across different platform scenarios: migration, platform reten-
tion, dual platform engagement, or user inactivity. Through this investigation,
we aim to answer two critical research questions:
Research question 1 (RQ1): Are graph neural networks a suitable method
for user migration prediction?
Research question 2 (RQ2): Can we improve performance in cases of se-
vere class imbalance with a balancing method following an undersampling
approach?
Our research seeks to advance understanding of user migration in Web3 plat-
forms, offering insights that can significantly improve platform design, user
experience, and strategic management of digital ecosystems.

14.3 Methodology

Our research leverages user interaction data to predict migration decisions,
adopting a graph-based machine learning approach similar to previous work [121].
By treating user migration as a multiclass node classification problem, we en-
code user behavior into distinct classes and utilize network structure for pre-
dictions. In this section, we define the machine learning pipeline (depicted in
Figure 14.1), that will be used to perform the user migration prediction task.

Figure 14.1: The proposed methodology to solve node classification tasks.

In the following, we describe the methodology adopted in each step, which
will allow us to leverage interaction data as input for machine learning models,
to verify the effectiveness of graph neural networks in the setting of a user
migration prediction task, as well as to address the class imbalance in datasets.

Modeling user interactions and user decisions: graphs and labels

User interactions can be modeled as a set of tuples I = (u, v, t, r), where u and
v are users, who explicitly or implicitly interact at time t through an action

14 Migration prediction 227

of type r. We are interested in the graph structure before the fork, so we can
consider the links before tFork (March 20th, 2020, 2:00 PM), which we denote
as ItFork

. From this subset of interactions, we are able to build a temporal
directed multilayer graph [187], that we denote as G = {GrtFork

∀r}, where
each element GrtFork

is a layer of the multilayer graph. More precisely for each
interaction type r, a layer of the graph can be seen as a temporal weighted
graph GrtFork

= (V r
tFork

, Er
tFork

) that stores the interactions of type r that
happened up to tFork. Each edge (u, v, t, c) ∈ Er

tFork
encodes the operations

from node u to node v, described by the counter c and timestamp t. Specifically,
the counter c keeps track of the number of operations within the directed pair
of nodes, while the timestamp t corresponds to the time of the first operation
from u to v. While the obtained graphs could be used to perform prediction
on all users, they may have not been active before the fork, therefore it is
important to filter users that stopped using the platform before the fork event.
We define a set U of users of interest, in which we consider only users active
before the fork while including new users that would appear in the following
time period. Similarly to what has been done in [121], a user u belongs to
the set U (therefore active) if it performed at least one operation in the 3
months before the fork event. In this way, we are able to extract Gtfork

, i.e.
the subgraph of Gtfork

induced by the set U of active nodes. If we consider the
set of r ∈ {monetary(m), social(s)}, we can denote the layer graphs Gm

tFork
and

Gs
tFork

, representing monetary interactions and social interactions respectively,
that will be leveraged to predict behavior after the fork. We then need to
process interaction data to encode user behavior after the fork, in a way that
can be learned by machine learning models. This means defining labels for each
node based on the user activity after the fork. If we observe the interactions
that happened after the fork event involving a user u, we can consider 4 possible
cases:

- resident : a user active only on the original platform (Steemit)
- migrant : a user active only on the new platform (Hive Blog)
- co-active: a user that performs actions on both platforms
- inactive: a user that stops using both platforms

These cases are defined at the end of an observation period, after the fork event,
considering the activity up to the last interaction in the available data. So each
user a is assigned to one of the four labels after observing the interactions
I = (u, v, t, r) where u = a and with t > tFork. The assigned label (resident,
migration, co-active, or inactive) is defined as the migration decision l of user
u.

14.3 Methodology 228

Leveraging graph neural networks: model training and best model
selection

The first step is the selection of the architecture for our machine learning
model: we selected the GCN architecture from [182]. We implemented a sim-
ilar version, as represented in Figure 14.2. First, the input features and the
adjacency matrix are then leveraged by two graph convolutional layers that
create node embeddings. Finally, a linear transformation layer uses the em-
beddings generated by the GNN, to return a vector with a dimension equal to
the number of target classes of the task. Then we obtain a vector representing
a probability distribution on the target classes by applying to the output of
the previous layer z a softmax function σ(z).

Input

Graph

Training
mask

A Resident

B Inactive

C Migrant

D Inactive

E Resident

F Co-active

A
B

D

C

E

F

Node
labels

Output

A Resident
B Inactive
C Migrant
D Inactive
E Resident
F Co-active

Figure 14.2: Representation of selected graph neural network architecture. The
selected architecture is inspired by the classical GCN architecture by Kipf [182].

The selected graph neural network model needs to be trained, i.e. its
weights need to be adjusted so that it can learn to predict the right classes.
When the ground truth is available, GNNs can be trained in a supervised set-
ting. For node classification tasks, supervised learning requires the so-called
train-test split [188]. While in traditional machine learning tasks, the split
requires the separation into two sets of training samples, when dealing with
graphs, the split is not as straightforward: for graph neural networks, the
training and test sets are defined as the creation of masks M1 ∈ Rn, like in
Figure 14.3. The masks indicate which labels should be visible for the GNN
model during training.

As in traditional supervised learning frameworks, the objective is to make
the model output as close as possible to the ground truth values. This is done

14 Migration prediction 229

Computer Science Dept. @ UniMI CONNETS Lab

Insert here the context of the slide

NAOMI DEMOLLI 3

Training mask Testing mask

A B C D E F

1 0 1 1 1 0

A B C D E F

0 1 0 0 0 1

Interaction graph Interaction graph

A
B

D

C

E

F

A
B

D

C

E

F

A
B

D

C

E

F

A
B

D

C

E

F

(a)

Computer Science Dept. @ UniMI CONNETS Lab

Insert here the context of the slide

NAOMI DEMOLLI 3

Training mask Testing mask

A B C D E F

1 0 1 1 1 0

A B C D E F

0 1 0 0 0 1

Interaction graph Interaction graph

A
B

D

C

E

F

A
B

D

C

E

F

A
B

D

C

E

F

A
B

D

C

E

F

(b)

Figure 14.3: Supervised training example. On the left side, the training mask
is defined, while on the right side, an example of the corresponding test mask.
Training and message passing are performed using the complete graph structure,
but the loss function is computed only for training nodes. During testing, message
passing is performed over the entire graph, but evaluation is conducted on test
nodes.

by adjusting model parameters through the data learning process to minimize
a loss function. For classification problems, a commonly used loss function
is cross-entropy loss [182]. In addition to tuning model parameters, selecting
the optimal model configuration for a task involves optimizing hyperparam-
eters, i.e., parameters that cannot be estimated during the learning process
and must be predefined as they determine the model architecture [189]. Ex-
ploring all possible combinations of hyperparameters within a predefined grid
— a process known as grid search — can be computationally expensive and
time-consuming, especially for Graph Neural Network (GNN) models, which
often have numerous hyperparameters, leading to an extensive search space. To
mitigate this, a widely adopted approach is random search [190]:where only
a randomly selected subset of hyperparameter combinations is evaluated.In
this Chapter, An initial exploratory phase employs random search to identify
promising configurations. These configurations are then refined to narrow down
the candidate set, thereby reducing the number of combinations to evaluate
during a subsequent full grid search.

14.3 Methodology 230

Dealing with class imbalance: a new undersampling based
approach.

Formally, in a multiclass supervised learning task, there are m classes in total,
{C1, ...Cm}, and |Ci| is the size of the i-th class, referring to the number of
samples belonging to that class.

Here, we introduce an under-sampling technique to balance the distribution
of the target variable at the data level. Formally we balance the target variable
as follows: we choose a percentage p, and compute the number of samples
n = mini|Ci| ∗ p to get the number of samples per class to include in the
training set. To build a balanced training set, we perform under-sampling of
each class Ci: we consider a random subset of cardinality n of samples, creating
a uniform distribution. This leads to a reduced training set size, but each target
class is equally represented. In Figure 14.4, we report a toy example with two
classes. The selected method can be applied seamlessly in the pipeline we
described previously in Figure 14.1.

class A class B

class A class B

training
testing

class A class B

training
testing

v u
A

B

B
B

B

AA

A

A

A

A

A

AA

A

A
v u

A

B

B
B

B

AA

A

A

A

A

A

AA

A

A

p = 0.85

Classical
train test split

With
balancing

Figure 14.4: Train-test split with unbalanced classed. A visual example of an
imbalanced dataset with 2 classes (A, B). On the top half, a representation of
a classical 85/15 train-test split: in this case, the training set presents more
examples of class A (9) than class B (3). On the lower half, we illustrate our
proposed approach: we select 85% of the minority class B as training data, and
the same number of examples is kept for the other classes. The obtained training
set will present the same number of training nodes for each class (3).

14 Migration prediction 231

Experimental setting

In this chapter, we evaluate graph neural network performance for user mi-
gration prediction using standard multiclass classification metrics. We focus
on accuracy and weighted F1 score [185], computed through true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN).
Specifically true positives (TP) and true negatives (TN) represent the num-
ber of accurate classifications of positive and negative samples, while false
positives (FP) and false negatives (FN) indicate the number of incorrect clas-
sifications of positive and negative samples. Accuracy measures the proportion
of correctly predicted observations, calculated as accuracy = TP+TN

TP+TN+FP+FN .
While the F1 = 2∗TP

2∗TP+FP+FN , represents the average of Precision = TP
TP+FP

and Recall = TP
TP+FN . However, in multiclass classification, with C classes

and N samples, F1 can be adjusted to account for each class size, leading to
the weighted F1 =

∑C
i=1 wi ∗F1(Ci), as the weighted average of class-wise F1

scores, where for each class Ci, we have a weight wi =
|Ci|
N . The metrics are

evaluated both on training and test sets: to obtain more robust results. It is
common in the literature to consider the average performance over multiple
random seeds for each combination, therefore we report the average over 3
random seeds as done in [191]. Through the selected metrics, we compare the
predictive performance of graph neural networks to two baseline classifiers:
the Uniform Baseline classifier that generates predictions uniformly at ran-
dom (hence it will make a correct prediction in around 1/4 of the cases) and
the Most Frequent Baseline classifier, which predicts always the most frequent
class observed in the training set.

For RQ1, data is separated into training and test sets employingy a 70−30
random train-test split. Research question two involves applying an under-
sampling technique with varying training and test set configurations. In this
Chapter, for both RQ1 and RQ2, we focus exclusively on network structure.
Therefore, node attributes from the dataset are not considered in the predic-
tion: a constant attribute (equal to 1) is associated with each node. The weight
update over the training in this Chapter is done by Adam optimizer [192].

14.4 Results

In this section, we present the preprocessed graph and associated labels,
demonstrating how our methodology addresses the research questions through
detailed graph representation and analysis.

14.4 Results 232

Graph and labels

Applying the proposed methodology on the Steem-Hive dataset , we ob-
tain a multilayer graph Gtfork

. Note that Gtfork
is the active users’ sub-

graph, i.e. the subgraph induced by the set of active users on the two lay-
ers r ∈ {monetary(m), social(s)}. The monetary layer graphs Gm

tFork
contains

38, 566 nodes connected by 949, 046 edges. While the social layer graph Gs
tFork

has 90, 055 nodes and 42, 556, 877 edges, Overall, the social layer has more
active users and links: this is consistent with the selected operations; in fact,
social operations are far more common than monetary transactions. For these
users, we encoded their behavior in the 4 possible classes whose frequencies are
shown in Figure 14.5a for the monetary interactions and in Figure 14.5b for
social interactions. We can observe how the distribution of labels is not bal-
anced: in the monetary layer, there is a slight skew in the number of co-active
users, and the minority class is composed of migrant users. Whereas the social
layer is severely imbalanced as the majority of users become inactive after the
fork event.

(a) Decisions on monetary layer (b) Decisions on social layer

Figure 14.5: The distribution of the generated labels encoding the user migra-
tion decision, in the two layers a) monetary and b) social respectively.

Predicting user migration

We now investigate whether graph neural networks are a suitable method
for user migration prediction (RQ1) by applying the methodology presented
in Section 14.3 on our dataset. We first train our models for prediction on

14 Migration prediction 233

the graph Gm
tFork

representing monetary interactions before the fork. In Table
14.1 we show the obtained results on the monetary layer. The trained GNN
model outperforms both Baseline classifiers in accuracy and weighted F1 on the
monetary layer, demonstrating its ability to learn from monetary interaction
topology. We then perform the prediction task on the social layer Gs

tFork
that

represents social interactions before the fork. In Table 14.2, we show the eval-
uation results. The gap between the trained model and the baseline classifiers
is not as large. The most frequent baseline classifier (the one that predicts the
most frequent class observed in training) obtains an accuracy score similar to
the best GNN model, while the Uniform Baseline lags severely behind. When
we consider the weighted F1 scores we observe a similar trend: the Baseline
performs similarly to the GNN model. Further investigation revealed that after
few epochs, the model defaults to predicting the most frequent class, indicat-
ing significant challenges with severely imbalanced datasets. In the case of a
severely imbalanced dataset, the graph neural network model struggles in the
prediction of less frequent classes, it acts similarly to the baseline classifier. In
general, we can say that the GNN has learned from the input data, making it
a suitable model for solving the problem on the monetary layer. While predic-
tion in more imbalanced settings, like in the social graph requires addressing
the class imbalance problem.

Table 14.1: Accuracy and weighted F1 (mean and standard deviation over 3
random seeds [191]) obtained by the Baseline classifiers and the best GNN model
on the monetary graph Gm

tFork
.

Model Train accuracy Test accuracy Train weighted F1 Test weighted F1
Most freq. 0.346 ± 0.001 0.336 ± 0.003 0.178 ± 0.0011 0.169 ± 0.002
Uniform 0.249 ± 0.001 0.249 ± 0.004 0.253 ± 0.001 0.2515 ± 0.001

Best 0.426 ± 0.003 0.424 ± 0.006 0.381 ± 0.002 0.379 ± 0.003

Table 14.2: Accuracy and weighted F1 (mean and standard deviation over 3
random seeds [191]) obtained by the Baseline classifiers and the best GNN model
on the social graph Gs

tFork
.

Model Train accuracy Test accuracy Train weighted F1 Test weighted F1
Most freq. 0.770 ± 0.001 0.770 ± 0.002 0.671 ± 0.001 0.670 ± 0.004
Uniform 0.250 ± 0.001 0.250 ± 0.001 0.319 ± 0.001 0.318 ± 0.001

Best 0.770 ± 0.001 0.770 ± 0.002 0.671 ± 0.001 0.670 ± 0.004

14.4 Results 234

Dealing with class imbalance

In the following, we now analyze how to address class imbalance (RQ2) by
applying the methodology presented in Section 14.3. Specifically, we compare
the best GNN model obtained for the two layers and evaluate the impact of
the balancing approach on performance.

We begin with the monetary layer: Table 14.3 presents the evaluation met-
rics for both approaches. The models trained on the balanced graph and those
trained on the original graph exhibit comparable performance. This is ex-
pected, as the target variable in the monetary layer is not significantly im-
balanced. Notably, the similarity in performance is a positive outcome since
the model trained on the balanced dataset learns from fewer examples but still
maintains performance. In fact, we observe slight overall improvements, further
underscoring the efficacy of the approach. Next, we turn to the social layer,
where the target labels are more imbalanced. Table 14.4 shows the evaluation
results, highlighting the impact of the proposed balancing technique. First,
we confirm that the model trained on the balanced dataset predicts not only
the most frequent class but also other classes. While training on the balanced
dataset leads to a drop in both accuracy and weighted F1 on the training sets,
the test set performance remains strong, particularly in terms of weighted F1.

Table 14.3: Accuracy and weighted F1 (mean and standard deviation over 3
random seeds [191]) obtained by the best GNN model trained on the imbalanced
training set and the best model trained on the balanced training set, on the mon-
etary graph Gm

tFork
.

Model Train accuracy Test accuracy Train weighted F1 Test weighted F1
Best imbal. 0.426 ± 0.003 0.424 ± 0.006 0.381 ± 0.002 0.379 ± 0.003
Best bal. 0.427 ± 0.001 0.424 ± 0.001 0.386 ± 0.007 0.382 ± 0.007

Table 14.4: Accuracy and weighted F1 (mean and standard deviation over 3
random seeds [191]) obtained by the best GNN model trained on the imbalanced
training set and the best model trained on the balanced training set, on the social
graph Gs

tFork
.

Model Train accuracy Test accuracy Train weighted F1 Test weighted F1
Best imbal. 0.770 ± 0.001 0.770 ± 0.002 0.671 ± 0.001 0.670 ± 0.004
Best bal. 0.403 ± 0.002 0.725 ± 0.006 0.359 ± 0.003 0.788 ± 0.004

14 Migration prediction 235

The balancing technique significantly enhances the performance of the
GNN model. In datasets with a more balanced class distribution, it enables
the model to achieve strong performance while requiring less training data.
Conversely, in highly imbalanced datasets, the technique facilitates a more
effective learning process by allowing the model to better capture patterns
associated with minority classes, thereby improving its predictive capabilities
for these underrepresented groups.

14.5 Conclusion

In this Chapter, we tackled the challenge of predicting user migration, empha-
sizing two key aspects that have received limited attention: the effectiveness
of graph neural networks (GNNs) as a predictive framework and the issue
of class imbalance, which is particularly pronounced in classification tasks
and blockchain-based systems. Our findings demonstrate that GNNs are a
powerful tool for forecasting user migration within blockchain-based online
social networks. By transforming user interaction data into multilayer tem-
poral graphs tailored for GNN modeling, we developed a methodology that
excels at leveraging monetary interaction graphs but faces challenges when
dealing with the highly imbalanced social layer. However, by applying our
proposed data-level balancing technique to create a more balanced training
set, we significantly enhanced the model’s predictive performance, even on
severely imbalanced data. These results are particularly noteworthy as they
underscore the predictive strength of graph-based structures, eliminating the
need for manual feature engineering. Additionally, the models exhibit strong
performance despite the absence of node features, a common limitation in
blockchain-based systems. Looking ahead, future research will explore broader
applications of our methodology, as user migration extends beyond online so-
cial networks to include transitions between cryptocurrencies, decentralized
applications (DApps), and other blockchain ecosystems. The proposed ap-
proach holds promise for improving performance in related predictive tasks,
such as fraud detection and bot identification, which are critical to both so-
cial networks and blockchain environments. Further investigations could also
focus on developing alternative balancing strategies to further enhance model
effectiveness.

Part V

Conclusions and future works

Chapter 15

Conclusions

In this thesis, we introduce GERANIO, a comprehensive and versatile frame-
work for modeling, mining, analyzing, and representing the evolutionary rules
that govern network dynamics. Our primary objective was to develop a robust
methodology capable of generating an evolutionary profile for a wide spectrum
of network types, offering unprecedented insights into their growth patterns
and structural changes over time. As we conclude this research, we can confi-
dently assert that the GERANIO framework represents a significant advance-
ment in the field of network science. Unlike previous approaches that often
focused on specific aspects or mechanisms of network evolution, our method-
ology offers a comprehensive and adaptable solution applicable across diverse
domains, from social networks to biological systems and blockchain-based plat-
forms. Our work has yielded several key contributions that collectively advance
the field of network science and provide valuable tools for researchers:

• Framework for Evolving Networks: We introduce a comprehensive
taxonomy for modeling evolving networks, designed to be universally ap-
plicable across various domains. This framework unifies diverse modeling
approaches from existing stand-alone algorithms and extends to related
topics such as user migration, providing a cohesive foundation for network
evolution studies.

• Canonical Coding: To enable effective comparison of graph evolution
across different networks, we develop an efficient categorization method
for isomorphic subgraphs. This system ensures the universal applicability
of results, facilitating standardized analysis and interpretation of network
dynamics.

240

• Custom Null Models: We propose tailored null models specifically de-
signed for graph evolution rule algorithms. These models allow for the ex-
traction of significant rules by assessing their statistical significance beyond
simple frequency metrics, enabling researchers to differentiate meaningful
patterns from random fluctuations in network evolution.

• TULIP Algorithm: Our novel TULIP (Temporal subgraphs for evolu-
tionary profiling) algorithm offers a more comprehensive approach to min-
ing graph evolution rules compared to stand-alone methods. It captures
all possible subgraph evolutions along with their associated probabilities,
providing a detailed evolutionary footprint of a network.

• Evolutionary Profile Concept: To derive insights from mining results,
we introduce the evolutionary profile—a probability distribution of rule fre-
quencies. For general graph evolution rules, this concept extends to a mul-
tidimensional profile describing the likelihood of various subgraph transfor-
mations. These profiles can be aggregated across different networks, offering
immediate visual insights into the evolving behavior of graphs, nodes, or
groups.

The GERANIO framework’s ability to generate detailed evolutionary pro-
files and identify significant patterns promises to enhance our understanding of
complex systems and inform more effective strategies for network management
and optimization.

Chapter 16

Future Works

This thesis opens up several promising paths for future research, the following
paragraph will explore the different perspective separately.

GER and AI. The first direction concerns the integration of graph evo-
lution rules for and with Artificial Intelligence (AI). One promising direction
involves leveraging AI to accelerate the extraction of graph evolution rules
through approximate counting methods. This approach could significantly
reduce computational costs by avoiding the most expensive part of the al-
gorithm—exact counting—while still maintaining a high degree of accuracy.
Conversely, incorporating GER into AI methods offers potential for enhancing
network and subnetwork representations. By utilizing evolutionary profiles as
features in machine learning tasks, we can provide AI models with rich, dy-
namic information about network structures and their changes over time. This
bidirectional synergy between GER and AI not only promises to accelerate the
discovery of meaningful patterns in evolving networks but also to improve the
performance and interpretability of AI models working with graph-structured
data.

User Strategies Evolutionary profiles offer a promising avenue in the
context of computational social science, for analyzing and understanding user
strategies in social media environments. By examining the correlation between
specific evolutionary patterns and user performance or reputation, we can gain
valuable insights into effective growth strategies. For instance, we could inves-
tigate whether users whose profiles show a tendency towards expansive evolu-
tion—characterized by rapidly forming new connections across diverse network
segments—achieve higher levels of popularity or influence compared to those
with profiles dominated by reciprocal interactions within a more constrained

242

network neighborhood. This analysis could reveal whether aggressive network
expansion pays off more than cultivating deeper, reciprocal relationships in
terms of gaining social capital or visibility. Furthermore, by segmenting users
based on their evolutionary profiles and comparing these segments against var-
ious performance metrics (such as follower count, engagement rates, or virality
of content), we can identify which evolutionary strategies are most effective in
different contexts or platforms. This approach could also uncover temporal
aspects of successful strategies, such as whether users who alternate between
periods of rapid expansion and consolidation outperform those with more con-
sistent behavioral patterns. Ultimately, these insights could not only enhance
our understanding of social media dynamics but also inform platform design
and user growth strategies in digital social environments.

Shocking events Evolutionary profiles offer a powerful tool for detecting
shocking events or anomalies in network evolution, both from a node-centric
and a broader network-level perspective. By comparing the evolutionary pro-
files of different time periods, researchers can identify significant deviations
that may indicate unusual events or structural changes in the network. This
approach allows for a multi-scale analysis, from examining sudden changes
in a node’s evolutionary profile that could signal shifts in user behavior, to
comparing aggregate evolutionary profiles of entire networks across different
time periods to reveal large-scale shifts in interaction patterns or structural
dynamics. This methodology can be applied bidirectionally. For anomaly detec-
tion, establishing a baseline evolutionary profile for "normal" network behav-
ior allows deviations to be flagged as potential anomalies or events of interest.
Conversely, for known shocking events, researchers can analyze how the evo-
lutionary profiles of the network changed before, during, and after the event,
providing insights into the event’s impact on network dynamics.

The user migration scenario presents a possible application of this ap-
proach. Here, the event causing the migration can be considered the shocking
event, and its effects can be traced through changes in evolutionary profiles.
Researchers could analyze how the evolutionary profiles of individual users
and the overall network change throughout the migration process. This analy-
sis would cover the periods leading up to, during, and after a migration event.
By examining shifts in the network’s evolutionary profile as users migrate,
researchers may uncover cascading effects or structural reorganizations. Addi-
tionally, comparing the evolutionary profiles of users who migrate versus those
who don’t could reveal patterns that predict migration behavior. These in-
sights could prove valuable for understanding and potentially forecasting user

16 Future Works 243

migration dynamics.

Network generation Graph evolution rules offer a promising approach
for generating synthetic networks with specific characteristics. By leveraging
these rules, researchers can create artificial networks that closely mimic the
evolutionary patterns observed in real-world systems. This method allows for
fine-grained control over the network generation process. For instance, one
could specify a particular evolutionary profile to reproduce, ensuring that the
synthetic network exhibits similar growth patterns and structural changes as
observed in empirical data. Even more precisely, researchers can define specific
rules to govern the network’s evolution, allowing for the creation of networks
with exact desired properties or behaviors. This capability is particularly valu-
able for testing hypotheses about network formation, studying the impact of
specific evolutionary mechanisms, or generating benchmark datasets for evalu-
ating network analysis algorithms. Furthermore, by adjusting the rules or pro-
files, researchers can explore "what-if" scenarios, examining how slight changes
in evolutionary dynamics might lead to significantly different network struc-
tures over time. This approach to synthetic network generation provides a
powerful tool for advancing our understanding of complex network dynamics
and for developing more robust network analysis methodologies.

By addressing these research directions, we can continue to deepen our
understanding of network evolution, enhancing our ability to model, predict,
and interpret the dynamics of complex systems across various domains.

References

1. Worldwide Spending on Digital Transformation, https://cdn.idc.com/
getdoc.jsp?containerId=prUS52305724, [Accessed 08-08-2024].

2. Gartner, Digital Transformation: How to Scope and Execute Strategy,
https://www.gartner.com/en/information-technology/topics/digital-
transformation, [Accessed 12-08-2024].

3. J. Sultan, 34 Digital Transformation Statistics For 2024 —
digital-adoption.com, https://www.digital-adoption.com/digital-
transformation-statistics/, [Accessed 12-08-2024].

4. A.-L. Barabási, Network science, Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences 371 (1987) (2013)
20120375.

5. J. L. Moreno, Group method and group psychotherapy, no. 5, Beacon House,
1932.

6. M. Coscia, The atlas for the aspiring network scientist (2021). arXiv:
2101.00863.

7. M. Falkenberg, A. Galeazzi, M. Torricelli, N. Di Marco, F. Larosa, M. Sas,
A. Mekacher, W. Pearce, F. Zollo, W. Quattrociocchi, et al., Growing polariza-
tion around climate change on social media, Nature Climate Change 12 (12)
(2022) 1114–1121.

8. L. L. Cava, L. M. Aiello, A. Tagarelli, Drivers of social influence in the twitter
migration to mastodon, Scientific Reports 13 (1) (2023) 21626.

9. E. Ferrara, R. Interdonato, A. Tagarelli, Online popularity and topical interests
through the lens of instagram, in: Proceedings of the 25th ACM conference on
Hypertext and social media, 2014, pp. 24–34.

10. L. M. Aiello, A. Barrat, R. Schifanella, C. Cattuto, B. Markines, F. Menczer,
Friendship prediction and homophily in social media, ACM Transactions on the
Web (TWEB) 6 (2) (2012) 1–33.

11. E. Loria, A. Antelmi, J. Pirker, Comparing the structures and characteristics
of different game social networks-the steam case, in: 2021 IEEE Conference on
Games (CoG), IEEE, 2021, pp. 1–8.

https://cdn.idc.com/getdoc.jsp?containerId=prUS52305724
https://cdn.idc.com/getdoc.jsp?containerId=prUS52305724
https://www.gartner.com/en/information-technology/topics/digital-transformation
https://www.gartner.com/en/information-technology/topics/digital-transformation
https://www.digital-adoption.com/digital-transformation-statistics/
https://www.digital-adoption.com/digital-transformation-statistics/
http://arxiv.org/abs/2101.00863
http://arxiv.org/abs/2101.00863

References 246

12. A. Tagarelli, R. Interdonato, " who’s out there?" identifying and ranking lurk-
ers in social networks, in: Proceedings of the 2013 IEEE/ACM international
conference on advances in social networks analysis and mining, 2013, pp. 215–
222.

13. E. Nier, J. Yang, T. Yorulmazer, A. Alentorn, Network models and financial
stability, Journal of Economic Dynamics and Control 31 (6) (2007) 2033–2060.

14. D. Savage, Q. Wang, X. Zhang, P. Chou, X. Yu, Detection of money laundering
groups: Supervised learning on small networks, in: Workshops at the Thirty-
First AAAI Conference on artificial intelligence, 2017.

15. F. Braun, O. Caelen, E. N. Smirnov, S. Kelk, B. Lebichot, Improving card fraud
detection through suspicious pattern discovery, in: Advances in Artificial Intel-
ligence: From Theory to Practice: 30th International Conference on Industrial
Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE
2017, Arras, France, June 27-30, 2017, Proceedings, Part II 30, Springer, 2017,
pp. 181–190.

16. B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, C. Faloutsos, Fraudar: Bound-
ing graph fraud in the face of camouflage, in: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining,
2016, pp. 895–904.

17. I. A. Kovács, K. Luck, K. Spirohn, Y. Wang, C. Pollis, S. Schlabach, W. Bian,
D.-K. Kim, N. Kishore, T. Hao, et al., Network-based prediction of protein
interactions, Nature communications 10 (1) (2019) 1240.

18. F. Cheng, I. A. Kovács, A.-L. Barabási, Network-based prediction of drug com-
binations, Nature communications 10 (1) (2019) 1197.

19. R. Gallotti, M. Barthelemy, The multilayer temporal network of public trans-
port in great britain, Scientific data 2 (1) (2015) 1–8.

20. W. H. Thompson, P. Brantefors, P. Fransson, From static to temporal network
theory: Applications to functional brain connectivity, Network Neuroscience
1 (2) (2017) 69–99.

21. P. Holme, J. Saramäki, Temporal network theory, Vol. 2, Springer, New York
City, NY, 2019.

22. X. Xue, L. Pan, M. Zheng, W. Wang, Network temporality can promote and
suppress information spreading, Chaos: An Interdisciplinary Journal of Nonlin-
ear Science 30 (11) (2020).

23. C. Liu, Z.-K. Zhang, Information spreading on dynamic social networks, Com-
munications in Nonlinear Science and Numerical Simulation 19 (4) (2014) 896–
904.

24. C. T. Ba, R. G. Clegg, B. A. Steer, M. Zignani, Investigating shocking events
in the ethereum stablecoin ecosystem through temporal multilayer graph struc-
ture, arXiv preprint arXiv:2407.10614 (2024).

25. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic
processes in complex networks, Reviews of modern physics 87 (3) (2015) 925.

References 247

26. J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution: Densification and
shrinking diameters, ACM transactions on Knowledge Discovery from Data
(TKDD) 1 (1) (2007) 2–es.

27. M. S. Granovetter, The strength of weak ties, in: Social networks, Elsevier,
1977, pp. 347–367.

28. D. Easley, J. Kleinberg, et al., Networks, crowds, and markets, Vol. 8, Cam-
bridge university press Cambridge, 2010.

29. M. Berlingerio, F. Bonchi, B. Bringmann, A. Gionis, Mining graph evolution
rules, in: joint European conference on machine learning and knowledge discov-
ery in databases, Springer, 2009, pp. 115–130.

30. X. Yan, J. Han, gspan: Graph-based substructure pattern mining, in: 2002 IEEE
International Conference on Data Mining, 2002. Proceedings., IEEE, 2002, pp.
721–724.

31. C. Leung, E.-P. Lim, D. Lo, J. Weng, Mining interesting link formation rules
in social networks, 2010, pp. 209–218. doi:10.1145/1871437.1871468.

32. M. Yuuki, T. Ozaki, O. Takenao, Mining interesting patterns and rules in a
time-evolving graph, Lecture Notes in Engineering and Computer Science 2188
(03 2011).

33. B. Bringmann, S. Nijssen, What is frequent in a single graph?, in: Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Springer, 2008, pp. 858–
863.

34. K. Vaculík, A versatile algorithm for predictive graph rule mining., in: ITAT,
2015, pp. 51–58.

35. E. Scharwächter, E. Müller, J. Donges, M. Hassani, T. Seidl, Detecting change
processes in dynamic networks by frequent graph evolution rule mining, in: 2016
IEEE 16th International Conference on Data Mining (ICDM), IEEE, 2016, pp.
1191–1196.

36. T. Junttila, P. Kaski, Engineering an efficient canonical labeling tool for large
and sparse graphs, in: 2007 Proceedings of the Ninth Workshop on Algorithm
Engineering and Experiments (ALENEX), SIAM, 2007, pp. 135–149.

37. L. Gauvin, M. Génois, M. Karsai, M. Kivelä, T. Takaguchi, E. Valdano,
C. L. Vestergaard, Randomized reference models for temporal networks, arXiv
preprint arXiv:1806.04032 (2018).

38. S. Lozano, A. Arenas, A. Sanchez, Mesoscopic structure conditions the emer-
gence of cooperation on social networks, PLoS one 3 (4) (2008) e1892.

39. G. Tibely, L. Kovanen, M. Karsai, K. Kaski, J. Kertesz, J. Saramäki, Commu-
nities and beyond: mesoscopic analysis of a large social network with comple-
mentary methods, Physical Review E—Statistical, Nonlinear, and Soft Matter
Physics 83 (5) (2011) 056125.

40. A. Galdeman, M. Zignani, S. Gaito, Disentangling the growth of blockchain-
based networks by graph evolution rule mining, in: 2022 IEEE 9th International
Conference on Data Science and Advanced Analytics (DSAA), IEEE, 2022, pp.
1–10.

https://doi.org/10.1145/1871437.1871468

References 248

41. L. P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub) graph isomorphism
algorithm for matching large graphs, IEEE transactions on pattern analysis and
machine intelligence 26 (10) (2004) 1367–1372.

42. M. Yuuki, T. Ozaki, O. Takenao, Mining interesting patterns and rules in a
time-evolving graph, Lecture Notes in Engineering and Computer Science 2188
(03 2011).

43. G. Bianconi, R. K. Darst, J. Iacovacci, S. Fortunato, Triadic closure as a basic
generating mechanism of communities in complex networks, Physical Review E
90 (4) (2014) 042806.

44. D. Romero, J. Kleinberg, The directed closure process in hybrid social-
information networks, with an analysis of link formation on twitter, Proceedings
of the International AAAI Conference on Web and Social Media 4 (1) (2010)
138–145. doi:10.1609/icwsm.v4i1.14015.
URL https://ojs.aaai.org/index.php/ICWSM/article/view/14015

45. O. Frank, Triad count statistics, in: Annals of Discrete Mathematics, Vol. 38,
Elsevier, 1988, pp. 141–149.

46. P. Ribeiro, P. Paredes, M. E. P. Silva, D. Aparicio, F. Silva, A survey on sub-
graph counting: Concepts, algorithms, and applications to network motifs and
graphlets, ACM Comput. Surv. 54 (2) (mar 2021). doi:10.1145/3433652.
URL https://doi.org/10.1145/3433652

47. V. Batagelj, A. Mrvar, A subquadratic triad census algorithm for large sparse
networks with small maximum degree, Social networks 23 (3) (2001) 237–243.

48. G. Chin Jr, A. Marquez, S. Choudhury, J. Feo, Scalable triadic analysis of large-
scale graphs: Multi-core vs. multi-processor vs. multi-threaded shared memory
architectures, in: 2012 IEEE 24th International Symposium on Computer Ar-
chitecture and High Performance Computing, IEEE, 2012, pp. 163–170.

49. S. Parimalarangan, G. M. Slota, K. Madduri, Fast parallel graph triad census
and triangle counting on shared-memory platforms, 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2017)
1500–1509.
URL https://api.semanticscholar.org/CorpusID:9824095

50. Y. Santoso, A. Thomo, V. Srinivasan, S. Chester, Triad enumeration at trillion-
scale using a single commodity machine, in: Advances in Database Technology-
EDBT 2019, 22nd International Conference on Extending Database Technology,
Lisboa, Portugal, March 26-29, Proceedings, OpenProceedings. org, 2019.

51. L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, C. Sohler,
Counting triangles in data streams, in: Proceedings of the Twenty-Fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS ’06, Association for Computing Machinery, New York, NY, USA, 2006,
p. 253–262. doi:10.1145/1142351.1142388.
URL https://doi.org/10.1145/1142351.1142388

52. A. Pavan, K. Tangwongsan, S. Tirthapura, K.-L. Wu, Counting and sampling
triangles from a graph stream, Proc. VLDB Endow. 6 (14) (2013) 1870–1881.

https://ojs.aaai.org/index.php/ICWSM/article/view/14015
https://ojs.aaai.org/index.php/ICWSM/article/view/14015
https://doi.org/10.1609/icwsm.v4i1.14015
https://ojs.aaai.org/index.php/ICWSM/article/view/14015
https://doi.org/10.1145/3433652
https://doi.org/10.1145/3433652
https://doi.org/10.1145/3433652
https://doi.org/10.1145/3433652
https://doi.org/10.1145/3433652
https://api.semanticscholar.org/CorpusID:9824095
https://api.semanticscholar.org/CorpusID:9824095
https://api.semanticscholar.org/CorpusID:9824095
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.14778/2556549.2556569

References 249

doi:10.14778/2556549.2556569.
URL https://doi.org/10.14778/2556549.2556569

53. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network
motifs: simple building blocks of complex networks, Science 298 (5594) (2002)
824–827.

54. H. Huang, J. Tang, L. Liu, J. Luo, X. Fu, Triadic closure pattern analysis
and prediction in social networks, IEEE Transactions on Knowledge and Data
Engineering 27 (12) (2015) 3374–3389. doi:10.1109/TKDE.2015.2453956.

55. A. Alrhmoun, J. Kertész, Emergent local structures in an ecosystem of social
bots and humans on twitter, EPJ Data Science 12 (1) (2023) 39.

56. L. Kovanen, M. Karsai, K. Kaski, J. Kertész, J. Saramäki, Temporal motifs in
time-dependent networks, Journal of Statistical Mechanics: Theory and Exper-
iment 2011 (11) (2011) P11005. doi:10.1088/1742-5468/2011/11/p11005.
URL http://dx.doi.org/10.1088/1742-5468/2011/11/P11005

57. A. Paranjape, A. R. Benson, J. Leskovec, Motifs in temporal networks, in:
Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining, WSDM ’17, Association for Computing Machinery, New York,
NY, USA, 2017, p. 601–610. doi:10.1145/3018661.3018731.
URL https://doi.org/10.1145/3018661.3018731

58. Y. Hulovatyy, H. Chen, T. Milenković, Exploring the structure and function
of temporal networks with dynamic graphlets, Bioinformatics 31 (12) (2015)
i171–i180.

59. S. Purohit, L. B. Holder, G. Chin, Item: Independent temporal motifs to sum-
marize and compare temporal networks, ArXiv abs/2002.08312 (2020).

60. A. Longa, G. Cencetti, B. Lepri, A. Passerini, An efficient procedure for min-
ing egocentric temporal motifs, Data Mining and Knowledge Discovery 36 (1)
(2022) 355–378.

61. A. Ceria, S. Havlin, A. Hanjalic, H. Wang, Topological–temporal properties of
evolving networks, Journal of Complex Networks 10 (5) (2022) cnac041.

62. F. E. Faisal, T. Milenković, Dynamic networks reveal key players
in aging, Bioinformatics 30 (12) (2014) 1721–1729. arXiv:https:
//academic.oup.com/bioinformatics/article-pdf/30/12/1721/48926324/
bioinformatics_30_12_1721.pdf, doi:10.1093/bioinformatics/btu089.
URL https://doi.org/10.1093/bioinformatics/btu089

63. D. Aparício, P. Ribeiro, F. Silva, Graphlet-orbit transitions (got): A finger-
print for temporal network comparison, PLOS ONE 13 (10) (2018) 1–24.
doi:10.1371/journal.pone.0205497.
URL https://doi.org/10.1371/journal.pone.0205497

64. M. Doroud, P. Bhattacharyya, S. F. Wu, D. Felmlee, The evolution of ego-
centric triads: A microscopic approach toward predicting macroscopic network
properties, in: 2011 IEEE Third International Conference on Privacy, Secu-
rity, Risk and Trust and 2011 IEEE Third International Conference on Social
Computing, 2011, pp. 172–179. doi:10.1109/PASSAT/SocialCom.2011.101.

https://doi.org/10.14778/2556549.2556569
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.1109/TKDE.2015.2453956
http://dx.doi.org/10.1088/1742-5468/2011/11/P11005
http://dx.doi.org/10.1088/1742-5468/2011/11/P11005
https://doi.org/10.1088/1742-5468/2011/11/p11005
http://dx.doi.org/10.1088/1742-5468/2011/11/P11005
https://doi.org/10.1145/3018661.3018731
https://doi.org/10.1145/3018661.3018731
https://doi.org/10.1145/3018661.3018731
https://doi.org/10.1093/bioinformatics/btu089
https://doi.org/10.1093/bioinformatics/btu089
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/30/12/1721/48926324/bioinformatics_30_12_1721.pdf
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/30/12/1721/48926324/bioinformatics_30_12_1721.pdf
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/30/12/1721/48926324/bioinformatics_30_12_1721.pdf
https://doi.org/10.1093/bioinformatics/btu089
https://doi.org/10.1093/bioinformatics/btu089
https://doi.org/10.1371/journal.pone.0205497
https://doi.org/10.1371/journal.pone.0205497
https://doi.org/10.1371/journal.pone.0205497
https://doi.org/10.1371/journal.pone.0205497
https://doi.org/10.1109/PASSAT/SocialCom.2011.101

References 250

65. M. Zignani, S. Gaito, G. P. Rossi, X. Zhao, H. Zheng, B. Zhao, Link and triadic
closure delay: Temporal metrics for social network dynamics, Proceedings of the
International AAAI Conference on Web and Social Media 8 (1) (2014) 564–573.
doi:10.1609/icwsm.v8i1.14507.
URL https://ojs.aaai.org/index.php/ICWSM/article/view/14507

66. C. T. Ba, M. Zignani, S. Gaito, Characterizing growth in decen-
tralized socio-economic networks through triadic closure-related net-
work motifs, Online Social Networks and Media 37-38 (2023) 100266.
doi:https://doi.org/10.1016/j.osnem.2023.100266.
URL https://www.sciencedirect.com/science/article/pii/
S2468696423000253

67. Q. Nguyen, O. Poquet, C. A. Brooks, W. Li, Exploring homophily in demo-
graphics and academic performance using spatial-temporal student networks,
Educational Data Mining (2020).
URL https://www.semanticscholar.org/paper/Exploring-
homophily-in-demographics-and-academic-Nguyen-Poquet/
fa2bd2a99d28ce9ea98cf2ef59a3b95a025b59e0

68. H. Weber, M. Schwenzer, S. Hillmert, Homophily in the formation and
development of learning networks among university students, Network Sci.
(2020).
URL https://www.semanticscholar.org/paper/Homophily-in-
the-formation-and-development-of-among-Weber-Schwenzer/
11b530e9c2610df2fbb16f2e7bb5b6767c8742ba

69. L. Kovanen, K. Kaski, J. Kertész, J. Saramäki, Temporal motifs reveal ho-
mophily, gender-specific patterns, and group talk in call sequences, Pro-
ceedings of the National Academy of Sciences 110 (45) (2013) 18070–18075.
arXiv:https://www.pnas.org/content/110/45/18070.full.pdf, doi:10.1073/
pnas.1307941110.
URL https://www.pnas.org/content/110/45/18070

70. P. Kister, L. Tonetto, On the importance of structural equivalence in temporal
networks for epidemic forecasting, Sci. Rep. (2023).
URL https://www.semanticscholar.org/paper/On-the-
importance-of-structural-equivalence-in-for-Kister-Tonetto/
a06dec21cf6fdf85db586adc6ead0d8c05c242cd

71. G. Palla, A.-L. Barabási, T. Vicsek, Quantifying social group evolution, Nature
446 (7136) (2007) 664–667.

72. J. Onnela, Community Structure in Time-Dependent, Multiscale, and Multiplex
Networks, Science (2009). doi:10.1016/j.physrep.2012.03.001.

73. D. Greene, D. Doyle, P. Cunningham, Tracking the evolution of communities
in dynamic social networks, in: 2010 international conference on advances in
social networks analysis and mining, IEEE, 2010, pp. 176–183.

74. D. Kempe, A framework for community identification in dynamic social
networks, Knowledge Discovery and Data Mining (2007). doi:10.1016/
j.physrep.2012.03.001.

https://ojs.aaai.org/index.php/ICWSM/article/view/14507
https://ojs.aaai.org/index.php/ICWSM/article/view/14507
https://doi.org/10.1609/icwsm.v8i1.14507
https://ojs.aaai.org/index.php/ICWSM/article/view/14507
https://www.sciencedirect.com/science/article/pii/S2468696423000253
https://www.sciencedirect.com/science/article/pii/S2468696423000253
https://www.sciencedirect.com/science/article/pii/S2468696423000253
https://doi.org/https://doi.org/10.1016/j.osnem.2023.100266
https://www.sciencedirect.com/science/article/pii/S2468696423000253
https://www.sciencedirect.com/science/article/pii/S2468696423000253
https://www.semanticscholar.org/paper/Exploring-homophily-in-demographics-and-academic-Nguyen-Poquet/fa2bd2a99d28ce9ea98cf2ef59a3b95a025b59e0
https://www.semanticscholar.org/paper/Exploring-homophily-in-demographics-and-academic-Nguyen-Poquet/fa2bd2a99d28ce9ea98cf2ef59a3b95a025b59e0
https://www.semanticscholar.org/paper/Exploring-homophily-in-demographics-and-academic-Nguyen-Poquet/fa2bd2a99d28ce9ea98cf2ef59a3b95a025b59e0
https://www.semanticscholar.org/paper/Exploring-homophily-in-demographics-and-academic-Nguyen-Poquet/fa2bd2a99d28ce9ea98cf2ef59a3b95a025b59e0
https://www.semanticscholar.org/paper/Exploring-homophily-in-demographics-and-academic-Nguyen-Poquet/fa2bd2a99d28ce9ea98cf2ef59a3b95a025b59e0
https://www.semanticscholar.org/paper/Homophily-in-the-formation-and-development-of-among-Weber-Schwenzer/11b530e9c2610df2fbb16f2e7bb5b6767c8742ba
https://www.semanticscholar.org/paper/Homophily-in-the-formation-and-development-of-among-Weber-Schwenzer/11b530e9c2610df2fbb16f2e7bb5b6767c8742ba
https://www.semanticscholar.org/paper/Homophily-in-the-formation-and-development-of-among-Weber-Schwenzer/11b530e9c2610df2fbb16f2e7bb5b6767c8742ba
https://www.semanticscholar.org/paper/Homophily-in-the-formation-and-development-of-among-Weber-Schwenzer/11b530e9c2610df2fbb16f2e7bb5b6767c8742ba
https://www.semanticscholar.org/paper/Homophily-in-the-formation-and-development-of-among-Weber-Schwenzer/11b530e9c2610df2fbb16f2e7bb5b6767c8742ba
https://www.pnas.org/content/110/45/18070
https://www.pnas.org/content/110/45/18070
http://arxiv.org/abs/https://www.pnas.org/content/110/45/18070.full.pdf
https://doi.org/10.1073/pnas.1307941110
https://doi.org/10.1073/pnas.1307941110
https://www.pnas.org/content/110/45/18070
https://www.semanticscholar.org/paper/On-the-importance-of-structural-equivalence-in-for-Kister-Tonetto/a06dec21cf6fdf85db586adc6ead0d8c05c242cd
https://www.semanticscholar.org/paper/On-the-importance-of-structural-equivalence-in-for-Kister-Tonetto/a06dec21cf6fdf85db586adc6ead0d8c05c242cd
https://www.semanticscholar.org/paper/On-the-importance-of-structural-equivalence-in-for-Kister-Tonetto/a06dec21cf6fdf85db586adc6ead0d8c05c242cd
https://www.semanticscholar.org/paper/On-the-importance-of-structural-equivalence-in-for-Kister-Tonetto/a06dec21cf6fdf85db586adc6ead0d8c05c242cd
https://www.semanticscholar.org/paper/On-the-importance-of-structural-equivalence-in-for-Kister-Tonetto/a06dec21cf6fdf85db586adc6ead0d8c05c242cd
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001

References 251

75. F. Giannotti, Tiles: an online algorithm for community discovery in dy-
namic social networks, Machine-mediated learning (2017). doi:10.1016/
j.physrep.2012.03.001.

76. R. Agrawal, T. Imielinski, A. N. Swami, Mining association rules between sets
of items in large databases, in: ACM SIGMOD Conference, 1993.

77. J. M. Ale, G. H. Rossi, An approach to discovering temporal association rules,
in: Proceedings of the 2000 ACM Symposium on Applied computing-Volume 1,
2000, pp. 294–300.

78. C. Jiang, F. Coenen, M. Zito, A survey of frequent subgraph mining algorithms,
The Knowledge Engineering Review 28 (1) (2013) 75–105.

79. K. M. Borgwardt, H.-P. Kriegel, P. Wackersreuther, Pattern mining in fre-
quent dynamic subgraphs, in: Sixth International Conference on Data Mining
(ICDM’06), IEEE, 2006, pp. 818–822.

80. E. Abdelhamid, M. Canim, M. Sadoghi, B. Bhattacharjee, Y.-C. Chang, P. Kal-
nis, Incremental frequent subgraph mining on large evolving graphs, IEEE
Transactions on Knowledge and Data Engineering 29 (12) (2017) 2710–2723.

81. L. Kovanen, M. Karsai, K. Kaski, J. Kertész, J. Saramäki, Temporal motifs in
time-dependent networks, Journal of Statistical Mechanics: Theory and Exper-
iment 2011 (11) (2011) P11005.

82. A. Paranjape, A. R. Benson, J. Leskovec, Motifs in temporal networks, in:
Proceedings of the tenth ACM international conference on web search and data
mining, 2017, pp. 601–610.

83. N. Pržulj, Biological network comparison using graphlet degree distribution,
Bioinformatics 23 (2) (2007) e177–e183.

84. F. E. Faisal, T. Milenković, Dynamic networks reveal key players in aging,
Bioinformatics 30 (12) (2014) 1721–1729.

85. B. Bringmann, S. Nijssen, What is frequent in a single graph?, in: Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Springer, 2008, pp. 858–
863.

86. L. Gauvin, M. Génois, M. Karsai, M. Kivelä, T. Takaguchi, E. Valdano, C. L.
Vestergaard, Randomized reference models for temporal networks, SIAM Re-
view 64 (4) (2022) 763–830.

87. T. A. Snijders, Statistical models for social networks, Annual review of sociology
37 (2011) 131–153.

88. P. Holme, F. Liljeros, Birth and death of links control disease spreading in
empirical contact networks, Scientific reports 4 (1) (2014) 4999.

89. M. Karsai, K. Kaski, A.-L. Barabási, J. Kertész, Universal features of correlated
bursty behaviour, Scientific reports 2 (1) (2012) 1–7.

90. J.-C. Delvenne, R. Lambiotte, L. E. Rocha, Diffusion on networked systems is
a question of time or structure, Nature communications 6 (1) (2015) 7366.

91. M. Ley, The DBLP computer science bibliography: Evolution, research issues,
perspectives, in: Proc. Int. Symposium on String Process. and Inf. Retr., 2002,
pp. 1–10.

https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001

References 252

92. J. Kunegis, KONECT – The Koblenz Network Collection, in: Proc. Int. Conf.
on World Wide Web Companion, 2013, pp. 1343–1350.
URL http://dl.acm.org/citation.cfm?id=2488173

93. internationalbanker, The Enron Scandal (2001) — internationalbanker.com,
https://internationalbanker.com/history-of-financial-crises/the-
enron-scandal-2001/, [Accessed 19-09-2024].

94. S. Nakamoto, et al., Bitcoin: A peer-to-peer electronic cash system, Decentral-
ized Business Review (2008) 21260.

95. S. Kumar, F. Spezzano, V. Subrahmanian, C. Faloutsos, Edge weight predic-
tion in weighted signed networks, in: Data Mining (ICDM), 2016 IEEE 16th
International Conference on, IEEE, 2016, pp. 221–230.

96. S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, V. Subrahmanian,
Rev2: Fraudulent user prediction in rating platforms, in: Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining,
ACM, 2018, pp. 333–341.

97. J. Leskovec, R. Sosič, Snap: A general-purpose network analysis and graph-
mining library, ACM Transactions on Intelligent Systems and Technology
(TIST) 8 (1) (2016) 1–20.

98. Grassroots Economics (2023).
URL https://www.grassrootseconomics.org/pages/about-us

99. L. Doria, L. Fantacci, Evaluating complementary currencies: from the assess-
ment of multiple social qualities to the discovery of a unique monetary sociality,
Quality & Quantity 52 (2018) 1291–1314.

100. L. Ussher, L. Ebert, G. M. Gómez, W. O. Ruddick, Complementary currencies
for humanitarian aid, Journal of Risk and Financial Management 14 (11) (2021)
557.

101. D. Reppas, G. Muschert, The potential for community and complementary
currencies (ccs) to enhance human aspects of economic exchange, Digithum
(2019).

102. A. Michel, M. Hudon, Community currencies and sustainable development: A
systematic review, Ecological economics 116 (2015) 160–171.

103. A. C. An, P. T. X. Diem, L. T. T. Lan, T. V. Toi, L. D. Q. Binh, Building a
product origins tracking system based on blockchain and poa consensus proto-
col, 2019 International Conference on Advanced Computing and Applications
(ACOMP) (2019) 27–33.

104. M. Nadini, L. Alessandretti, F. Di Giacinto, M. Martino, L. M. Aiello,
A. Baronchelli, Mapping the nft revolution: market trends, trade networks,
and visual features, Scientific reports 11 (1) (2021) 1–11.

105. M. S. Kim, J. Y. Chung, Sustainable growth and token economy design: The
case of steemit, Sustainability 11 (1) (2019) 167.

106. C. Li, B. Palanisamy, Incentivized blockchain-based social media platforms: A
case study of steemit, in: Proceedings of the 10th ACM Conference on Web
Science, 2019, pp. 145–154.

http://dl.acm.org/citation.cfm?id=2488173
http://dl.acm.org/citation.cfm?id=2488173
https://internationalbanker.com/history-of-financial-crises/the-enron-scandal-2001/
https://internationalbanker.com/history-of-financial-crises/the-enron-scandal-2001/
https://www.grassrootseconomics.org/pages/about-us
https://www.grassrootseconomics.org/pages/about-us

References 253

107. J. Leskovec, A. Rajaraman, J. D. Ullman, Mining of massive data sets, Cam-
bridge university press, 2020.

108. P. Fournier-Viger, G. He, J. C.-W. Lin, H. M. Gomes, Mining attribute evo-
lution rules in dynamic attributed graphs, in: International Conference on Big
Data Analytics and Knowledge Discovery, Springer, 2020, pp. 167–182.

109. K.-N. T. Nguyen, L. Cerf, M. Plantevit, J.-F. Boulicaut, Discovering inter-
dimensional rules in dynamic graphs, in: Proceedings of the 1st International
Conference on Dynamic Networks and Knowledge Discovery-Volume 655, 2010,
pp. 5–16.

110. B. Guidi, A. Michienzi, L. Ricci, Steem blockchain: Mining the inner structure
of the graph, IEEE Access 8 (2020) 210251–210266.

111. T.-H. Kim, H. min Shin, H. Hwang, S. Jeong, Posting bot detection on
blockchain-based social media platform using machine learning techniques,
ArXiv abs/2008.12471 (2020).

112. K. Kapanova, B. Guidi, A. Michienzi, K. Koidl, Evaluating posts on the steemit
blockchain: Analysis on topics based on textual cues, in: Proceedings of the 6th
EAI International Conference on Smart Objects and Technologies for Social
Good, EAI, 2020.

113. R. Ciriello, R. Beck, J. Thatcher, The paradoxical effects of blockchain tech-
nology on social networking practices, in: Proceedings of the Thirty Ninth In-
ternational Conference on Information Systems, AIS, 2018.

114. B. Guidi, When blockchain meets online social networks, Pervasive and Mobile
Computing 62 (2020) 101131.

115. A. Kiayias, B. Livshits, A. M. Mosteiro, O. Litos, A puff of steem: Security
analysis of decentralized content curation, ArXiv abs/1810.01719 (2019).

116. U. W. Chohan, The concept and criticisms of steemit, CBRI
Working Papers: Notes on the 21st Century, Available at SSRN:
http://dx.doi.org/10.2139/ssrn.3129410 (2018).

117. B. Guidi, A. Michienzi, L. Ricci, A graph-based socioeconomic analysis of
steemit, IEEE Transactions on Computational Social Systems PP (2020) 1–
12. doi:10.1109/TCSS.2020.3042745.

118. B. Guidi, A. Michienzi, L. Ricci, Steem blockchain: Mining the inner structure
of the graph, IEEE Access 8 (11 2020). doi:10.1109/ACCESS.2020.3038550.

119. C. T. Ba, M. Zignani, S. Gaito, The role of cryptocurrency in the dynamics of
blockchain-based social networks: The case of steemit, PloS one 17 (6) (2022)
e0267612.

120. C. T. Ba, M. Zignani, S. Gaito, Social and rewarding microscopical dynamics
in blockchain-based online social networks, in: Proceedings of the Conference
on Information Technology for Social Good, 2021, pp. 127–132.

121. C. T. Ba, A. Michienzi, B. Guidi, M. Zignani, L. Ricci, S. Gaito, Fork-based
user migration in blockchain online social media, in: Proceedings of the 14th
ACM conference on web science, 2022.

122. K. Vasan, M. Janosov, A.-L. Barabási, Quantifying nft-driven networks in
crypto art, Scientific reports 12 (1) (2022) 1–11.

https://doi.org/10.1109/TCSS.2020.3042745
https://doi.org/10.1109/ACCESS.2020.3038550

References 254

123. M. Franceschet, Hits hits art, Blockchain: Research and Applications 2 (4)
(2021) 100038.

124. A. Kapoor, D. Guhathakurta, M. Mathur, R. Yadav, M. Gupta, P. Ku-
maraguru, Tweetboost: Influence of social media on nft valuation, arXiv
preprint arXiv:2201.08373 (2022).

125. S. Oh, S. Rosen, A. L. Zhang, Investor experience matters: Evidence from gen-
erative art collections on the blockchain, Available at SSRN (2022).

126. A. Ramdas, N. G. Trillos, M. Cuturi, On wasserstein two-sample testing and
related families of nonparametric tests, Entropy 19 (2) (2017) 47.

127. M. Jin, Y.-F. Li, S. Pan, Neural temporal walks: Motif-aware representation
learning on continuous-time dynamic graphs, Advances in Neural Information
Processing Systems 35 (2022) 19874–19886.

128. R. A. Rossi, N. K. Ahmed, E. Koh, S. Kim, A. Rao, Y. Abbasi-Yadkori, A
structural graph representation learning framework, in: Proceedings of the 13th
international conference on web search and data mining, 2020, pp. 483–491.

129. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network
motifs: simple building blocks of complex networks, Science 298 (5594) (2002)
824–827.

130. L. Kovanen, M. Karsai, K. Kaski, J. Kertész, J. Saramäki, Temporal motifs in
time-dependent networks, Journal of Statistical Mechanics: Theory and Exper-
iment 2011 (11) (2011) P11005.

131. B. Arregui-García, A. Longa, Q. F. Lotito, S. Meloni, G. Cencetti, Patterns
in temporal networks with higher-order egocentric structures, Entropy 26 (3)
(2024) 256.

132. C. E. Mattsson, T. Criscione, W. O. Ruddick, Sarafu community inclusion
currency 2020–2021, Scientific data 9 (1) (2022) 426.

133. R. Mqamelo, Community currencies as crisis response: Results from a random-
ized control trial in kenya, Frontiers in Blockchain (2021) 44.

134. C. E. Mattsson, T. Criscione, F. W. Takes, Circulation of a digital community
currency, arXiv preprint arXiv:2207.08941 (2022).

135. C. T. Ba, A. Galdeman, M. Zignani, S. Gaito, Temporal analysis of cooperative
behaviour in a blockchain for humanitarian aid during the covid-19 pandemic,
in: Proceedings of the 2022 ACM Conference on Information Technology for
Social Good, 2022, pp. 292–299.

136. C. T. Ba, M. Zignani, S. Gaito, Cooperative behavior in blockchain-based com-
plementary currency networks through time: The sarafu case study, Future
Generation Computer Systems 148 (2023) 266–279.

137. X.-X. Zhan, C. Liu, Z. Wang, H. Wang, P. Holme, Z.-K. Zhang, Measuring
and utilizing temporal network dissimilarity, arXiv preprint arXiv:2111.01334
(2021).

138. T. Milenković, N. Pržulj, Uncovering biological network function via graphlet
degree signatures, Cancer informatics 6 (2008) CIN–S680.

139. M. Karsai, H.-H. Jo, K. Kaski, et al., Bursty human dynamics, Springer, New
York, NY, 2018.

References 255

140. R. Kumar, J. Novak, A. Tomkins, Structure and evolution of online social net-
works, in: Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2006, pp. 611–617.

141. S. Asur, S. Parthasarathy, D. Ucar, An event-based framework for character-
izing the evolutionary behavior of interaction graphs, ACM Transactions on
Knowledge Discovery from Data (TKDD) 3 (4) (2009) 1–36.

142. M. Takaffoli, F. Sangi, J. Fagnan, O. R. Zäıane, Community evolution mining
in dynamic social networks, Procedia-Social and Behavioral Sciences 22 (2011)
49–58.

143. M. Goldberg, M. Magdon-Ismail, S. Nambirajan, J. Thompson, Tracking and
predicting evolution of social communities, in: 2011 IEEE Third International
Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Interna-
tional Conference on Social Computing, IEEE, 2011, pp. 780–783.

144. S. R. Kairam, D. J. Wang, J. Leskovec, The life and death of online groups:
Predicting group growth and longevity, in: Proceedings of the fifth ACM inter-
national conference on Web search and data mining, 2012, pp. 673–682.

145. A. Patil, J. Liu, J. Gao, Predicting group stability in online social networks, in:
Proceedings of the 22nd international conference on World Wide Web, 2013,
pp. 1021–1030.

146. P. Bródka, P. Kazienko, B. Kołoszczyk, Predicting group evolution in the social
network, in: Social Informatics: 4th International Conference, SocInfo 2012,
Lausanne, Switzerland, December 5-7, 2012. Proceedings 4, Springer, 2012, pp.
54–67.

147. N. Dakiche, F. B.-S. Tayeb, K. Benatchba, Y. Slimani, A. Khelifati, H. Cha-
bane, Epredictor: An experimental platform for community evolution prediction
tests., in: SIMULTECH, 2021, pp. 295–302.

148. N. Ilhan, Ş. G. Öğüdücü, Feature identification for predicting community evo-
lution in dynamic social networks, Engineering Applications of Artificial Intel-
ligence 55 (2016) 202–218.

149. X. Wang, M. Zhang, GLASS: GNN with labeling tricks for subgraph repre-
sentation learning, in: International Conference on Learning Representations,
ICLR ’22, 2022.
URL https://openreview.net/forum?id=XLxhEjKNbXj

150. X. Chen, Q. Qian, subge: Enhancing the subgraph representation of molecular
compounds structure–activity relationship discovery, Eng. Appl. Artif. Intell.
119 (C) (mar 2023). doi:10.1016/j.engappai.2022.105727.
URL https://doi.org/10.1016/j.engappai.2022.105727

151. E. Alsentzer, S. Finlayson, M. Li, M. Zitnik, Subgraph neural networks, Ad-
vances in Neural Information Processing Systems 33 (2020) 8017–8029.

152. Y. Yu, Z. Lu, J. Liu, G. Zhao, J.-r. Wen, Rum: Network representation learning
using motifs, in: 2019 IEEE 35th International Conference on Data Engineering
(ICDE), IEEE, 2019, pp. 1382–1393.

153. J. Xu, A. Yu, L. Cai, D. Meng, Mmnr: A network representation frame-
work based on multi-view motif fusion, in: 2019 IEEE Intl Conf on Parallel

https://openreview.net/forum?id=XLxhEjKNbXj
https://openreview.net/forum?id=XLxhEjKNbXj
https://openreview.net/forum?id=XLxhEjKNbXj
https://doi.org/10.1016/j.engappai.2022.105727
https://doi.org/10.1016/j.engappai.2022.105727
https://doi.org/10.1016/j.engappai.2022.105727
https://doi.org/10.1016/j.engappai.2022.105727

References 256

& Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), IEEE, 2019, pp. 792–801.

154. K. Tu, J. Li, D. F. Towsley, D. Braines, L. D. Turner, Network classification in
temporal networks using motifs, ArXiv abs/1807.03733 (2018).
URL https://api.semanticscholar.org/CorpusID:49668820

155. K. Tu, J. Li, D. Towsley, D. Braines, L. D. Turner, gl2vec: Learning feature
representation using graphlets for directed networks, in: Proceedings of the 2019
IEEE/ACM international conference on advances in social networks analysis
and mining, 2019, pp. 216–221.

156. M. Chen, K. Kuzmin, B. K. Szymanski, Community detection via maximization
of modularity and its variants, IEEE Transactions on Computational Social
Systems 1 (1) (2014) 46–65. doi:10.1109/TCSS.2014.2307458.

157. V. A. Traag, L. Waltman, N. J. Van Eck, From louvain to leiden: guaranteeing
well-connected communities, Scientific reports 9 (1) (2019) 5233.

158. M. Coscia, M. Szell, Multiplex graph association rules for link prediction, ArXiv
abs/2008.08351 (2020).

159. A. Galdeman, M. Zignani, S. Gaito, Unfolding temporal networks through sta-
tistically significant graph evolution rules, in: 2023 IEEE 10th International
Conference on Data Science and Advanced Analytics (DSAA), IEEE, 2023, pp.
1–10.

160. G. Csardi, T. Nepusz, The igraph software, Complex syst 1695 (2006) 1–9.
161. B. Guidi, A. Michienzi, L. Ricci, A graph-based socioeconomic analysis of

steemit, IEEE Transactions on Computational Social Systems 8 (2) (2021) 365–
376.

162. S. Kumar, R. Zafarani, H. Liu, Understanding user migration patterns in social
media, in: AAAI, 2011.

163. M. Senaweera, R. Dissanayake, N. Chamindi, A. Shyamalal, C. Elvitigala,
S. Horawalavithana, P. Wijesekara, K. Gunawardana, M. I. E. Wickramasinghe,
C. Keppitiyagama, A weighted network analysis of user migrations in a social
network, 2018 18th International Conference on Advances in ICT for Emerging
Regions (ICTer) (2018) 357–362.

164. C. Davies, J. R. Ashford, L. Espinosa-Anke, A. D. Preece, L. D. Turner, R. M.
Whitaker, M. Srivatsa, D. H. Felmlee, Multi-scale user migration on reddit, in:
Workshop on Cyber Social Threats at the 15th International AAAI Conference
on Web and Social Media (ICWSM 2021), AAAI, 2021.

165. C. T. Ba, M. Zignani, S. Gaito, The role of groups in a user migration across
blockchain-based online social media, in: 2022 IEEE International Conference
on Pervasive Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops), IEEE, 2022, pp. 291–296.

166. B. Guidi, A. Michienzi, L. Ricci, Analysis of witnesses in the steem blockchain,
Mobile Networks and Applications (2021) 1–12.

https://api.semanticscholar.org/CorpusID:49668820
https://api.semanticscholar.org/CorpusID:49668820
https://api.semanticscholar.org/CorpusID:49668820
https://doi.org/10.1109/TCSS.2014.2307458

References 257

167. J. Wu, J. Liu, Y. Zhao, Z. Zheng, Analysis of cryptocurrency transactions from
a network perspective: An overview, Journal of Network and Computer Appli-
cations 190 (2021) 103139.

168. R. Interdonato, M. Magnani, D. Perna, A. Tagarelli, D. Vega, Multilayer net-
work simplification: approaches, models and methods, Comput. Sci. Rev. 36
(2020) 100246.

169. M. Magnani, O. Hanteer, R. Interdonato, L. Rossi, A. Tagarelli, Community
detection in multiplex networks, arXiv preprint arXiv:1910.07646 (2019).

170. M. Rosvall, D. Axelsson, C. T. Bergstrom, The map equation, The European
Physical Journal Special Topics 178 (1) (2009) 13–23.

171. M. De Domenico, A. Lancichinetti, A. Arenas, M. Rosvall, Identifying mod-
ular flows on multilayer networks reveals highly overlapping organization in
interconnected systems, Physical Review X 5 (1) (2015) 011027.

172. D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, J. Mach. Learn.
Res. 3 (null) (2003) 993–1022.

173. C. T. Ba, M. Zignani, S. Gaito, The role of cryptocurrency in the dynamics of
blockchain-based social networks: the case of steemit, PloS One (2022).

174. M. Bastian, S. Heymann, M. Jacomy, Gephi: An open source software for ex-
ploring and manipulating networks (2009).
URL http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

175. E. Newell, D. Jurgens, H. M. Saleem, H. Vala, J. Sassine, C. Armstrong,
D. Ruths, User migration in online social networks: A case study on reddit
during a period of community unrest, in: ICWSM, 2016.

176. H. Kaur, H. S. Pannu, A. K. Malhi, A systematic review on imbalanced data
challenges in machine learning: Applications and solutions, ACM Computing
Surveys (CSUR) 52 (4) (2019) 1–36.

177. W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large
graphs, Advances in neural information processing systems 30 (2017).

178. M. Zhang, Y. Chen, Link prediction based on graph neural networks, Advances
in neural information processing systems 31 (2018).

179. J. You, R. Ying, J. Leskovec, Position-aware graph neural networks, in: Inter-
national conference on machine learning, PMLR, 2019, pp. 7134–7143.

180. Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, C. Wang, Hierarchi-
cal graph pooling with structure learning, arXiv preprint arXiv:1911.05954
abs/1911.05954 (2019).

181. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural mes-
sage passing for quantum chemistry, in: International conference on machine
learning, PMLR, 2017, pp. 1263–1272.

182. T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, arXiv preprint arXiv:1609.02907 (2016).
URL https://openreview.net/forum?id=SJU4ayYgl

183. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks, arXiv preprint arXiv:1710.10903 (2017).

http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

References 258

184. T. N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint
arXiv:1611.07308 (2016).

185. Y. Ma, Y. Tian, N. Moniz, N. V. Chawla, Class-imbalanced learning on graphs:
A survey, arXiv preprint arXiv:2304.04300 (2023).

186. T. Zhao, X. Zhang, S. Wang, Graphsmote: Imbalanced node classification on
graphs with graph neural networks, in: Proceedings of the 14th ACM interna-
tional conference on web search and data mining, 2021, pp. 833–841.

187. P. Holme, J. Saramäki, Temporal networks, Physics Reports 519 (3) (2012)
97–125, temporal Networks.

188. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http:
//www.deeplearningbook.org.

189. L. Yang, A. Shami, On hyperparameter optimization of machine learning algo-
rithms: Theory and practice, Neurocomputing 415 (2020) 295–316.

190. J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization., Jour-
nal of machine learning research 13 (2) (2012).

191. J. You, T. Du, J. Leskovec, Roland: graph learning framework for dynamic
graphs, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 2358–2366.

192. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 abs/1412.6980 (2014).

http://www.deeplearningbook.org
http://www.deeplearningbook.org

	Introduction
	Unified modeling framework and terminology
	Stand-alone evolution rules
	General graph evolution rules
	User Migration
	Conclusion

	Part I Background and Related works
	Temporal and evolving networks
	Triadic closure
	Homophily
	Network evolution through community

	Framework for temporal networks' modeling
	List of timestamped interactions
	Interval model
	Projections

	Graph evolution rules
	Introduction
	Preliminaries
	Association rules
	Subgraph counting approaches
	Common concepts and terminology

	GERM
	Graph representation
	Support and confidence measure
	Rules extraction

	LFR
	Graph representation
	Characteristics of LF-Rules
	Pipeline of the method
	gSpan adapted for LF-rules
	Ego-based Support and confidence
	Finding meaningful rules

	Evomine
	Graph representation
	Evolutionary constraints
	The method and support measures

	TP Miner
	Algortithm ideas
	Graph representation
	Frequent time patterns
	Representative patterns
	From patterns to rules
	Graph evolutions DAGs

	DGR Miner
	Dynamic graphs representation
	How to be a DGR rule
	Union graph representation
	DGR algorithm
	Support and confidence

	Null models classification
	Microcanonical Randomized Reference Models - MRRMs
	Representation of temporal networks
	MRRMs taxonomy
	Timeline representation: Timeline and link shuffling
	Snapshot representation: Sequence and snapshot shuffling

	Case studies
	UC-social
	DBLP datasets: citations and co-authoriship
	Enron email dataset
	Stack Overflow
	Bitcoin Alpha
	Sarafu dataset
	NFTs sales dataset
	Steemit
	Hive
	Datasets

	Part II Stand Alone Rules
	Statistically significant rules
	Introduction
	Background and related works
	Graph Evolution Rules - GERs
	Microcanonical Randomized Reference Models - MRRMs

	Methodology
	Timeline shuffled null model
	Significative GERs
	Mapping of temporal patterns across null model realizations
	Case studies and graph modeling

	Findings
	GERM outcomes on real and randomized networks
	Analysis of z-scores
	Frequency of GERs in real and randomized networks
	Analysis of timespans
	Discussion

	Conclusions

	Profiling Web3
	Introduction
	Background and related works
	Blockchain online social networks
	Non-fungible tokens - NFTs

	Methodology
	Representation and modeling
	GER Profiles

	Findings
	Quantitative descriptions of results
	GER Profiles

	Discussion
	Conclusions

	Temporal node evolutionary representation
	Introduction
	Related work and background
	Methodology
	Ego-networks from temporal networks
	Node Evolutionary Profile
	Case study

	Results
	Preprocessing and filtering
	NEPs
	NEPs clustering

	Conclusions

	Community evolutionary profile
	Introduction
	Background
	Community evolution
	Vector-based subgraph representation

	Methodology
	GER profiles
	Community GER profiles
	Support choice method
	Case studies

	Findings
	Global evolution
	Evolution patterns in communities
	Evolution of neighboring communities

	Conclusions

	Part III Graph Evolution rules
	TULIP
	Introduction
	Methodology
	Enumeration of static patterns
	Temporal pipeline
	Canonical classification
	Counting and profile
	Case Studies

	Results and Discussion
	Pre profile
	Evolutionary profile
	Sensitivity to parameters

	Conclusion

	Part IV User Migration
	Influence of hubs
	Dataset
	Methodology
	Graph modeling
	Hub definition
	Hubs activity
	Hubs' influence

	Results
	Hubs activity and migration choice
	Influence of hubs

	Conclusions

	Influence of groups discussion
	Research questions
	Methodology
	Modeling BOSN and user migration
	Community structure and user migration
	Community discussion and user migration

	Dataset
	Results
	The interplay of community structure and migration
	The interplay of community discussion and migration

	Conclusions

	Migration prediction
	Related work
	Research questions
	Methodology
	Results
	Conclusion

	Part V Conclusions and future works
	Conclusions
	Future Works
	Appendices
	References

